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I. INTRODUCTION

A systematic look at new projectile shapes for small arms
application was recently completed.l* This study concluded that a
projectile with length to diameter ratio 5.5 was superior to
conventional projectiles with length to diameter ratios near 3. These
conclusions were subsequently verified experimentally.zs3 A much
further increase in effectiveness could be achieved if the base drag
could be eliminated as shown in Figure 1 in which effectiveness is
measured as remaining energy at a given range. Reduced time of flight
and a flatter trajectory are two other advantages achieved with the
lower drag projectiles, This report is concerned with a systematic
approach to try to eliminate base drag with materials compatible with
small arms ammunition.

I[I. SELECTION OF MATERIALS
Two recent reviews4’5 on the reduction of base drag in super-
sonic flow by direct injection of heat and mass into the near wake
both conclude the cjected gases should have the following characteristics:

1. 1low molecular weight
2. low ejection velocity
3. combustion in the near wake. IE

Obvious candidates from such considerations zre fuel-rich solid
propellants stored in the rear of the projectile. However, such
materials must be able to be ignited by the combustion gases in the barrel;
to continue burning in the rapid pressurization in the jun barrel

and depressurization when the projectile exist< ths gun, to sustain
combustion during projectile flight at whici. time the base pressure will
be near atmospheric. These conditicns ruled out conventional gun and
rocket propellants, but not =:iid pyrotechnics. The pyrotechnics may
also meet the condition: sct above for the ejected gases, since
Stevenson® report: the intensity of 1ight emitted by a burning
pyrotechnic is related to the amount of fuel burning in the wake. Other
authcrs’ noted a direct correlation between the quantity of excess fuel
1r a pyrocechnic and light intensity suggesting that fuel rich
pyrotechnics may provide the after-burning sought. Tracer rounds have
been observed to have lower total drag coefficients than corresponding
conventional rounds8:9, The drag coefficient change varies with

mach number and is less pronounced with boattailing, suggesting this
change is associated with a change in the base drag. A comparison
between 20mm tracer and conventional round is shown in Figure 2. Thus,
fuel-rich pyrotechnics were selected for investigation as "fumers' {a name
chosen to distinguish these materials from conventional tracers).

*References are listed on page 45.
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Figure 1, Remaining Energy V3 Range for Idealized M-193
and an Dmproved Ballistic Shape Projectile
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To test fuel-rich pyrotechnics as fumers, wind tunnel tests
were performed at the Naval Ordnance Laboratory's Hypersonic Tunnel.
This tunnel could be preheated so that ambient temperature could be
achieved in the test section and the wind tunnel model constructed for
these tests could be spun to over 50,000 revolutions/minute. A wind
tunnel test plan was constructed to test the following:

1. verify that the burning pyrotechnics change base pressure

2. correlate such an effect as a function of mach number, spin
rate, fuel content, and the area of the burning surface in
order to find the optimum mix.

The constituents used in these tests are listed in Table I; the wind
tunnel test plan is listed in Table II.

III. EXPERIMENTAL

The study was conducted in a wind tunnel at freestream Mach
numbers of 1.5, 2.0 and 2.5 at duplicated sea-level pressures and
temperatures (at a reduced pressure at Mach 2.5). Special, centerbody-
type nozzles of 6-inch exit diameter were designed and constructed for
this program. The nozzles were installed in the NOL Hypersonic Tunnel
System using a special settling chamber, Figure 3 illustrates the test
setup.

The tests were conducted using an open-jet type test arrangement.
The tunnel test cell pressure was controlled by means of an orifice at
the diffuser inlet and it wvas maintained at approximately seventy
percent of the static pressure of the test jet. The interaction of the
upstream Mach line, emanating from the nozzle exit, and the model wake
centerline was approximately 3.0, 4.5 and 6.2 model diameters for the
Mach 1.5, 2.0 and 2.5 nozzles respectively.

To eliminate model support effects on the base pressure, the model
was simulated by a cylindrical mozzle centerbody which was supported in
the settling chamber upstream of the nozzle throat. The model was 1
inch in diameter and approximately 10.5 inches long (mcasured from the
nozzle throat). It was instrumented with ten pressure transducers and
one thermocouple, Figure 4 shows the instrumentation layout, Table III
gives the location data.

