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The purpose of this report is to examine several modifi-
cations of extended Kalman filters which can be used to estimate
the position, velocity, and other key parameters asscciated with
maneuvering re-entry vehicles. These filters will be described
and discussed in terms of the fundamental problems of modeling ac-
curacy, filter sophistication, and the real-time computational re-
quirements. A nine-state, extended Kalman filter based upon the
maneuvering vehicle dynamics is compared with several other candi-
date filters. These candidate filters include a simple filterx
based upon polynomial dynamics decoupled with respect to the co-
ordinates and a more complex, fully coupled, seven-state, extended
Kalman filter based upon a ballistic re-entry vehicle dynamics.
Techniques which adaptively increase the process noise to compen-

sate for modeling errors during the manevuers are examined.
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1. INTRODUCTION

Estimating the state ard associated parameters (i.e.,
tracking) of a re-entry vehicle (RV) based on its radar measure-
ments is a highly complex problem in nonlinear estimation. Not
only does the vehicular nonlinear equation of motion represent an
excessive computational burden, but the necessity of identifying
key parameters associated with vehicle dynamics complicates the
problem even further. The application of the linear Kalman filter}

2,3

and its extension to the nonlinear case for the tracking of a

ballistic re-entry vehicle (BRV) has been studied extensively dur-

4-11 Although many filters have been discussed,

ing the past decade.
they can generally be divided into two categories, i.e., filters
based upon polynomial modeled dynamics (referred to as polynomial
filters) and filters based upon the vehicular nonlinear differen-
tial equation of motion (referred to as BRV filters). There ex-
ists a trade-off between these two types of filters in both per-
formance and computational requirements.6
In many practical applications of recursive estimation
theory, there is a problem in obtaining an exact representation
of the dynamic process. In the BRV tracking context, the BRV fil-
ter suffers from the fact that the ballistic coefficient which
must be identified on-line is an unknown and time-varying parameter.

For a mcderate parameter variation, the ballistic coefficient is

often modeled as a constant state variabie with the variations and
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uncertainties compensated for by a ficticious process noise term. o4
The variance of this noise term is related to the system structure
and the variation of the parameter and can be determined on-line by

adaptive filtering methods cr premission by extensive simulation

studies. This technique has been applied successfully in estimat-

ing the ballistic coefficient of a ballistic re-entry vehicle.7—lo

The problem of state and parameter estimation of a man-

euvering re-entry vehicle (MARV) has received scant attention in

the past. A subject which has been discussed in some detail per-

tains to the tracking of maneuvering aircraftlz’13 and linear state
dynamics is usually assumed. The MARV tracking problem is similar
to the maneuvering aircraft tracking problem in the sense that the
target maneuvering force represents uncertain dynamics in the equa-

tion of motion. In this paper, several versions of the extended

Kalman filter which can be used to estimate the position, velocity,
and other key parameters associated with a MARV are discussed.
Similar to the BRV tracking case, the basic problem is still one
of trading off the factors of improved modeling accuracy, filter
sophistication, and computational requirements.

Three filters are discussed. The most complex one is

the extended Kalman filter based upon a MARV differential equa-

tion of motion (referred to as the MARV filter). There are nine

states in this filter, i.e., position (3-state), velocity (3-state),

drag (l-state), and lift (2-state). 1In this case the fictitious

I i

i

T —




e

U ONP P

£
=
=
£
=
=
=
=
=
]
=
=
=

!

if

noise components affect only the drag and 1ift parameters. The
second filter is a modified BRV filter. It ut:lizes the BRV equa-
tion of motion bhut adaptively changes the process noise level to
compensate for the modeling error. The last filter is a polyno-
mial filter also with adaptive process noise. The method of ad-
aptive filtering utilized in these last two filters is based upon
that of Jazwinski.14 The performance of these filters is compared
in terms of bias and RMS errors developed through Monte Carlo ex-
ercise of the algorithm. Irajectories with different levels of
maneuvering severity are used to examine sensitivity of perfor-
mance with respect to the size of maneuver. In addition since a
MARV initially re-enters along a ballistic trajectory, a BRV fil-
ter may be used initially with a subsequent switch to a MARV fil-
ter upon detection of a vehicle maneuver. This approach referred

to as a combined filter is not examined in detail, nowever, a gen-

eralized likelihood ratio test for maneuver identification is des-
cribed.

The MARV differential equation of motion is defined in
a rectangular (Cartesian) coordinated system. A dish radar is
assumed located at the center of the coordinate system. The mea-
surement variables of the dish radar include range, azimuth, and
elevation. The rectangular ccordinate system has the property
that it makes the trajectory differential equations less compli-

cated. The aisadvantage is that the measurement equations are

e
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nonlinear in terms of the state variables. The rectangular co-

ordinate is employed here because it is better suited for under-

standing the geometry of the vehicle maneuver.

This report is organized as follows. The MARV differ-

ential equations of motion are presented in the next section. -

The generalized maximum-likelihood ratio test for maneuver detec-

tion is presented in the third section. The extended Kalman f£il-

ter equations specific to the MARV tracking problem are presented

in Section 4. Section 5 presents a review of adaptive filtering

methods. Special emphasis is given to Jazwinski's adaptive fil-

tering method with application to the tracking problem. A brief

review of other adaptive filtering methods and a discussion on

the feasibility of their applications to the tracking problem are

included. Section 6 presents r-marical performance results of

the described filters for simule .J test data. Comparisons of

both bias and RMS estimation errors for position, velocity, and

parameters are presented. The last section presents a discussion

of our investigation thus far and the direction for future devel-

opment.

2. MODELING OF MARV DYNAMICS

In this section, the MARV differential equation of motion -

is presented. A Cartesian coordinate system is employed to des-

cribe these equations because it is felt that this system is bet-

ter suited for "physical” undexstanding.

