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I.  INTRODUCTION

Accurate modeliﬁg'as well as predictiﬂg the performance of
naturally fragmenting munitions is particularly important to the Army

. munitions community. For parametric studies, calculational techniques

which are both quick and easy to use are of practical interest. One
well known technique employs the Gurneyl and Taylor? formulae. In
Section II the advantages and disadvantages of thls technlque are
demonstrated.

In Section III the importance of gas: leakage after casing. breakup
is discussed with the'use of the LLL standard cylinder’ test3 data and
experimental observations of a variety of test warhead firings..

, In Section IV the use of a time-dependent, two dimensional,
finite-difference code, HEMP, to predict fragment velocities is -
discussed in detail. Problems associated with determining a definite .
final fragment velocity are mentioned. In an effort to model casing

_acceleration realistically, a gas leakage model is presented as an

integral part of the code calculations. Lastly, 'the code calculations
are compared with a number of experlmental test results. :

II. APPLICABILITY OF THE GURNEY AND TAYLOR FORMULAE

Practically speaking, it 'is desirable to have a method available
for est1mat1ng fragment velocities from naturally fragmenting munitions.
which is both.quick and easy to use for parametrlc studies. One such
method for estimating fragment velocity is the Gurney1 formula (ngufe
1) which gives the fragment speed as a function of the charge to metal
ratio (mass of explosive/mass of .casing) and an emp1r1ca11y determined

. constant, The direction that the fragment assumes can then be determined

by the’ Taylor formula (Figure 1) using this calculated speed. For

an axisymmetric exp1051ve -metal system with varigble diameter, the charge
to metal ratio (C/M) is computed locally as a function of axial position.
Thus, the speed computed from the Gurney formula varies with axial
position. In the Taylor formula for the projection angle, both the
fragment speed and the rate at which ;he detonatlon wave traverses the

~casing varies w1th axial position.

1. Gwmey,' R.W., "The Initial Veﬁoc,otcu 0§ Faagmen/tzs From Bomba SheLu

and Grenades, BRL Repont 405, September 1943. AD #36218

" Binkhog§, G., MacDougalZ, P., Pugh, E.M., and Taylor, G.1., Sin.,
"cxplouvu Ux,th Luzed Caw/tcu" J. App?.. PhyA., Vol, 79, p. 563,
June 1948,

3. Lee, E.L., Hoanig, H.C., and Kury, J.U., "Adiabatic Expamswn 05
High Exptouue De,tonaj;wn Products"”, UCRL-50422, May 2, 1968.

7

A

- . i P g
PERY GO RaR AL sl e |

a2




e @ 1D A U TN RS

s e e s 2 ar g

Numerous comparisons between calculated fragment velocities
using the Gurney and Taylor formulae and experimental test results
have been made by us and other researchers. For a practical range
of charge to metal ratios (.1 < C/M < 2), it is our observation that:
speeds and directions thus calculated agree reasonably well with
experimental data for configurations when the flow is essentially
radial. Figure 2 illustrates the results of a comparison of the above
technique with experlmental data for a typical H.E. projectile.  The
agreement with this test data is quite good. A second éxample of the
agreement between the results of this technique and experimental data -
is shown in Figure 3. Here a steel cylinder with length to diameter
ratio of twn filled with Composition B explosive and initiated on axis
at one end is shown. Here the agreement is not good.. This figure
illustrates the degree to which end effects may influence the fragment
speed distribution and projection angle distribution. One can sce
that a method which can predict both the fragment speed and direction
distributions cerrectly is desirable. That is, a method which will
' model general time-dependent, two-dimensional phenomena, such as end
effects, with some degree of confidence would be a useful tool. The
method proposed and utilized in'this report is a modified version of
the time-dependent, two- d1men51onal finite-difference computer code,
HEMP.