As part of the facility calibration procedure, model base pressure
distribution and Pitot pressure and total-temperature variation in the
model wake region were also measured. A special plug with five static-
pressure orifices was installed in the model hase cavity (Figure 4) for
the base pressur» distribution measurements and a Pitot pressure rake
containing 20 pressure probes and a temperature rake with 10 shielded
thermocouples (Figure 5 and Table III) were used for the wake flow
surveys.




Table 1I.

Wind Tunnel Experiments
At Naval Ordnance Laboratory

Capsule No. Compositiona Mach No. Spin Rate, rpm x 1000

R20C
R284
Fl
F3
Fi3
Fl4
F1/F4 layered
F4
F4+6% binderP
F4+15% binder?
F4+20% binder?
Mg+20%°€
30%
36.5
40
50
60
67.8
70
75
36.5 (1/4)
36.5 (1/2)
36.5 (3/4)
50 (1/4)
50  (1/2)
50 (3/4)
67.8 (1/4)
67.8 (1/2)
67.8 (3/4)
36.5
36 (1/2)
36 1/2 (1/2)
36 1/2 (3/4)
50
50
50 (1/2)
50  (3/4)
67.8
67.8
67.8
67.8
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Table I.

Wind Tunnel Experiments
At Naval Ordnance Laboratory (Cont'd)

Capsule No. Comgositiona Mach No. Spin Rate, rpm x 1000

39 Mg 36

40 36

41 36 (1/2)
42 36.5 (3/4)
43 50

44

45 (1/2)
46 (3/4)
47

48

49 (1/2)
50 (3/4)

50
25
50
50
50
75
50
50
50
25
50
50

. o o & e

DD NDNDNDN
.
LTyt un

51
52
53 (1/2)
54 (3/4)
55
56
57 (1/2)
58 (3/4)
59
60
61 (1/2)
62 (3/4)

50
25
50
50
50
25
50
50
50
25
50
50

P b b e b e e bl e e e e
L] e @ @
R LR A RO R KRN Y NI,

a percent by weight

calcium resinate

c .. . . . .
binary mixtures of magnesium and strontium nitrate. Only the
magnesium content in percent by weight 1s listed.




Table II.

Constituents of Pyrotechnic Mixes Used in the
NOL Wind Tunnel Tests

Mix Designation Constituent Percentage by Weight

R20C Sr0,
CaRes?
Mg
PbO,
Ba0,

Mg
Sr(N03)2
PVCP

CaRes
SrO2

Mg
SiOz
C
CaRes

Al

Sr(NO3)2
CaRes

Mg
Sr(NO3)2
CaRes

Fumer 13 Fumer 4
gelatin

Fumer 14 Fumer 1
gelatin

a . .
calcium resinate

i polyvinylchloride
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Table III. Instrument Location Dataa

Instru- Roll Axial Radial Orifice
ment Angle, 6 Distance, X Distance, R Diameter
deg in in in
P1 60 0 0.45 0.046
P2 150 0 0.45 0.046
P3 240 0 0.45 0.046
P4 330 0 0.45 0.046
P5 120 -0.08 0.50 0.032
P6 300 -0.08 0.50 0.032
P7 210 -0.25 0.50 0.032
P8 180 -0.50 0.50 0.032
P9 30 -0.25 0.40 0.032
P10 0 -1.00 0.40 0.032
P11 0 0 0.115 0.046
P12 0 0 0 0.046
P13 180 0 0.115 0.046
P14 180 0 0.230 0.046
P15 180 0 0.115 0.046
P16 0 Xp 1.125 0.046
P17 0 Xp 0.875 0.046
P18 0 Xp 0.625 0.046
P19 0 Xp 0.375 0.046 f
P20 0 Xp 0.125 0.046 :
P21 0 Xp 0 0.046
P22 180 Xp 0.125 0.046
p23 180 Xp 0.250 0.046
P24 180 Xp 0.345 0.046
P25 180 Xp 0.500 0.046
P26 180 Xp 0.625 0.046
p27 180 Xp 0.750 0.046
P28 180 Xp 0.875 0.046
P29 180 Xp 1,125 0.046
P30 180 Xp 1.375 0.046
- P31 180 Xp 1.625 0.046
P32 180 Xp 1,875 0.046
P33 180 Xp 2.125 0.046
P34 180 Xp 2,375 0.046
P35 180 Xp 2.625 0.046
TC1 210 0.06 0.45
TC2 345 XTC 0.50
TC3 345 XTC 0.25
TC4 0 XTC 0
TC5 165 XTC 0.25
TC6 165 XTC 0.50
TC?7 165 XTC 0.75
TC8 165 XTC 1.00
TCS 165 XTC 1.25
TC10 165 XTC 1.50
TC11 165 XTC 1.75

