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SUMMARY

We processed a data base of 128 events (Priority Il data
set) to evaluate our baseline approach to the problem of iden-
tifying earthquakes and explosions. As was the case for all
participants of the Event Identification Experiment, these
data constituted a common data base of short-period and long-
period seismic wavcforms. The seismic signals used were re-
corded at fourteen single-sensor stations distributed world-
wide; at three short-period and long-period array stations in
Korea, the United States (Montana), and Norway; at a long-
period array in Iran; and at six single-sensor stations form-
ing a regional Alaskan network. In all, the network consist-
ed of twenty-four seismic stations.

Our procedure for identifying these events was imple-
mented as a system, and our goal was to emulate a practical
working environment. This approach provided fast, efficient,
and flexible procedures by which to identify events as earth-
quakes or explosions through the use of multiple discrimi-
nants. Thete discriminants consisted mainly of short-period
and long-period measures of spectral shape and of time-domain
measurements of the event complexity. Given i:hese observa-
tions, each event was classified as follows: (1) as a member
of one of the eight clusters established by training on earth-
quakes; (2) as a member of one or more other clusters tenta-
tively interpreted as a possible explosion-type source; or (3)
as a singular, unidentified event which simply did not clus-
ter and could not be interpreted. It should be noted that
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the adaptive clustering procedure we derived and implemented
trains on earthquake data, but does not permit training on

known explosion data.

As seen above, the adaptive clustering procedure used is
based on the consistency of observed discriminant data. It
can adaptively group events not previously encountered (e.g.,
events associated with unusual regional or site geological
characteristics, multiple explosions, etc.). Our procedure
requires detecting a pattern of four or more such unusual
events before a new (anomalous) type of event can be estab-
lished. It is conceivable that the discriminant pattern
used for clustering an event type could be determined by
training with synthetic data. In that case, the event type
could be established by the observation of a single event.

With our initial, selected set of discriminants, we ob-
served that eight discriminant clusters were needed to
separate the different types of earthquakes in the data base.
Some of these event clusters were found to have resulted from
operational problems (i.e., problems related to our definition
of discriminants and to our data processing techniques).
Clustering helps to identify operational problems as well as
to identify the physical factors responsible for our capa-
bility to separate explosions from earthquakes. The most
-iﬁportant operational problem observed was that the selected
event discriminants exhibited serious” magnitude scaling ef-
fects. That is, the event discriminants clustered into small,
medium, and large magnitude sub-groupings of a group contain-
ing deep earthquakes or of another group containing exclusive-
ly shallow earthquakes. Then, too, another earthquake
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cluster probably associated with large ground-displacement
overshoots was indicated by substantial high- frequency peaks
in the event spectra. Unless they were clustered and treat-
ed separately, these unusual earthquakes would have been
falsely classified as explosions.

A number of operational problems were identified by the
adaptive clustering procedure and are discussed in detail.
An attempt was made to resolve these problems, and the re-

sults obtained were encouraging.

With respect to the results obtained, one explosion in
the data base was misclassified as an earthquake, and another
was 'unidentified.' Post-analysis quality centrol checking
of the data for these two events indicated that the data were
not properly edited. In particular, large timing errors on
the order of 30 seconds, and correspondingly large errors in
magnitude measurements (one or two orders of magnitude), sug-
gest that the data for these two events be omitted from the
performance evaluation. On this basis, the following detec-
tion performance was achieved:

Explosions misidentified 0%
Explosions unidentified 0%
Earthquakes falsely identified as explosions 4%
Earthquakes which are unidentified ' 145

»

These results indicate that a single explosion cluster ef-
fectively separates the explosions, but that improvement is
needed to identify more effectively the earthquake events.
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We did modify our baseline discriminants by scaling
them to remove their observed dependence on network magni-
tudes. Using the scaled discriminants, we obtained the same
partitioning of earthquakes and explosions previously obtain-
ed, but with the following difference: all of the earthquakes,
which formerly fell into eight clusters, migrated into a sin-
gle earthquake cluster, (the explosions still fell into a
single cluster). This dramatic result indicates that the
clustering previously obtained with our baseline discrimi-
nants appeared to be an artifact of the magnitude scaling

problem.

