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SUMMARY 

We processed a data base  of 128 events   (Priority  II   data 

set)   to evaluate  our baseline  approach to the problem of iden- 

tifying earthquakes   and explosions.     As was  the  case  for all 

participants  of the Event  Identification Experiment,   these 

data constituted a common data base  of short-period and long- 

period seismic waveforms.     The seismic signals  used were   re- 

corded at  fourteen  single-sensor stations   distributed world- 

wide;   at three short-period and long-period array stations  in 

Korea,   the  United States   (Montana),   and Norway;   at  a long- 

period array  in  Iran;   and at six single-sensor stations   form- 

ing a regional Alaskan network.     In  all,   the network consist- 

ed of twenty-four seismic stations. 

Our procedure   for  identifying these events was  imple- 

mented as  a system,   and our goal was  to emulate  a practical 

working environment.     This  approach provided fast,  efficient, 

and flexible procedures by which to  identify events  as  earth- 

quakes  or explosions  through the  use  of multiple  discrimi- 

nants.     The^Q  discriminants  consisted mainly of short-period 

and long-period measures  of spectral shape  and of time-domain 

measurements  of the  event complexity.     Given   :hese observa- 

tions,  each event was  classified as   follows:   (1)   as  a member 

of one  of the eight  clusters  established by training on earth- 

quakes;   (2)   as   a member of one or more other  clusters  tenta- 

tively  interpreted as   a possible  explosion-type source;  or  (3) 

as  a singular,   unidentified event which  simply  did not  clus- 

ter and could not be   interpreted.     It  should be noted that 
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the adaptive clustering procedure we derived and implemented 

trains on earthquake data, but does not permit training on 

known explosion data. 

As seen above, the adaptive clustering procedure used is 

based on the consistency of observed discriminant data.  It 

can adaptively group events not previously encountered (e.g., 

events associated with unusual regional or site geological 

characteristics, multiple explosions, etc.).  Our procedure 

requires detecting a pattern of four or more such unusual 

events before a new (anomalous) type of event can be estab- 

lished.  It is conceivable that the discriminant pattern 

used for clustering an event type could be determined by 

training with synthetic data.  In that case, the event type 

could be established by the observation of a single event. 

With our initial, selected set of discriminants, we ob- 

served that eight discriminant clusters were needed to 

separate the different types of earthquakes in the data base. 

Some of these event clusters were found to have resulted from 

operational problems (i.e., problems related to our definition 

of discriminants and to our data processing techniques). 

Clustering helps to identify operational problems as well as 

to identify the physical factors responsible for our capa- 

bility to separate explosions from earthquakes.  The most 

important operational problem observed was that the selected 

event discriminants exhibited serious''magnitude scaling ef- 

fects.  That is, the event discriminants clustered into small, 

medium, and large magnitude sub-groupings of a group contain- 

ing deep earthquakes or of another group containing exclusive- 

ly shallow earthquakes.  Then, too, another earthquake 
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cluster probably associated with large  ground-displacement 

overshoots was   indicated hy substantial high-frequency peaks 

in the event  spectra.     Unless  they were  clustered and treat- 

ed separately,  these  unusual  earthquakes would have been 

falsely classified as  explosions. 

A number of operational problems were  identified by the 

adaptive  clustering procedure  and are  discussed in detail. 

An  attempt was  made  to  resolve  these problems,   and the  re- 

sults obtained were  encouraging. 

With  respect  to  the   results   obtained,   one  explosion  in 

the  data base was misclassified as   an  earthquake,   and another 

was   'unidentified.'     Post-analysis  quality control  checking 

of the  data  for these  two  events  indicated that  the data were 

not properly edited.     In particular,   large  timing errors  on 

the  order of  30  seconds,   and correspondingly  large errors  in 

magnitude  measurements   (one  or two orders of magnitude),  sug- 

gest that the  data  for these  two  events be  omitted from the 

performance evaluation.     On this  basis,   the   following detec- 

tion performance was  achieved: 

Explosions  misidentified 0% 

Explosions  unidentified 01 

Earthquakes   falsely  identified as  explosions 41 

Earthquakes which are  unidentified 141 

These  results   indicate  that  a single  explosion  cluster ef- 

fectively separates  the  explosions,   but  that  improvement  is 

needed to  identify more  effectively the  earthquake events. 

ENS CO,   INC. 



We did modify our baseline discriminants by scaling 

them to remove their observed dependence on network magni- 

tudes.  Using the scaled discriminants, we obtained the same 

partitioning o£ earthquakes and explosions previously obtain- 

ed, but with the following difference:  all of the earthquakes, 

which formerly fell into eight clusters, migrated into a sin- 

gle earthquake cluster, (the explosions still fell into a 

single cluster).  This dramatic result indicates that the 

clustering previously obtained with our baseline discrimi- 

nants appeared to be an artifact of the magnitude scaling 
problem. 

The modified discriminants, empirically corrected for 

their dependence on network magnitude, exhibited significant 

differences in their ability to separate explosions from 

earthquakes.  From this, we learned that it is important to 

recognize and remove operational problems before judging the 

efficacy of the individual discriminants.  Then, too, by ap- 

plying the adaptive clustering technique using the modified 

discriminants, it may be possible to improve event identifi- 

cation performance, especially by more effectively identify- 

ing earthquake events and by reducing false alarm explosion 

identifications. 

In sum, the results we obtained in the Event Identifica- 

tion Experiment demonstrate the power in our clustering ap- 

proach to training with earthquakes and to interpreting 

residual clusters (which are dissimilar to earthquake clus- 

ters) as consisting of possible explosions.  Furthermore, 

our approach of not presuming any prior knowledge of explo- 

sion discriminant characteristics, but, instead, of relying 
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on clustering to provide such information, is important in 

that there is no 'forcing' of solutions which have limited 

applicability.  We further learned that the recognition and 

solution of operational problems is essential before passing 

judgement on the efficacy of the discriminants.  Otherwise, 

the interpretation of results could be misleading and lack- 

ing in generality.  Clearly, then, our work indicates that 

much remains to be done to improve our data processing tech- 

niques before our results can be considered optimum and 

generally applicable. 

Neither the Advanced Research Projects Agency nor the 
Air Force Technical Applications Center will be responsible 
for information contained herein which has been supplied by 
other organizations or contractors, and this document is 
subject to later revision as may be necessary.  The views 
and conclusions presented are those of the authors and should 
not be interpreted as necessarily representing the official 
policies, either expressed or implied, of the Advanced Re- 
search Projects Agency, the Air Force Technical Applications 
Center, or the US Government. 
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SECTION I 

EVENT IDENTIFICATION EXPERIMENT 

In this study, an experimental Event Identification Sys- 

tem (EIS) developed by Sax, et al. (1978) was used to classi- 

fy, as an earthquake or an explosion, each of 12 8 events 

drawn from an Area of Interest (AI) data base (the Priority 

II data set).  The specific goals of the study were: 

• To refine the Event Identification System develop- 

ed by Sax, et al. (1978) ; 

• To identify the 128 events as either earthquakes 

or explosions; 

• To evaluate the performance characteristics of the 

Event Identification System; 

• To recommend procedures for implementing the Event 

Identification System in an operational environ- 

ment. 

A.   INTRODUCTION 

Much research has been performed over the past two dec- 

ades on the problem of seismic source identification.  As a 

rule, event identification studies have been primarily con- 

cerned with the evaluation of one or two discriminants which 

were applied to data from events in specific source regions. 
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Often,   only data  from single  stations  or arrays,  rather than 

from entire networks,  were  considered  in these evaluations. 

Thus,   these  studies   failed to   account  for variations   in dis- 

criminant  measurements  which were  introduced by  differing 

tectonic structures  beneath different  source  regions   and dif- 

ferent  receiver  locations.     Also not  considered were varia- 

tions   introduced  along travel paths between  different  source- 

receiver combinations.     As  a result,  some  discriminants which 

were  initially thought promising  (such  as   complexity)  were 

found to be significantly less  effective when considered in 

light of larger data bases which encompassed different source 

regions  and station  locations.     In  fact,   studies have sug- 

gested that even Mg-m. , which has historically proven to be 

a powerful  discriminant,  should be  used on  a regional,   rather 

than a global,  basis   (Liebermann and Pomeroy,   1969;  Marshall 
and Basham,   1972). 

Because  of the  effects of source,  path,  and receiver 

variations  on  discriminant measurements,  no single  discrimi- 

nant can be  expected to classify correctly  all events   for 

which  data are  recorded by a given network of stations.     For 

this  reason,   a multidiscriminant  approach  is  taken  in this 

study.     The utility of this  type  of approach is  demonstrated 

by Anglin   (1971), who  showed that  complete  separation of a 

suite of Eurasian earthquakes   and underground explosions 

could be obtained using complexity and  the  third moment  of 

frequency  in  a bivariate  discriminatron scheme.     Individually, 

neither of these  discriminants   completely separated the two 
populations. 
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Multidiscriminant  analysis   (or multivariate discrimina- 

tion analysis)  have been studied by Booker and Mitronovas 

(1964)   and Bell   (1978).     In both  cases,   similar  techniques 

were used to  classify,  with considerable success,   regional 

western United States  earthquakes   and underground explosions 

recorded by   Long Range Seismic Measurement   (LRSM)   stations 

at  a variety o£ different  locations.     Several multidiscrimi- 
nant cluster analysis procedures which  involve  grouping 

events  by  their   'like'   discrimination  characteristics have 

been studied   (Bell,   1978).     They  appeared promising in that 

event  classifications   derived using these procedures were 

entirely  data motivated,   and they  did not  require prior in- 

formation  in the   form of event  training  sets. 

A multidiscriminant  discrimination  approach was  develop- 

ed by Sax   (1976).     This  approach required training on a set 

of earthquake  and explosion data.     Several  important  lessons 

were  learned from that   19 76 study.     Some  of these  lessons  are 
described below. 

In Sax's   19 76  study,   spectral magnitude measurements 

were used  as  discriminants.     These discriminants were  ob- 

served to have highly skewed statistical  deviations.     The 

assumption,   then,  that normal  statistics   apply  leads  to  sub- 

optimal  results  unless  this  skewed effect  is  taken into   ac- 
count. 

A method was  developed to  transform the skewed discrimi- 

nants  to   Z-statistics  since  the   latter behave  approximately 

as  normal  statistics.     This  is   demonstrated  in Figure  1-1, 

wherein  the  discriminant  D^^  is  normalized by  referencing 
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observations to the median of a standard reference earth- 

quake population.  Skewness is removed by dividing the dif- 

ference between the Di and the M. by the standard deviation 

of positive or negative deviations about the population 

median (c^).  For multidiscriminant analyses, each component 

discriminant D^ of the discriminant pattern vector D is nor- 

malized as shown in Figure 1-1.  Thus, for normal reference 

earthquakes, the normalized discriminant pattern vector ZXI 
is approximately a multivariate unit normal statistic. 

Clustered outliers of Z^ can be interpreted as either anom- 

alous earthquakes or explosions. 

In the 19 76 study. Sax trained on eastern Kazakh and 

Nevada Test Site (NTS) explosions, and he obtained two nor- 

malized explosion discriminant patterns (Z, and Z2) for the 

two explosion sets.  Two completely different cluster models 

were required to identify events in the two populations. Fur- 

thermore, the correlation coefficient between these sets, 

Cll'.^)/!.^! | Z2| , was 0.05; this indicated that there was no 

significant correlation between the normalized discriminant 

patterns of the two populations. 

These results indicated that a serious problem conceiv- 

ably existed in depending on identification criteria derived 

solely by training on known, central Asian explosions.  Re- 

sults obtained from data for NTS explosions were a case in 

point; here, the use of multiple discriminants derived from 

Asian data would have been ineffective.  In fact, use of dis- 

criminants derived from central USSR events would have re- 

sulted in misidentification of NTS explosions as earthquakes. 

The conclusion is that in all probability, more than one 
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cluster model would be required to identify explosions from 

the two areas. 

Sax, et al. (1978) developed an adaptive discrimination 

model as an answer to the issues raised by Sax (1976).  The 

initial approach in the 19 78 study was to assume that a sin- 

gle cluster could adequately represent earthquakes, but that 

multiple clusters would be needed to represent explosions. 

This strategy was successfully demonstrated by Sax, et al. 

(1978) using data for 35 central Asian events which were re- 

corded at 22 world-wide stations.  However, the same concept, 

when applied to the data for the 12 8 events analyzed in this 

report, produced unsatisfactory results.  It was concluded 

that the negative result was due mainly to the diversity of 

discriminant patterns exhibited by both earthquakes and ex- 

plosions.  As a result, it was found necessary to change the 

analysis strategy to one of representing both earthquakes 

and explosions by means of multiple clusters, and to train 

on earthquake characteristics before attempting to separate 

explosions from earthquakes.  Results shown in this report 

demonstrate the viability of this new identification strategy. 

B.   THE AREA OF INTEREST DATA BASE 

The data base used in this event identification study 

consists of signals from 128 events drawn from the suite of 

'Area of Interest' (AI) events.  Event data from a network 

of seismic stations (listed in Table 1-1) were provided by 

the Seismic Data Analysis Center (SDAC).  The data supplied 

for each event generally consisted of short-period and 
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TABLE 1-1 

STATION LOCATIONS OF PRIORITY II NETWORK 

Station 
Index 

Station 
Designation 

Latitude 
(ON) 

Longitude 
(OE) 

Tectonic 
Class* 

1 BFAK 64. 77 -146.89 A 

2 UCAK 66.00 -153.72 A 

3 TNAK 62.91 -156.02 A 

4 CNAK 67.45 -144.52 A 

5 ATAK 52. 88 173. 17 A 

6 NJAK 63.06 -141. 83 A 

7 KSRS 37.45 127.92 I 

8 NORSAR 60. 84 10.89 I 

9 LASA 46.69 -106.22 I 

10 ILPA 35.42 50.69 A 

11 HNME 46.16 -67.99 I 

12 RKON 50. 84 -93.67 I 

13 ANMO 34.94 -98.46 R 

14 ANTO 39.90 32.80 A 

15 CHTO 18. 79 -98. 81 A 

16 CTAO -20.09 146.25 I 

17 GUMO 13.59 144.87 A 

18 KAAO 34.54 69.04 A 

19 MAIO 36.30 59.49 A 

20 MAJO 36.54 138.21 A 

21 NWAO -32.93 "   117.24 I 

22 SHIO 25.57 91.88 A 

23 TATO 24.98 121.49 A 

24 ZOBO -16.27 -68.13 A 

A = Active, I = Inactive, R = Rift 
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long-period channels   for each station.     Seismic waveform 

data were provided only  for those events  and stations where 
an  analyst had observed signals. 

The  origin  times   and coordinates  of the  events  used in 
this  study  are  listed in Table  1-2. 

In order to  eliminate  obvious  sources  of error,  plots 

of the AI  data were  visually  examined for mixed events  and 

for evidence  of station recording malfunctions   O.g.,  spikes, 

etc.).     Data showing either of these problems were eliminated 

from consideration because  discrimination parameters  measured 

on these  data would,   in  all probability,  not be  representa- 
tive  of the event. 

The policy of processing data only  for those  stations 

and events   for which  there was   an analyst-detected signal 

adversely  affects  the  computation of unbiased source param- 

eters.     That  is,   Ringdal's  maximum likelihood technique 

(Ringdal,   1974;   197S)  was  used to  calculate  these source 

parameters.     Ideally,   to use  this  technique  requires  the 

availability of either signal measurements  or,   if no signal 

was   detected,   of the  corresponding noise measurements.   Since 

noise  data are not provided  for stations   and events   for which 

there was no analyst-detected signal,   it was  necessary to  gen- 

erate  a set of short-   and  long-period noise  defaults.     These 

noise  defaults were  generated  for each station by  averaging 

noise measurements   from data   for several  events where no sig- 

nal was  observed.     The default values  are  substituted for 

actual  noise measurements   for  those station phases   for which 

no  data were provided   (i.e.,  where no  analyst-detected signal 
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TABLE   1-2 

EVENT  PARAMETERS 
(PAGE 1   OF 4) 

Event Date Origin  Time Latitude Longitude Tectonic 
Number (Mo/Da/Yr) (Hr:Min:Sec] C0N) (0E) Class* 

1 07/26/77 17:00:00 69.4 90.4 I 
3 11/01/77 03:54:24 55.3 130. 8 A 
4 11/01/77 17:56:33 36. 7 68.4 A 
6 11/04/77 10:51:40 23.0 101.6 A 
7 11/04/77 23:54:52 30. 7 81.3 A 
8 11/05/77 02:09:38 42.9 45.3 A 
9 11/05/77 04:06:49 37.0 71.0 A 

10 11/06/77 13:31:41 36.7 71. 7 A 
14 0 7/30/^7 01:57:00 49. 7 78.2 I 
16 08/10/77 22:00:01 50.9 111.0 A 
17 08/17/77 04 :27:00 49.8 78.2 I 
18 08/20/77 22:00:01 64.1 99.8 I 
19 09/01/77 03:00:00 73.3 54.3 I 
20 09/05/77 03:03:00 50.1 78.9 I 
21 09/10/77 16:00:00 57.2 106. 8 A 
22 09/30/77 07:00:00 48.0 48.0 I 
23 11/10/77 04:57:46 37.1 71. 8 A 
24 11/10/77 09:22:58 33.0 89.0 A 
25 11/12/77 05:09:16 38.0 91.0 A 
26 11/12/77 12:27:00 37.0 71.0 A 
27 11/13/77 21:02:48 28.0 90.0 A 
28 11/15/77 20:20:49 38.0 74.0 A 
29 11/17/77 04:23:54 28.0 90.0 A 
30 11/18/77 05:20:10 33.0 89.0 A 
31 11/18/77 05:35:21 33.0 89.0 A 
32 11/18/77 11:26:56 28.0 90.0 A 
33 10/09/77 11:00:05 78.3 52. 8 I 
34 11/18/77 15:10:10 28.0 90.0 A 
35 11/18/77 17:23:25 33.0 89.0 A 
36 10/16/77 20:03:35 4 8.4- 152.9 A 
37 11/18/77 21:55:37 60.1 143.2 A 
58 10/16/77 15:02:49 36.9 71.5 A 
39 11/18/77 23:12:49 33.0 89.0 A 
41 10/15/77 20:38:42 38.1 72. 8 A 
45 11/19/^7 11:51:09 37.0 71.9 A 

* 
A = Active, I   = Inactive, R =   Rift 
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TABLE   1-2 

EVENT  PARAMETERS 
(PAGE   2   OF  4) 

Event Date Origin Time Latitude Longitude Tectonic 
Number (Mo/Da/Yr) (Hr:Min:Sec) (0N) C8E) Class* 