Reference figures 4 and 5.
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Model Instrumentation

Figure 4,
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The pressure orifice diameters ranged from 0,032 to 0.046 inch. On
the model outer surface, and inside the cavity, locations P6 to P10, the
orifice diameter was 0,032 inch. At the base, locations Pl to P4 and
P11 to P15, it was 0.046 inch. The pitot pressure rake was made up of
0.063 in, 0.D., 0.046 in, I.D, tubes spaced 1/4 or 1/8 inch apart. The
temperature rake was made of chromel-alumel thermocouples of .06-inch
diameter wire shielded with a .095 0.D., .0625 I.D., vented stainless-
steel tubing, The temperature rake was positioned 4,125 inches
downstream of the Pitot rake and rotated 15 degrees relative to the
Pitot rake. The pitot pressure - temperature rake assembly was moved to
different axial positions during the flow calibration tests. The rakes
were also used during the combustion tests during which it was locared
six inches downstream of the model base (six inches to the Pitot rake.)
A photograph of the test section with the rakes is shown in Figure 6.

With exception of P11 to P15 each orifice was connected to a
separate pressure transducer (strain gage type, Statham) for continuous
measurement. Pressures at orifices P11 to P15 were connected to a
single transducer through a scanner-type valve in order to obtain a more
precise relative variation across the model base., The output of the
pressure transducers and of the thermocouples were recorded on magnetic
tape using the Hypersonic Tunnel analog-to-digital recording system.

The pyrotechnics were presse into hollow, steel cyvlinders, one
of which is shown in Figure 7. A pressing pressure of 240 MN/m? (35,000 psi)
was used for all samples, The flow area restric ors were steel washers
sized to reduce the flow by 25, 50, or 75 percent respectively. An air
turbine, illustrated in Figure 8, served to provide the required spin
rates, The turbine air was ducted in an exhausted through the model
support struts. The turbine spin rate was measured with a magnetic-type
pickup and it was recorded on tape along with the model pressures.

The photographic instrumentation included a schlieren system with
a 35mm and a 70mm camera, a 16mm color-film camera, and a TV camera
(Figure 9). The schlieren system with its light beam in the horizontal
plane viewed the flow field through the tunnel side windows, The 16mm
and the TV cameras viewed the test area through the tunnel top window.
The 35mm pulse-type camera was operated at 10 pictures per second (pps),
the 70mm camera at approximateiy 1 pps, and the 16émm camera at 24 pps.
The TV camera was used to monitor the test section events.

The pyrotechnics were ignited with a 250-watt Westinghouse COj
laser. The arrangement of the laser is shown in Figure 9, The light
beam diameter at the plane of impingement on the propellant was about
3/8-inch. Continuous mode was used with the exposure ranging from two
to five seconds.

20




Figure 6, Photograph of the Test Area
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IV. RESULTS

A. Initial Runs-Flow Calibration

Three nozzles were constructed with nominal Mach numbers 1S, 124
and 2.5 respectively, The first runs were made to calibrate the nozzles
and to insure that the base pressure and free stream pressure region
were unaffected by reflections from the nozzles. In addition we wished
to see the effect of the presence of the Pitot rake on the near-wake
region. The Pitot rake (Figure 5) was used for these surveys., The
rake was held in the vertical centerplane with probes extending 1.12
inches above and 2.75 inches below the centerline for all the tests.