A flat, nonrotating




earth with constant gravity model is assumed. For the altitude

region below 100 km which is our concern, this assumption intro-

duces only insignificant modeling errors while greatly simplify-
ing the equations. When the vehicie is viewed as a point mass

re-entering along a ballistic trajectory, there are two signifi-

cant force terms, gravity and aerodynamic drag, acting on the
vehicle. The drag force acts opposite to the velccity vector with
a magnitude proportional to the air density and the square of the
velocity. When the vehicle undertakes a maneuver, a third force
term , 1lift, is introduced. The lift force is in a plane perpen-
dicular to the velocity vector. It may be represented by the mag-
nitude and the direction angle.

*
The MARV equations are stated below.
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Notice that when all the lift-related parameters are zero (i.e.,

A,8,Y), the above set of equations reduce to the ballistic trajec-

tory eguations.

ded Kalman filter based upon the above model would include position,

velocity components along x,y.xX axis,
respectively

magnitude of velocity
(: F + V2 + Vz)
x Yy z
planar velocity (= sz + Vyz)

drag force proportionality constant, its
inverse is known as the ballistic coeffi-
cient which is the ratio of vehicle mass
to effective drag area

lift force proportionality constant, it
has a similar aerodynamic meaning as drag

a constant defining the lift induced drag
angle between lift vector and the local
horizontal plane. It has the following
convention

Y positive -+ climb
Y negative + dive

-90° < y < 90° -+ left turn
9n° < y < 270°+ right turn

SGN({Y) 1 for -90° < y < 90°

-1 otherwise
air density

gravitational constant

Similar to the ballistic vehicle case, the exten-
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velocity, and unknown parameters as state variables. This state

augmentation method for parameter identification has been applied

successfully when the parameter undergoes moderate variation.

Ideally, one would like to identify all the MARV parameters, namely

§, vy, and A. However, this makes the augmented system unobserv-

*
able. A reduced-order model will be used to identify a combina-

i

~ion of these parameters. This involves estimating the tangential

deceleration constant a(1+A2), the normal deceleration constant

A8, and the angle y. This makes the MARV estimator a nine-state

filter with position (3-state), velocity (3-state), and three

B L A A A

lift/drag parameters [a(l+k2), A8, and y] as state variables.

The lift force representation used in these equations

is defined strictly in keeping with the aerodynamics. A disad-

vantage of this model is that the angle parameter vy is related to

the vehicle acceleration in a "very" nonlinear fashion (i.e., sine,

cosine, square root, etc.). A method to make the parameter rela-

tionship appear more "linear" is to decompose the lift force on

an &opropriate coordinate system and then estimate the magnitude
along the coordinates. This formulation enables the 1lift para-

meters to relate to the acceleration terms in a manner similar to

that of the drag parameter in the BRV case. One such possible

The observability theory for a general nonlinear system has not
been found. For the particular system studied here, it can be
shown that it is indeed impossible to separate all parameters
unless other relations can be specified.

A A R, G T A B




decomposition which maintains the lift force perpendicular to the
drag force defines a lift force parallel to the ground (the turn
force) and another force perpendicular to the turn force (the
climb force). With this formulation, the MARV equations may be

rewritten as:

1 20 1 2, Yy 1o Vx'z
-ipVan(1+A )-ipV Xétvp —ipVAGC—v~—

p

~Lowv o (142 2)+1ov2as x _1 ) Yy'z
3P Y 2° tVb P ATV

1 2,.,1
ipVVza(l+k )+§pVVbA6c G (2.2)

where Gc and Gt are climbing and turning parameters, respectiv .y,
with the following sign convention
Sc > 0 + climbing, 5c < 0 » diving

6§, > 0 » left 6, < 0 » right turn

Notice that the total lift force constant is represented by

_ 2. .2
A8 = A Y8 48 .

The nine-state MARV filter presented in the later sec-
tion is the extended Kalman filter based upon Eqg. (2.2). The actual

. _ 2 _ _
parameters estimated are ag = o {l+)), a, = AGt, and e, = AGC.

3. MANEUVER DETECTION
In this section, a likelihood ratio test for maneuver

detection is presented. Maneuvering vehicles initially re-enter
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along a ballistic trajectory. If a maneuver is initiated while
the target is being tracked by a ballistic filter, biases will
begin to build up in the filter residual.* The maneuver detec-
tion is designed to exploit this residual bias. A bias model
which is increased linearly with time is assumed. If the amount
of bias is known a priori to the detector, the detection problem
is simplified to distinguish two Gaussian processes with known
means and variances. This simple case is first introduced to
establish notation. When the bias is unknown, and this is usually
the case in practice, a generalized likelihood ratio test is for-

15 This is shown to be an extension of the known bias

mulated.
case. When the bias function is assumed completely unknown, the
test is reduced to the well-known chi-square test. This case is
shown in the last subsection.

3.1 Known Bias Case

Assume the bias in the residual caused by a vehicle man-
euver during one measurement interval be known to the hypothesis §
tester and let it be denoted by Ay. It is assumed using our as- :
sumption of a linearly increasing bias, the bias after k measure-
ments is kdy. Let a stack of K measurements be collected for
testing and é§k denote the k~th measurement residual with covari-

ance Pr x* Two hypothesis representing MARV (Hl) and BRV (Ho) are
14

*
"Filter residual" is defined as the difference of the measurement
and the predicted measurement.