The modified discriminants, empirically corrected for
their dependence on network magnitude, exhibited significant
differences in their ability to separate explosions from
earthquakes. From this, we learned that it is important to
recognize and remove operational problemé before judging the
efficacy of the individual discriminants. Then, too, by ap-
plying the adaptive clustering technique using the modified
discriminants, it may be possible to improve event identifi-
cation performance, especially by more effectively identify-
ing earthquake events and by reducing false alarm explosion
identifications.

In sum, the results we obtained in the Event Identifica-
tion Experiment demonstrate the power in our clustering ap-
proach to training with earthquakes and to interpreting
residual clusters (which are dissimilar to earthquake clus-
ters) as consisting of possible explosions. Furthermore,
our approach of not presuming any prior knowledge of explo-
sion discriminant characteristics, but, instead, of relying
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on clustering to provide such information, is important in
that there is no 'forcing' of solutions which have limited
applicability. We further learned that the recognition and
solution of operational problems is essential before passing
judgement on the efficacy of the discriminants. Otherwise,
the interpretation of results could be misleading and lack-
ing in generality. Clearly, then, our work indicates that
much remains to be done to improve our data processing tech-
niques before our results can be considered optimum and
generally applicable.

Neither the Advanced Research Projects Agency nor the
Air Force Technical Applications Center will be responsible
for information contained herein which has been supplied by
other organizations or contractors, and this document is
subject to later revision as may be necessary. The views
and conclusions presented are those of the authors and should
not be interpreted as necessarily representing the official
policies, either expressed or implied, of the Advanced Re-
search Projects Agency, the Air Force Technical Applications
Center, or the US Government.
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. SECTION I
EVENT IDENTIFICATION EXPERIMENT

In this study, an experimental Event Identification Sys-
tem (EIS) developed by Sax, et al. (1978) was used to classi-
fy, as an earthquake or an explosion, each of 128 events
drawn from an Area of Interest (AI) data base (the Priority
IT data set). The specific goals of the study were:

) To refine the Event Identification System develop-
ed by Sax, et al. (1978);

° To identify the 128 events as either earthquakes
or explosions;

. ) To evaluate the performance characteristics of the
Event Identification System;

° To recommend procedures for implementing the Event
Identification System in an operational environ-

ment.
A. INTRODUCTION
Much research has been performed over the past two dec-
ades on the problem of seismic source identification. As a
rule, event identification studies have been primarily con-

cerned with the evaluation of one or two discriminants which
were applied to data from events in specific source regions.
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Often, only data from single stations or arrays, rather than
from entire networks, were considered in these evaluations.
Thus, these studies failed to account for variations in dis-
criminant measurements which were introduced by differing
tectonic structures beneath different source regions and dif-
ferent receiver locations. Also not considered were varia-
tions introduced along travel paths between different source-
receiver combinations. As a result, some discriminants which
were initially thought promising (such as complexity) were
found to be significantly less effective when considered in
light of larger data bases which encompassed different source
regions and station locations. In fact, studies have sug-
gested that even Ms-mb, which has historically proven to be

a powerful discriminant, should be used on a regional, rather
than a global, basis (Liebermann and Pomeroy, 1969; Marshall
and Basham, 1972).

Because of the effects of source, path, and receiver
variations on discriminant measurements, no single discrimi-
nant can be expected to classify correctly all events for
which data are recorded by a given network of stations. For
this reason, a multidiscriminant approach is taken in this
study. The utility of this type of approach is demonstrated
by Anglin (1971), who showed that complete separation of a
suite of Eurasian earthquakes and underground explosions
could be obtained using complexity and the third moment of
frequency in a bivariate discrimination scheme. Individually,
neither of these discriminants completely separated the two
populations.
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Multidiscriminant analysis (or multivariate discrimina-
tion analysis) have been studied by Booker and Mitronovas
(1964) and Bell (1978). In both cases, similar techniques
were used to classify, with considerable success, regional
western United States earthquakes and underground explosions
recorded by Long Range Seismic Measurement (LRSM) stations
at a variety of different locations. Several multidiscrimi-
nant cluster analysis procedures which invoive grouping
events by their 'like' discrimination characteristics have
been studied (Bell, 1978). They appeared promising in that
event classifications derived using these procedures were
entirely data motivated, and they did not require prior in-
formation in the form of event training sets.