11I. EFFECT OF GAS 'LEAKAGE AFTER CASING BREAKUP

The standard cylinder testd developed by the Lawrence Livermore
Laboratory, Livermore, California, provides much data concerning the
expansion of explosive-filled cylinders. Figure 4 schematically
illustrates the test procedure. The radial expansion of the copper
cylinder is measured with a 'streak camera at a point two-thirds the
length of the cylinder from the initiated end. The rate of expansion
of the cylinder is plotted in Figure 5 as a function of radial dis- .
placement and expansion ratio for three different explosive fills,
Octol, Composition B and TNT. The percentages indicated on the curves
51gn1fy the percent of the final expansion rate. During these measure-
ments, neither significant leakage of explosive products nor influence
of end effects occurs. The general shape of the, curves are of interest
since they indicate that most of the acceleration has ocCurred by an
expansion ratio of R/R =.2. Even at R/R = 1.75 at least 92% of

the final velocity has already been obta1ned These curves are.for
copper casings; however, Figure & (taken from Reference 3) indicates
that the shape of the curve is the same for stainless steel and mild.
steel; the latter is important for naturally fragmenulng, steel casing
.munitions.

]
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Gas leakage has been experimentally observed at an expansion ratio
of about R/Ry = 1.75 for many steels.4,5 Figure 7 lists such observed
values of R/R, for steel, copper, and aluminum ca51ngs Even though
about 92% or more of the final casing velocity is acquired before casing
breakup for natural fragmentation; we wiil show in Section IV that it
is desirable to include the effects of gas leakage in time dependent .
calculations to obtain accurate predictions of fragment velocities
particularly in regions influenced by end rarefaction waves.

IV, USE OF TIME-DEPENDENT, TWO-DIMENSIONAL, FINITE-DIFFERENCE COCES
1., Equation of State of the Explosive:

The Jones, Wilkins, Lee (JWL) equation of state recommended in
Reference 3 and given in Fxgure 8 is used in these calculations. The
finite-difference code used in the ‘present work is the HEMP codeb.

However, equally good results could be obtained with other valid finite-
dlfference codes’.

The JWL equations of state are developed such that the radial
expansion rate obtained from the LLL standard cylinder test can be
duplicated with a HEMP calculation. Figure 8 indicates the accuracy:
with which the finite-difference calculations reproduce the data.
‘'Figure 9 shows the finite-difference mesh which was used to compare
with the LLL standard cylinder test data. In general, good agreement
between HEMP code calculations, exper1ments, and exact analytical
solutions has been demonstrated.8

2. Problems Associated With Determination of a Final Fragment
Veloc1ty

, Flgure 10 shows the finite- dlfference mesh at various times for
a HEMP calculation of an open ended steel cylinder with an Octol

4. Taylor, G.1., "The Fragmentation of Tubulan Bombs", Scientific
Papens of G.1. Taykon, Vol. 111, Cambridge Univernsity Press, London,
1963. :

5. Hoggatt, C. and Recht, R., "Fracture Behavion of Tubular Bombs",
" J. Appl. Phys., Vol. 39, pp. 1856 - 1862, February 1968.

6. Wilkins, M.L., "Caleulation of ELastic-PLastic Flow", Methods og
Computational Physics, Vol. 3, edited by Alder, B., Fennba an
'Rofenbung,. M., Acadenic Press, New York, 1964.

7. Sedgwick, R.T., A.J. Good, and L.J. Hageman, "Theoretical Inuebt&gazcon
of High Explosive Faagmentat&on Munitions", Final Report, Contract DAAD
05-71-C-0092, Systems, Science, and Sogtwane Repont 3SR-867, Nov. 24, 1971,

8. Kanpp, R.R., "Accuracy of HEMP Code Sofutions”, BRL Memo Report 2268,
Januany 1973. AD #757153 .

9

S |

et s ko - et £ ¥ A AR Y s mnt 3 i o SD% s it b =

R P

o it e SRR

e

TR

el s

AT DT ey
Fa i e T R,

P

C gerer sz wpw




s e e 4 e YT PERIEA

explosive fill. The steel casing can be modeled in several ways. One
way is to treat the casing as a fluid (neglect the strength of the
steel). This method produces the velocity* - time curves shown in
Figure 11 (solid curve). The early portion of the acceleration curve

.is essentially correct. 'However, since it is known that a steel cylinder

will fragment a*t an expansion ratio of about 1.75, the latter portion of
the acceleration curve will tend to over estimate the final fragment
velocity. This sffect is a result of the code requiring the casing to
be continuous, a.ad, therefore, the internal pressure acts on a conti-
nuously increasing area and produces an unrealistically high fragment
velocity. Referring to Figure 11, this effect is more pronounced at
position 1, where end effects are important, than at position 2. There-
fore, the calculational results with the fluid model will tend to over-
estimate the final fragment velocity. Since the velocity continually

~increases, one must use an artificial method to determine the correct

final fragment velocity distribution. A second methed of modeling the
casing includes the material strength of the casing. This can be done
by modeling the metal casing as an elastic-plastic material. A curve
showing the velocity-time plot when the casing is treated as an elastic-
perfectly plastic material is given ip Figure 11 (dot-dash curve). This
model does produce a more definite valu. for the final fragment velocity.