Dbl




le éXk = kéx_+ Ek
I k=l'o.c'K (301)
o
Hot A¥y = 1y

where the noise term n, is assumed Gaussian with zero mean and

=k

X and is uncorrelated for different k. The likeli-
4 v

hood test is given by

covariance Pr

n MARV -
A PAY, oo Ay /HY) T )
= <

p (AY ree ¥, /B BRV

1 K N Tp-l "
= ceexp{-5 D [(éy_k-kz_l_y_) r,k  (Ay, ~kAy)

k=1

C ) ek ey )]}MQRV ) (3.2)

14 .

; ~x . _xk- BRV
This equation may be reduced to obtain the following sufficient
statistics
K T -1 K T,-1

L = éé&kéx r,kaY, - 5 ééik Ay “r,kAy (3.3)

Notice that £ is a Gaussian random process with known means and
variances under both hypothesis. The performance of this test is

well known and is characterized by the normalized separation of

11

these two hypotheses. This separation can be represented by the

following definition of "signal-to-noise" ratio:

2
|E(2/H))-E(2/8,) |

SNRK =

Var(z/Hl)+Var(2/Ho)
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where E( ) denotes the statistical exception and vVar( ) the vari-
ance of the enclosed event. Subscript "K" denotes the integrated
SNR over K measurements. Substituting in the appropriate terms
yields

K T -1
1 2,.°p
SNR, = 3 k};lk Ay “r,k Ay

- SNRlK(K+lé(2K+1) (3.5)

Notice that SNR, increases rapidly with K.

K

3.2 Unknown Bias Case

In the more realistic case where the bias term Ay is
unknown to the detector, the test becomes a generalized likeli-
hood ratio test which replaces the Ay by its maximum likelihood
estimate .ll This results in the following modified likelihood

ratio.
Max p(4Y, ... AY, /Ay, H)) MARV
A=A - 2 A (3.6)
p(éxl,...,ézK/Ho) BRV

Letting éi derote the maximum likelihood estimate of Ay, Eq. (3.3)

becomes
K T _~1 K T -1
AP n ]_ :2 ATP ~
L = Zkéy_ r.k &Y, - 3 Zkéy_ r,k Ay (3.7)
k=1 k=1
The resulting estimate Ay is then given by
~1
K K
~ 2.-1 -1 ,n
& -Lg,ln Pr,n] [};lnpr,nAyn] S3.8)
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For the case when K=1, Eq. (3.7) becomes

T -1
% = AY Fr,k AY

which is the chi-square statistic.

3.3 Unknown Bias Function Case

In the previous subsections, the bias is assumed to in-
crease linearly in the residual. Higher order relations may also
i be used in modeling the bias. However, when a small number of

measurements are used in the detector, the linear model is a rea-

T

sonable one to use. One could also assume no knowledge at all

about the bias model. In this case the hypothesis test can be

= stated as

§A N

Hys Ay = &%y + 1y

:t n, L4 k=l,‘¢o'K (3.9)
Hy: Ay, =y

where the change of AX; with k is totally unassumed. The general-

ized likelihood ratio test is

MaX p(ﬁl'.’&K/éll'.’élK'Hl) MA.?.V
_ My p

A (3.10)
P(égll-oéyK/Ho) BRV

A

The maximum likelihood estimate of Ax; is therefore A?i and re-

TR .
il nwmum&4WMmUmmmMm

f sults in the following sufficient statistic.
i

K
1 nvo_=-1 N
% = 3 k=1Akar,kAz]

it
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This is a summation of K chi-square random variables. Detectors
may be devised by either testing the above summation or by using
a sequential testing process utilizing consecuvtive chi-square

statistics.

4. RADAR TRACKING FILTERS

The furction of the tracking filter is to provide esti-
mates of the states and parameters which describe the motion of
the re-entry vehicle. These estimates are computed by means of
a weighted combination of the predicted and measured target states.
The prediction procedure carried out in the filter is based upon
the assumed target dynamics and the past tracking data.

Let the following vector differential equation denote
the vehicle dynamic model used in the filtering equation

x(t) = £(x(t)) + n(t) (4.1)
where n(t) is a zero-mean white Gaussian noise process with covar-~
iance Q(t). This state driving noise, which is sometimes artifi-
cially introduced by the filtering algorithm, is used to compensate
for the uncertainties that might exist in the model. The measure-
ments are collected from radar at discrete times and represented by

2y = Q(Ek) + Y% _ (4.2)
where v

-k
The observation function h(+) represents the transformation from

1s a zero mean Gaussian noise process with covariance R -

the state space to the measurement space or radar measurement vari-

ables. This estimation problem is known as the continuous process-

discrete measurement problem.2

13




Numerous algorithms have been proposed for re-entry ve-

4=11 ey differ mainly in the filter sophistica-

hicle tracking.
tion and the modeling complexity. The most widely used filter
structure is still the extended Kalman filter regardless of the
target dynamic model assumed. The extended Kalman filter is most
popular because it offers an excellent balance between the compu-
tational requirements and the cverall tracking performance. For
this reason, this same basic filter is used for MARV tracking.

The extended Kalman filter is stated below in its familiar form:

Predict Cycle

-

(state) X

£/k (4.3)

= £& )

. . _ T
(covariance) Pt/k = kat/k+Pt/ka+Q(t) (4.4)

where gt/k denotes the estimate of x at time t based upon all the
data up to time t, and Py denotes the covariance of gt/k at time
t conditioned upon all the data up to time tee Fy is the Jacobian
matrix of £(x(t)) at gk/k. Assuming that the process noise is con-
stant from t, to tk+l' Eg. (4.4) may be approximated by its dis-
crete equivalent

- T

where Qk is the transition matrix of Fk and Atk = tk+1-tk'

Update Cycle

(state) % (

Xer1/k+l T Exrl/k k1 1R (X i)
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(gain) wk+l Pk+l/k k+l

{(covariance)

Pk+1/k+l = (I_Wk+1Hk+1)Pk+1/k (4.6)

where H = Jacobian matrix of h{x(t)) at xk+1/k

k+1
The filter residual ézk used in Section 3 is related to

the above filtering equation by

v
B¥y41 = Zxyp ~ B X3 41/k)
with covariance
T

Prox+l T HreaPrar/itier + Ren
When the proper filter optimality conditions are satisfied, the
residual g§k+l has the same properties as those of the measurement
noise process and is known as the innovation process.