A multidiscriminant discrimination approach was develop-
ed by Sax (1976). This approach required training on a set
of earthquake and explosion data. Several important lessons
were learned from that 1976 study. Some of these lessons are
described below.

In Sax's 1976 study, spectral magnitude measurements
were used as discriminants. These discriminants were ob-
served to have highly skewed statistical deviations. The
assumption, then, that normal statistics apply leads to sub-
optimal results unless this skewed effect is taken into ac-
count.

A method was developed to transform the skewed discrimi-
nants to Z-statistics since the latter behave approximately
as normal statistics. This is demonstrated in Figure I-1,
wherein the discriminant D1 is normalized by referencing

ENSCGO,; INMCs 1-8
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FIGURE 1
NORMALIZATION OF SKEW/ D D7SCRIMINANTS
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observations to the median of a standard reference earth-

quake population. Skewness is removed by dividing the dif-
ference between the Di and the Mi by the standard deviation
of positive or negative deviations about the population
median (oi). For multidiscriminant analyses, each component
discriminant D. of the discriminant pattern vector D is nor-
malized as shown in Figure I-1. Thus, for normal reference
earthquakes, the normalized discriminant pattern vector ZN
is approximately a multivariate unit normal statistic.
Clustered outliers of ZN can be interpreted as either anom-
alous earthquakes or explosions.

In the 1976 study, Sax trained on eastern Kazakh and
Nevada Test Site (NTS) explosions, and he obtained two nor-
malized explosion discriminant patterns (Zl and Zz) for the
two explosion sets. Two completely different cluster models
were required to identify events in the two populations. Fur-
thermore, the correlation coefficient between these sets,
(§1°§2)/|§1||§2|, was 0.05; this indicated that there was no
significant correlation between the normalized discriminant
patterns of the two populations.

These results indicated that a serious problem conceiv-
ably existed in depending on identification criteria derived
solely by training on known, central Asian explosions. Re-
sults obtained from data for NTS explosions were a case in
point; here, the use of multiple discriminants derived from
Asian data would have been ineffective. In fact, use of dis-
criminants derived from central USSR events would have re-
sulted in misidentification of NTS explosions as earthquakes.
The conclusion is that in all probability, more than one
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cluster model would be required to identify explosions from

the two areas.

Sax, et al. (1978) developed an adaptive discrimination
model as an answer to the issues raised by Sax (1976). The
initial approach in the 1978 study was to assume that a sin-
gle cluster could adequately represent earthquakes, but that
multiple clusters would be needed to represent explosions.
This strategy was successfully demonstrated by Sax, et al.
(1978) using data for 35 central Asian events which were re-
corded at 22 world-wide stations. However, the same concept,
when applied to the data for the 128 events analyzed in this
report, produced unsatisfactory results. It was concluded
that the negative result was due mainly to the diversity of
discriminant patterns exhibited by both earthquakes and ex-
plosions. As a result, it was found necessary to change the
analysis strategy to one of representing both earthquakes
and explosions by means of multiple clusters, and to train
on earthquake characteristics before attempting to separate
explosions from earthquakes. Results shown in this report
demonstrate the viability of this new identification strategy.