46 11/20/77 01:41:23 30.6 93.3 A 
47 10/16/77 21:05:35 49.7 155. 1 A 
48 10/19/77 05:02:00 36.3 71.3 A 
49 10/19/77 21:20:37 49.5 155.4 A 
50 10/20/77 08:18:04 56.3 164.1 A 

53 10/29/77 03:07:00 49.8 78.0 I 
55 10/26/77 05:38:52 49.0 155.8 A 
56 10/26/77 07:11:31 46.4 153.5 A 
57 10/26/77 13:14:31 51.5 153.4 A 
58 10/27/77 07:20:29 53.5 160.0 A 

59 10/28/77 21:15:12 39.8 71.9 A 
60 10/29/77 04:14:56 47.0 152. 3 A 
61 10/29/77 06:26:42 41.0 63. 7 A 
62 10/29/77 10:33:59 47.3 153.1 A 
63 10/30/77 21:38:16 44.8 145.0 A 

64 10/31/77 09:40:04 55.8 162.7 A 
65 11/20/77 11:01:22 56.8 108.5 A 
66 11/20/77 18:55:28 39.9 73.9 A 
67 11/20/77 20:57:24 38.0 72.2 A 
68 11/20/77 23:40:35 33.1 88. 1 A 

69 11/21/77 19:43:36 36.4 71. 1 A 
70 11/22/77 00:07:49 37.0 71.0 A 
72 11/22/77 06:56:13 36.2 70.8 A 
73 11/22/77 11:33:45 43.0 89.0 A 
74 11/22/77 19:16:12 40.0 75.0 A 

75 11/23/77 10:28:07 34.0 83.0 A 
76 11/26/77 15:44:41 37.0 71.0 A 
77 11/26/77 22:46:46 37.0 115.0 A 
78 11/27/77 02:09:07 28.0 90.0 A 
79 11/27/77 03:57:00 50.0 79.0 I 

80 11/28/77 09:02:26 43.2 47.6 A 
81 11/30/77 04:06:59 49.9 78.8 I 

14 3 12/02/77 12:57:10 52.9 159. 7 A 
144 12/02/77 16:15:34 46.1 144.9 A 
145 12/03/77 17:06:21 41.9 131. 1 A 

A =  Active, I  =   Inactive, R =   Rift 
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TABLE  1-2 

EVENT  PARAMETERS 
(PAGE   3  OF  4) 

Event Date Origin  Time Latitude Longitude Tectonic 
Number (Mo/Da/Yr) (Hr:Min:Sec) (0N) (OE) Class* 

146 12/04/77 04:03:47 56.2 163.1 A 
147 12/04/77 11:39:02 48.2 146.5 A 
148 12/05/77 23:37:32 55.3 162.0 A 
149 12/06/77 10:52:53 41.4 69. 7 A 
150 12/07/77 02:03:37 41.0 72.0 A 
151 12/07/77 16:19:33 35.6 94.5 A 
152 12/08/77 02:02:54 52.9 89.7 A 
153 12/08/77 06:45:20 41.0 72.0 A 
154 12/08/77 13:57:04 50.4 149.8 A 
155 12/08/77 23:37:22 36,2 70.5 A 
156 12/09/77 04:23:36 54.4 160.6 A 
157 12/10/77 21:58:51 51. 3 156.5 A 
158 12/12/77 11:06:42 51.4 157.5 A 
159 12/13/77 06:58:59 35.4 88.4 A 
160 12/13/77 11:34:20 42.3 133.2 I 
161 12/15/77 05:15:45 36.4 70.9 A 
162 12/15/77 15:07:51 43.2 45.1 A 
163 12/15/77 15:23:30 43.6 45.3 A 
164 12/16/77 07:11:41 43.2 146. 7 A 
165 12/16/77 09:08:59 51.6 159.4 A 
166 12/16/77 10:15:27 33.3 97.5 A 
167 12/16/77 17:55:14 36.8 59. 7 A 
168 12/16/77 23:17:17 43.0 47.0 A 
169 12/18/77 06:57:33 55.2 160.5 A 
170 12/18/77 16:47:17 39.8 77.3 A 
171 12/18/77 19:09:21 51.1 157.8 A 
172 12/18/77 20:43:05 39. 7 77.6 A 
173 12/19/77 18:12:25 39.7 77.7 A 
175 12/20/77 07:2 7:38 39. 7 69.3 A 
176 12/20/77 20:52:10 55.7- 158.2 A 
177 12/21/77 08:30:46 41.9 47.9 A 
178 12/21/77 16:39:33 52.9 159. 8 A 
179 12/21/77 20:17:13 36. 1 68.6 A 
180 12/21/77 20:40:05 52.8 159.5 A 
182 12/22/77 14:05:45 52.9 159.9 A 

* 
A - Active, I   =   Ir lactive, R = =   Rift 
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TABLE   1-2 

EVENT PARAMETERS 
(PAGE   4  OF  4) 

Event Date Origin  Time Latitude Longitude Tectonic 
Number (Mo/Da/Yr) (Hr:Min:Sec) (ON) (OE) Class* 

183 12/22/77 19:34:05 53.1 163.4 A 
184 12/23/77 07:31:44 44.8 32.8 A 
185 12/23/77 09:09:54 39.5 77.4 A 
186 12/24/77 03:27:52 51.2 156.9 A 
187 12/25/77 08:33:37 50.0 91.0 A 

188 12/25/77 17:38:42 40.9 69. 7 A 
189 12/26/77 04:02:57 49.8 78. 1 I 
190 12/26/77 05:15:21 39.9 71.9 A 
191 12/26/77 23:04:34 33.7 80.8 A 
192 12/27/77 07:10:11 28.0 90.0 A 

193 12/27/77 12:31:00 54.7 161.5 A 
194 12/28/77 15:10:46 56.0 162.0 A 
195 12/31/77 03:24:38 39.1 91.1 A 
264 03/20/76 04:03:45 50.0 77.0 
265 03/29/77 03:57:00 50.0 78.0 

266 03/19/78 03:47:00 50.0 78.0 
267 06/11/78 02:57:00 50.0 79.0 
268 07/28/78 02:47:00 50.0 78.0 
269 08/09/78 18:00:00 64.0 125.0 
270 08/24/78 18:00:00 66.0 112.0 

271 08/29/78 02:37:00 50.0 78.0 
272 09/05/70 00:22:00 43.0 89.0 
273 09/21/78 15:00:00 66.0 86.0 

A =  Act i ve, I  =   Inactive, R =   Rift 
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was observed).  This approach assumes one-hundred percent 

operational reliability and seismic noise stationarity at 

each station.  Because at some stations the noise field 

tends to be unstable, the unbiased magnitude estimates may 

not be accurate.  However, where the above assumptions are 

valid, the estimates should provide reasonable estimates of 

unbiased event magnitudes. 

C.   REPORT ORGANIZATION 

The organization of this report is as follows.  Section 

II provides an overview and executive summary of our results 

of the Event Identification Experiment.  Section III provides 

a description of the methodology followed in performing event 

discrimination, the problems encountered and some recommenda- 

tions for dealing with those problems.  Section IV provides 

a more detailed discussion of the results of cluster analysis 

of discriminants.  The performance of individual discrimi- 

nants is described in detail.  Section V briefly describes 

conclusions drawn from this study.  Section VI is a list of 

references.  Appendix A provides a detailed description of 

an automatic detector used to edit event waveforms.  Appendix 

B describes the filtering process required to effectively 

measure variable frequency magnitudes of seismic signals. 

ENSCO, IXC. 1-13 



SECTION II 

OVERVIEW OF THE IDENTIFICATION SYSTEM 

The following is a general discussion of our work on 

event identification.  The topics covered include our phi- 

losophy (or guiding principles); the physical basis of se]ect- 

ing discriminants; criteria for associating discrimination 

measurements with explosions; strategy for performing event 

identification; results of the event identification process; 

and a brief description of our systems approach to perform- 

ing event identification processing. 

A.   PHILOSOPHY OF EVENT IDENTIFICATION 

A set of guiding principles underlies our approach to 

event identification.  The data upon which identification 

decisions are based are patterns, or clusters, of discrimi- 

nant measurements.  These patterns are designed to cunvey 

information about the source which is as independent as is 

possible of path and receiver effects.  Also minimized are 

radiation pattern effects associated with the orientation 

of source dislocations. Basic source mechanisms (such as 

shear faults, tensile faults, adiabatic phase changes, ex- 

plosions, and combinations of the above failure modes) are 

expected to result in discriminant patterns which uniquely 

characterize a seismic source.  Source environmentr-l factors 

also affect the clustering and variance of observed discrimi- 

nants.  These factors include shear, tensile, and compressive 
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strength of the medium and medium homogeneity; elasticity; 

associated structural geology and plate tectonics; and rhe- 

ological properties of the inelastic medium.  Dynamic source 

factors, too, influence the observed discriminant character- 

istics.  These involve the motion and growth of source dis- 

locations; stick-slip, elastic rebound and other mechanisms 

which complicate the source time function; and complex spatial 

patterns of fracture and dislocation occurring after the 

initial failure of the medium. 

Given the immense complexity of the event identification 

problem, it is unlikely that any single discriminant will suf- 

fice to identify and separate effectively all types of earth- 

quakes and explosions; it is expected that multiple discrimi- 

nants will be needed to do that.  The determination of what 

discriminants should be used for this purpose, however, is an 

evolutionary process, and such a determination is considered 

by us to be one of the most important goals of the Event 

Identification Experiment.  In order to achieve the most ef- 

fective monitoring of explosions by seismic means, it is es- 

sential to develop a complete set of discriminants to map 

uniquely all discriminant patterns into source characteriza- 

tions which encompass all types of earthquakes and explosions. 

In short, all types of earthquakes and explosions should gen- 

erate distinguishable discriminant patterns.  Conversely, it 

should be possible to associate observed discriminant patterns 

with models characterizing earthquakes or explosions.  Ideally, 

the discriminants r-iiired for homomorphic transformations of 

discriminants to designated source models will be generalized 

and improved by physical source characterization studies.  Un- 

fortunately, we are not yet to the point where this is 
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feasible, and so, we must depend in large part on adaptive, 

empirical methods for characterizing earthquakes and explo- 

sions. 

In short, our approach to the event identification prob- 

lem is to define a set of discriminants which are based on 

spectral shape and on time-domain measures of source and 

coda comp?.exity; to determine stable discriminant clusters 

by training intensively on earthquakes; and, either opera- 

tionally or physically, to characterize event groupings de- 

termined by cluster analysis or to discard them.  Clusters 

characterized by operational problems will 'feed back' on 

our procedures of measuring signals and defining discrimi- 

nants.  Through the application of corrective procedures, 

event groupings indicative of operational problems will dis- 

appear as the problems are identified, corrected, and elimi- 

nated.  Ultimately, we will isolate groupings of events which 

exhibit significant, 'like' physical characteristics. 

This approach to discrimination implies a need for flex- 

ibility in altering our basis for performing event identifica- 

tion.  Cluster analysis enables us to sort through large data 

bases and, adaptively, to find and estimate models which ac- 

curately characterize a subset of events in the data base. 

The implication here is that any single event observation 

can be rapidly associated with formerly observed clusters of 

event discriminants.  Importantly, unknown types of events 

can be adaptively identified by the clustering of at least 

four events (the number of events which, by our definition, is 

required to statistically define a new cluster).  Note, in 

passing, that this adaptive approach makes evasion difficult. 
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This is so because cluster analysis automatically trains on 

the discriminant pattern emitted by a new source type, and 

will isolate those events exhibiting characteristics dif- 

ferent from events previously observed. 

Another benefit of cluster analysis is that it rapidly 

defines operational problems.  For example, if events clus- 

ter by magnitude, a magnitude scaling problem is indicated. 

Should this occur, our linearly programmed system for gen- 

erating and maintaining data base file structures, and our 

programmable interactive capability, provide for the rapid 

scaling of the discriminants.  Once done, the data base can 

quickly be rerun, and the files can immediately be updated 

as a normal operating procedure. 

Another example of our system analysis approach relates 

to clustering station measurements of source parameters. 

Suppose, for example, that discriminant clusters observed at 

a station are associated with event distance, or even with 

particular source regions.  In such cases, the operational 

problem is one of correcting magnitudes properly with dis- 

tance, or, possibly, one of providing source-region-to- 

station corrections for magnitude.  Cluster analysis provides 

a means of determining rapidly whether such problems exist. 

Further, the speed with which such operational problems can 

be defined and corrected through the use of a systems ap- 

proach is one of the principal lessons to be learned from 

the Event Identification Experiment. 

A summary of our philosophy of event identification is 
shown in Figure II-1. 
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FIGURE II-1 

OUR PHILOSOPHY OF EVENT IDENTIFICATION 

SIMILAR SOURCE MECHANISMS SHOULD YIELD SIMILAR 

DISCRIMINANT PATTERNS 

THE DISCRIMINANT SET WILL EVOLVE TO ENCOMPASS 

ALL TYPES OF EARTHQUAKES AND EXPLOSIONS 

STABLE EVENT CLUSTERS DETECTED EMPIRICALLY 

MUST BE PHYSICALLY OR OPERATIONALLY CHARACTER- 

IZED, OR THEY MUST BE DISCARDED 

DISCRIMINANTS SHOULD BE GENERALIZED AND IM- 

PROVED UPON BY PHYSICAL SOURCE STUDIES 

PRACTICAL IDENTIFICATION PROCEDURES WHICH ARE 

DEVELOPED SHOULD BE IMPLEMENTABLE ON A REAL- 
TIME SYSTEM 

A SYSTEMS APPROACH WILL BE APPLIED TO IDENTI- 

FICATION IN ORDER TO SPEED THE LEARNING PROC- 

ESS, TO PROVIDE FOR FLEXIBLE ANALYSIS, AND TO 

EASE DATA BASE MAINTENANCE REQUIREMENTS. 
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B.  PHYSICAL BASIS FOR DISCRIMINATION 

One of the most difficult decisions to be made in the 

course of this experiment was that of selecting a set of 

discriminants which would effectively separate explosions 

from earthquakes.  Two considerations went into the selec- 

tion.  One consideration was that the discriminant set had 

to include as many obvious physical differences between ex- 

plosions and earthquakes as was possible.  The other con- 

sideration was to recognize that discriminant measurements 

are subject to large random variations, due, simply, to the 

complexity of the earth.  Note that some redundancy in the 

discriminants selected is considered necessary to cover ef- 

fectively all of the physical bases for separating explosions 

from earthquakes. 

Given the considerations above, eighteen discriminants 

were initially selected for use in the experiment. An ob- 

vious issue to be raised with this approach, however, is that 

of avoiding the accumulation of large errors which are asso- 

ciated with weaker discriminants.  These large, random devia- 

tions would tend to mask the effect of the better discriminants. 

This problem was resolved here by employing a weighting scheme 

for gauging the similarity of discriminant patterns.  This 

procedure is described later in this report in detailed der- 

ivations of the cluster analysis procedures.  The net effect 

of the weighting procedure now in place is to reduce the 'ef- 

fective size' of the discriminant set such that it yields 

smaller random deviations expected from only a few normalized 

discriminants.  We believe that this procedure provides an ef- 

fective basis for operating with large discriminant sets, but 
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with  little  degradation  in the  effectiveness  of the better 

discriminants.     Nonetheless,   as we  learn to operate with 

large discriminant  sets,  we will eliminate  those which prove 

to be  less  effective; we will  also  add discriminants which 

prove  to be more effective  in separating explosions   from 

earthquakes  and in stabilizing the  cluster analysis of events. 

The physical bases   for selecting discriminants  relate  to 

(shallow)   depth;   to  the  efficient  generation of compressional 

waves;   to smaller, higher-stress  and full,  stress-drop sources; 

to elastic  rebounded or  resonant  sources;   to  lower backscat- 

tering  from smaller,  shallow sources;   to  less   complex,   first 

motion of the  source-time   function;   and to  combinations  of 

the preceding effects.     A list  of the  selected discriminants 

is  shown in Figure   II-2. 

M    is  defined as narrowband-filtered ground displacement 

magnitudes  averaged at  four periods   (see Legend,   Figure  II-2). 

This  definition  differs   from the  conventional  definition in 

that amplitude measurements  are not  divided by the period. 

As  a result,   long-period surface wave magnitudes  computed 

here  are  relatively  constant  over frequency,   and are  compar- 

able  in value  to short-period m,   determination.     The  average 

period of M  ,   as  defined here,   is  24  seconds.     Discriminants 

D,,   D2,   and Dr   (shown  in  Figure  II-2)  are differences  of surface 

wave  ground displacement magnitudes between  50  seconds   and 

14  seconds period, while  discriminants  D,,  D.,   and D,,   are 

slopes  of compressional wave  ground displacement magnitudes 

between 0.3  and  1.3 Hz.     Discriminants  D6,  D-,   and D«  are 

measures  of compressional wave energy  for a given moment 

source  as   indicated by network m,   relative to   long-period 

surface waves  or compressional waves.     The scaling of D,-   is 
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FIGURE  II-2 

DISCRIMINANTS 

Dl - Ms   -  Ms(50) 
D2 " Ms(14)   -   Ms 

D3 -  [mb(0.5)   -   mb(0.3)]/0.2 
D4 =   Ob(0.8)   -  mb(0.5)]/0.2 
D5 -  Ms(14)   -  Ms(17) 
D6 =   1.14mb  -  Ms   -   1.79 inb<4.9 

l.SSn^   -  Ms   -   3.79 mb>4.9 
D7 = mb   -  Ms(50) 
D, 

D 10 

mb   -  mb(0.3) 

mb(3.2)   -  mb(0.3) 

x  -  a",   (pulse  complexity) 
Dll = KCl.S) - mb(0.8)]/0.2 
D12 = [mb^2-0) " mb(0.5)]/0.6 

D 
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■ The iv" discriminant 

= Network bodywave magnitude 

■ (Ms(33) + Ms(25) + Ms(20) + Ms(17))/4 

= Narrowband-filtered surface waves of period 
T sec 

■ Narrowband-filtered P-waves of frequency  f Hz 

= Average  frequency of first   1.5  sec of P-wave 
pulse 

■ Phase  standard deviation of first   1.5 sec of 
P-wave pulse 

-  Amplitude-time variation.  
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taken  from the  result  of Strauss   (19 78)   for unbiased M - 
s 

versus-m.   at the Alaskan  Long Period Array   (ALPA).     Discri- 

minants  Dg  and D12  are  frequency-dependent magnitude  discrim- 

inants  designed to  identify small,   full  stress-drop events 

(see Bache,  et  al.,   1974;   Archambeau,   1978,   1979, personal 

communications).     Discriminants  D,0  and D1^ are time-domain 

complexity measures, while  D--  is  a short-time-gate,  minimum- 

coda- complexity measure;   this  discriminant  is   designed to take 

advantage  of the smaller    backscattering associated with small, 

shallow-focus  sources   (this   reflects  on the normally  large, 

scattering attenuation  in shallow   crustal  layers).     Discrim- 

inant  D14  is  based on the  linear relationship which has  been 

observed between average  frequency  and average standard devia- 

tion of phase  angle  versus   time-of-first-motion ground ac- 

celeration   (see  Unger,   1978).     Note  that  D14  is  interpreted 

as   an alternative measure of small,  high-stress  or  full stress- 

drop  sources,   as   indicated by the higher-frequency signatures 

and the  simpler  first-motion of such sources.     Discriminants 

D14  through D^  are   'combined effect'   discriminants which are 

based on the observed behavior of discriminant pairs.     Figure 

II-3 associates  the selected discriminants with various phy- 
sical  mechanisms. 