Three filters based upon varying degrees of model com-
plexity are discussed in the remaining part of this section. The
first two filters are obtsined by using a simple modification of
existing ballistic vehicle tracking filters. This is made possible

by introducing substantial process noise through the filter so that

the estimates rely heavier on the measurement than on the target

dynamic model. Without this modification, these two filters would

diverge quickly from the MARV trajectory. The method of computing

the noise variance is based upon that of Jazwinski14 and is dis-

cussed in the next section. The third filter is the extended
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Kalman filter based upon the MARV differential equation of motion.
All three filters are now discussed individually in their order of
complexity.

4.1 Constant Acceleration Model (Polynomial Filter)

The simplest of the three candidate filters is referred
to as the "polynomial” filter because the motion for each of the
three coordinates is described in a second-order, constant accel-
eration dynamic model. The parameters to be estimated make up a

9-dimensional state vector,
_ ¢ e s o . T
zf_(t) = (XIYlZIXIYIzlxly'z) (4.7)

The coordinates are assumed to be decoupled resulting in the simple
linear time-invariant state equation,

i I |l o
f—
o | x (t)+n(t), (4.8)
| |
I |

jo | 110

-4

¢

]
] ]
o o llo
o {10 |

where n(t) represents the process noise term with covariance level
to be determined.
Since this filter does not explicitly estimate the drag

deceleration, A_, the nonlinear relationship between the inverse

D
ballistic coefficient, «, and the estimated states, Av-gcose=%pv2u
is used to generate an estimate of the drag and drag parameters.

In this expression Ay is the total acceleration along the velocity

e g

T e e e
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vector, g is the gravitational constant, 6 is the angle between

the velocity vector and the line-of-sight through the center of

the earth, and %pvz is the free air-stream pressure. From the

experience of using this filter in the ballistic re-entry vehicle

tracking, the o estimated is expected to contain a large random

error.

4.2 Constant Drag Model (BRV Filter)

The equations-of-motion for a ballistic re-entry vehicle
can be obtained from Eq.(2.1l) by letting 6=0, A=0, and y=0. These

equations are completely delineated by the 7-dimensional state

vector,

E(t) = (erlzr}.{rl}léla)T (4.9)

which forms the basic parameter set for the BRV filter.

The inverse ballistic coefficient, a, is the only para-
meter for which there is no simple, practical model structure in
terms of the other parameters. It is modeled as a2 constant Gaus-
sian Markov process, a = na(t), where na(t) is a zero-mean white
noise process. This modeling method is often used in parameter
identification.2

The filter based upon this dynamic model has been used
extensively for real-time BRV tracking in the field with excellent
results reported.7-lo The modification which accommodates this
filter to the MARV requires the introduction of a proper process

noise term. Due to its fine performance in ballistic vehicle
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tracking, it is retained here with the hope that it wil
provide satisfactory ballistic coezfficient estimates. In
tion, it indeed requires only minimum modification to tie
ing algorithms.

4.3 Constant Drag and Lift Model (MARV Filter)

The most complex and general filter considered in this
paper is structured similarly to the BRV filter but with the ad-

dition of the lift acceleration parameters to the state vector,

X(£) = (X,¥,2,%,7,2,05,0,,0) " (4.10)

and the implementation of the complete MARV equations-of-motion,
Eq. (2.2). As in the BRV case, the parameters are modeled as

a,=n_ , a,_=n , 0_=n where the noise processes are assumed
d a3 t oy c &
A\

to be white Gaussian.

This filter may also be used to track a BRV trajectory.
Irn using it to track BRV's, one should expect that the maneuver
parameter estimates are only caused by noise. The advantage of
using the MARV filter to track the BRV trajectory is that when
the RV executes unexpected maneuvering, the filter can adjust

automatically and still maintain target track. The disadvantage

is that the MARV filter will have poorer estimation performance
during the ballistic portion of the re-entry than would the BRV
filter. In addition, the redundant states carried along by the
MARV filter unrecessarily increase the computational load. One

approach to &lleviate this problem is to use the BRV filter
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initially and switch to the MARV filter after detecting the maneu- %
P

ver. This combined filter is also tested in the simulation study.

5. METHODS OF ADAPTIVE FILTERING ]

In this section, the characteristics of the appropriate

process noise needed to complete the description of the adaptive §
extended Kalman filter are discussed. Fuanctionally: this noise é
should reflect those uncertainties or discrepancies between the 5
assumed dynamic model and the actual re-entry phenomena. Prag- 5%
matically, the problem is one of selecting noise levels (variances)

which are large enough to prevent filter divergence yet small 5

enough to retain the learning potential of the filter model; thus
avoiding unnecessarily large RMS errors in the ectimates due to a
heavier reliance on the individual measurements. As the process
noise is increased, the prediction accuracy decreases, thus re-
quiring large radar track gates. In addition, our ability to dis-
tinguish between possible interfering targets is diminished.