B. THE AREA OF INTEREST DATA BASE

The data base used in this event identification study
consists of signals from 128 events drawn from the suite of
'Area of Interest' (AI) events. Event data from a network
of seismic stations (listed in Table I-1) were provided by
the Seismic Data Analysis Center (SDAC). The data supplied
for each event generally consisted of short-period and
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TABLE I-1
STATION LOCATIONS OF PRIORITY II NETWORK

Station Station Latitude Longitude Tectonic
Index Designation [©N) (OE) Class*
1 BFAK 64.77 -146. 89 A
2 UCAK 66.00 = 158k %2 A
3 TNAK 62.91 -156.02 A
4 CNAK 67.45 -144.52 A
5 ATAK 52.88 1768, A7 A
6 NJAK 63.06 -141. 83 A
7 KSRS 37.45 127.92 [
8 NORSAR 60. 84 10. 89 I
9 LASA 46.69 -106.22 I
10 ILPA 35.42 50.69 A
11 HNME 46.16 -6 7699 I
12 RKON 50. 84 -93.67 I
13 ANMO 34.94 -98.46 R
14 ANTO 39.90 32.80 A
15 CHTO 18.79 -98. 81 A
16 CTAO -20.09 146.25 I
17 GUMO 1.3:58 144,87 A
18 KAAO 34.54 69.04 A
19 MAIO 36. 30 59.49 A
20 MAJO 36.54 15821, ° A
21 NWAO =52.08'8 117.24 I
22 SHIO 25.57 91.88 A
23 TATO 24.98 121. 49 A
24 Z0BO -16.27 -68.13 A

A = Active,

ENSG0O, INC.
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long-period channels for each station. Seismic waveform
data were provided only for those events and stations where
an analyst had observed signals.

The origin times and coordinates of the events used in
this study are listed in Table I-2.

In order to eliminate obvious sources of error, plots
of the AT data were visually examined for mixed events and
for evidence of station recording malfunctions (e.g., spikes,
etc.). Data showing either of these problems were eliminated
from consideration because discrimination parameters measured
on these data would, in all probability, not be representa-
tive of the event.

The policy of processing data only for those stations
and events for which there was an analyst-detected signal
adversely affects the computation of unbiased source param-
eters. That is, Ringdal's maximum likelihood technique
(Ringdal, 1974; 1975) was used to calculate these source
parameters. Ideally, to use this technique requires the
availability of either signal measurements or, if nc signal
was detected, of the corresponding noise measurements. Since
noise data are not provided for stations and events for which
there was no analyst-detected signal, it was necessary to gen-
erate a set of short- and long-period noise defaults. These
noise defaults were generated for each station by averaging
noise measurements from data for several events where no sig-
nal was observed. The default values are substituted for
actual noise measurements for those station phases for which
no data were provided (i.e., where no analyst-detected signal
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TABLE I-2

EVENT PARAMETERS
(PAGE 1 OF 4)

Event Date Origin Time| Latitude |Longitude| Tectonic
Number |(Mo/Da/Yr)| (Hr:Min:Sec) (°N) (°E) Class*®
1 07/26/77 17:00:00 69.4 90.4 I
3 11/01/77 03:54:24 $5. 5 130. 8 A
4 11/01/77 1 7¢'56 FB.3 36.7 68.4 A
6 11/04/77 10 361240 23.0 101.6 A
7 11/04/77 23854752 30.7 81.3 A
8 11/05/77 02:09:38 42.9 45.3 A
9 11/05/77 04:06:49 37.0 720 A
10 11/06/77 13:31:41 36.7 71.7 A
14 07/30/77 01:57:00 49.7 7'8. 12 I
16 08/10/77 22p00:01 50.9 111.0 A
17 08/17/77 04:27:00 49. 8 7.5 2 I
18 08/20/77 22:00:01 64.1 99. 8 I
19 09/01/77 03:00:00 78.5% 54.3 I
20 09/05/77 03:03:00 50.1 78.9 I
2N 05/10/77 16:00:00 57.2 106. 8 A
22 09/30/77 07:00:00 48.0 48.0 I
25 11/10/77 04:57:46 37 1 71.8 A
24 11/10/77 09:22:58 33.0 89.0 A
25 11/12/77 05:09:16 38.0 91.0 A
26 11/12/77 12:27:00 %0 71.0 A
7 el 7l £5/97 21:02:48 28.0 90.0 A
28 11/15/77 20:20:49 38.0 74.0 A
29 11/17/77 04:23:54 28.0 90.0 A
30 11/18/77 05:20:10 33.0 89.0 A
31 11/18/77 05233821 33.0 89.0 A
32 11/18/77 11:26:56 28.0 90.0 A
83 10/09/77 11:00:05 78.3 52.8 I
34 11/18/77 15:10:10 28.0 90.0 A
35 11/18/77 17423425 33: 0 89.0 A
36 10/16/77 20:05:3% 48.4- 152.9 A
37 11/18/77 2 LhD5HST 60.1 143.2 A
38 10/16/77 15:02:49 36.9 71.5 A
39 11/18/77 23:12:49 33.0 89.0 A
41 10/13/77 20:38:42 38.1 72. 8 A
45 11/19/77 11:51:09 37.0 71.9 A