C.        CRITERIA FOR EXPLOSION   IDENTIFICATION 

As  indicated above» we  are  concerned that explosions be 

identifiable without prior knowledge of the  discriminant pat' 

terr^.       For example,  shot  arrays   from some  unknown,  tecton- 

ically  active  region could conceivably emit  a multiple  dis- 

criminant pattern which  is   totally  different  from that  of 
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FIGURE II-3 

PHYSICAL BASIS FOR DISCRIMINANTS 

^^^^^^^^^M 

SHORTER PERIOD SURFACE WAVES AND RISE  IN LOW 
FREQUENCY P-WAVE  SPECTRUM DUE  TO SHALLOW DEPTH 

D3 =  mb(0.S)   -  mb(0.3) 
D4 ■ nibC0.8)   -  mb(0.5) 

Dl=  Ms Ms(50) 

Ms(14)   -   Ms 

D5  =  Ms(14)   -  Ms(17) D10='f 
'« 

MORE EFFICIENT PRODUCTION OF P-WAVES AND LESS 
EFFICIENT PRODUCTION OF SHEAR WAVES 

D6 " mb 
D7 = mb 

- M 

MSC50) 
D8 = mb mb(0.3) 

»ID* 7 > 

SMALL, HIGH-STRESS AND FULL STRESS-DROP SOURCES 
D]2= mbC2.0) - mb(0.5) 

Dg = mb(3.0) - mb(0.3) 

ELASTIC REBOUND OF SOURCE LEADING TO OVERSHOOT 
OF THE DISPLACEMENT PULSE AND TO ROLL-UP OF THE 
HIGH FREQUENCY SPECTRUM 

D4 = inb(0.8) - *b(C.S)  DJ2- mbC2.0) - mbC0.5) 

D11= mb(1.3) - mb(0.8)  D9 = 1^(3.0) - mb (0. 3) 

LESS BACKSCATTER FROM SMALLER, SHALLOW SOURCE 
OR LESS COMPLEX SOURCE 

0^=  Coda Complexity 

D10= Pulse  Complexity I 
- % 

• COMBINED EFFECTS 

D14=  D]2     +  D6 
D15=   3D10   + Dll 
D16 "   3D]D   +  D6 

D17=   3D1D   +  D9 
D18*   3D]D   +  D]2 
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known explosions.  The system designed to detect explosions, 

therefore, must adaptively associate these 'new type' events 

by cluster analysis, and label them as being different from 

other known types of explosions or earthquakes. 

In the case of anomalous explosions the discriminants 

used to identify and distinguish such events from other types 

of events must, through training, be a complete description 

of explosions.  In like manner, prior training on earthquakes 

must be intensive enough to distinguish all conceivable types 

of earthquake sources.  Thus, if such a 'new type' cluster of 

events is detected in an area, and the depth range suggests 

that the events are explosions, the are:, can then be put 

under surveillance as a possible nuclear test site.  By def- 

inition, at least four events are required here to identify 

an anomalous cluster of events; however, it is estimated that 

a cluster of from six to eight events would b« required be- 

fore identification of a new class of events is made by our 

adaptive identification procedure.  It should be pointed out, 

however, that simulations of evasion scenarios could be pre- 

pared to establish cluster patterns for the discriminants 

used.  In such cases, only one 'event,' or at most a few such 

'events,' would be required for the cluster pattern to be 

established. 

One serious problem which exists in addressing the event 

identification problem is related to the uniqueness of any 

identification which is made. The question may be posed as 

to whether unknown explosion environments exist which yield 

completely different discriminant patterns from those asso- 

ciated with known explosion environments. Experience gain- 

ed by comparing eastern Kazakh events to Nevada Test Site 
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events points to the existance of such unknown environments. 

It may further be asked;  How many such environments, yield- 

ing distinguishable discriminant patterns, exist? At this 

time, there is no way of knowing.  Thus, until we reach the 

state where discriminant patterns can be accurately predicted 

and simulated on a theoretical basis from known geological 

and geophysical parameters, it appears that an adaptive dis- 

crimination capability will be needed for event identifica- 

tion.  Even if such discriminant patterns are unknown, the 

adaptive discrimination capability developed here will in- 

crease significantly an adversary's risk in testing more than 

four events from a new site.  The use of the adaptive discrim- 

ination capability, therefore, is a necessary adjunct to an 

on-line discrimination capability. 

A summary of criteria for explosion identification is 

given in Figure II-4. 

D.   EVENT IDENTIFICATION STRATEGY 

The first step in the identification process is to 

'train' on known earthquake data from a specified geographical 

area with the intent being to define cluster models which 

characterize the earthquakes.  That is, all of the known 

earthquakes are placed in an initial training set.  For this 

training set, medians and standard deviations for each dis- 

criminant are obtained, as is outlined in Figure 1-1.  Next, 

our adaptive Anomalous Event Detector (AED) searches for sets 

of events which have similar discriminant patterns, but which 

are outliers of the training set.  If at least four events 
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FIGURE II-4 

CRITERIA FOR EXPLOSION IDENTIFICATION 

NO PRIOR KNOWLEDGE REQUIRED OF EXPLOSION 

DISCRIMINANT PATTERNS 

NO PRIOR KNOWLEDGE REQUIRED OF THE NUMBER OF 

PATTERNS REQUIRED TO IDENTIFY UNIQUELY ALL 

EXPLOSION TYPES 

ALMOST ALL EARTHQUAKE DISCRIMINATION PATTERNS 

ARE ASCERTAINABLE BY INTENSIVE TRAINING ON 

EARTHQUAKES 

•NEW TYPE' EVENTS ARE ASSOCIATED WITH ONE 

ANOTHER BY ADAPTIVELY DETECTING UNKNOWN, BUT 

SIMILAR, DISCRIMINANT PATTERNS 

'NEW TYPE' EVENT CLUSTERS ARE OPERATIONALLY 

TREATED AS 'POSSIBLE EXPLOSIONS' UNTIL 

PROVEN OTHERWISE 

CLUSTERED EVENT TYPES MUST BE DESCRIBED AND 

INTERPRETED PHYSICALLY (i.e., THEY MUST HAVE 

RATIONAL, PHYSICAL BASES FOR CLUSTERING). 
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are detected in one of the outlier sets, these events are 

grouped as a cluster; three or less outlier events will re- 

main in a buffer as 'unidentified events.'  This procedure 

is continued until the initial training set of earthquakes is 

clustered (unclustered outliers are retained as 'unidentified 

events').  As a result of the process, each cluster of earth- 

quakes now constitutes a new training set of events from which 

medians and standard deviations of each cluster can be deter- 

mined.  Thus, after initializing the clusters required to de- 

fine earthquakes, an entire data base can be processed with 

the intent being to identify as many events as possible as 

either earthquakes or explosions. 

To separate explosions from earthquakes, a two-step 

process is used.  Correlation thresholds are set on each 

earthquake cluster based on stability criteria.  Acceptance 

thresholds are set as high as possible to identify unknown 

events, but low enough to keep cross-talk (jumps from one 

cluster to another) at an acceptable level.  The first step 

of the process involves the identification of obvious earth- 

quakes by their association with an established earthquake 

cluster.  These identified earthquakes are then removed from 

the queue of unidentified events.  The second step applies 

an Anomalous Event Detector to search for new clusters. 

Events in these clusters are designated as possible explo- 

sions . 

Cluster analysis sifts and associates event descriptor 

information out of a large data base.  The results depend 

on the search strategy employed.  Decision thresholds asso- 

ciate unknown events with a previously observed discriminant 
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pattern.     This,   obviously,   is   an empirical,  statistical 

learning process   (Figure  II-5).     It  is   important,   therefore, 

to  understand,   either operationally or physically,  why events 

cluster.     If clusters  are  associated with operational prob- 

lems,   then the problem should be  resolved.     Examples of op- 

erational problems   include  clustering of events  having few 

detections;   clustering of events  by magnitude;  etc.     On the 

other hand,   if clusters  are  associated with physical  factors, 

then such  factors  are established as  statistically  signifi- 

cant observations.     Examples  of physical  factors  include 

associations  with event  depth;  high-frequency P-wave peaks 

(indicating overshoot);   anomalously high P-wave  amplitudes; 

etc.     Only clusters based on physical  characterizations   can 

be  expected to provide meaningful  identification results. 

In the  course of the Event   Identification Experiment,    a 

threshold strategy was pursued to  reliably associate known 

events with  established event  clusters.     The established 

clusters   consisted of event  groupings which were  obtained by 

training intensively on the  earthquake  discriminant  data. 

Our identification and threshold strategy employing a cluster 

analysis   is  summarized in Figure   II-6. 

Training on earthquakes  produced eight earthquake  clus- 

ters.     The  optimum thresholds   determined  for use  in cluster 

association  are  shown  in Figure   II-7.     Observation errors  of 

cluster association are  reduced to unit normal  Z-statistics 

as   gauged by  the  difference  between observed discriminants 

and median discriminants,  divided by the standard deviation 

(this  procedure was  described earlier in  Figure  1-1).   Errors 

less  than one standard deviation  are weighted zero   (0); 
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FIGURE   II-5 

STATISTICAL LEARNING  PROCESS 

TRAIN  ON  EARTHQUAKES 

ASSOCIATE  UNKNOWN EVENTS  TO ESTABLISHED 

CLUSTERS 

IDENTIFY  REMAINING  UNKNOWN  EVENT  TYPES  BY 

ADAPTIVELY  DETECTING NEW  CLUSTERS 

INTERPRET THE  CLUSTERED EVENT  GROUPS 

- PHYSICAL CHARACTERIZATIONS 

- REGIONAL ASSOCIATION 

- OPERATIONAL PROBLEMS 
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FIGURE II-6 

THRESHOLD STRATEGY FOR RELIABLY ASSOCIATING 
UNKNOWN EVENTS WITH ESTABLISHED CLUSTERS 

•   SET HIGH ACCEPTANCE LEVEL FOR STABLE CLUSTERS 

•   SET LOW ACCEPTANCE LEVEL FOR UNSTABLE CLUSTERS 

•   TEST THE STABILITY OF THRESHOLD CHANGES 

•   CONSTRAIN THRESHOLD SETTING TO ASSURE LOW 

FALSE-ALARM RATE 
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FIGURE II-7 

THRESHOLDS FOR CLUSTERING EVENTS 

Cluster Threshold* 
Predicted 
Percent 
Associated** 

Predicted 
Likelihood 
Ratio*** 

Stage I EQ-1 0.84 60% 1.5 
EQ-2 0.97 67% 2.0 
EQ-3 0.84 60% 1.5 
EQ-4 0.84 60% 1.5 
EQ-5 0.63 47% 0.9 

Stage II EQ-6 0.84 60% 1.5 
EQ-7 0.84 60% 1.5 
EQ-8 0.60 45% 0.8 
EX-1 1.63 87% 6.7 

*ft 

*** 

Deviations   from the  cluster median  in standard devia- 
tions; normalized as  shown  in  Figure  1-1 

Based on unit normal statistics,  positive  and negative 
deviations  less  than the  indicated threshold 

Based on unit normal  statistics,   ratio  of capture 
probability to miss probability  for indicated cluster 
population. 
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larger, one (1).  As previously described, this weighting 

scheme is designed to reduce the accumulation of errors which 

are usually associated with the less effective discriminants. 

Based on unit normal statistics, Figure II-7 shows the per- 

centage of unknown events which can be correctly associated 

with a cluster.  That is, this percentage of events is ex- 

pected to be correctly identified.  The likelihood ratio for 

correct identification is also shown as the ratio of 'captures' 

to misses.  Percentage captures close to 1001, and large like- 

lihood ratios, are indicators of stable cluster identifica- 
tion. 

With respect to event identification, two steps were in- 

volved.  First, identifications as earthquakes were based on 

application of the first twelve discriminants.  Then, the 

full set of eighteen discriminants was applied to analyze 

further earthquake clusters EQ-6 through EQ-8.  The Anomalous 

Event Detector (AED) was applied to the remaining set of un- 

known events, and this resulted in the detection of the ex- 

plosion cluster EX-1.  The remaining, unassociated events 

were assigned 'unidentified' status. 

E.   RESULTS OF CLUSTER ANALYSIS 

Cluster identifications are based on the thresholds 

shown in Figure II-7; these identifications are shown in 

Figure II-8.  The analysis was performed on a data base of 

128 events, 22 of which are believed to be explosions. With 

regard to explosions, only one decision error was made. 

Specifically, one explosion was incorrectly associated with 
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FIGURE  II-8 

PRIORITY   II  NETWORK PERFORMANCE  BASED ON 
CLUSTER IDENTIFICATION 

Event Event Event Event 
Number Decision Number Decision Number Decision Number Decision 

1 XI 39            Q5 79          U 172 U 
3 Q4 41           Q3 80          U 173 Q2 
4 Ql 45           Q5 81         XI 175 Q6 
6 Q7 46            Q2 143         Q5 176 Ql 
7 Q7 47             U 144         Q3 177 U 
8 U 48            Q3 145          Q2 178 Q8 
9 Q3 49            Q6 146         Q5 179 Q6 

10 Q2 50            Q6 147         Q3 180 Ql 
14 XI 53            XI 148         Q3 *182 XI 
16 XI 55            Q2 149         Q6 183 Ql 
17 XI 56            Ql 150          Q2 184 Q3 
18 XI 57           Q5 151         Ql *185 XI 
19 XI 58           Q3 152          Q7 186 U 
20 XI 59           Q7 153         Ql 187 Q2 
21 XI 60            Q2 154         Q3 188 Q2 
22 XI 61            Q2 155          U 189 XI 
23 Q2 62            Ql 156         Ql 190 Ql 24 Q5 *6 3           XI 157         Q5 191 Q2 
25 Q5 64             U 158         Q5 192 Q2 
26 Q2 65             U 159          Q2 19 3 Q5 
27 Q7 66            Q2 160         Q2 194 Q2 
28 Q7 67           Q7 161         Q2 195 Q6 
29 Q2 68           Q5 162         Q8 264 Q3 
30 U *69            XI 16 7.         Q6 265 XI 
31 Q6 70           Q7 164         Q6 266 XI 
32 Q6 72            Q7 165         Q7 267 XI 

*33 Q5 73            Q8 166          U 268 XI 
34 Q2 74            Q7 16 7         Q2 269 XI 
35 Q7 75             U 168         Q2 270 XI 
36 Q7 76            Q7 169         Q4 271 XI 
37 Q4 77            Ql 170          U 272 U 
38 Q3 78             U 171         Q4 273 XI 

LEGEND: *     Decis ion Error 
U    Unidentified Earthquake 
Qj  jth Earthquake  Cluster 
Xj  jtF Explos ion  Cluster 
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earthquake  cluster EQ-5,  which  is  associated with  a group 

including deep events  and which had few,   if any,   detected 

signals.     Figure   II-9  summarizes  the network performance  for 

the Priority   IT  data set.     The  observed identification of 

911  of the explosions   corresponds  closely to the   87%  identi- 

fication level predicted from normal statistics   (Figure  II-7). 

Of the explosions  not   identified as  explosions,   one was  clas- 

sed as   'unidentified'   and one was missed  (i.e.,   false  iden- 
tified as   an earthquake). 

An  alternative performance evaluation  can be  given which 

omits  events   #33 and  #79.     The  data for both of these events 

probably contain editing errors.     Event   #33 was  apparently 

detected at three  stations with travel-time  residuals between 

20  and  30  seconds.     At NORSAR,   it was  detected with  a P-wave 

magnitude  deviation of +1.0.     Event   #79 had an  apparent short- 

period signal detected at  ILPA.     Using this  signal,  however, 

the  event  is  computed to  occur  37 seconds  late with  a P-wave 

magnitude error of +1.7 magnitude units.     Neglecting these 

two events,  the network performance was  as   follows: 

• Explosions   correctly identified 1001 

• Earthquakes   correctly identified 821. 

Of the 181   of the earthquakes not  correctly  identified,   141 

were  unidentified and 4% were  false  alarm explosions. 

The results above are considered a baseline from which 

improved discrimination procedures can be gauged. Further, 

implementation of the following procedures should procude a 

significant  improvement   in event  discrimination performance: 
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FIGURE II-9 

SUMMARY OF NETWORK PERFORMANCE FOR 
THE PRIORITY II NETWORK 

IDENTIFIED EXPLOSIONS 

UNIDENTIFIED EXPLOSIONS 

MISSED EXPLOSIONS 

IDENTIFIED EARTHQUAKES 

UNIDENTIFIED EARTHQUAKES 

MISSED EARTHQUAKES (FALSE 
ALARM EXPLOSIONS) 

Number    Percent 

20 91 

1 5 

1 5 

87 82 

15 14 

4 4 

!Total number of earthquakes = 106 
Total number o£ explosions = 22 
Total number of events =   12 8 

. 
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• 

Improve signal  and event measurement techniques. 

Properly scale  the  discriminants   for event magni- 
tude. 

• Train on earthquakes  with properly scaled discrim- 
inants. 

Cluster analysis   represents  a significant step  forward 

in  the  use of multiple  discriminants  for identification pur- 

poses.     In the  case  of this  experiment,  the partitioning of 

earthquakes  into clusters produced the  following results; 

• Events   in  clusters  EQ-1,  EQ-2,  EQ-5,  EQ-6,   and 

EQ-8 are predominantly shallow earthquakes. 

• Events  in clusters  EQ-3 and EQ-7  are  associated 

with deep earthquakes. 

• Events  in  cluster EQ-4  are anomalous,  shallow 

earthquakes which  are  explosion-like  in that  they 

exhibit enhanced,  high-frequency  compressional 
waves. 

• The median magnitude m,   of cluster EQ-5  l.s   4.1; 

of cluster EQ-6,   4.9;   and of cluster EQ-8,   5.3. 

With  respect to  the  last  result  above,   an  operational problem 

is  evidenced by the partitioning by magnitude;   that  is,  the 

discriminants need to be scaled with magnitude  to more  ef- 

fectively  and reliably separate  earthquakes  and explosions. 