From the discussion in the previous section, the state
augmentation method for parameter estimation (i.e., Ogr Cpr ac)
requires the use of process noise. However, the use of BRV and
polynomial filters for MARV tracking requires even higher process
noise levels be applied to most states of the target dynamics.
The experience gained in determining the process noise for para-
meter identification in BRV tracking problem and its extension

to the MARV tracking is discussed in the first subsection. The




subject of adaptive filtering has been a topic of much resaarch.l‘f"l'16-20

A brief discussion of adaptive methods and their applicability to

"~

MARV tracking is given in Section 5.2. The application of the ad-
aptive filtering method proposed in Ref. 14 to complement the BRV
and polynomial filters for MARV tracking is discussed in Section

5.3.

5.1 Constant Process Noise -

The initial criterion for selecting the process noise

is to simply ensure track maintenance during worst case conditionms,
i.e., large measurement variances, substantial nonlinear drag de-
celerations, and severe evasive maneuvers. The noise covariance
matrix is selected prior to the mission and includes only those
elements of the matrix corresponding to parameters where we might
expect the greatest source of errors. For the polynomial, BRV,

and MARV filters, zero-mean Gaussian process noise is added to
acceleration rates, n(t) = (0,0,D,O,G,O,nﬁ,ny,ni); drag rates (or
equival=zntly o), n(t) = (0,0,0,G,0,0,na); and drag-l1ift rates,

n(t) = (0,0,0,0,0,0,n& S ), respectively. The variances of

o
d "t ¢
these Gaussian processes are selected on a trial-and-error basis

by adjusting the levels during simulation exercises until track

can be maintained throughout re-entry.

For the BRV filter a procedure which increases the noise

gt i oo ¢ b

level in accordance with the magnitudz of the estimated drag de-

iy

!
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3 i celeration has proven to work qguite well for tracking ballistic




re~entry vehicles. This method is motivated by the fact that the

major source of error orginates from the drag model and that these

i

R A

model errors become increasingly pronounced as the air “ansity in-
creases in drag; thus, allowing the filter to adapt to the com-

paratively rapidly changing drag at lower altitudes. For this

i
I

. . . 2 ~y 2
reason, the process noise for a is defined as Oy = (ca)” where

satisfactory value for c (based on experience) is c = 0.1.7710

To date, little is known about the process noise level
needed for the other two parameters, oy and e in the MARV fil-
ter. In the simulation study, they are selected to be represen-

At W T

tative of a uniform distribution of the range of possible para-

meter variation.

gt

The above process noise selection procedure is of course
rot "optimal." It represents, however, the result of some limited
numerical experience and is easily implemented.

5.2 Optimal Adaptive Filtering

The optimum Kalman filter requires complete knowledge of
system dynamics and statistics. A mismatched Kalman filter could
ultimately lead to filter divergence.2 The method which attempts
to identify the uncertain part of the system dynamics and statis-

tics on-line with the filtering process is called adaptive filter-

o A L A, gy

ing. An even more versatile approach is to lump all the modeling

uncertainties in the system process noise. This method is certainly

nonoptimal in its own right, how<ver, it enables a filter based upon

P AT Py A

i




a poor Aynamic model to still lock on to the system output and is
the approach used in this paper. Much work has been done in this
area in attempting to rigorously and optimally identify the un-
known part of the system. In the problem addressed here, we are
interested only in identifying the proper process noise variance,
Q(t).
Representative work along this line may be found in

Refs. 16-20. These methods include use of, 1) the properties of

l16~18

the innovation process, 2) the Bayesian formulation which

includes the covariance Q(t) in the a posteriori density function,19

R NE

and 3) the correlation-type estimator based upon residuals.
of these methods require extensive computational resources since
all the data are iteratively reprocessed for each new estimate.
To circumvent some of the computational requirements most of these
"optimal" methods are subplanted by some sort of suboptimal algo-
rithm employing simpler estimators and limited memory filters.
For most cases these suboptimal algorithms still require unaccept-
able computer resources yet are of questionable reliability.

Due to processing time constraints we have considered

only the simple (even nonoptimum} methods, in this tracking study.

5.3 A Simple Adaptive Filtering Method

Detection of an unexpected maneuver as well as any com-

pensation that may be taken is generally based upon the behavior

of the residuals, éik' The covariance matrix of this residual is
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computed in the filtering algorithm as

- T
Pr’k = HkPk/k_lHk + Rk (5.1)

Jazwinski14 suggested a real-time algorithm which determines the
appropriate process noise based upon the statistical behavior of
the residuals. The attractiveness of this method is in the sim-
plicity of its implementation. Even though there is no criterion
of optimality involved, it is shown in the numerical results that
this method enables the BRV and polynomial filter to track the
MARV. The original discussion in Ref. 14 pertained to linear fil-

tering, it will be restated here using our notations in nonlinear

e e e

filtering.

Let zk/k-l denote the covariance matrix which appears

in the prediction cycle due to the process noise, i.e.,

_ T
S /k-1 = Px-1 Q1B 1) %y (5.2)

Assuming that the matrix which appears in the residual covariance

due to Xk/k—l is diagonal, the Jazwinski estimator states

Kéiﬂgikéﬁg_Pr,k}ii;
[?kzk/k-lﬂi]ii = if positive (5.3)
0 : otherwise
This estimator basically requires that the residual must be within
a reasonable range of the residual covariance as predicted by the

t Kalman filter. If it fails to satisfy this requirement, the pro-

m—

cess noise is increased acccrdingly to enlarge the corresponding

=

‘%




residual covariance so that the filter update equation places
heavier reliance on the most recent measurement.

Ultimately, the Qk matrix must be determined. In the
tracking problem discussed here, one may assume that the position
estimation error is caused by the errors from the velocity esti-

mates. For the case of BRV filter, the Qk matrix becomes

The oi of above is determined by the method discussed in Section

5.1 while oi, 03, oi will be computed from Egs. (5.2) and (5.3).

