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FOREWORD

This report is the result of an in-house effort under Project
1467, "Analysis Methods for Military Flight Vehicle Structures,"
Work Unit 14670313, "Experimental Studies in Facigue Crack Propa-
gation in USAF Structures."
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ABSTRACT

The purpoge of this veport is to present the concept of load
interaction zones and to detail the raformulation of the Wheeler

and Willenborg et. al. models in a stress intensity factor format.




SECTION I
INTRODUCTION

A viable fatigue life prediction capability must provide for a
proper characterization of the localized rasidual stress state
gonefaned by prior loading so that the influence of this residuzl
strass state on subsequent fatigue bahavior might be determined.
The crack growth retardation models proposed by Wheeler [1]* and
Willenborg et. al. [2] have been used to account for both the magnie
tude and oxtent of the crack tip residual stress state generated by
high spectrum loads. In gemeral, tho maxiwum extent of any lead
generated residual stress stace, L.e., its zone of influence on
subsaquent crack growch behavior, can ba defined with z parazav.x %,

called the lead dnteraction zouna.




SECTTION 1L

LOAD INTERACTION ZONE CONCEPT

A schematic showing the relationship between applied load and
its corresponding load interaction zone is shown in Figure 1.
Load Py applied at crack length ay develops a zone 2y which extends
to some futura crack length position aq. Load Pz applied at crack
length a, daovelops a load interaction zone which spans the distance
between ay and aither aj or a,. One basic assumption of both the
Wheeler and Willenborg et. al. wodels is that if the load Py develops
¢ losd interaction zone which extends out to or past the furthest
extent of a previously developed interaction zone, L.e., ag + z32ay+z),
the grovih increment associated with e P2 loadlug is caleniaiud
using the steady state equation. Conversely, a crack growch ratc
reduction is assumed when the load Pj applied at crack length position
ap develops a load interaction zone zj which is smaller than that
required to reach the furthest cxcent of any pre;iously developed load
interaction zone boundary, i.e., ap + “3“(31 + zl) or (qz +ozo) T

whichaevay 1s largest. Doth models assume that the difference betwesn

the load interaction zone boundaries 1s reliated to the amount of

c¢rack growth racte reduction,




- SECTION IIIL

PLASTIC ZONE ASSUMPTION

Wheeler [1} assumed that the losd lnteraction zone z was equal
to the plastic zone radiua size created under plane strain loading:

) o (2. (1)
. z - " L Kmax“‘ L Lk
. 3oy e ry

while Willenborg et. al. [2] suggested that the plane stress plastic

zou¢ size (radius) might Le wmore appropriste, i.e.

O 2
e 1Ql'l’lln{
z mn o ys ] ry ¢3)

In gonevral, it might be assumed that the load Interaction zoue is
a function of the maxiwum stress Intensity factor, K;ax’ {assoclatad
with remoce loading) and yield strength, %g.

Consider Figure 2 which shows the relavionship for a vemotely
calculated stress intensity factor which is vequived for continuous

decay in the assumed load ianteraction zone such that the furthest

*e

extremity of cach zone calculated ls coincident. This stress inten=
sity factor relationship is the wioimum one assumed by both Wheéler
and Willenborg et, al. models to give no retardation. It is derived
using the following equations (see Figure 2 for nomenclature):
X
z2 © 201. -~ Aa (3)

13 related to stress intensity using a generslization of Lquations

1 and 2.
o 2 OL 2 ! T
/ kqu { Kax - Oa ,'{ = a constant (4
' P Y| uax
ya ¥s




, . x OL
which can be rearranged in terms of Kmax' KMAX’ Aa, and Zgp, tO give
* oL \a
Kpax = K / l - Ta_
ax max ZoL - ()

Stating the Wheeler-Willenborg et. al. retardation concept in a

%
stress intensity factor format implies that if K:ax‘=-xmax' a crack
growth rate below steady state predictions can be expected for those

i "'d"hm Tm>*. ¢
cycles associated with K ... If Kmax"xmax’ no reduction in crack
growth rates below steady state predictions is expected for these

eycles. '
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SECTION IV
OVERLOAD AFFECTED CRACK LENGTH