To some extent,  the  clustering of events with no  detected 

signals  in cluster EQ-5  indicates  another operational prob- 

lem.     Here,  the  results  suggest  that the procedure  used for 

estimating unbiased magnitudes   is  underestimating the 
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spectral magnitudes  of events with  few detections.     This 

procedure needs  to be  examined closely, and it probably  re- 

quires   improvement.     The  only physical  factor indicated by 

the  result  is  the partitioning of events by  depth.     This  can 

also be  viewed as  an operational  factor in that the  scaling 

of discriminants  by  depth may  improve the performance  of the 
discriminants. 

F.       OPERATIONAL PROBLEMS 

The purpose  in  clustering events  using multiple  discrim- 

inants   is  to  characterize earthquakes  and explosions by their 

'like'   discriminant patterns.     In performing such  analyses, 

several  operational problems were  identified;   these  include: 

• A scaling problem with some of the  discriminants, 

as was  indicated by  the dependence  of clustering 

on event magnitude. 

• A bias problem caused by network averaging,   as 

was   indicated by the  dependence of clustering on 

the number of station  detections   for a given event 

(i.e.,   events with  less  than two network detections 

were  clustered). 

t A station bias  and variance problem which was 

caused by the   leakage  of energy  from outside  of 

the  spectral band of the  filters which were  used 

to measure  the  variable   frequency magnitudes. 

The magnitude  scaling problem flagged by  cluster analysis 

must be  resolved.     Otherwise,   discrimination performance  could 

ENSCO,   INC. 11-24 



be  misleading because  of the  dependence  of the  results  on 

superfluous   factors  such  as  the magnitude of the  earthquake 

and explosion populations.     Using the Priority  II network 

together with some other stations,   the  discriminants were 

scaled by setting each of the  discriminants  equal to  a  func- 

tion of network magnitude,   F(m, ).     In particular,   linear 

scaling was performed, where  FCm,)   =  c m,   +  d.     The param- 

eters   c and d reflect the magnitude  dependence of the  dis- 

criminants.   A robust method developed by  Claerbout   (19 76) 

was  used to  determine  the value  of the parameters   for each 

discriminant.     Only those  discriminants   for which the  vari- 

ance was  significantly  reduced by the  scaling process were 
scaled. 

Figure  II-2 showed the baseline  discriminants which 

evidenced operational problems   (in particular,  magnitude- 

dependent   clustering).     Figure   II-10 shows  the  results  ob- 

tained by  appropriate  scaling of each  discriminant  to  remove 

network magnitude  dependence.     Note that  discriminants   in- 

volving surface wave magnitudes   required non-linear scaling, 

with the break-point  in the  linear trend at mb=4.9.     The 

trend curves   for groups  of larger  and smaller magntiude 

events were obtained by scaling clusters  of large  and small 

groupings  of shallow earthquakes.     In  general,  the non-linear 

scaling of discriminants which  are   associated with  surface 

wave measures  significantly  reduced the  variance  of the  dis- 

criminant  values;  this was  not  the  case  for discriminants 

involving short-period P wave magnitudes.     The  results  shown 

here   for magnitude scaling were  taken  from Sax,   et  al.   (1979). 
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FIGURE  11-10 

SCALED DISCRIMINANTS     D^F^) 
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As  a result  of applying the  scaled discriminants,  the 

eight  clusters  obtained fay training on earthquakes  merged 

into  a single  earthquake  cluster.     This  result  indicates 

that the  clustering of our bafeline  discriminants  appeared 

to  stem from the magnitude  scaling problem.     Further, we 

now know the  importance  of removing operational problems 

before  gauging the effectiveness  of the  discriminants  used. 
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SECTION  III 

EVENT  IDENTIFICATION SYSTEM -  METHOD 

Our method of event  ident'fication involves  six basic 

analysis procedures   (see  Fi^        III-l).     Given the  complicated 

nature  of the  identification problem,   it  is  useful  to  review 

some of our general observations   and concerns  about  the  anal- 

ysis  procedures  used;   these  are  summarized in Table  III-l. 

Detailed,   amplifying material,   is  provided below. 

A.       ACCESS  SIGNAL TIME WINDOWS 

1.       Short-period signals 

Short-period signals   are  accessed at estimated arrival 

times  computed from reported focal parameters.     These param- 

eters  are  origin time,   location,   and depth of the event.     We 

found that  errors  in these parameters  make  it necessary to 

start  the  edit process  by sampling four-minute  records.     An 

automatic detector then compresses  these  larger records  to 

smaller one-minute,  signal-centered edits.     Next,   signal 

measurements   are performed and classified as  signals  or noise 

by  an automatic decision process.     These signal  or noise 

measurements   are  then stored on standard  format  magnetic tape 

records.     The  automatic detector  for accessing short-period 

data  and initializing the measurement  of seismic signals  is 
described in Appendix A. 
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FIGURE   III-l 

EVENT  IDENTIFICATION SYSTEM ANALYSIS  PROCEDURES 

ACCESS  SIGNAL  TIME  WINDOWS 

EXTRACT SIGNAL WAVEFORMS 
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ESTIMATE  SOURCE PARAMETERS 

COMPUTE  DISCRIMINANTS 

CLASSIFY EVENTS  USING  CLUSTER 

ANALYSIS 

EARTHQUAKE  CLUSTERS 
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The  function of the short-period edit  detector is  to 

extract short P-wave signals of several  seconds   duration  from 

a much longer seismic record.     The  edit problem is  complicated 

by non-stationary seismic noise,  system noise,   and interfering 

seismic signals.     The  diversity of seismic signals   (emergent, 

impulsive,   'multipathed',   coda scattered,  etc.)   causes prob- 

lems  in designing an effective  automatic edit  detector which 

operates well  under all  conditions.     Thus,   although the 

short-period automatic edit process  now used performed well, 

it  can be  improved,   and additional  study of such edit proces- 
sors  is  recommended. 

2.       Long-period signals 

Analytical  dispersion  relationships   are  shown on Figure 

III-2.     These  relationships predict   frequency-dependent  ar- 

rival times   of dispersed surface waves.     The  analytical  re- 

lationship  is  used to  automatically set the start  and end 

time  of a signal edit window which  is  to be processed by 

narrowband Gaussian  filters.     Magnitudes  are  computed by 

searching  for the maximum amplitude  in these  frequency- 

dependent time windows.     The edit's   detection status  as  signal 

or noise  is  determined by  a threshold set   12  dB  above the mean 

noise  level.     This  noise  level  is  measured in  a time window 

preceding the signal  edit window.     There was  no need for a 

signal  detector,   as was  the  case  for short-period signal 

editing, because the  signal windows   encountered are  a large 

fraction of the window predicted by the  analytical  dispersion 
relationships. 
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B.       EXTRACT SIGNAL WAVEFORMS 

Extracting the waveform of a strong signal presents no 

problem, but  advanced signal  analysis  techniques   appear nec- 

essary to  effectively extract weak signals which  are obscured 

by  interfering noise.     Presently, we  are  editing signals with- 

out  the benefit  of such  advanced techniques.     Thus,  half of 

our events had only one or no detected signals,   and cluster 

analysis  indicated that problems  existed in  interpreting 
these signals. 

The  following extraction techniques   can be  used to  im- 

prove weak-signal  detection and measurement: 

• Beamforming and adaptive beamforming  (ABF)   of 

short-period and  long-period array data. 

• Polarization  filtering of three-component,  short- 

period records  at regional  distances. 

• Polarization  filtering of three - component,   long- 

period phases. 

• Fixed and adaptive Wiener  filtering of single- 

sensor  and three-component sensor d.ita 

• Complex cepstral  analysis   (to  reduce  interforcncci* 

between  snbient  and coda noise). 

These signal  analysis  techniques  should eventually be  tested, 

calibrated,   and integrated into  the  signal  edit process. 
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C.   MEASURE SIGNALS OR NOISE 

In part, our baseline approach to earthquake and explo- 

sion identification depends on the availability of accurate 

frequency-dependent magnitude measurements of seismic signals. 

In many cases, smaller signals are invisible because of seis- 

mic noise.  This leads to biased sampling of the larger sig- 

nals in order to derive event magnitude measurements.  To 

eliminate this bias, Ringdal (1974, 1975) developed a maximum 

likelihood technique for unbiased estimates of event magnitude, 

This technique modeled the deviations of signal magnitudes as 

normal statistics.  This and other techniques of event param- 

eterization will be considered later.  First, however, we 

describe below the techniques used to obtain high quality 

measurements of the seismic signals which are used as input 

to an event source parameter measurement process. 

1.   Instrument response correction 

Different seismic sensors used in the Priority II net- 

work exhibit significant variations in their frequency 

response to earth motion.  Therefore, instrument response 

corrections are needed to obtain consistent measurements of 

ground motion.  A simple analog approach to making instru- 

ment response corrections is to fit instrument calibration 

data by the ratio of rational polynomials of s, where s = iü). 

In particular, the polynomials represent the system response 

as 

ACs) 
.   (s+a.) zeros 

j   Cs+ak) poles 
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Determination of A(s)   is obtained graphically by  corner fre- 

quency  analysis  of log-log plots  of the  calibrated displace- 

ment  amplitude  versus   frequency.     Corner frequencies  of zeros 

are  indicated by  frequencies  above which the  log-log slope 

increases  by 6  dB/octave;  poles,  by  -6  dB/octave.     This pro- 

cedure   approximates   analog response  curves  to within  an  ac- 

curacy of at  least   10%.     Note, in passing,   that this  model 

approximates  the phase  as well   as  the  amplitude  response of 

the  system.     Filters  to  invert  the system response  are  read- 

ily  implemented by  inverting these  zeros  and poles.     This 

time-domain approach  removes  the  amplitude   and phase  response 

of the  system at  all  frequencies. 

A point  often  overlooked is  that  the  analog system re- 

sponse ACs)   is not equivalent  to  the digital system response 

of uniformly time-sampled data.     Conversion of the  real  roots 

of A(s),   (s+a),   to  real  roots  of a point sampled delay opera- 

tor   (a-bZ    ), where   Z=exp"lw    and T is  time between samples, 

is   accomplished by  invoking a  criteria for impulse  response 

invariance.     That  is,  the sampled delay operator,  transformed 

back  to  the  time  domain,  has  an impulsive  response which  is 

a time-sampled equivalent  of the  continuous   analog impulse 

time   function.     For example,   a  Laplace-transformed pole 

representing an analog exponential  response  is  equivalent  to 

a digitally sampled exponential  response  as   follows: 

expC-at) t>0 s + a 

^j    ->    bn =  expC-anT) (n=0 ,1,. . . ,») 
a-bZ 

where 

b   -  exp(-ar). 
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Thus,  A(s)   is  transformed to  the  equivalent  impulse  invariant 
sampled delay operator  function, 

?  (l-exp(-a.T)Z"1) 
BCZ)  = i 3  . 

l1   (l-exp(-akT)Z  ^ 

The effect of each pole is exactly removed by successively 

applying a difference operator, 

yi = xi ' ^i-l»       where   bk = expC-akT). 

This operation  is  stable, presents no problem with  roundoff 
errors,   and tends  to  reduce the  interference of signals with 
microseismic noise.     Complex poles  are similarly  removed by 
second order difference operators;  these,  too,   are stable. 

Since the zero's  of the system response occur at multi- 
ple  roots  near zero  frequency,   their removal  is   accomplished 
rigorously by numerical  integration, yi=yi.i+xi'     Since the 
root modulus,   |Z| ■ 1,  is  on the unit  circle  in the  Z-plane, 
the  operation is  quasi-stable  leading to errors  at  low  fre- 
quency caused by amplification of seismic noise  and drift 
errors  due to  integration of roundoff errors.     Consequently, 
the  inverse of a low  frequency  zero is performed approximate- 
ly  as 

^i =  ^i-l^i^jm *VWXCV     > 

where the recursively filtered component y. is augmented by 

the weighted output of a bank of narrowband filters, F m 
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Cwhich approximate the system response  at  low  frequencies). 

This  operation is  stable  and accurate between 0.2 Hz  and the 

Nyquist  frequency.     Selection of constants  c,   d.   ,  and nar- 

row bandpass   filters  are designed to  invert  the system re- 

sponse with a maximum error less  than  201,   and to provide  a 

stable  inverse of the system response  zeros. 

2.       Application of bandpass   filters  to measure 

frequency  dependent magnitudes 

One purpose of filtering seismic signals   is  to obtain 

accurate,   frequency-dependent  station magnitude measurements. 

Such measurements   are  our main source of data for character- 

izing seismic source mechanisms. 

Physical validation of any  derived relationship between 

station mangitude measurements   and source mechanism depends 

on properly scaling amplitude measurements with  distance  and 

depth.     It  is  expected that  a number of different  frequency- 

dependent magnitudes must be measured to uniquely describe 

and identify different  rupture mechanisms   (e.g.,  shear,  ten- 

sile,   and compressional  dislocations).     Environmental  factors 

such as  source depth,   regional  crustal  geology,   and tectonics, 

as well  as  such physical  factors  as  stress,   stress  drop,   and 

source  dimension,   are  expected to  influence the  relationship 

between   frequency-dependent  magnitude  and source mechanism. 

A summary  of these  factors  expected to  influence  the physical 

validity of magnitude models   is  given in Figure  III-3. 

The  design of optimized bandpass   filters   for variable 

frequency magnitude measurements   is  described in Appendix B. 
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FIGURE   III-3 

PHYSICAL VALIDITY OF MAGNITUDE MEASUREMENTS 
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This problem is of concern since filter-sideband-leakage 

errors can lead to significant magnitude bias errors and large 

variance of variable frequency magnitude measurements.  These 

errors occur mainly at short periods above the cornel fre- 

quency Khere the roll-off of the source spectrum and of 

absorption combine to cause the filtered signal to peak well 

outside of the filter passband (defined by the 3-dB-down 

points of the filter).  Our experience indicates that the 

constraint of measuring magnitudes only at times when the 

dominant period of the signal is within the filter passband 

«ill only partially correct this problem (this was the tech- 

nique used in the present study).  Additional means are need- 

ed by which to perform band-limited magnitude measurement in 

those cases where the dominant period of the filtered signal 

is not within or is rarely within the prescribed frequency 

band limits. 

3.   A recommended procedure for eliminating spectral 

leakage errors from filtered magnitude measure- 

ments 

The following spectral whitening technique is a candidate 

procedure for reducing spectral leakage in future studies. 

First, remove the ground-displacement system response.  Then, 

if the frequency corresponding to the measured magnitude 

(when the measurement is made at the dominant frequency) is 

below the specified filter passband, modify the ground motion 

measurements by successively applying a first difference 

operator, y.=x.-x. ,, N times until this observed low fre- 
' 'i  i  i-l' 

quency bias is removed.  The amplitude spectrum is thus 

transformed by X stages of this difference operator; that is. 
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the spectrum is  modified by the  factor   | l-expi(-2TTTf )|   , 

where  T is  the time between data samples   and f    is  the 

dominant  frequency  of the measured displacement magnitude. 

Division by this   factor,  corrects  the magnitude measurements 

for the  effect of successive  difference  operators which were 

required to whiten the data in the passband o£ the   filter. 

The  above technique should provide  an efficient means 

by which to obtain high-resolution measurements of ground 

displacement magnitudes.     Further,  these measurements will 

be  optimized for each  filtered band.     As  such,  the  leakage 

problem associated with the  filter bandwidth should be 

eliminated by  application of this  method. 

A physical justification of this  high-resolution tech- 

nique  is  as   follows.     Above  the  corner  frequency of a seismic 

signal,   the  spectrum is  expected to roll-off as  f a   (where  a 

is  equal   to one,   two,   or three).     For a=l,  envelope measure- 

ments  of ground velocity  are measured to  compute magnitudes; 

for a=2,  ground acceleration is  measured;   and for a=3,  the 

first  derivative  of the  ground acceleration is measured.   Thus, 

the high  resolution inverse  operator   |l-Z|     is  specifically 

designed to whiten the spectrum for each  filter band in ac- 

cordance with the  variable  roll-off which characterizes  the 

seismic source  spectra.     The  results  shown in Figure  III-4 

indicate that   absorption alone  does not  appear to  cause  a 

leakage problem up to  2.0 Hz,  but  that   absorption,   combined 

with a spectral  roll-off of f     ,   does   cause  a leakage prob- 

lem.     At higher  frequencies,  however,   the  increased roll-off 

due  to  absorption may  require  the  use  of a higher difference 

operator to whiten the spectra.     These  difference  operations 
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are stable  and should,   in general,   enhance  the signal-to- 

noise  ratio  in the band of the bandpass   filter. 

4.       Time-domain measurements  of complexity 

An instrument  response  correction was   applied to seismic 

waveforms  to  represent,   as  accurately as   is  possible,  the 

ground displacement produced by seismic signals  at each sta- 

tion.     For purpose  of measuring signal  complexity,  accelera- 

tion waveforms were  generated by  differentiating the  dis- 

placement waveforms.     The purpose   in doing this  and in select- 

ing certain time windows was  to  accentuate  scattering effects 

associated with a   (presumed)   complex earthquake source  at  fre- 

quencies   above  the  corner  frequency,   and  also,  to reduce  the 

effect of microseismic noise on the  complexity measurement. 

The  coda complexity was  computed as  the energy ratio of 

the  acceleration waveform envelope integrated from 5 to  10 

seconds  after the signal start time,  to that integrated from 

0 to 5  seconds.     The  first measure  represents  the energy in 

the signal while  the second measure   (from 5  to  10 seconds) 

gauges  the  coda characteristic.     It was  expected that p? ef- 

fects   from explosions would be  contained  in  the  onset window 

(0-5 seconds);  pP effects   from earthquakes,  however, were ex- 

pected to  occur at  times  greater than 5 seconds  after arrival 

onset.     Even  for deeper earthquakes,   it  is  expected that 

heterogeneous  crustal  layers would not  attenuate backscatter- 

ed energy  as  rapidly  as  they would  for shallow explosion 

sources.     Thus,   low values  of this   coda complexity are  con- 

sidered an  indicator of shallow  and less   complex seismic 

sources.     As  a  result,   the  complexity  defined here should 
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gauge well the  complexity characteristics  of explosions  and 

earthquakes.     However,  the use of the  5  and  10 second time 

windows   in  computing complexity are,  to some  extent,  arbitrary. 

Clearly,  the tradeoffs   involved in making these coda complexity 

measurements need further study. 

An even smaller-scale measure  of complexity which was 

also used,   referred to  as   'pulse complexity,1   was   defined by 

Unger  (1978).     Using this  method,  the phase standard deviation 

and average  frequency of the pulse  are  determined for the 

signal  first motion  from a model  of phase  versus  elapsed time 

(measured  from the onset of the signal).     The  derivation of 

these quantities   are  shown in  Figure  III-5. 