The Mach number profiles at the nozzle exit were uniform containing
only slight deviations., The Mach number measured for each nozzle was
1.56, 1.98, and 2.56 respectively. Schlieren photographs (Figures 10-12)
also show the flow to be free of strong non-uniformities or disturbances
at the nozzle exit. Series of Mach waves visible on the photographs are
due to small imperfections in the nozzle contour or to discontinuities
such as openings for the spin mechanism screws on the centerbody. The
Mach 1.5 nozzle contains one somewhat more pronounced disturbance. Its
influence on base pressure is estimated to be one or two percent. Static
pressures measured on the centerbody (P7 and P8) are in good agreement
with the static pressures from the Pitot measurements. The surface
pressure measured at stations PS and P6_is expected to be influenced by
the base flow and to be slightly lower,>

The base pressure data, radial distribution, and its variation with
the axial rake position are summarized in Figures 13-15. To avoid
interfering with base pressure data, the axial rake remained six inches
or more behind the model during the base burning tests. This limited
severely the planned surveys of downstream pressure and temperature
with burning.

B, Base-Burning Runs

A summary of all the runs for which base burning data was obtained
is shown in Table IV. A glance at Table I shows that it was not possible
to follow the test sequence originally planned, since it was not
possible to ignite magnesium-strontium nitrate mixes with more than
thirty percent magnesium, Two important exceptions were noted. When the
fuel capsules were heated to approximately 470K, the 36.5/63.5 binary
Mg/Sr(NO3), mixes could be ignited. The temperature of the capsule is
estimated to have been 390K at the time of ignition. These runs will be
referred to as preheated under the remarks column in Table IV, It was
also found that the presence of the area restrictors aided i%nition. A
similar effect was noted during actual 7.62mm fumer firings. 1 Since
successful ignition had been achieved for every candidate mix proposed in
the test series with a fifty-watt CO2 laserl?, it was thought that part of

25
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Figure 13, Radial Base Pressure Variation for M=1,56 Nozzle
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the problem was the presence of the supersonic flow. Run 1901 was

made with no flow, and as indicated in Table IV, the mix immediately
ignited, It was noted that mixes with strontium peroxide as the oxidizer
ignited more readily and burned steadily. Thus, additional capsules were
made up with T20C mix to test the effect of spin on base drag reduction,
and a series of binary magnesium-strontium peroxide mixes to test the
effect of the magnesium content. Also added was a "dark fumer'", I-136,
to the test. This mix uses the binder, calcium resinate, as the fuel;

it contains no magnesium, It also emits mno visible 1light when used as

a tracer.

The pressure-time histories for the runs for which complete or
partial combustion occurred are shown in Appendix A, The data are
presented with the base pressure normalized to the free-stream static
pressure, A few seconds of pre-and post-combustion pressure history are
shown for each run. The pre-combustion pressure is steady and the value
in close agreement with the base pressure measured during the flow
calibration tests. The increase due to combustion is step~-type for runs
for which the fuel ignited quickly and burned steadily. For a number
of runs the fuel ignited slowly or non-steadily and the increase in
base pressure was slow and not always steady. On Run 10 the fuel
ignited with a very long delay necessitating tunnel flow shutdown before
completion of combustion. On Run 61 the fuel ignited and burned a few
seconds after the layer of a special igniter-mix was burned.

At the end of burning the base pressure returned to the pre-
combustion value for the runs for which the fuel burned clean, without
leaving a heavy layer of slag. In some cases, particularly capsules with
area restrictors, the slag protruded outside the base cavity causing
the post-combustion base pressure to read higher (Runs 35, 36 and 42).

On Run 63, due to spin-induced vibrations, the capsule moved axially
protruding from the base cavity and causing the pre-combustion pressure
to read higher.

The pressure-time histories in Appendix A were prepared from
measurements at station P2, Pressures at other stations (P1, P3, P4)
were essentially the same except for the effects of slag formation.

The data from these runs are presented in Table V., The base drag
coefficient is related to the measured base pressure, free stream
pressure, air velocity, and air temperature by the following equation:

(poo—Fb)
C [ ——
Db
1/20,0.°

. (1)

Samples of schlieren photographs taken with the 70um camera are
shown in Appendix B. Gross effects may readily be seen on such
features as the extent of the flame, the effect of spin on the flame-
wake interaction (runs 42 vs 43, runs 62 vs 63), and the effect of
combustion on the wake neck location.
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Results of the wake survey proved inconclusive, since the rake
was positioned six inches downstream to avoid interfering with the base
pressure measurements which were the prime concern in this first series
of tests.