- However, this maximum value for fragmert -elocity still occurs at an’
expansion ratio cons1derab1y beyond the known expansion ratio at fragmen-

tation. Besides the fluid model objection whirh also applies to this

model, it does not seem realistic to include strength in the calculations

past the point where the casing fragments. A calculational procedure
which does not rely on an artificial method 'to determine the final-
fragment velocity but includes the ap*roprlate physics of fragmentation

and subsequent gas leakage. is discussed in the next section.

3. Final Fragment Velocities Using a'Gés Leakage,Modei

Several features of the warhead expansicn ‘and fracture’ process are
1nadequate1y modeled by axisymmetric finite-differeice computer codes
when casing 'breakup occurs. . First, the increase in circumference
ceases when casing fragmentation occurs. The standard from of these
codes causes the casing to remain continuous. This treatment tends to

.yield -a higher radial acceleration and thus s higher final fragment

velocity since the pressure acts ¢n an area which is’ larger than the

true area. However, this effect can be corrected by calculating the

true force acting on an element of the casing. After casing fragmentation
(R>Rp) the true force is calculated by reducing the pressure acting on

' the interface of the casing by the factor-Rb/R (Refer to Figure 12).

* Veioe&ty as used in conjunction with any of the Figures gLuen 8 the

magnitude of the velocity. When the directicn of the velocity 4is
d&AcuAAed or plotted {t Ls neferred Lo as pnOJect4on angte.
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Secondly, after casing fragmentation, i.e. R >Ry, a void area Ap
opens up and gas leakage occurs. 'This effect is modeled by calculating
the rate of efflux from an ideal nozzle passing its maximum rate of
flow. For example, for an ideal gas the mass rate of flow is given

by : v

y+1

(v - I
n = AL VPP (T:—T)z

Where P is pressure, p is density and y is the ratio of spech1c heats.
This rate of efflux is calculated in the model for every cycle and th=
mass leaked for a single cycle is Am = mAt. The amount of mass (Am)

is then extracted from the zone in contact with the casing interface.

In this manner, the model accounts for gas leakage around the fragments
after casing breakup. Thirdly, to simulate 2 loss in circumferential
stress upon casing breakup, the yield strength of the casing material
is set equal to zero when R > Ry,. o

A comparison of th: three casing models discucsed, i.e. fluid,
elastic-plastic and elastic-plastic with gas leakage,is shown in Figure
11. Here the velocity-time curves are given for two positions ‘along
the casing, namely, close to the initiation end and at the maximum
velocity pesition. Figure 11 clearly. shows that a more definite and
lower final fragment velocity is cobtained by modeling the casing-
material as an elastic-plastic material and accounting for gas leakage.

4. Comparisons of Code Calculations with Experimental Results

In this section we present comparisons of the code calculations,
utilizing the gas leakage model, with a number of experimental test .
results to demonstrate the reliability of this calculational technique.
In Figures 13 through 18 the HEMP code predictions of fragment
speed and projection angle are compared with experimental test results.
The HEMP code calculations of fragment speed and projection angle are
plotted as continuous curves in all the flgures The experimental
data are plotted according to round numbers in each case. For informa-
tion concerning the experimentz! set up, data collection and test
firings, the reader is referred to Reference 9 for details. For each
of the six cases represented in Figures 13 through 18 the length
to diameter ratio was two, and they were end initiated as shown in .
Figure 13. The explosive fills were Octol, Composition B, and TNT,
and the casing was 1020 steel or HF-1 steel.. The charge to metal ratio

9. Karpp, R.R., Knonman, S., Dietrich, AM. and Vitali, R., "Influence
of Explosdive Paramoterns on F/wgmemtauon”, BRL Hemwmndum Repomt 2336,
October 1973, AD #917248L
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was 0.8 (thin wall) for the cases shown in Figures 13-15 2nda 0.4 (thick

wall) in Figures 16 - 18. No discussion will be given here concerning .
the experimental data as it is covered in detail in Reference 9.
However, we do wish to emphasize the good agreement between experimental

‘results and the calculations fer a variety of explosive fills and C/M

ratios.