Unger observed that  for both earthquakes   and explosions, 

a linear relationship exists between the  dominant  frequency 

of signals  and their phase standard deviation.     This  is  shown 

in Figure   III-6.     The  linear trends  of earthquakes  and explo- 

sions   (at  least  for the events  examined)   appear to be dis- 

placed enough to effectively separate the  two populations. 

On the basis  of the  results  discussed above,   the pulse com- 

plexity discriminant was  defined by Unger as  the difference 

between the phase standard deviation and average pulse  fre- 

quency.     This  discriminant measures  the separation between 

the explosion and earthquake  trend lines,   and is based on the 

assumption that  explosions  are expected to be  smaller and 

less  complex sources  than  are  earthquakes. 
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FIGURE  III-5 

DERIVATION OF PHASE  STANDARD DEVIATION AND 
AVERAGE  FREQUENCY OF SHORT-PERIOD P WAVES 

PULSE  COMPLEXITY MEASUREMENTS 

•      Signal  represented as modulated envelope  and phase 

X(T)   = E(T)   COSKT) 

where  X(T) ■ the presumed signal waveform 
T = elapsed time from the signal onset 

<KT) = instantaneous phase measurement 

ECT) = instantaneous envelope measurement 

T = length of signal time window. 

t  Least squares quadratic phase model; $ fit to measured 
$ as 

$(T) a0 + a^ + a2T . 

Signal parameters 

phase standard deviations 

% =   4 o^DK'O   -   MT)]
2
  dt}^ 

mean  frequency 

? = *r|>i + Ta2]- 

•      Pulse  complexity:    a.   -  7 , 
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D.        SOURCE  PARAMETERS  ESTIMATED FROM SIGNAL MEASUREMENTS 

Source parameters   are  derived from the signal measure- 

ments  described in the preceding section.     One such param- 

eter is  the  coda complexity of the source.     To minimize  the 

effect of multiple signal paths  and later seismic phases, 

coda complexity  is  defined as  the minimum value  of station 

measurements  of coda complexity.     Only  detected signals  are 

used here.     Other time-domain source parameters, which de- 

scribe  the  dominant  frequency and the phase variance  of the 

initial  acceleration of the  source,  are estimated by  arith- 

metic averaging of signal measurements. 

Most of the source parameters  used as   a basis   for dis- 

criminating between earthquakes  and explosions   are  derived 

from the broadband and spectral magnitudes  of propagated seis- 

mic phases.     These source parameters  differentiate source 

types by means  of the spectral   'shape*   of the   (perceived) 

emitted energy and by  relative excitation of the propagated 

phases.     There  is  some  evidence that source magnitudes  are 

biased by averaging only detected signals which exceed the 

noise.     Ringdal   (1975),  however,  developed a method for esti- 

mating unbiased source magnitudes by combining magnitudes of 

detected signals with noise magnitudes,  the  latter taken as 

upper-limit estimates  of the source magnitude  at non-detecting 

stations.     Ringdal's  method is  to estimate  unbiased source 

magnitudes by maximum likelihood fitting of a normal  curve 

to  magnitude  deviations  of signals propagated from the 

source.     This procedure provides  a basis   for estimating 

jointly  1)  the unbiased magnitude of the event,   and 2)   a 

normal model  for variable  absorption and path scattering of 

signals. 
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Strauss   (1978)   tested Ringdal's  method on measurements 

of long-period surface waves   recorded at ALPA.     Significant 

positive bias was  observed at probability of detections  less 

than 0.9.     Ringdal's  method apparently removed this bias 

down to  a station probability of detection of 0.25.     Thus, 

the  threshold for obtaining bias-free measurements  of M   was 
s 

extended to smaller events   (roughly 0.6  to  0.9  units   lower 

in magnitude).     At probability of detections   less  than 0.25, 

Ringdal's  method was  observed to overcorrect  for bias;   this 

suggests  that underestimates  of magnitudes will  result  for 

events  having few detections.     Our observations  suggest that 

this problem is  operationally significant  in that  cluster 

analysis  segregated events with one or no  detections.     In 

order to  examine  Ringdal's  method,   and, possibly,   to under- 

stand the  observed problem of magnitude over-correction, we 

review Ringdal's  method in Figure  III-7.     Here,   too, we  de- 

rive  a modification of Ringdal's method which may more ac- 

curately determine magnitude when only a few detections  are 

possible.     The modification shown in Figure  III-7  takes  into 

account the conditional dependence of detected signals  ex- 

ceeding noise.     The  adequacy of this modification needs  to 
be   tested. 

A simple example can be used to demonstrate  the signifi- 

cance  of equation   (2)   in  Figure  III-7.     Assume  20  observa- 

tions  of noise  and one  observation of signal,   all  character- 

ized by an equivalent magnitude,  m.     The maximum  likelihood 

magnitude  determined using Ringdal's method is,   approximate- 

ly,   (m-1.8a);  using the modified method,  however,  the magni- 

tude  is  given  as   (m-1.4a).     With large standard deviations  of 

the  signal population,   a,   then this  example  illustrates  that 

Ringdal's method yields   a significant  over-correction of the 
magnitude. 

ENSCO,   INC. III-23 



FIGURE III-7 

MAXIMUM LIKELIHOOD ESTIMATION OF 
UNBIASED EVENT MAGNITUDE 

•       Ringdal's method finds  the mean magnitude   y 
deviation a which maximizes  the probability 
served network detection 

and standard 
of the ob- 

PNET s 

m.-y                 a.-y 
n PC-V")  * n P(-L_) 
i              O                 .              O 

all detections all non-detections 

(1) 

where m.     are  observed signal magnitudes 

a.     are observed noise magnitudes 

p      probability density of signals 

P      probability that signal  is  less than noise. 

•      Modification of Ringdal's  method 

PNET " 

b.   y *        m.-y                 a.-y 
n   i-PC-^-)   PC-V-) * n P(-V-) (2) 

where b.     is  the observed noise magnitude 
with  a signal magnitude m.. 

associated 

•      Logical statement  of the modified network probability 
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d is  detected 
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i          -         at 
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It  is  suggested that  Ringdal's  method either be modified 

and tested to handle more effectively the  case of few detec- 

tions  or that thresholds  be  lowered sufficiently  to  insure 

that  at  least  three  stations   detect  an event.     The  latter 

strategy  could be  implemented by progressively  lowering the 

threshold until signals   are  detected at stations where  the 

expected noise magnitude  is  less   than the network-determined 

event magnitude   (i.e.,   at  stations where  the probability of 

detection  is   at  least  501).     This provides  a tradeoff of 

noise  effects   for, perhaps,   larger errors  in the  magnitude 
estimates. 

Network determinations  of short-period P-wave magnitudes 

present  other problems.     Upper-mantle  absorption and crustal 

scattering can affect both signals  and noise in the same way. 

For example,   upper mantle  absorption  can reduce   the magnitude 

of trapped mantle modes  made up  of noise,   as well  as  it  can 

attenuate   a P-wave signal.     Observational evidence  for this 

was   cited by Dietz  and Sax  (1978), who used seismic station 

magnitude-bias  observations prepared by North   (1977)   and by 

Evernden  and Köhler  (1976).     Then,   too,  seismic noise obser- 

vations  of Fix,  et  al.   (1973),  Evernden and Köhler  (1976), 

Hair,   et al.   (1964),   and others, were  also  analyzed  for this 

effect.     These  results have  implications  relative to the 

validity of Ringdal's  method  for computing unbiased P-wave 

magnitudes   as   follows. 

Ringdal's method assumes a model in which noise levels 

and magnitude deviations are statistically independent. On 

the other hand, Dietz and Sax observed several noise groups 

for which  a strong linear relationship existed between noise 
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levels and magnitude deviations.  These apparent noise groups 

were considered to be significant because they had noise mag- 

nitude standard deviations of less than 0.1 units.  Four such 

groups were observed with mean zero-to-peak noise levels of 

1.6, 3.8, 9.1, and 15.8 my which extended geographically over 

large regions.  These are interpreted by us as being primarily 

composed of mantle noise modes at the quietest site«, of trap- 

ped crustal and sedimentary structure-related Rayleigh wave 

modes at still noisier sties, and of propagating ocean- 

generated noise at the noisiest stations (these were situated 

near coastlines).  Stations within each group exhibited a 

large correlation of seismic noise with magnitude bias (e.g., 

higher noise levels appear to be associated with positive 

magnitude deviations).  Thus, there is some observational 

evidence that station magnitude bias should be carefully 

taken into account, together with the station noise, when ap- 

plying the maximum likelihood technique to determine unbiased 

P-wave event magnitudes. 

Some problems were also encountered in combining magni- 

tude measurements at various stations to determine the event 

magnitude.  Some stations are observed to be "nore effective 

in discriminating event types.  This suggests the possibility 

of degrading seriously the event discrimination capability of 

a network by averaging data for stations having good discrim- 

ination capabilities with those which have poor capabilities. 

As discussed in subsection C above, this problem may stem, to 

some extent, from recognized problems associated with signal 

measurement techniques.  Also, the maximum likelihood or 

other signal averaging techniques employed need to be care- 

fully reexamined.  Finally, path absorption and scattering 
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effects should possibly be more adequately accounted for in 

determining accurate event magnitudes. These areas of con- 

cern  are  left  as  subjects   for  future study. 

To optimize the estimation of unbiased P-wave magntiudes, 

it  is  desirable to  include station  corrections  in order to 

remove  signal  magnitude measurement bias.     These  corrections 

should also be  applied to  the noise magnitude measurements  in 

order to remove  any station selection bias.     Our experience 

with  cluster analysis   indicates   that  spectral magnitude mea- 

surements  of events with  few  detections presents  a serious 
operational problem. 

In sum,   the present technique  of estimating unbiased 

magnitudes needs  to be  carefully  reexamined and modified. 

E.        COMPUTATION OF DISCRIMINANTS 

Our baseline approach is  to select plausible  discrimi- 

nants which  reflect the physical  differences between earth- 

quakes   and explosions.     These selected discriminants   are  ap- 

plied empirically to separate  explosion and earthquake popu- 

lations.     Our  approach is  evolutionary in  that  ineffective 

discriminants will be  dropped,   and effective discriminants 

will be modified to optimize performance.     In this work,   all 

candidate  discriminants were  used. 
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1.       Empirical basis  o£ our methodology 

Our strategy  is  to  select what we believe  to be  a com- 

plete set  of discriminants  and to   infer seismic source  types 

by  clustering;   in performing this  analysis we  do not require 

that  characteristics of the  various  source  types  be specified 

in  advance.     Instead,   intensive  training is  to be performed 

on  earthquake  data.     If available,   this  training  could also 

be performed on synthetic data.     The purpose  of such training 

is  to  obtain tightly clustered distributions  of the  discrimi- 

nants,   and to  relate observed discriminant patterns  to known 

event  types.     Such training with earthquakes  is   considered 

essential before  any attempt  is  made  to  identify  explosions. 

Initially,  a set of discriminants was  selected in order 

to   categorize  events by observable  differences of spectral 

shape,   and by time-domain measurements  of pulse  and coda 

complexity.     To be  acceptable,   these  discriminants  are ex- 

pected to provide  a rational basis   for separating explosions 

from earthquakes.     Some  discriminants   are expected to be more 

effective   in  identifying earthquakes;   others,  more effective 

in   identifying explosions.     Regardless,   the use  of a large, 

diverse set  of discriminants   is  expected to  result  in stable 

identification of seismic sources  by providing sufficient  in- 

formation  and sufficient  redundancy of information to separate 

different  source  types by consistently observed discriminant 

patterns.     Figure   III-8  illustrates  the physical basis  and 

redundancy of the  initially selected set of baseline  discrim- 

inants.     Subsection  II-B  gave  a more  detailed discussion of 
these  baseline  discriminants. 
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FIGURE II I-8 

PHYSICAL BASIS FOR DISCRIMINANTS 

SHORTER PERIOD SURFACE WAVES AND RISE IN LOW 
FREQUENCY P-WAVE SPECTRUM DUE TO SHALLOW DEPTH 

D3 = mb(0.5) - mb(0.3) 

D4 = mb(0.8) - mbC0.5) 
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D1 = Ms  Ms(50) 
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D5 = Ms(14) - Ms(17) D10= T 
* 

MORE EFFICIENT PRODUCTION OF P-WAVES AND LESS 
EFFICIENT PRODUCTION OF SHEAR WAVES 

D6 = mb M. D8 = mb mb(0.3) 

D7 = n^ - Ms(50) 

SMALL, HIGH-STRESS AND FULL STRESS-DROP SOURCES 

DJ2- mb(2.0) - mb(0.5) 

D9 = inb(3.0) - inb(0.3) 

D1D= T " > 

ELASTIC REBOUND OF SOURCE LEADING TO OVERSHOOT 
OF THE DISPLACEMENT PULSE AND TO ROLL-UP OF THE 
HIGH FREQUENCY SPECTRUM 

D4 = mb(0.8) - inb(0.5)  D^ = mb(2.0) - mb(0.5) 

Du= inb(1.3) - mb(0.8)  Dg = mb(3.0) - 1^(0.3) 

LESS BACKSGATTER FROM SMALLER, SHALLOW SOURCE 
OR LESS COMPLEX SOURCE 

^13" (-0(^a Complexity 
D^Q = Pulse Complexity I 

> 

COMBINED EFFECTS 

D14=  D12     + D6 D17 = 3D10   + 

D]5=   3D1D   + Dll D18 = 3D]D   + 

D16 =   3D]D   +  D6 

D 12 
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Sometimes,   discriminant  clusters will exhibit  operation- 

al problems.     Events,  for example,   separate because of their 

limited range  in magnitude,   epicentral  distance,   focal  depth, 

source/station tectonic classification,  number of detected 

signals,  etc.     It  should be possible  to  correct such opera- 

tional problems  by proper magnitude scaling of the  discrimi- 

nants,   and by  inclusion of adequate spectral  corrections  and 

of corrections   for distance. 

Magnitude scaling problems  and other scaling dependen- 

cies  are expected  for a fixed set of spectral  discriminants. 

For example,   larger events  are  expected to have  lower corner 

frequencies  than those  observed  for smaller events.     Consider 

two  approaches  to handle  this  particular scaling problem. 

One  approach is  to  abandon  fixed filters   and to scale  the 

center  frequency of the bandpass   filters  to  a fixed ratio of 

the  corner frequency.     However,   since these  corner frequencies 

are not  easily measured, we  took  another approach.     Specifical- 

ly,  we  computed magnitudes  using  fixed spectral bands.     On 

that basis,   discriminants based on spectral shape eventually 

had to be subjected to m,   scaling  (as  is  outlined in  Figure 

III-9).     Other signal  or event  measurement scaling problems 

involving source-to-receiver distance,   absorption,   depth, 

etc.,   can be  treated in a similar way.     Cluster analysis  can 

provide  an efficient means  of detecting these  dependencies. 

2.       Physical basis  of discrimination 

To be  reviewed are some  of the expected spectral  and 

time-domain characteristics  of earthquakes  and explosions. 

Specifically  discussed are  differences  in these  characteris- 

tics   for earthquakes   and explosions,   and  in particular,   the 
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FIGURE III-9 

PROCEDURE FOR 8^ SCALING OF DISCRIMINANTS 

• 

DISCRIMINANT SCALING METHODOLOGY 

Small and large normal shallow earthquake discriminant 

models are grouped by cluster analysis. 

• Initial model for i  and j  frequency band 

D^. = mC^) - m(f.) = c = constant. 

• Determine the linear scaling model which minimizes the 

variance 

Dij ' m(£i) ' m(V " a + b mb 

where a and b are scaling constants and m. is the net- 

work magnitude of the event. 

• Possible non-linear scaling is determined by determin- 

ing a and b separately for the large and small earth- 

quakes . 
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rationale  for using spectral shape  and complexity as primary 

criteria  for differentiating event  types. 

a.     Physics  of earthquake  sources 

A basis   for discrimination  is  the  expected spectrum of 

earthquakes   in terms  of a rupture  growth model  described by 

Archambeau  (1979, personal  communication).     To   first order, 

such sources   are  characterized by  a quadrapole  component. 

The  low frequency spectrum scales  as   a source volume propor- 

tional  to  the  final  dimension of the  rupture.     At higher 

frequencies,   a quadrapole  corner frequency  is   inversely pro- 

portional  to  the  compressional  velocity   (according to a two- 

thirds power  law)   and to  rupture velocity   (according to  a 

one-third power law).     For very low rupture  velocities,  the 

corner frequency is   lower,   and the  roll-off of amplitude with 
-1 - 2 frequency varies  as   f *  to  f  J over a considerable  frequency 

range before  rolling off as  f    .     For rupture  rates  approach- 

ing the shear velocity,  the  f      roll-off occurs  abruptly 

above  the quadrapole  corner frequency.     Shock-driven  rupture 

rates which  greatly exceed the shear velocity  are not  expect- 

ed;   if encountered,  however,  they result  in  f      roll-off 

above  the  corner frequency.     The quadrapole  spectrum of shear 

waves  is  similar to  that  for P waves  except  that the  former 

have  a flat  low-frequency component which  is   about  five  times 

that of P waves.     The  corner frequency of shear waves  is  ex- 

pected to be  slightly  lower than that   for P waves   (about  two- 

thirds  that of compressional waves). 

Higher-order multipole  components  emitted from earth- 

quake  sources   are  due  to variations   in  initial stress, 
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material properties,   and rupture  velocity.     These  components 

are  generated on  a time scale  less  than that  associated with 

the quadrapole  corner  frequency.     The  effect,  which is highly 

directional,   tends  to mask the quadrapole  corner frequency. 

It also  distorts  the signal by producing apparently large 

high-frequency peaks  or holes  in the  spectrum due  to  con- 

structive  or destructive  interference  of multiple  arrivals 

from multipole   components.     It  can be  argued hypothetically 

that the  first  arriving time terms  of the signal  are  repre- 

sentative  of homogeneous prestress  conditions which existed 

at the  time  of the  initial  rupture.     These  are  followed by 

higher multipole  components which  are  caused by source  com- 

plexity,   and which propagate  as  multiple pulses having dif- 

ferent  group  arrival  times.     These multiple pulses will have 

time-of-arrival separations which  are  dependent on spatial 

separations  of stress   concentrations,   and on spatial varia- 

tions  of material properties within the  rupture  envelope. 