It is known that the transition matrix ¢ may be approximated by
the following expression

At O
3x3

where At is the time interval between measurements. Using (5.5)

and (5.4) and carrying out the multiplication of (5.2) yield
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The H matrix in (5.3) is the Jacobian matrix of the measurement
equations. In the tracking application, it represents the lin-

earized transformation from state variables to the radar measure-

ment variables. With (5.3), one is always able to compute the
position component variances in the state space from residuals
in the measurement space. Let the position component variance %
2 2 2 . 2 _ 2 2 2 _ 2 2 :
<7 cy, and o, One obtains oy = cx/At ‘ cy = cy/At .

and 05 = oi/At2 from (5.6). This completes the computation of the

be denoted by ¢

Q matrix.

Several problems emerge from this rather simple adaptive

noise estimator. This estimator as outlined above is based upon a
single residual which, as Jazwinski points out, may not be statis-

tically significant. Random fluctuations of the residual could




cause unnecessary response from the estimator. One possible course
of action is to use the smoothed residuals over a large number of
measurements.
Other approaches of preventing an over-reaction are to do
one or some of the following:
l. Activate the adaptive estimator only during
a detected maneuver or within an altitude
interval over which maneuvering is expected
to occur.
Limit the amount of noise that may be added--

corresponding to the maximum maneuver ex-
pected.

Change Eq. (5.3) to the form

n, n T
Ayply,” - c Py oy

where "c" is a constant to be determined em-

pirically.
6. NUMERICAL EXAMPLES

In this section the numerical results obtained by apply-

ing simulated data to the filters are presented. The simulation
program includes a trajectory simulator and the tracking filters.
The trajectory simulator consists of a numerical integration pro-
gram which generates noise-free trajectories in Cartesian coordin-
ates and a radar simulator which transforms the state variables
into the radar measurement state space and adds noise to the mea-

surements. There are four algorithms used in the testing. They

are the polynomial filter, BRV filter, MARV filter, and the com-

bined BRV and MARV filter. The combined filter uses a nonadaptive

26
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BRV filter initially and switches to a MARV filter after detecting
the maneuver. The detection algorithm is that described in Ser*ion
3.2. The simulator runs in a Monte Carlo fashion to obtain che
means and standard deviations of the estimates. The results from
each filter are compared in terms of position rms error, velocity
rms error, and the means and standard deviations of parameter es-
timates. Evaluation of these filters based on real data will not
be discussed in this report. Due to the model discrepancies which
always arise between a mathematical model and the actual physical
process, the validity of applying such techniques to the real world
can only be established after a thorough exercise with actual field
data. This subject is currently under investigation and will be
documented in a future Lincoln Laboratory report.

Three trajectories having different maneuvering scenarios
are used to exercise these filters. The first trajectory (Tl) can
be described as a moderate maneuver in which a combined dive and
left turn both having equal magnitude begins at 30 km altitude.

The maneuvering force increases gradually to about 128 g at around
23 km and then decreases to zero at about 16 km. At 16 km, the
RV initiates a climb and eventually reaches 120 g at around 10
km and decreases to zero at around 5 km. The second trajectory

(T2) undergoes more severe maneuvers. It instantaneously jumps

to a 160 g left turn at 35 km. The turning coefficient (at) is

maintained constant until 27 km while the 1lift force builds to a




maximum of 500 g due primarily to the increase in air density.
The left turn force then drops instantly to about 45 g at 27 km
and then increases to 152 g at 18 km. At thi: altitude it re-
duces to about 20 g and remains small until 3 km. The 1lift force
is zero below this altitude. The ballistic coefficient of T2 also
jumps to simulate a sudden change in the 1lift induced drag force.
The T2 trajectory is indeed unrealistic and it is included solely
for the purpose of testing filter response. The third trajectory
(T3) takes only minor maneuvers. A combined dive and left turn
with equal magnitudes starts at 30 km and gradually increases to
5 g at 25 km then decreases to zerc at 20 km. At 20 km, the RV
initiates a combined climb and right turn with equal magnitudes

and eventually reaches 10 g at 15 km and decreases to z=ro at 10

km. It dives and turns to the left again at 10 km and reaches 10

g at 5 km and decreases to zero at 1 km. This trajectory closely
resembles a BRV trajectory. It is included to test the sensitivity
of the MARV filter.

A dish radar is assumed located at the oxrigin of the
trajectory coordinate system. The measurement variables of a
dish radar include range (R), azimuth (A), and evaluation (E).
Assuming that the trajectory coordinate system uses x—axis point-
ing east, and y-axis pointing north, and z-axis perpendicular to
the lo~al horizontal plane, the radar measurement variables are

related tc the state variables by the following equations.

e v




(6.1)

o=
]
r’-
o)
o
e

A range measurement standard deviation of one meter is assumed.

For waking targets, a one-meter standard deviation is still repre-
sentative since coherent burst waveforms can be used for range

marking and clutter suppression. The angle measurement standard

o

deviation is assumed to be .17 milliradian. A data rate of 10

T
g

measurements per second is utilized throughout the trajectory.
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The process noise is introduced in the MARV filter only

O

D

in the states, representing parameters (i.e., Cgr %pr and uc). The

Ty
i

variance of input noise for aj is (.1&d)2 just as in the BRV case.

e
A AR

The variances of process noise for the other two parameters are
determined by the range of parameter variation, the inherent fil-
ter stability and the balance of bias and random errors. After

testing over a range of values, they were selacted to be .‘le()-7

6 for T2, and 5x10™% for T3. The track is initiated

for T1, 5x10
at 80 km altitude. The adaptive portion of the BRV and polynomial
filters is activated at 45 kn.