V. DISCUSSION

The first stated objective was to verify experimentally that the
"tracer effect'" is a base pressure change. The results clearly affirm
that indeed it is. Table VI extracts the pertinent test data from the
previous section, Table VI also points out that the pyrotechnic mix
producing the greatest pressure change burns fastest.

To assess this more quantitively, one can compute the specific
impulse for the sample as shown below:
tb
A j (P, =P ) dt
0 t

FSI = - . (2)

where FSI = the fumer specific impulse,
A = area of the base,
tb = burning time,
Pbt = base pressure at time t during burning,
Ppn = base pressure no burning,
m = mass .

This expression may be evaluated in the wind tunnel experiment from
integrating the pressure-time history and using previously determined
values for the area and the fumer mass. In standard international units,
the FSI has units of newton-second/kilogram., For applications where one
is volume limited, a more appropriate figure of merit would be the
"volumetric impulse,' obtained by multiplying the FSI by the density of
the fumer. For the standard mixes in Table VI the FSI in standard
international units are:

R20C 3200 (330)
R284 6300 (640)
F-1 3200 (330)

The numbers in parentheses are the fumer specific impulse in conventional
engineering units (pound force-second/pound mass).

The effect of spin was the most dramatic as evidenced from both
Table V and VII. The effect of spin on burning time and base pressure
is illustrated in Figure 16 where pressure-time histcries for spin and
non-spin R20C are superimposed. The burning time of R20C is decreased
by one-fourth at 43,500 rpm, but the faster burning, spinning R20C
increases the base pressure more than the unspun mix. This increase is
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A — SPIN
A — NO SPIN

ARA

TIME {1 DIVISION = 1 SECOND)
MACH NUMBER = 1.56

A — SPIN
A— NO SPIN

A

AMA ‘ﬂAAAAﬁAAAA

TIME (1 DIVISION = 1 SECOND)
MACH NUMBER = 1.98

Figure 16. Comparison. of Base Pressuxe Vs vime Cuxve _for Spun
and Unspun R20C
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|
A — RESTRICTED
A — OPEN

A
Jasaal

TIME (1 DIVISION = 1 SECOND)
MACH NUMBER = 198, 50% AREA RESTRICTION

|
A— RESTRICTED "
- A
A— OPEN o ‘&?Aé
)

)

L.

Pl AR4A

TIME (1 DIVISION = 1 SECOND)
MACH NUMBER = 1,98, 75% AREA RESTRICTION

Figure 17, Comparison of Pressure Vs Time Curve for Capsules
with. Area Restrictors




Table VII. Funer Specific Impulses for Pyrotechnics
Tested as Fumers .

Run No. Mix Mach No. %Area Restricted Isp,n-sec/kg
E 1

1 R20C 1.98 - 3200

; 2 R284 1.98 - 6300

| 3 F-1 o 1.98 - 3200

9 F-4+6% binder 1.98 - 3300

12 stoich Mg/Sr(NOz); 1.98 50 3600

13 Ul 1.98 75 4100

| 27 " 1.98 50¢ 4800

Y 29 " 1.98 75¢ 345C
- i 35 " 1.56 50€ 1400 3

- 35 \' 1.56 75¢ 1800

1 38 " 1.98 -c 4550

K | 42 " 2.49 -¢ 4000

E | 62 R20C 1.56 - 2000

j 63  R20C 1.56 -d 750

dcalcium resinate
b36.5/63.5 percent by weight binary mix

Cpreheated to around 500K

dspin rate 43,500 rpm
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not sufficient to svercome the reduced burn time as far as the fumer
specific impulse is concerned so we would predict R20C to be a
particularly poor fumer. Such results were observed in firing tests.®
The coverage of the spin effects is not as extensive as it was originally
intended because the capsules with area restrictors were not balanced,

The effect of the flow area restrictors on burning time and base
pressure change are shown in Figure 17. As noted in the remarks
column in Table IV, the area restrictors melted, so the only conclusion
we draw from these tests is that steel washers used in the projectile
as flow restrictors will not affect fumer performance. An unexpected
result from the use of the area restrictors was that the mixes with the
area restrictors were easier to ignite. This, too, was noted during
the actual firing tests.6 Reliable ignition of F-1 was achieved only
when area restrictors were employed.