*
A = Active, I = Inactive, R = Rift
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TABLE I-2

EVENT PARAMETERS
(PAGE 2 OF 4)

Event Date Origin Time | Latitude Longitude Tectonic
Number |(Mo/Da/Yr)|(Hr:Min:Sec) (°N) (°E) Class*
46 11/20/77 01cdhil:23 30.6 93.3 A
47 10/16/77 21% 0I5 5 49.7 16,6/ 1 A
48 10/19/77 05:02:00 36.3 71.3 A
49 10/19/77 21820:37 49.5 155.4 A
50 10/20/77 08:18:04 56.3 164.1 A
53 10/29/77 03:07:00 49.8 78.0 I
55 10/26/77 05:38:52 49.0 155.8 A
56 10/26/77 07:11:31 46.4 1538 A
5.7 10/26/77 1814531 51.5 153.4 A
58 10/27/77 07:20:29 58 5 160.0 A
59 10/28/77 21¢ 156412 39.8 71.9 A
60 10/29/77 04:14:56 47.0 152,353 A
61 10/29/77 06:26:42 41.0 68ad A
62 10729777 1'0% 818 499 47.3 153.1 A
63 10/30/77 21:38:16 44,8 145.0 A
64 10/31/77 09:40:04 55.8 162.7 A
65 11/20/77 11:01:22 56.8 © 108.5 A
66 11/20/77 18:55:28 39.9 73.9 A
67 11/20/77 2057224 38.0 142 A
68 11/20/77 2854035 33 d 88.1 A
69 11/21/77 19:43:36 36.4 71.1 A
70 11/22/77 00:07:49 37.0 71.0 A
12 11/22/77 06:56:13 36.2 70.8 A
73 11/22/77 11:33:45 43.0 89.0 A
74 11/22/77 19:16:12 40.0 75.0 A
7.3 11/23/77 10528807 34.0 83.0 A
76 11/26/77 15:44:41 37.0 71.0 A
1d 11/26/77 22:46:46 37.0 115.0 A
78 11/27/77 02:09:07 28.0 90.0 A
79 11/27/77 03:57:00 50.0 79.0 I
80 11/28/77 09:02:26 43.2 47.6 A
81 11/30/77 04:06:59 49.9 78.8 I
143 12/02/77 12457410 52.9 159.7 A
144 12/02/77 16:15:34 46.1 144.9 A
145 12/03/77 17:06:21 41.9 131.1 A

®
A = Active, I = Inactive, R Rift
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TABLE I-2
EVENT PARAMETERS

(PAGE 3 OF 4)