The estimated position rms errors made by all four algo-

rithms in using trajectories T1l, T2, and T3 are presented in Figs.
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All algorithms performed satisfacto-

1, 5, and 9, respectively.
rily. If the only tracking requirement is to maintain the vehicle
in track, the polynomial filter is certainly most attractive since
it requires the least computation.

Recalling the fact that the adaptive filtering algorithm
enables the filter to rely heavier on current measurements, note

the sudden increase of position error at 45 km altitude which in-

dicates the activation of the adaptive feature. If the adaptive

filtering algorithm was not used, the BRV filter would diverge

This indicates a trade-off between

quickly from the trajectory.

a range of tolerable rms errors and a range of intolerable bias

error (loss of track). Notice that large, impulse~like errors ap-

pear with MARV filter and the combined filter in tracking T2 tra-
jectory. As described ear”ier, the maneuvering force history of
Tl is moderate (and realistic). The MARV filter responded to this
maneuvering smoothly. The change of maneuvering force of the T2

is sudden and drastic. The impulsa2-like error of the MARV filter
represents the system delay in responding to such a change. The
large transients in the combined filter observed on both trajec-
tories occur as one switches from the BRV to the MARV filter.
This effect may also be seen in other state estimates as well.
The advantage of using this combined algorithm is the better per-
formance achieved and the less computation required during the

nonmaneuvering region. Unfortunately, the transient phenomenon
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lasts over a 10 km altitude interval. This is due in some respect

to the fact that the method used in initiating the MARV filter in

Ll
T AR 1, MR 0

the combined algorithm is rather arbitrary. An improved initia-
tion algorithm could smooth the transient somewhat.

The velocity rms errors of using trajectories T1, T2, and

A e b
L L

T3 are presented in Figs. 2, 6, and 10, respectively. The polyno-

- mial filter estimates have the largest errors. The transients in

the combined filter are again apparent. The averaged ballistic

G,

coefficient estimates of trajectories Tl, T2, and T3 are presented

n
i

‘V
i

in Figs. 3, 7, and 11, respectively. Also shown in these figures

i

are the true underlying parameters and the one standard deviation

L 'vt’“ ‘w“u

W'

level. The estimates made by the polynomial filter are very er-

i

ratic. The estimates made by the MARV filter are very good and

i

follow the parameter variation closely. The combined filter also

estimated the coefficient well except during the transition period.

The estimates made by the BRV filter exhibit substantial biases in

the maneuvering region. It, however, is much more stable than the

0000000 A

polynomial estimate. From the one standard deviation interval, it

is found that the random errors are usually within 10% of the esti-

. mated values except those of the polynomial filter.

Figures 4, 8, and 12 present the maneuvering parameter

estimates of trajectories Tl1l, T2, and T3, respectively. Only the

MARV filter and the combined filter can provide these estimates.

The estimates follow the parameter closely. Notice in Fig. 8 the
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turning coefficient takes an abrupt jump while the estimates re-
spond tc this change with only about six radar puise delay. The
random error of maneuvering parameter estimates of the T3 trajec-
tory is rather large. Notice that the magnitudes of the maneuver-
ing parameters of this trajectory are small, the estimtes are
mostly buried in noise. One could improve the situation by further
reducing the process noise level on these parameters. It, however,
implies using the a priori knowledge which are usually not avail-
able in a real-time tracking application. Figure 13 presents the
maneuvering parameter estimates of T3 made by the MARV filter with
process noise variances equal tc 5x10'1°. Notice that the random
error is considerably smaller in this case. A useful analysis
will be to relate the range of parameter variation, the process
noise level, and the estimation rms errors. This analysis may be
applied for off-line study of vehicles exercising small maneuvers.

The anomalous transient effects of the combined filter can again

be seen in these results.

7. CONCLUSIONS

Three basic filters which can be used for the tracking
of a maneuvering re-entry vehicle have been presented. They are
the extended adaptive Kalman filters based upon MARV, BRV, and
polynomial dynamic models. A fourth algorithm which combines the
use of a nonadaptive BRV filter and the MARV filter through the

application of a generalized maximum likelihood ratio test is also

T
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presented. All algorithms are tested based upon the simulated
trajectory data.

From the simulation study, it is found that all filters

can track the target successfully in that they all have comparakle

position estimation exrors. If the only tracking objective is to
maintain the target in track, the polynomial filter is the most
attractive one to use since it requires least computation. The
attractiveness of the MARV filter is its ability to provide man-
euvering parameter estimates and more accurate ballistic coeffi-
cient estimates during target maneuvering. It is shown that the
estimates have only small errors and the filter can iapidly fol-
low the severe variations of the underlying true parameters. The
disadvantage of using the MARV filter lies in the computational
burden imposed on a real-time system. The BRV filter fits some-
where in between in that it does not require as much computation
as the MARV filter while still provides a reasonable ballistic

coefficient estimate when the target is undergoing maneuvers. It

is found that severe transients exist in the combined filter which

occur when switching from the BRV to the MARV filter and an appro-

priate algorithm for handover must be determined.

Much more work still has to be done in exercising these
filters on real data. The real data contains properties which
may not be fully modeled by mathematics. Such properties include

the range measurement degradation due to wake contamination,




uncertainties in angle measurement error modeling, among others.

Due to the complexity expanded in the MARV filter, it may be more
sensitive to these real data uncertainties mentioned above.

Some fundamental conclusions may also be drawn at this
point. It is shown that the extended Kalmar: filter can perform
successfully in estimating the states of a severely nonlinear sys-
tem. In addition, the state augmentation method for parameter
estimation is effective even in systems having large parameter
variations. The simple adaptive filtering methed employing pro-
cess noise to compensate for the model uncertainties is extremely
powerful. When only the estimates of lower order states (such as
position) are desired, large modeling errors may be tolerated
with little sacrifice in the performance. These observations are
supported with examples shown in this paper. One cannot, of course,
claim that these methods work for all nonlinear systems with large
parameter variations. They do represent useful methods applicable

to many nonlinear systems.21
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APPENDIX A

Derivation of MARV Differential Equations of Motion

In this Appendix, the MARV equations of motion are derived.