The  effects produced by these higher multipole  components 

have  a strong azimuthal  dependence,   and exhibit  large varia- 

tions   in  dominant period,  station magnitude,   and frequency 

band magnitude.     Because of contributions   from multiple com- 

ponents ,  observational   corner frequencies  can be  expected to 

shift to higher  frequencies by  as  much  as  an  octave.   Yet,   at 

some  azimuths,   the source may  appear homogeneous by  its  ex- 

hibiting the  expected quadrapole spectrum,  unencumbered by 

source  complexity effects.     These source  factors   are  further 

complicated by path  and receiver absorption,   and by scatter- 

ing effects.     These  effects point  out  the  difficulty of re- 

ducing magnitude measurements  to  event  related parameters. 

If not  taken  into  account by  regionalization models, higher- 

order multipole moments  can cause  severe variance problems 

in  any selected set  of discriminants. 
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b.  Physics of nuclear explosion sources, and a 

comparison o£ earthquake and explosion 

characteristics 

Initially, vaporization produces a cavity of radius R . 

The material beyond R is liquified by a strong shock front 

to  radius R^.  Beyond Rr, the material is subjected to -pore 

collapse and plastic flow to radius R .  Beyond the plastic 

radius, R , macrocracks and partial pore collapse occurs to 

the elastic radius, R .  The detailed behavior of rock mat- '    o 
erial  as  a result of this  sequence  of actions  depends on 

equations  of state  for the material  involved.     Order-of- 

magnitude  variations  in some material parameters,  especially 

those  for near-surface  crustal  rocks,   can result  in signifi- 

cant variations   in the spectrum of compressional waves which 

are produced by the explosion process.     The most  important 

variables  influencing the  character of seismic signals  are 

the  strength  and void porosity of the material.     Despite the 

diversity of signals produced by nuclear explosion sources, 

however,   certain common  features have been observed. 

A common  feature of explosion signals  is  the  enhanced 

emission of compressional waves  in  all  directions   (as  com- 

pared to earthquake signals).     For  an  ideal,  purely  compres- 

sional monopole  component  emitted from the explosion cavity, 

the  displacement  spectrum increases  linearly with  frequency. 

This   contrasts with the   flat,   low-frequency quadrapole term 

which  is  a dominant  component of earthquake signals.     This 

explosion-related effect,  together with  the  destructive  in- 

terference which results   from the  free  surface  reflection, 

should make  it  difficult,   at  long periods   (~20  seconds),  to 
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see waves  emitted directly  from a cavity which  is buried at 

depths  of about  one-half kilometer.     That such waves  are 

clearly visible  for explosions, however,   indicates  that  a 

significant secondary mechanism for generating long-period 

surface wave signals  exists.     Tectonic release  associated 

with  explosions  provides  such  a mechanism. 

Some  recent  results  of Rivers   (1979)   and Hsiao   (1978) 

indicate,   from analysis  of long-period surface waves,  that 

tectonic prestress   is   released at  depths  of several kilo- 

meters below  an explosion  cavity.     This  seems  plausible in 

that higher ridigities  and higher concentrations  of prestress 

may be encountered at deeper depths.     Further,   it was  observed 

that the tectonic release mechanism,   as  observed using long- 

period signals,   is  almost purely deviatoric,   indicating a 

purely shear type source.     These results  suggest  that the 

long-period waves  are   'seeing1   a secondary tectonic release 

mechanism in rigid crustal strata underlying the source,  and 

for the most part,   they are   'not seeing'   the energy emitted 

uniformly at  the cavity boundary. 

The material  above  is   interpreted  as   follows.     At short- 

periods   (-1 second),   one expects  to see  a predominant mono- 

pole  component  of compressional waves which is  uniformly emit- 

ted  from the explosion cavity.     This  component  is   expected to 

be  combined with a smaller quadrapole  component which repre- 

sents  tectonic  release.     At  long-periods   (-20  seconds),  only 

the quadrapole  tectonic release part of the source  is  ap- 

parently seen.     At  long-periods,  too,  the monopole  component 

of cavity emission  is  invisible  as  a result  of the  linear 
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decrease with frequency of the monopole component, and, in 

part, as a result of destructive interference produced by the 

free surface reflection. 

Another significant secondary mechanism can affect the 

spectrum of some explosions.  Shallow-focus explosions have 

been observed to exhibit strong free surface interaction 

which is produced by the large tensile stresses associated 

with wave reflection at the free surface.  This effect may 

be intense enough to split rocks at their bedding planes and 

along pre-existing fractures.  In such cases, the material 

can spall under large, normally oriented tensional tractions, 

and subsequently, will collapse because of gravity.  This 

collapse process would result in a more complex signal at 

later lag times.  In addition, high frequency scattering is 

expected as a result of opening and enlarging tensile frac- 

tures.  This spall effect is expected to attenuate the 

surface-reflected depth phase, and to act as a low pass fil- 

ter on the depth phase.  This effect, then, further complicates 

explosion spectra. 

Many explosions (and some earthquakes) exhibit time do- 

main overshoot.  This effect is characterized by a large- 

displacement spectrum peak just below the corner frequency. 

The physical mechanism responsible for overshoot is not well 

understood, but the effect on explosion signals is observed 

to be very material dependent.  The effect can be interpreted 

as a medium-dependent impedence function applied to energy 

which is incident to the elastic boundary of the explosion. 

As such, the spectral signature called 'overshoot1 may be 

useful to identify explosions by the excitation of high fre- 

quency P-wave magnitudes. 
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Factors  influencing complexity also  reflect  differences 

between earthquake  and explosion sources.     Low stress   drop 

events  are probably  associated with heterogeneously-distributed 

material properties within the rupture  zone.       Such complex 

events  may yield variable time-lagged,  higher-multiple  com- 

ponents with spectral peaks   at  frequencies   above  the quadrapole 

corner  frequency.     This  effect influences  the pulse  complex- 

ity measurement  of ground acceleration seismograms.     Signals 

of low stress  drop events  are  also  expected to  contain high- 

er dominant  frequencies which  are also  observed to be  asso- 

ciated with larger instantaneous   frequency  fluctuations.   This 

observation of both  earthquakes  and explosions  is  the basis 

of our pulse  complexity  discriminant.     The  relationship  for 

earthquakes  and explosions  is   illustrated in Figure  III-6. 

In general,  signals   from explosion sources  of a given m,   tend 

to  contain higher frequency  components because  the source is 

smaller than an equivalent earthquake.     Explosive signals 

also  tend to be  lower in phase standard deviation because 

explosions  are  less   complex sources.     These  relationships 

separate the populations, with the explosion populations  in- 

terpreted as  smaller,  higher stress  drop  events  than earth- 
quakes . 

c.     Justification of the multiple  discriminant 

approach 

Observations of spectral  shape  and complexity  over the 

full  frequency   range of measurements   is  the basis  of our 

discrimination approach.     It   is justified by the many phy- 

sical   factors which  influence seismic waves   from earthquakes 

and explosions.     This   approach should result  in  a more 
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effective separation of the various possible types of earth- 

quakes and explosions. We recognize that some discriminants 

are more powerful than others in separating certain types of 

events. Thus, care must be (and is) taken to avoid influenc- 

ing the identification process adversely by unduly weighting 

weak discriminants. On the other hand, relying on only one 

or two discriminants increases the risk that the discrimina- 

tion process will not separate all of the earthquake and ex- 

plosion types which one is likely to encounter. 

F.   CLASSIFY EVENT TYPES BY CLUSTER ANALYSIS 

The intent of any system used for event identification 

is to classify events as earthquakes or explosions.  To this 

end, cluster analysis enables one to comb files of seismic 

measurements in search of consistent discriminant patterns 

by which to adaptively identify new event types or to asso- 

ciate an observed discriminant pattern with a known event 

population.  In short, cluster analysis uses an efficient 

learning process to systematically classify events as earth- 

quakes or explosions. 

1.   Systems approach to event identification 

A highly automated adaptive system was developed to 

analyze edited signal waveforms, to estimate parameters char- 

acterizing propagated signals, to estimate source pa/aw^ters 

from signal and noise measurements, and to c3assiiy events 

as earthquakes or explosions.  The system m^xinizeä  thö 

amount of time a scientist has for actual dat.'j. interprttatin. 
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It is linearly programmed to provide 'assembly line' process- 

ing.  That is, the output of one processing function is taken 

as input to the next function, until classification of an 

event as an earthquake or an explosion is made.  As shown in 

Figure III-10, each function sequentially generates files re- 

quired by the event identification process.  The functions 

are defined as follows: 

• SEP - Signal Extraction Process inputs event 

locations and raw records of signals, it 

times the signal, measures parameters, and 

forms compressed edits of signal waveforms 

for further study, if needed. 

• QCP -  Quality Control Process provides for visual 

inspection of data. 

• EMP - Event Measurement Process transforms mea- 

surements of signal parameters to measure- 

ments of event parameters; these parameters 

physically characterize the source. 

• EDP - Event Discrimination Process generates a 

scratch file of discriminants to identify 

the event as an earthquake or an explosion. 

• ECP -  Event Classification Process identifies the 

event as an earthquake or an explosion based 

on 'cluster' analysis of the discriminants. 

Permanent files are generated by the SEP to collect sig- 

nal measurements which expand as the network adds more seis- 

mic stations.  Also, this library of event information in- 

creases, as more 'users' are added to the system. 
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2,  Events with unknown discriminant patterns 

The process of classifying events using discriminants 

is adaptive in that no prior knowledge of explosion discrim- 

inant patterns is required.  Instead, after training on 

earthquakes (or even on synthetic data), any consistently 

observed discriminant clustering which cannot be associated 

with previously detected earthquake patterns is assumed to 

represent a new event type (possibly indicative of explo- 

sions).  This adaptive discrimination algorithm is performed 

as follows (see, also. Figure III-11).  Each discriminant 

component of the vectors is presumed to have been normalized 

such that normal earthquakes can be approximated as unit 

normal statistics; this was shown in Figure 1-1. Events which 

exhibit abnormal discriminant patterns are interpreted ini- 

tially as outliers of known normal earthquake populations. 

These events may (or may not) exhibit discriminant patterns 

which correlate better with the discriminant pattern of some 

other type of event.  The problem of establishing such a new 

(anomalous) event type is to find several outliers with near- 

ly identical discriminant patterns.  These events are then 

classified as anomalous events or possible explosions. From 

physical considerations and experience, we expect to see 

several distinct types of earthquakes.  It is therefore nec- 

essary to first train extensively on earthquakes so as to 

establish the patterns needed to identify these obvious earth- 

quake types.  As an initial step, these obvious earthquakes 

are associated with a known earthquake cluster and are re- 

moved from the data base of unknown events.  The adaptive 

cluster analysis procedure is then used to identify the re- 

maining events.  Some of these events will ultimately be 

classified as possible explosions. 
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FIGURE III-11 

INDUCTIAAE PROCEDURE FOR DETECTING ANOMALOUS EVENT 
GROUPS DISPLAYING CONSISTENT BUT UNKNOWN 

DISCRIMINANT CHARACTERISTICS 

ADAPTIVE DISCRIMINATION ALGORITHM 

Select a candidate outlier set i containing discriminant 

patterns D. different from the normal event pattern Dv, 
j. r N 

Search set  i  for a pair of events  D.   ,   and D.   - with 
the  largest  correlation product above  threshold 

[DA,1»DA,2]   ■  max{DmDn}>T2 ^n- 

Initialize  the  average  anomalous  discriminant pattern 
BA.2   "   CDAil  ^A^/2- 

Find other correlated events  in set  i  and update  the 
average  anomalous  discriminant pattern 

DA,il = max{Dm V-1}>T2 

D A,Ä 
_   Ä-1 1 

I "A,£ 
DA,il-l  +  T D

ü   o        C^3). 
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Decisions   for  clustering a group  of events with  a  fixed, 
but  unknovrn,   discriminant pattern  are  controlled by three 
thresholds.     The  first  decision  is   controlled by a threshold 
which  is  used to  extract  from the  data base  those events with 
a significantly  different  discriminant pattern.     If a pair of 
these outlier events  exhibits   a high enough  correlation pro- 
duct,   their discriminants  are   averaged to  initialize  the 
[possibly new)   anomalous event  group.     Other events with  char- 
acteristics  similar to those of this  anomalous pair  are 
sequentially  associated to update  the new  discriminant pat- 
tern by  averaging the  discriminants.     This   association step 
is   controlled by  a second threshold which sets  the  criteria 
fcr  deternining whether the  correlation product is high 
enough  to  indicate  an  acceptable  degree of similarity be- 
tween  discriminant patterns.     Finally,   a third threshold  is 
used to simply count the number of events   in  i cluster in 
order to determine whether to  accept  the  group  as  a new event 
type.     Presently,  this  last  threshold is  set to  a count  of at 
least  four events.     That is,  the minimum number of events   re- 
quired here  to establish the  statistical parameters needed 
to  characterize   a new event  group   (following the procedure 
shown  in  Figure  1-1). 

An essential step of the  adaptive  clustering process   is 
the  calculation of correlation products between vectors which 
describe  the  observed discriminant patterns   (referenced in 
Figure   III-11).     It  is   desirable to use  large sets  of dis- 
criminants  in order to provide  sufficient  information  and 
redundancy to  separate  reliably the  different seismic source 
types.     On the  other hand,   if too many weak discriminants 
are  used,   a noise problem is  created in  the  computation of 
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the correlation products by mixing strong, effective discrim- 

inants with weak, (noisy) ineffective discriminants. We ef- 

fectively resolved this problem by applying a non-linear 

algorithm to compute the correlation products.  Normally a 

correlation product would simply be the dot product of two 

vectors, where each element of the vector is a discriminant 

normalized as is shown in Figure 1-1.  Here, however, each 

elemental product which is summed to obtain the dot product 

of two discriminant patterns is weighted by a zero or a one, 

depending on the following conditions.  The weight is one: 

• If each discriminant of the pair is above a pre- 

scribed threshold (in this study we used one as 

a threshold), and 

• If each discriminant of the pair is of the same 

sign. 

Otherwise, the weight is zero. 

Computation of this threshold-controlled dot product 

effectively eliminates the accumulation of errors caused by 

the use of a large number of weak discriminants.  In fact, if 

two uncorrelated discriminant patterns are modeled by unit 

normal statistics, the expected value of the correlation 

product is less than one (for eighteen discriminants applied 

with a threshold of one).  In effect, this procedure reduces 

the accumulation of errors of eighteen discriminant elements 

to what would be expected from only a few discriminants.  In 

cases where it is desirable to use even much larger discrim- 

inant sets (e.g., sets consisting of forty or fifty discrim- 

inants), this method could effectively control the errors 

accumulated in the clustering process by setting an even 

higher threshold criteria (e.g., a threshold of two). 
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Application of the  above procedure  does not require  any 

a priori knowledge  of the effectiveness  of any particular 

discriminant,   and it significantly  improved the  results we 

obtained with our set of baseline  discriminants. 

3.       Event  association by means  of discriminant patterns 

Events   are  identified as  earthquakes  or explosions by 

iterative  application of adaptive  cluster  analysis.   That  is, 

cluster analysis  is  used to associate events with discrimi- 

nant patterns   (i-e.,   event  types)  previously established by 
cluster analysis. 

The process  is   initialized by training on a large set 

of known earthquakes.     The entire  data base  of earthquakes 

is  set up  as   a normal  reference  group,  and population sta- 

tistics  are  determined.     Cluster analysis  of outliers  is 

iteratively performed until the  earthquake  data base is  de- 

composed into  a number of clustered earthquake  types having 

uniquely similar discriminant  characteristics.     Not  all of 

the  earthquakes will exhibit  a similar enough  discriminant 

pattern to  associate with one of the  clusters.     These  and 

explosion type  events   are expected to be  dissimilar to  the 

previously established earthquake  clusters,   and so,  they 

should be  rejected as  members  of any of the  clusters. 

Initialization  is   followed by  an  association process 

which is   applied to  the entire  data base,   including presumed 

explosions.     The  association procedure  is  shown  in  Figure 

III-12.     This process  extracts  events which  are obviously 

correlated with the  known earthquake population.     These 
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FIGURE 111-12 

PROCEDURE FOR ASSOCIATING NEW OBSERVATIONS 
WITH KNOWN CLUSTERS 

ASSOCIATION OF DISCRIMINANT PAI.ERNS 

•  Establish statistical parameters of known populations 

(M., a., a.; see Figure 1-1) 

D.-M.    .th  ,     .. 
z  _ i  3   i  unknown discriminant pattern 

normalized with jth clustered popu- 
lation statistics 

Find Min {| Zi. | } ; most likely association by- 

searching over j unknown event clusters. 

•  If Min {|Z..|} <T. ; the event discriminant is 
•'     •'   th 

associated with the j  cluster. 

The association is unambiguous if no more than one 

cluster is below threshold T.. 

The association is ambiguous if more than one cluster 

is below T. (cross talk). 
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events  are  detected by the minimum deviation of their dis- 

criminant measures   from established discriminant patterns. 

As  previously described,   a threshold is  used to  control  the 

accumulation of errors   in the parameter used to measure this 

minimum deviation  from established discriminant patterns. 

The  association process   is   followed by a second stage 

of adaptive  cluster analysis.     The purpose here  is  to see  if 

new  clusters   can be  found which  describe  the  remaining un- 
identified events. 

If the discriminants  prove to be effective,   at  least one 

cluster will  contain explosions,   and it will  contain  few,  if 

any,  earthquakes.     Because of statistical  variability,  how- 

ever,  some explosions   are expected to slip below the  associa- 

tion thresholds  to be  classified either as  unidentified 

events  or to be  falsely  associated with an earthquake cluster. 

Our experience indicates   that  the number of missed ex- 

plosions  corresponds   closely to  that expected  from considera- 

tion of normal statistics.     Therefore,   a hypothesis  that  a 

single,   central  Asian explosion population exists   cannot be 
rejected. 
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SECTION  IV 

ABILITY OF  CLUSTER ANALYSIS TO SEPARATE 
EARTHQUAKES AND EXPLOSIONS 

The  results  produced by  applying cluster analysis using 

discriminant patterns were summarized earlier  (Section  II, 

subsection E).     This  section includes  a network summary of 

discrimination performance,  the predicted operating charac- 

teristics  of clustering based on threshold control  assuming 

normal  statistics,   and cluster classification of events   in 

the  data base.     It  is  notable that the predicted operating 

characteristics  of the  clustering technique  are  close  to the 

observed network discrimination performance,   and  as  such, 

there  is no plausible basis   for rejecting the hypothesis  that 
a single explosion cluster exists. 