Event Date Origin Time | Latitude | Longitude| Tectonic
Number [(Mo/Da/Yr)|(Hr:Min:Sec) (°N) (°E) Class*
146 12/04/77 04:03:47 562 163.1 A
147 12/04/77 11:39:02 48,2 146.5 A
148 12/05/77 235387852 55 3 162.0 A
149 12/06/77 1055253 41.4 69.7 A
150 12/07/77 02:03:37 41.0 72.0 A
151 12/07/77 16:19:33 35.6 94.5 A
152 12/08/77 02:02:54 52.9 89.7 A
153 12/08/77 06:45:20 41.0 72.0 A
154 12/08/77 15: 5904 50.4 149.8 A
1.55 12/08/77 R3T37 222 36.2 7.0%. 5 A
156 12/09/77 04:23:36 54.4 160.6 A
157 12/10/77 21:58:51 51.3 156.5 A
158 12/12/77 11:06:42 51.4 157:6 A
159 12/13/77 06:58:59 35.4 88.4 A
160 L2/ 2.8/ 11:34:20 42.3 1815, 2 I
161 12/18/77 05:15:45 36.4 70.9 A
162 12/15/77 15:07:51 43.2 45.1 A
163 12/15/77 15923830 43.6 45.3 A
164 12/16/77 07811741 43.2 146, 7 A
165 12/16/77 09:08:59 51.6 159.4 A
166 12/16/77 10:15:27 Bdrm S 97.5 A
167 12/16/77 1 7455 k,14 36.8 59.7 A
168 12/16/77 3 el 43.0 47.0 A
169 12/18/77 06:57:33 5542 160.5 A
170 12/18/77 1614 7A7 39.8 77.3 A
171 12/18/77 19:09:21 51.1 157.8 A
172 12/18/77 20:43:05 39.7 77.6 A
173 12/19/77 18k 12525 3957 Y A
175 12/20/77 07827 538 39.7 69.3 A
176 12/20/77 20:52:10 S5i5. & 158.2 A
177 12/21/77 08:30:46 41.9 47.9 A
178 12/21/77 16:39:33 529 159. 8 A
179 12/21/77 205175138 36.1 68.6 A
180 12/ 22T 7. 20:40:05 52.8 159.5 A
182 12 {22/ 71 14:05:45 52.9 159.9 A

*
A = Active, I = Inactive, R Rift
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TABLE I-2

EVENT PARAMETERS
(PAGE 4 OF 4)

Event Date Origin Time | Latitude |Longitude| Tectonic
Number [(Mo/Da/Yr){(Hr:Min:Sec) (°N) (°E) Class*
183 L2/22/7% 19:34:05 53.1 163. 4 A
184 12/23/77 07:31:44 44,8 3208 A
185 12/28/77 09:09:54 39.5 77.4 A
186 12/24/77 035827%52 5192 156.9 A
187 12/25/77 08:33:37 50.0 91.0 A
188 12/25/77 17:818:42 40.9 69.7 A
189 12/26/77 04:02:57 49.8 78.1 I
190 12/26/77 053 15 x21 39.9 71.9 A
191 12/26/77 23:04:34 83w 1 80.8 A
192 12/27/77 07:10:11 28.0 90.0 A
193 12/27; 77 12:31:00 54.7 161.5 A
194 12/28/77 15:10: 46 56.0 162.0 A
195 12/31/77 03:24:38 39.1 91.1 A
264 03/20/76 04:03:45 50.0 77.0 I
265 03/29/77 03:57:00 50.0 78.0 I
266 03/19/78 03:47:00 50.0 78.0 I
267 06/11/78 02:57:00 50.0 79.0 I
268 07/28/78 02:47:00 50.0 78.0 I
269 08/09/78 18:00:00 64.0 125.0 I
270 08/24/78 18:00:00 66.0 112.0 I
271 08/29/78 02:37:00 50.0 78.0 I
272 09/05/78 00:22:00 43,0 89.0 I
273 09/21/78 15:00:00 66.0 86.0 I

*
A = Active, I = Inactive, R Rift
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was observed). This approach assumes one-hundred percent
operational reliability and seismic noise stationarity at
each station. Because at some stations the noise field
tends to be unstable, the unbiased magnitude estimates may
not be accurate. However, where the above assumptions are
valid, the estimates should provide reasonable estimates of
unbiased event magnitudes.

C. REPORT ORGANIZATION

The organization of this report is as follows. Section
IT provides an overview and executive summary of our results
of the Event Identification Experiment. Section III provides
a description of the methodology followed in performing event
discrimination, the problems encountered and some recommenda-
tions for dealing with those problems. Section IV provides
a more detailed discussion of the results of cluster analysis
of discriminants. The performance of individual discrimi-
nants is described in detail. Section V briefly describes
conclusions drawn from this study. Section VI is a list of
references. Appendix A provides a detailed description of
an automatic detector used to edit event waveforms. Appendix
B describes the filtering process required to effectively
measure variable frequency magnitudes of seismic signals.
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SECTION II
OVERVIEW OF THE IDENTIFICATION SYSTEM

The following is a general discussion of our work on
event identification. The topics covered include our phi-
losophy (or guiding principles); the physical basis of select-
ing discriminants; criteria for ass>ciating discrimination
measurements with explosions; strategy for performing event
identification; results of the event identification process;
and a brief description of our systems approach to perform-
ing event identification processing.