One series for which no data were obtained was the effect of
magnesium content cn drag reduction (Runs 12-20 Table I). As was
pointed out in reference 7, previous wind tunnel experiments designed
to test the effect of various gases ejected into the wake on base
pressure concluded that the ideal base drag reducing fumer would be a
hot, low-molecular weight gas that burned in the near-wake with the air
present there. These authors speculated the exces: magnesium in a fuel-
rich magresium-containing pyrotechnic might provide the sought for hot
low-molecular weight gas that would burn in the wake and be, therefore,
an ideal fumer candidate, Since this hypothesis was one of the chief
objectives of the tests, we prepared a series of capsules using
strontium peroxide as the oxidizer, We chose this oxidizer since we
could more easily ignite it than strontium nitrate mixes and because the
stoichiometric binary mixture contained a relatively low concentration
of magnesium (17%), so we were confident we could ignite some capsules
with excess magnesium. As Table V indicates, we burned successfully
the 20/80 and 30/70 binary mixes, but were unsuccessful with the 40/60
and 50/50 mixes. Nonetheless, the predicted trend of increasing drag
reduction with an increasing amount of excess magnesium appeared as
shown in Table VIII, We also included data for F-1 which also uses
strontium peroxide as the oxidizer as well as I-136 which contains no
magnesium,

Table VIII, Effect of Fuel Concentration (M_=1.98)

Mix %ACDb tb, sec
F-1 (8.1% Mg) 32 5,1
20/80 Mg/Sr0, 46 1.7
30/70 Mg/SrO? 65 1.0
I1-136 15 4,3
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These runs also show how we can design fumers using binders and
different oxidizers by comparing the percent drag reduction and burning
time of R20C and the 20/80 Mg/Sr0O, mix as shown below

%ACh, th, sec

20/80 Mg/SrO2 46 1.7
R20C 50 2.7

The addition of different fuels (carbon and calcium resinate) and
different oxidizers (PbO; Ba0y) increases the burning time while keeping
the drag reduction nearly constant, This is precisely what we must do
in the future in a systematic manner to achieve the optimum fumer for a
given application., We are not starting from scratch. Caven and
Stevenson® point out that the visibility of a tracer is a function of
the excess magnesium in the flame. Thus, existing tracer compositions
will be good starting points to try to find optimum fumers. However,
this also implies that one is not likely to find a "dark' fumer that
will be effective.

Future experiments will try to optimize base drag reduction with
burning time. Since these tests indicate that burning magnesium in the
near-wake is an especially effective drag-reducer, one needs a way to
increase the burning times of such compositions., Two approaches are
possible. One is to increase the particle-size of the magnesium.
Another approach is the use of flame retardants such as oxamide. These
materials have been shown to reduce burning rates by endothermic
decomposition at the surface, thereby reducing the surface temperature.
Hopefully one will be able to use such coolants with the energetic
peroxides which appear to be the oxidizers easiest to ignite.




VI. CONCLUSIONS

1. The so-called "tracer effect" results from a increased base pressure.

2. Center-perforated washers assist the igniton of pyrotechnics. The
by ignition of pyrotechnics is more difficult in the supersonic flow than
under static conditions,

3. The center-perforated steel washers used to restrict the area
through which the pyrotechnic combustion gases may flow into the wake
melted and had no effect on base pressure compared to the capsules with
no washers,

4, Spinning dramatically increased the fumer burning rate and base
drag reduction., It does not appear that the increased base drag reduction
, compensates for the reduced burning time.

5. A trend indicating that the base drag reduction is proportional to
the amount of magnesium in the composition was evidenced.
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APPENDIX A.

PRESSURE-TIME CURVES FOR BURNING RUNS
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Run 12

Run_13 (Near beginning)
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Run 36 (Beginning of Combustion)
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