Lastly, in Figures 19 and 20 HEMP calculations are again
compared with test data. However, in this case the test data are from

‘"arena tests' of an H.E. projectile.10 In Figure 19 the fragment

velocity is plotted against angular position in the arena test set up.
In Figure 20 the percent recovered mass in each angular recuvery
position is plotted. Again, very good agreement is demonstrated.

V. SUMMARY AND RECOMMENDATIONS

in the first part of the report it was shown that fragment velocity
predictions based on the Gurney and Taylor formulae may be adequate for
cases when the flow is one-dimensional (radial), but inadequate when
the flow becomes two-dimensional,” It was then shown from the LLL stand-
ard cylinder tests that in the natural fragmentation case most of the
casing velocity is obtained prior to fragmentation. Next the use of a
time-dependent, two-dimensional, finite-difference code, HEMP, to mcdel
naturally fragmenting munitions was discussed. Arguments were g.ven to
show that the fluid model (without strength) for the casing material
will tend to over-estimate the final fragment velocity. The casing
material modelad as an elastic-plastic material tends to produce a
more definite final fragment velocity, but at unrealistically high
cylinder expansions. In an effort to remove some of these ol jection«
and at the same tjime model the casing motion more realistically, a gi.
leakage model was proposed in conjunction with the code calculations.

‘The gas leakage model was designed to simulate explosive gas leakage

around fragments after casing breakup. Comparisons are given between
the code calculations with the gas leakage model and experimental data,
and very good agreement was demonstrated. However, wc wish to emphasize
that the gas leakage model presented is still in its early development.

. Further modifications and imprcvements are planned. Based on the

agreement shown between the code calculations and the experimental test
cases given, it is our judgement that this calculational tool can be
used confidently in a variety of naturally fragmenting munitions when
experimental data is not available.

Our future efforts will include the development of a more genera’

criterion to initiate the gas leakage based on the state of stress

10. U.S. Anmy TECOM Development and Proof Servdices, Fining Recoad No.
B11982, Abendeen Froving Ground, Maryfand, August 1953 to June 1954.

12




R

AT Ay

IWQQW?r?wm&%-

in the casing material, rathef than on the expansion ratio. 'Lastly,
some effort has already been expended and much more is planned to
investigate the use of the HEMP calculations to medel fragment velocities

. from preformedu and controlled fragmentation warheads us1ng the pro-

posed gas leakage model.

1. Kanpp, R.R., and Predebon, W.W., "Calculaaon 04 Fnagmemt Velocities
§rom Fragmentation Munitions" Fiwst International Symposium on Balflistics,
Onlando, Fla., 13-15 Novemben 1974, Section TV, pp. T45-176, American
Defense Preparedness Association, wabhtngton, D.C.
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EXPLOSIVE
E. p
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TAYLOR's PROJECTION ANGLE FORMULA.

H.E. D =1 ReacTeD
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Figure 1. Gurney Veloclity Formula (Cylinder) and
. Taylor's Projection Angle Formula
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PROJECTICN ANGLE, a, DEGREES

FRAGMENT VELOCITY, MM/pS

+20

~TAYLOR FORMULA FOR a
. 3 . / ) 0 m
, R |

1.5

1.0

0.5

oy . .
100
I ~GURNEY FORMULA FOR.V
V2E = 2.68 MM/uS
| © From sequential flash fadiographic-observations
— at two different times after initiation
'e) From single flash rédEOgraphic obscervations
at one time after initiation '
1
AGHE

r B ’o {_ "v,.coms

Axial Poﬁition

Figure 2. Comparison of Gurney and laylor Formulae Predictions
With Experimental Data, Case 1
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Figure 7. Cylinder Expansion and Measured Values of Expansion
Ratios for Various Casing Materials at which Gas
Leakage Occurs (Ref. 4) '
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