A flat, nonrotating earth with constant gravity model is assumed.
For the altitude region below 100 km which is our concern, this
assumption introduces only small modeling errors while greatly
simplifying the equations. It is well known that a ballistic tra-

jectory may ke described by the following vector equation

a(t) = %pvz(t)

1 - >

g Uy + g (A.1)
where

g(t) is the total acceleration applied on the vehicle
p is the air density

v(t) is the magnitude of the vehicle velocity

ud is the unit vector along the drag force direction
which is opposite to the velocity vector

-+ . .

g is the gravity force vector

B is the zero lift ballistic coefficient defined as
— m = vy _ S

B = EEBX where m=BKRV mass, Cdo zero lift drag
coefficient, and A=reference area for drag evalu-
ation.

In tracking algorithms, the filter usually estimates the ballistic
parameter o which is defined as inverse of 8.

When the vehicle urndertakes a maneuver, a third force
term, lift, is introducted. The lift force is in a plane perpen-

dicvlar to the velocity vector (Fig. A.l). Before starting the

50
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a) lift force is perpendicular to drag force
b) turn and climb forces are components of lift force
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d' turn, climb, and drag forces form an orthogonal
coordinate

Fig. A.l. Geometry of lift and drag forces.
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MARV equaticns, it is useful to summarize the concepts associated
with lifting bodies. Consider the motion of a point mass in the

atmosphere with a velocity v(t). The total drag force is D(t)

D(t) = ic.Apv2(t) (A.2)

274

where Cd = total drag coefficient. Let L(t) denote the lift force.

The magnitude of the 1lift force is

L(t) = %- CLApvz(t) (A.3)

where CL = 1lift coefficient. The lift vector, L(t), is always
perpendicular to the drag force D(t), as shown in Fig. A.l.

A lifting body contributes extra drag. It is common prac-
tice to present this relationship between total drag D(t) and total
lift, L(t), by means of the so-called parabolic polar, which is ex-

pressed by the equation

C.=2¢C 2

a + kCL

ao

C = 2ero lift drag coefficient (i.e., the one

do that characterizes a BRV)
k = constant that depends on the body
The production of different 1lift forces is accomplished
by changing the lift coefficient CL of the body. However, there
is a specific value for the lift coefficient denoted by CL* that
maximizes the so-called lift-to-drag ratio.
L(t)

Lift-to~drag ratio 4 B(T) =

o~
il

A

T T




LY, i

It is easily found that this value CL* of the 1lift coefficient is

which leads to

maximum lift-to-drag ratio = —*

2»/de0

Another common practice is to express C

1 *
L 1n terms of CL
by the so-called lift-parameter A

o (t) A A(B)C *; O0<A(t)<l

Using these notations we can write:

Total Drag Force = D(t) = %pACdo (1+A2(t)> v () (A.4)

Total Lift Force L(t) %QACL*A(t)vz(t) (A.5)

Note that:
Zero Lift Drag Force = %pACdovz(t)

Lift-Induced Drag Force = %pACdolz(t)vz(t)

Using the above discussions, the maneuveriag trajectory

may be described by the follcwing vector equation

a(t) = %pv2 (t) (a (1412) §d+x5232>+‘5
C,.A




Notice that this equation is written free of coordinate systems.
Once a coordinate system is chosen, set of state differential eg-~
uations may be written for simulation and filter realization. The
1lift vector is on the plane perpendicular to the drag vector. In
order to locate the 1lift vector on the plane, a reference quantity
is necessary. If a Cartesian coordinate is used and the lift vec-
tor reference is chosen to be the angle between the 1lift vector
and the local horizontal plane, Eq. (2.1) results. As discussed
in the text, one can also decompose the lift vector into a turn
force and a climb force. Using this decomposition, Eq. (A.6) may

be rewritten as

a(t) = %pvz(t) (a(1+;\2)ﬁd + xstﬁt + xsca’c) +g (a.7)

The corresponding state equations of (A.7) in a Cartesian coordin-

ate is Eg. (2.2).
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APPENDIX B

Range, Azimuth, Elevation, and Range Rate Estimate
Errors of Numerical Examples

In this Appendix, figures showing range, azimuth, eleva-

tion, and range rate estimation errors of numerical examples given

in this report are presented. Results of using trajectories T1, T2,

and T3 are shown in Figs. B.l1l to B.4, B.5 to B.8, and B.9 to B.12,
respectively. Errors shown in each figure include estimate bias
and one standard deviation interval developed through 40 Monte
Carlo runs of the algorithm. Bias error is defined as the esti-
mated value minus the true value.

These results are included for reference purposes. Many
filter responses to the target maneuvering may be understood by
examining these results. For example, Fig. B.4(b) presents the
range rate estimate error of T2 made by the adaptive BRV filter.
Notice that a large negative bias appears when the RV undergoes
maneuvering. When the RV turns sharply away from the radar, the
magnitude of the true range rate is rapidly decreasing. The BRV
filter which does not have the lift force component modeled esti-
mates the range rate corresponding to a vector sum of the drag
and lift forces. This range rate bias then in turn causes the 8
estimate to be biased as shown in Fig. 7(c). The MARV filter
which has the lift force modeled has an unbiased range rate esti-
mate. The estimation variance is high due to the process noise

introduced in the drag/lift parameter states.
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Other filter responses may be examined by using similar
observations.
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