Both Wheeler and Willenborg et. al. models predict a return to
steady state cracking rates subsequent to the application of the
overload as soon as K;ax and K;ax are equal. The crack length incre-
ment defined by the condition K;ax ] K;ax and Equation 5 is termed
the overload affected. crack length (a*) because it is the growth
increment which experiences the influence of the overload created
residual stress field. The overload affected crack leagth is

predicted by Equation 6:

a.i' = z01, l 1l =(K:u/lg?:‘_ix ) 2 ) {6




SECTION V
CRACK GROWTH REDUCTION SCHEMES

The Wheeler and Willemboxg et. al. models diverge when consid-
eration is given to how the crack growth rates associated with ‘
lqax?:x:mx are reduced below their steady state level. Shown in
Figure 3 is a schematic diagram which compares K;ax to K:ax for the
case of a single large load cycle followed by a large number of low
level constatic amplitude load cycles. The Wheeier model considers
the ratio of re.w. .tely appiied stress intensity factor to the nec
retaxdation stress intunsity factor as the drivipg force for retax-

dation, while the Willenborg et. al. model vtilizes the difference

tetween these came twro stress ind & -ty factors fur its asscssment ol

the amownt of retardatien appl ' -0 the low amplitude load induced
crack growth rates.
The Wheeler model was . . _sed in a3 stress iatensity factor

format but such a “~ - - :asily be developed. The Wheeler

crack growth model can be expressed for each cycle of crack growth

da .| z n (7a)
N (?) *C akP _fo,rz<2*.

or

s C aK P for z = z" (7b)

where the m values found from data derived from several s. .ctra

ranged between 1.3 and 2.0.
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If the load interaction zones are assumed to be linearly related to
the plastic zone size parameters l.e,, 1if

z-Y(R"“)Z “‘(K* )’ ®

ya ; .

then a direct substituticn into Equation 7a gives

() 2m .

da . ¢ K’max ) P :

dN Ko . AK {(9)
max

for K;ax-s K*ax . Equation 9 shows the asgignmex}t of the Wheeler
crack growth reduction factor (K°° /x* ) directly applied to the
stress intensity range. It should be noted that the Wheeler model
reduces growth rates by reducing the applied stress intensity range.
While the Willenborg et. al. model was derived using stress

:Lnt:ensi ty factor concepts, it has to date b eem ﬁescribed using a
stress format: the stress used to calculate the efferfcive (local)
stress intensity factor was given by

%gs 9 -7 RED . (10)
with

*
’rep "7 ~m : (11)

where : s
a” = remotely applied stress
o ¥ = stress required to achieve lgn in Figure 3

u;ax = remotely applied maximum cyclic stress related directly

to K:ax in Figure 3.
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Dividing the stresses in Equations 10 and 11 by the characterizing
stregs intensity factor coefficient (K/g ) for a given geometric
structure and crack length yields a stress intensity factor format

Kege = K = Kppn (12)
with

Kepp ™ ;g:u - Ko - (13)

The effective (lucul) stress Intemsity factor, K.gg¢, 1s reduced below
the applied strews intensity factor by a constant (for a given crack
length) as long as x;ax_z= K;ax' Since the local stress intensity
factor range iy the difference between the local maximum and minimum
stress intensity factors, one finds that ‘

“Ragg © (K;;x ~ Xpgp) = Knyp - Kpep) = “K (14)
i.e., the effective (local) srress intensity range equals the remote
stress intensity range but the local stress ratio R ¢¢ 1s depressed
below that of the remote stress ratio R*. The crack growth rates are
calculated using an equation which interrelates the influence of stress

intensity range and stress ratio such as the Walker Equation [3)

da _ RREX g )| P asy

or Krause-Crooker LEquation (4]
max n p

da o ¢ [ Kegg - (1 = b Regg) (16)

dN W .
or Elber Equation {5]

B , P

da _ AK » (L +q'R_..) Qan

dN CE ( ef-
Constants for Equations 15,16, and 17 should be established for ey

positive and negative stress ratio data separately for reasons detailed

by Mayle [6]. 8




SUMMARY

The load interaction zone concept was presented to generalize
the approach employed by Wheeler [.1] and Willenborg et. al (2] in
the development of crack growth retardation models. A stress inten-~
sity factor format was provided for the Wheeler crack growth retar-
dation model with Equation 5 and for the Willenborg et. al. reducing
stress intensity factor model with Equationsl1l2 and 13. The

(overload generated) no retardation intensity factor (K:mx) for both

models was defined by Equation 5.
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