Cluster analysis  is   an empirical procedure.   The  results 

are  significant only  if they  are physically or operationally 

interpretable.     The interpretation of the eight  earthquake 

clusters   is  shown  in  Figure   IV-1.     The  absence of cluster 

EQ-1 in the  figure  indicates  that events   formally  associated 

with this   cluster were passed into other clusters   as   a result 

of the  iterative  association process.     Physically,   cluster 

analysis  identified and categorized normal,   deep,   and 

'strange'   explosion-like shallow events.     The  latter group 

exhibited strong,   overshoot  and high,  apparent  corner  fre- 

quencies.     High  corner  frequencies  result  from the presence 

of higher multipole moments   in the source. 
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FIGURE IV-1 

PHYSICAL AND OPERATIONAL INTERPRETATION OF THE 
RESULTS OF THE EIGHT EARTHQUAKE CLUSTERS 

INTERPRETATION OF CLUSTERING MODELS 

NORMAL EARTHQUAKES 

EQ-5 

EQ-2 

EQ-6 

EQ-8 

Shal low depth, mb of 4.1, few stations detected 

Intermediate depth, median m, of 4.5, few sta- 
tions detected 

Shallow depth, m, of 4.9, many stations detected 

Shallow depth, mb of 4.9, many stations detected 

EARTHQUAKES ASSOCIATED WITH DEEP EVENTS 

EQ-3   m^ of 4.5, few stations detected 

EQ-7   m^ of 4.5, average number of stations detected 

•   REGIONAL EARTHQUAKE CLUSTER OF 'EXPLOSION LIKE' EARTH- 
QUAKES 

EQ-4   m^ of 4.7, many stations detected. 
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As used here, clustering of earthquakes showed a strong 

correlation with magnitude and with the number of stations 

detecting the events.  This indicates that we had operational 

problems in the following areas: 

• Proper magnitude scaling of the discriminants. 

«   Detecting and measuring weak signals. 

• Proper determination of unbiased network magnitudes. 

These problems were discussed thoroughly under Section III as 

methodology considerations. 

The two aspects of gauging performance ... separation of 

explosions or defining clusters through the use of low- 

variance discriminant values ... are summarized in Figures 

IV-2 and IV-3.  These figures clearly show the benefit of 

using many discriminants; they also display what could be 

considered as weaker discriminants (such as D, , D2, D,, and 

D11, as is seen in Figure IV-2).  However, even some of the 

weaker discriminants, such as D, and D-, seem to be useful 

in defining earthquake clusters with low variance, while 

even D^ helps to reduce the variance of the explosion popu- 

lation (as is seen in Figure IV-3).  The inclusion of these 

weaker discriminants in the clustering process has the ad- 

vantage of reducing the false alarm rate.  Network perfor- 

mance, shown in Figure II-9, confirms that several false 

alarms were encountered in classifying the data as earthquakes 

or explosions.  At this point, then, it is prudent to defer 

merging or eliminating redundant discriminants until the 

operational problems flagged by clustering are eliminated. 

Finally, note that the resolution of operational problems 

might alter the relative effectiveness of the discriminants 

used. 
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FIGURE IV-2 

SEPARATION OF EXPLOSIONS 

Discr. EQ-1 EQ-2 EQ-3 EQ-4 EQ.-5 EQ-6 EQ-7 EQ-8 

Dl 0 0 0 

D2 0 0 0 0 

D3 0 0 0 0 • 

D4 • • • • 0 • 

D5 0 t 0 0 0 

D6 • • f 0 t I 0 • 

D7 0 • 0 0 t 0 0 0 

D8 • • • 0 • 0 • 

D9 0 0 0 0 0 0 

D10 • 0 • • 

Dll 0 

D12 f 0 0 0 0 

D13 • • 

D14 • • 0 

D15 0 

D16 f • 

D17 • 

Die 18 
• 0 

0:  OVER 501 EX's SEPARATED FROM EQ GROUP 

f:  OVER 851 EX's SEPARATED FROM EQ GROUP 
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FIGURE IV-3 

POPULATION PINS 

Discr. EQ-1 EQ-2 EQ-3 EQ-4 EQ-5 EQ-6 EQ-7 EQ-8 ! EX-1 

Di 0 • 

D2 0 0 0 

D3 • • • 

D4 0 • 0 • 

D5 0 0 0 

D6 t • 0 • 0 0 

h 0 • 0 • 0 

D8 • • 0 

D9 0 0 0 0 

D10 0 • 

Dll 0 

*u 0 0 

D13 0 

D14 

D15 • 

D16 

Dl- 0 

D1S 

0 < 25% OF DISCRIMINANT RANGE 

•  <  12.5% OF DISCRIMINANT RANGE 
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SECTION V 

CONCLUSIONS 

Our major contribution  to  the Event   Identification- Ex- 

periment was  the  development  and demonstration of a systematic, 

objective,   and robust procedure   for performing event  identifi- 

cation.     This procedure  allows   us  to rapidly implement,   test, 

and improve effective event  discrimination procedures. 

Specifically,   the procedure used accurately  classifies   events 

as  earthquakes  or as  explosions  by means  of their  'like'   dis- 

criminant patterns.     The  association of various  events with 

one   another  is  based on an empirical  cluster analysis   tech- 

nique.     Using this technique,  we not  only  demonstrated that 

events   can be  accurately classified,  but  also,  that  magnitude 

scaling problems   and other operational problems,  as well,   can 

be  identified with speed and certainty.     Furthermore,  the 

systematic clustering procedure  used allowed us to  correct 

the main operational problem of magnitude scaling,   to process 

the properly scaled discriminants,   and to obtain corrected 

results within  a short period of time   (a matter of a  few days). 

Using discriminants  corrected for magnitude scaling prob- 

lems, we  found that we could identify events  using only  a 

single  earthquake  cluster and a single explosion cluster, 

'.'."ithout  proper magnitude scaling,   on the  other hand,   eight 

earthquake  clusters were  required to produce  this  same  re- 
sult. 
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Another more subtle  aspect  of the  results  obtained was 

that by properly scaling the  discriminants,   their relative 

effectiveness was   dramatically  changed.     The latter result 

demonstrated the  importance of insuring that  all  operation- 

al problems   are  resolved before prejudging the efficacy of 

the  individual  discriminants. 

The Event   Identification  Experiment was  a significant 

learning experience.     In  Figure V-l,  we  list  eleven  factors 

which strongly  influenced our performance.     Considerable 

imoTOVTfisnt  in  ev^nt  identification performance  should be 

obtained by  implementing  automated quality  control  into  the 

editing process   and by  implementing advanced signal  analysis 

procedures   for minimizing the  influence of seismic noise. 

The  use  of cluster analysis  to  identify events by their 

physical source  characteristics  and to  identify operational 

difficulties which prevent  event  classification is   a new ap- 

proach to event  identification by means  of multiple discrim- 

inants.     The technique  is  basically  a statistical   learning 

process which gives  the scientist  a capability to  group  ex- 

plosion events without  requiring any prior knowledge  of ex- 

plosion or earthquake  discriminant patterns.     That  is,   the 

technique  is  based only on observing consistent  repeatable 

discriminant patterns.     Other  analysis  means,  such  as phy- 

sical modeling and extended signal  analysis,   can subsequently 

be  used to  identify  clusters  of anomalous  or unusual  events 

as  probably  explosions.     This  statistical   learning process 
is  summarized in Figure V-2. 
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FIGURE V-l 

FACTORS INFLUENCING PERFORMANCE 

1. QUALTIY CONTROL 

2. SIMPLE STANDARD AUTOMATED PROCEDURES 

3. EARTHQUAKE TRAINING 

4. PHYSICAL VALIDITY OF DISCRIMINANTS 

5. STATISTICAL LEARNING 

6. ADAPTIVE DISCRIMINATION (DETECT NEW CLUSTERS) 

7. DISCRIMINANT PATTERN ASSOCIATION (CLUSTERING) 

8. NOISE MINIMIZATION 

9. SUFFICIENT DATA 

10. REDUNDANCY 

11. STABILITY TESTING 
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FIGURE V-2 

CLASSIFICATION OF EVENTS AS EARTHQUAKES OR EXPLOSIONS 

STATISTICAL LEARNING PROCESS 

TRAIN MULTIPLE DISCRIMINANTS ON EARTHQUAKES 

IF POSSIBLE, ASSOCIATE EVENTS WITH ESTABLISHED 

EARTHQUAKE OR EXPLOSION CLUSTERS 

GROUP OTHER EVENTS BY ADAPTIVE CLUSTERING 

NEW CLUSTERS ARE IDENTIFIED AS EARTHQUAKES OR 

EXPLOSIONS BASED ON: 

- PHYSICAL CHARACTERISTICS 

- ASSOCIATION WITH KNOWN EARTHQUAKES OR 

EXPLOSIONS (BASED ON NON-SEISMIC INFORMA- 

TION). 
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As noted above,  several operational problems were  iden- 

tified as  a result of applying cluster analysis  and of quality 

control  checking of the waveform editing process.     These  op- 

erational problems  are summarized below: 

• Eliminate  large  timing errors,   and,   consequently, 

large magnitude measurement errors. 

t Use   advanced signal   analysis   techniques  to minimize 

the  influence  of seismic noise   (i.e.,  to  improve 

the  signal-to-noise  ratio  of weak signals). 

• Apply a high-resolution  filtering technique  in the 

measurement  of band-limited magnitudes.     To  do 

otherwise produces bias   in estimates of the variable 
frequency magnitudes. 

• Re-examine  and modify the network magnitude  averag- 

ing technique  currently  employed.     Presently,  the 

method used grossly underestimates  the magnitudes 
of events  having few  detections. 

• Apply more effective  discriminants   and eliminate 

those  discriminants which  are  shown  to be  ineffec- 

tive.     However,   this   should only be  done  after 

eliminating obvious  operational problems. 

t Use  synthetics   as   an  alternative  source  of data 
for  cluster  analysis. 

• Consider the  application  of discriminants  on  the 

basis   of seismic  region.     This  obviously  requires 

a much larger data base  in  order to sample all 

seismically  active  regions   as well  as  to sample 

large  aseismic,  plate  regions. 
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In sum, our approach to event identification is to 

assemble a set o£ effective discriminants and to associate 

and identify events by their 'like' discriminant patterns 

(clusters).  The underlying philosophy to this approach is 

summarized in Figure V-3; what we have learned in our first 

attempt to apply cluster analysis is summarized in Figure 

V-4. 
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FIGURE V-3 

OUR PHILOSOPHY OF EVENT IDENTIFICATION 

BOTH EARTHQUAKES AND EXPLOSIONS ARE COMPLEX • 

PHYSICAL PROCESSES REQUIRING THE USE OF 

MULTIPLE DISCRIMINANTS FOR UNIQUE EVENT 

IDENTIFICATION 

SIMILAR SOURCE MECHANISMS SHOULD YIELD SIMILAR 

DISCRIMINANT PATTERNS 

THE DISCRIMINANT SET WILL EVOLVE TO ENCOMPASS 

ALL TYPES OF EARTHQUAKES AND EXPLOSIONS 

STABLE EVENT CLUSTERS DETECTED EMPIRICALLY MUST 

BE PHYSICALLY OR OPERATIONALLY CHARACTERIZED, 

OR THEY MUST BE DISCARDED 

DISCRIMINANTS SHOULD BE GENERALIZED AND IM- 

PROVED UPON BY PHYSICAL SOURCE STUDIES 

PRACTICAL IDENTIFICATION PROCEDURES WHICH ARE 

DEVELOPED SHOULD BE IMPLEMENTABLE ON A REAL- 

TIME SYSTEM 

A SYSTEMS APPROACH WILL BE APPLIED TO IDENTIFI- 
CATION IN ORDER TO SPEED THE LEARNING PROCESS, 
TO PROVIDE FOR FLEXIBLE ANALYSIS, AND TO EASE 
DATABASE MAINTENANCE REQUIREMENTS. 
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FIGURE V-4 

WHAT WE HAVE LEARNED 

A SYSTEM APPROACH TO DISCRIMINATION FACILITATES 

MODIFICATION OF PROCEDURES 

TURNAROUND ON LARGE DATA SETS 

LEARNING 

QUALITY CONTROL 

BY TRAINING ON EARTHQUAKES WITH CLUSTER ANALYSIS, WE 

LEARNED THAT 

MAGNITUDE SCALING IS OUR MOST SERIOUS PROBLEM 

NOISE (i.e., lack of detection) IS ALSO A SERIOUS 
PROBLEM 

BY USING CLUSTER ANALYSIS OF EVENTS OBSERVED AT DIF- 

FERENT STATIONS, WE LEARNED THAT THE 

MAGNITUDE-DISTANCE SCALING USED APPEARS VALID 

CALIBRATION OF ABSOLUTE MAGNITUDES APPEARS VALID 

TREATMENT OF NOISE IN NETWORK AVERAGING IS A 
SERIOUS PROBLEM 

MULTIVARIATE DISCRIMINATION IS NOT FEASIBLE UNTIL 

INDIVIDUAL DISCRIMINANTS ARE PROPERLY SCALED 

AT LEAST ONE STABLE CLUSTER IS OBTAINED FOR 
EARTHQUAKES AND EXPLOSIONS 

DISCRIMINANTS AND CLUSTERS MUST BE PHYSICALLY 
WELL BASED. 
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APPENDIX A 

THE AUTOMATIC EDIT DETECTOR 

The  detector designed by linger  (1978)   operates  on.time 

sequences  of instantaneous   amplitude  and phase measurements. 

The  detection  concept  is based on  a simplified model  o£ a 

random phase,  modulated noise  component which  is  vectorially 

added to a  fixed signal  component  as   follows: 

sCt)   =  SCt)cosC2TTfot + (})s(t)) (T1<t<T2) 

n(t)   = N(t)cos(2TTfot + (l)nCt)), 

where  x,   and T2  define  a time  gate  containing the  signal,   and 

S(t)   and NCt)   are  instantaneous  envelope traces  of the seis- 

mic signal  and noise,   respectively.     The envelope modulation 

components   are  slowly varying compared to  the phase modulated 

component  in the  above waveform representations.     Also,  the 

instantaneous  phase  ♦«(t)   is  presumed to  vary  rapidly,   ran- 

domly,   and uniformly between 0  and 2TT with  respect  to  the 

signal phase  ([)   (t). 

A simplified model  representing interfering signals  and 

noise was  obtained by adding s(t)   and n(t).     Further,  S(t) 

and N(t)   are  approximated by  fixed nominal  values  S  and N in 

the signal window between  T,   and T2;   <1>   (t)   is   arbitrarily 

set  to  zero.     Modulation of the signal   is  modeled by  random 

phase  changes  of the  interfering noise  component A())(t). 
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This   leads  to the  following simplified model  for additive 

signal   and noise: 

Jl(t)   = s(t)+nCt)   =  ECt)cos0(t)   =  Scos(2Trfot) 

+ NcosCZirf t+A<()(t)) , 

where  E(t}   is  the envelope.     Phase modulations, A(J)(t),  of 

noise  are  equally  likely to  occur between  0  and 2IT .     By  geo- 

metrical  considerations,   this procedure provides  an  analytical 

basis   for estimating the probability that  the envelope E(t) 

of interfering signal  and noise  in the  signal  gate  T,   to T^ 

exceeds  noise.     This  concept   for timing signals  by  counting 

excessions  of noise  in  a leading time  gate  is  shown  graphical- 

ly  in Figure A-l.     For implementation purposes,  noise N would 

be  gauged from instantaneous  envelope measurements  of noise 

preceding a moving-gate,  signal  time window. 

The  results   derived in  Figure A-l indicate  the   follow- 

ing: 

• For signals   less than 6  dB  over noise, peaks  of 

P(ECt)>N)   correspond to S/N=max<2.     Therefore,  the 

algorithm is  a maximum likelihood timer of weak 

signals,   and it  is   independent of the  statistical 

distribution of the noise. 

• For signals  6  dB  over noise,  P(ECt) >N) = 1. 0 ,   i.e., 

always  exceeds noise. 

• First  encountered occurrences  of maximum peak above 

a threshold or saturated unity  values  of PCE(t)>N) 

are  taken to  indicate the onset  time  of a signal. 
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Vectors   from origin,  0,   represent possible states  of 
Noise  Preceding Signal Interfering Signal  + Noise 

E>N for hatched states 
e.g.,:    E1(t)<N 

E2(t)>N 

E represents  the envelope  of interfering signal  + Noise; 
N,  noise;   and S,  signal. 

cosA(|)  » 
2N A* =  cos"1 ^ 

Since &$  is equally likely to occur between 0 and n, the 

fraction of interfering signal and noise exceeding noise is 

shown for the model by the hatched line.  The probability 

of E'Ct) exceeding the noise level, N, is given by: 

P(ECt) >N) ■I 
1 " F005"1^  C0<|<2) 

^>2 FT * 
CD 

Even for an infinitesimal signal, E(t) exceeds noise half 

the time.  PCE(t)>N) ranges from 0.5 to 1.0 and is 1.0 for 

N" > 2. 

FIGURE A-l 

PROBABILITY OF MEASURED ENVELOPE EXCEEDING NOISE 
AS A ROBUST DETECTION CONCEPT FOR TIMING WEAK SIGNALS 
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These  results   formed the  concept  of a detector which optimal- 

ly times  the arrival of short-period P waves.     The  detector 

gauges  P(E(t)>N)  by measuring the   fraction of excessions  of 

N by E(t)   in  a leading  four-second time window.     This  is 

potentially a robust  algorithm for detecting signal  onset 

times.     For example,  estimates  of N by  the median of noise 

preceding a signal  are  insensitive  to  large  fluctuations   due 

to non-stationary noise or  signals,   or due to system noise. 

Ramps  characterizing the  onset of emergent signals will not 

greatly  affect  this  estimate of N until  at  least half of the 

noise  gate overlaps  the signal.     Counting the number of 

E(t)>N states   in the signal window  is   also  a robust  calcula- 

tion,   and  is  similarly  insensitive to  spikes,   'glitches', 

and to other sources  of large  amplitude errors. 

Analyst  comparison tests  of the  automatic timing detec- 

tor given by  Unger  (1978)   indicated that nearly half of the 

events  examined were  timed with no  apparent error.     All but 

a few of the  28 events were timed with errors   less  than 0.5 

seconds.     Unger observed that  the  detector had a slight ten- 

dency to pick  arrival times  late by  ignoring small peaks  at 

the beginning of the signal.     This  tendency was   corrected by 

detecting the  first  envelope peak,  measuring the period of 

the peak,   and backing up   three-quarters   of a cycle to  time 

more  accurately the  first motion of the signal. 

Experience  gained  from using Unger's  detector in  the 

Event   Identification Experiment  indicated that  the  detector 

produced a negligible number of false  alarms.     Almost  all 

detected signals were  accurately timed,   including cases with 

barely  visible signals.   A problem was   encountered with missed 
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Signals.     In most  cases  these were  either gradually emer- 
gent signals,  or short,   impulsive signals  of duration much 
less  than the  leading four-second time  gate.     There  are many 
ways  these  deficiencies  can be  corrected;   e.g.,  using  a 
variable-length time gate,   employing median in place  of maxi- 
mum estimates  of noise  in the  time  gate preceding the  signal 
window,   and by parallel  operation of a power detector which 
is  designed to  capture  large emergent signals  of short  dura- 
tion.     In a  few  cases,   large,   easily  detected signals  o±  at 
least   four seconds  duration were missed.     This problem could 
have  also been  avoided by  changing the  algorithm from the 
presently  used maximum noise peaks  to median noise preceding 
the  signal  in order to prevent  short  intervals  of large noise 
or spikes   from inadvertently shutting off the detector. 

Another problem observed in automatically timing signals 
stemmed from  (apparent)  multiple event   arrivals.     The  short- 
period edit process  involves  timing events of approximately 
known origin time,   distance,   and magnitude.     The problem of 
correctly  associating one of several event or phase arrivals 
with a known event  can be  accomplished as   follows: 

• List  all  apparent phase  arrival times  detected on 
the  seismic record. 

• Compute magnitude  and time  residuals  associated 
with each phase  arrival  time. 

• Select the P phase most  likely to be  associated 

with the  event  as  that which minimizes  the  apparent 

travel-time  and magnitude  errors. 

For the  event  identification  data base,   this   association 

process   is   facilitated by  a statistical  summary of magnitude 
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and time  residuals,   along with the  corresponding standard 
deviations   for these parameters. 
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APPENDIX B 

VARIABLE  FREQUENCY MAGNITUDE MEASUREMENT BY A 
FIXED BANK OF SHORT-PERIOD AND 

LONG-PERIOD BANDPASS  FILTERS 

A.       OPTIMUM DESIGN OF BANDPASS  FILTERS 

Gaussian bandpass   filters were optimized to measure 

frequency-dependent magnitudes.     A mathematical  analysis  of 

the   filtering process   is  shown  in  Figure B-l.     The envelope 

of a Gaussian-filtered impulsive signal  is  exp[-Tr(Af)   t  ]. 

For two,  equal-amplitude signals  separated by  a time inter- 

val At,   the envelope  trace l(t)   is   given by: 

lit)   =  exp-TrCAf)2(t-^)2  + exp-TT(Af)2(t+^)2, 

where At is  the separation of envelope peaks  in the time  do- 

main and Af is  the  filter bandwidth.     Consider the envelope 

trace  for the  case where Af'At=l.     Midway between the two 

signals,   at t=0,   4(0) <0.9;   at t=+At/2,  Ä,>1.0.   On this basis 

the peaks  are  distinguishable  if Af*At^l.     If time-domain 

peaks  occur in  a much smaller time  interval  than At=l/Af, 

they are  integrated into a larger single peak which biases 

and increases  the  variance of magnitude measurements.     This 

loxver limit of At   for resolvxng the  two signals  as  envelope 

peaks   is minimized by  the  use of Gaussian  filters. 

The main  design problem in the use  of  filters  is to 

provide  sufficient   frequency resolution  consistent with  an 
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FIGURE B-l 

MATHEMATICAL DERIVATION OF FILTERING PROCESS 

GAUSSIAN FILTERS 

The following are symbol definitions 

frequency-domain 
Seismic Data D(f) 

Gaussian Filter BCf) 

Filtered Data F(f) 

time-domain 
d(f) 

b(f) 
£(f). 

i      The spectrum of the  Gaussian  filter is  given as  follows 

BCf)  - exp - *|^°] (1) 

where    f   = frequency 

f0 = center frequency of filter 
Af=full bandwidth of filter. 

t      The  impulse  response  is obtained by Fourier transforma 
tion 

b(t)   = Af {exp-iTAf2t2}  cosZirf t. (2) 

The spectral and time-domain state of the  filtered data 
is  given by the product of the  spectrum; 

F(f)   =  B(f)D(f) 

f(t)   =-«./+eoF(f)Äi27rftdf; 

or by convolution of the time-domain filter with the 
data 

fCt) «.«/^bCt-t^dt^ 
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adequate  resolution of the  envelope peaks  o£ signals  occur- 

ring in a signal  time window.     In the  Event   Identification 

Experiment,  this  tradeoff was  evaluated empirically using 

variable bandwidth measurements  of the magnitude  of P-wave 

signals. 

Inspection of equation   (2)   in  Figure B-l indicates that 

for a filtered unit-amplitude  impulsive  signal,   the  envelope 

peak  is  equal  to the bandwidth,  Af.     This  indicates  that peak 

envelope measurements  of signals  are  consistently related to 

the magnitude  of a broadband input signal by  dividing these 

measurements  by the   full bandwidth of the   filter,  Af.     How- 

ever,  P-wave  signals  are not  impulses;   they  are,   instead, 

complex waveforms which  include  a random coda component.   The 

validity of normalizing filtered signal magnitudes,   then,  by 

dividing peak  amplitude measurements  by the  filter bandwidth, 

was  tested experimentally.     The results of these  tests  are 

shown schematically in  Figure B-2. 

In all cases  tested,   covering a wide  range  of short- 

period frequencies   from 0.3 to  3.0 Hz,  normalization by the 

filter bandwidth provided accurate  and consistent signal 

magnitudes provided that the Q       (as   defined in  Figure B-2) 

of the  filter is  constrained to  lie between 0.3 and 0.6.     In 

fact,  Q      of 0.45  appeared to be optimum,   and this  value was 

used to  design  all of the short-period filters  used in the 

Event   Identification Experiment. 

The  result of testing long-period magnitude measure- 

ments,  which were  filtered at  frequencies   from 0.02  to  1.0 

Hz,  was  quite  different.     The  long-period data that were 
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Interference of multipath 
and coda noise peaks due 
to lack of time resolution. 

Leakage of spectral noise and 
signal peaks due to lack of 
frequency resolution. 

peak 

Gaussian  Filter:     exp 
I 
I I 

where:       Af -   full bandwidth of filter 
f    -   center frequency of filter 

0.3 0.6 ,-1 

Af 

Seak enveloPe Peak in signal window 

Normalization: A peak w/^ 

FIGURE B-2 

NORMALIZATION OF SHORT-PERIOD FILTERED 
MAGNITUDE MEASUREMENTS 
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tested indicated that  filtered amplitude peaks were  consist- 

ently  less  dependent on Q'     and on  filtered bandwidth.   Thus, 

a quasi-sinusoidal  signal model,  having an effective band- 

width which  is  equal to,   or less  than,  that of the signal, 

appeared to be  the most  appropriate model  for long-period 

magnitude measurements.     For example,   a signal having its 

peak  amplitude  at   25 seconds  period yielded approximately the 

same magnitude   for different   filters with Q      values   ranging 

from 0.3 to  0.6.     This  result was not unexpected  for dis- 

persed sinusoidal signals.     Consequently,  we measured the 

filtered,   long-period magnitudes based on  the  assumption of 

a quasi-sinusoidal  signal  input having bandwidth  less  than 

that of the  filter.     For this  purpose,   a fixed bandwidth of 

0.01 Hz was  used for long-period filter magnitude measure- 

ments.     These data were not normalized by  dividing by Af,   as 

was  the  case   for the short-period filtered magnitude measure- 
ments. 

Figure B-2  schematically  illustrates  the bias  and vari- 

ance of filtered magnitude measurements which  fell  outside 

of the empirically determined,   acceptable  range  of filter 

bandwidth.     If the bandwidth  is  too small,   time peaks   are 

integrated,   and produce  a large positive bias  of the magni- 

tude.     The variance  of the magnitude measurements   is  also  in- 

creased since effects produced by multipath signals  and coda 

vary  from station to  station.     If the bandwidth  is  too  large, 

positive bias  and increased variance of filtered magnitude 

measurements   are produced by  leakage  from spectral peaks 

associated with the noise  or  the signal. 
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This  empirical  approach to  optimizing the  filtered 

magnitude measurements was   considered necessary because of 

the  speculative nature  of any theoretical treatment of the 

problem  (due,   in large part  to  the  complexity  and diversity 

of seismic signals  and noise).     For a more  complete  evalua- 

tion of filters,   additional   data,   covering different source 

and receiver tectonic environments,   and different  source 

mechanisms   (e.g.,   shallow  and deep earthquakes,   and explo- 

sion sources)  need to be examined. 

B.       SAMPLING OF SPECTRAL MAGNITUDES  AND MINIMIZATION OF 

RADIATION PATTERN  EFFECTS 

Our initial,  simplified approach to  the  discrimination 

problem was  to model event-filtered magnitudes  as   a set of 

constants which characterize  the  source  type.     These magni- 

tudes  are  estimated from signal  and noise measurements  through 

application of the maximum likelihood criteria.     In the pre- 

ceding section on  filter optimization, we noted that  empirical- 

ly,   a narrow range  of Q  filters was   found to be  optimum for 

measuring short-period magnitudes.    We  further noted that  these 

optimum filters were  rather broadband,   in nature,  with Qs 

ranging  from 1.7  to  3.4.     Further,   from design optimization 

considerations based on time-frequency sampling analysis, 

short-period magnitudes  are measured at  logarithmically 

spaced center frequencies,   as   is  shown  in  Figure B-3.     For 

filtered,   long-period magnitude measurements,   filters were 

centered uniformly  along the   frequency  axis, with  a bandwidth 
of 0.01 Hz. 
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In using  fixed-magnitude  levels  as basic information 

from which  to  compute event  discriminants,   a source  of errors 

are holes   in the spectrum which occur at stations   lying along 

a node  of the source  radiation pattern,   (holes  are  in the 

spectrum because of source  dynamics).     These  effects   are 

minimized by broadband frequency sampling provided by the 

short-period filters.     In  addition  to  covering spectral holes 

of narrow bandwidth,  there  is  sufficient  time  resolution to 

sample  several  independent  degrees  of freedom in  the  signal 

window by means  of coda backscattering and multipath propa- 

gation of energy  from rays  not  oriented along the node.   Thus, 

use  of low-Q filter?  should tend to smooth complexities  of 

source  geometry,  and should provide better correspondence  to 

a simplified model  of fixed,  spectral-magnitude  levels  char- 

acterizing different types  of sources.     Observations  of 

earthquake source spectra  for several  event-station pairs, 

after correcting for absorption,  correspond closely to simple 

signal models with   (roughly)   flat spectra at  low  frequencies, 

and uniform roll-offs  above the  apparent  corner  frequency. 

C.       ERROR ANALYSIS OF SPECTRAL  LEAKAGE 

A filtered signal  amplitude spectrum is  equal to  the 

product  of the signal   and filter amplitude spectra.     Since 

magnitude measurements   are  derived  from peak-amplitude mea- 

surements,   frequency variability of spectral peaks   is   a 

significant  source  of magnitude measurement error;   this  is 

especially true  for events   for which the signal spectrum 

changes   rapidly with  frequency.     If the peak  frequency of the 

filtered signal  spectrum occurs  outside  an  acceptance band 
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for valid magnitude measurement   (e.g.,  within  a frequency 

interval where  the  filter response  is  less  than  3 dB  down) , 

the magnitude  measurement  is  considered to be  invalid.   Such 

erroneous  magnitude measurements  are  considered to  result 

from spectral   leakage  from signal  or noise  signatures  too 

far  removed  in  frequency to be  representative  of the  desired 

frequency band.     The main effect of spectral  leakage   is  to 

cause   a positive bias  to  filtered magnitude measurements; 

then,   too,   for each source  type,   spectral  leakage   increases 

the  variance   from event-to-event  and  from station-to-station. 

Event-to-event  variations  occur primarily  at high  frequencies, 

and  are  evidenced by variable  corner  frequencies  and variable 

roll-off  characteristics   above   the  corner frequency.     Station- 

to-station variations  occur mainly at high  frequencies,   and 

are probably associated with the  variable  absorption of energy 

along the propagation path. 

The  significance of the  spectral  leakage effect was 

evaluated numerically  for several plausible earth models.   A 

simple model was  used to evaluate  the  significance  of errors 

caused by  spectral  leakage.     Signal parameters  affecting 

spectral  leakage are: 

• Absorption 

• Corner frequency 

• High  frequency spectral   roll-off 

• Filter response  characteristics. 

The  roll-off of a source model's   amplitude with  frequency  is 

expected to be  close  to  zero below the  corner frequency. 

Above  the  corner frequency,   the  roll-off is proportional  to 
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f    , where  the   integer a varies  between one  and three.     Ab- 

sorption of short-period P waves   is   approximated by a  t* 
model  as  exp[-ir(t*£)]. 

The  following example  illustrates  the effect on 

frequency-dependent magnitude   caused by variations  in  t*.   A 

very  low absorption path   (perhaps  too  low)   is  represented by 

t*=0.3;  nominal   absorption,  by t*=0.6;   and high absorption, 

by t*=1.0.     These values are  considered representative  of 

different  absorption paths.     The magnitude  and frequency  de- 

viations  caused by these effects,  therefore,   are  assumed to 

typify  the  variability of magnitude measurements  one would 

observe.     The results of the  frequency-dependent-t* study 

are  shown  in  Figure B-4  for  a  filter centered at  2.0 Hz,   and 

for an  optimum Q"     of 0.45   (see  Figure B-2).     The  results 

indicate that  for a typical earth model,   a leakage problem 

exists when one   attempts tc  < sasure high  frequency magni- 

tudes  above the  corner frequency.     The positive bias  of mag- 

nitude  measurements made at 2 Hz  varies between 0  and 0.6 m, 
b 

units   depending on which earth model  is  assumed for a par- 
ticular event-station path. 

A stability problem also  exists   in measuring the magni- 

tudes  of signals  with peak  frequencies  occurring in the  side- 

band of the  Gaussian  filter.     Because  of multipath  arrivals 

and scattering through a heterogeneous  earth,   instantaneous 

frequency  fluctuations  are normally observed in the  10-second 

singal window.     The  effect of the   filter response of such 

fluctuations  occurring in signals with the  dominant  frequency 

in the  side-band of the  filter is  to  increase  greatly the 

variance  of the magnitude measurements.     For example,   for a 
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signal  spectrum roll-off proportional to  f     ,   an  absorption 

t* of 1.0,   and a frequency uncertainty of ±0.15 Hz,   the mag- 

nitude  uncertainty  is  about  f0.6 m,   units.     On the  other 

hand,   for a  flat signal  spectrum and a t* of 0.3,   the magni- 

tude uncertainty   produced by the  filter sile-band  'amplifica- 

tion*   is  only +0.1 mb units.     Thus,   the nor.inal magnitude 

measurement errors  shown  as   a  function   fravuency error in 

Figure B-4 have   (approximately)   equal,   iarge uncertainty 

limits  produced by normally observed peak-i-oquency  fluctua- 

tions.     A consequence of this  variance  of the magnitude bias 

is  that  there  is  probably no  reliable  means  by which to  cor- 

rect such magnitude  errors  by  sensing the   frequency error 

associated with  the measured magnitude.     For example,   in  Fig- 

ure  B-4,   if the  2  Hz  filter output  is  sensed to be  1.4 Hz,   a 

correction of  -0.6 m,   units  is   indicated.     However,   the un- 

certainty associated with this   correction  i v»d to be 

about  +0.6 m,    units.     Thus,   correcting magnitudes  u- fre- 

quency measurements  is probably not  adequate.     Some other 

action must be  taken to  cope with the positive magnitude bias 

and the  variance problem associated with spectral  leakage. 

D.       PRESENT METHOD OF FILTERED MAGNITUDE MEASUREMENT TO 

MINIMIZE  SPECTRAL LEAKAGE  ERRORS 

For teleseismic events   (A>20o) ,   filtered magnitudes  are 

calculated by using Veith  and Clawson'(1972)  P-factors.     Re- 

gional phase magnitudes  are  calculated from relationships 

given by Evernden   (1967)   for Pn;   Fitch,   et  al.   (19 78)   for Sn; 

and Nuttli   (1973)   for  Lg. 
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After the  data trace  is   filtered,  the  instantaneous  sig- 

nal  envelope  and  frequency  are  generated by  complex signal 

analysis.     A filtered waveform x(t)   is  taken as  the  real part 

of the  signal.     The  imaginary part of the signal, yCt),   is  ob- 

tained by means  of a Hilbert transform,  which shifts  the phase 

of each  spectral   component  of xCt)  by Tr/2.     The  complex signal 

waveform so  constructed is  given by z(t)=x(t)+iy(t).     Instan- 

taneous  measurements  of signal  amplitudes   and frequencies  are 

obtained by the method described in  Figure B-5. 

The  following method is now applied to  avoid large mag- 

nitude  errors  caused by spectral  leakage.     The magnitudes  of 

filtered signals   are  determined  from peak  amplitudes   in  a  10- 

second signal  time window.     Each observed instantaneous   am- 

plitude JlCt)   is   associated with  an instantaneous   frequency 

measurement  f(t).     If  |fCt)-fo|   (where   fo is  the  center  fre- 

quency)   exceeds   a threshold of Sf,  then £(t)   is  considered to 

derive   from leakage,   and so,   Aft)   is weighted zero   (0).     The 

threshold criteria presently used  for this  frequency  test  is 

to reject   filtered signals  of the  dominant  frequency shift  6f 

where  the   filter response  is  more than  6  dB  down.     If the  fre- 

quency  deviation of the  filtered signal  is  equal  to,  or less 

than,   6f,   the envelope measurement  Jl(t)   is   considered valid. 

The maximum value of valid amplitude measurements  in the   10- 

second signal window is  used to  compute  the magnitude of the 

signal.     This  concept of a  frequency acceptance band is   il- 

lustrated in  Figure  B-4;  here,   a  3 dB- down criterion  is   ap- 

plied to  validate  signal  amplitude measurements. 
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FIGURE  B-5 

ENVELOPE  AND PHASE MODULATED SIGNALS 

COMPLEX SIGNAL ANALYSIS 

X(t)   is   defined as the  real measured signal waveform.   The 
spectrum of X(t)   is 

x^   "  .00/
eOX(t)expi27rftdt =  C(f)   +  iS(f). 

The spectrum of the imaginary signal component, constructed 

as iXCf) = -SCf) + iCCf) , is transformed to the time domain 
as y(t) . 

The  complex signal  in rectangular and polar coordinates   is 

z(t)   »  X(t)   +  iy(t)   =  ÄCt) [cos<{)(t)   + isin^(t)]   . (D 

The time-varying envelope  as  the modulus  of z(t)   is 

Ht)  -   |z(t)|   =   (xCt)2  + yit)2)h. (2) 

The time-varying phase  angle of z(t)   is 

<Kt)   =  tan'^yCO/XCt)]. (3) 

The  time-varying dominant  frequency component  is 

f( 

yft1dy(t)   . vfndx(t) 

3 ^ ■*- ■ ^     ^TT— (4) 

»  ■       * 
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