A. PHILOSOPHY OF EVENT IDENTIFICATION

A set of guiding principles underlies our approach to
event identification. The data upon which identification
decisions are based are patterns, or clusters, of discrimi-
nant measurements. These patterns are designed to cunvey
information about the source which is as independent as is
possible of path and receiver effects. Also minimized are
radiation pattern effects associated with the orientation
of source dislocations. Basic source mechanisms (such as
shear faults, tensile faults, adiabatic phase changes, ex-
plosions, and combinations of the above failure modes) are
expected to result in discriminant patterns which uniquely
characterize a seismic source. Source environmentzl factors
also affect the clustering and variance of observed discrimi-
nants. These factors include shear, tensile, and compressive
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strength of the medium and medium homogeneity; elasticity;
associated structural geology and plate tectonics; and rhe-
ological properties of the inelastic medium. Dynamic source
factors, too, influence the observed discriminant character-
istics. These involve the motion and growth of source dis-
locations; stick-slip, elastic rebound and other mechanisms
which complicate the source time function; and complex spatial
patterns of fracture and dislocation occurring after the
initial failure of the medium.

Given the immense complexity of the event identification
problem, it is unlikely that any single discriminant will suf-
fice to identify and separate effectively all types of earth-
quakes and explosions; it is expected that multiple discrimi-
nants will be needed to do that. The determination of what
discriminants should be used for this purpose, however, is an
evolutionary process, and such a determination is considered
by us to be one of the most important goals of the Event
Identification Experiment. In order to achieve the most ef-
fective monitoring of explosions by seismic means, it is es-
sential to develop a complete set of discriminants to map
uniquely all discriminant patterns into source characteriza-
tions which encompass all types of earthquakes and expldsicns.
In short, all types of earthquakes and explosions should gen-
erate distinguishable discriminant patterns. Conversely, it
should be possible to associate observed discriminant patterns
with models characterizing earthquakes or explosions. Ideally,
the discriminants r-.iired for homomorphic transformations of
discriminants to designated source models will be generalized
and improved by physical source characterization studies. Un-
fortunately, we are not yet to the point where this is
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feasible, and so, we must depend in large part on adaptive,
empirical methuds for characterizing earthquakes and explo-

sions.

In short, our approach to the event identification prob-
lem is to define a set of discriminants which are based on
spectral shape and on time-domain measures of source and
coda complexity; to determine stable discriminant clusters
by training intensively on earthquakes; and, either opera-
tionally or physically, to characterize event groupings de-
termined by cluster analysis or to discard them. Clusters
characterized by operational problems will 'feed back' on
our procedures of measuring signals and defining discrimi-
nants. Through the application of corrective procedures,
event groupings indicative of operational problems will dis-
appear as the problems are identified, corrected, and elimi-
nated. Ultimately, we will isolate groupings of events which
exhibit significant, 'like' physical characteristics.

This approach to discrimination implies a need for flex-
ibility in altering our basis for performing event identifica-
tion. Cluster analysis enables us to sort through large data
bases and, adaptively, to find and estimate models which ac-
curately characterize a subset of events in the data base.

The implication here is that any single event observation

can be rapidly associated with formerly observed clusters of
event discriminants. Importantly, unknown types of events
can be adaptively identified by the clustering of at least
four events (the number of events which, by our definition, is
required to statistically define a new cluster). Note, in
passing, that this adaptive approach makes evasion difficult.
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This is so because cluster analysis automatically trains on
the discriminant pattern emitted by a new source type, and
will isolate those events exhibiting characteristics dif-

ferent from events previously observed.

Another benefit of cluster analysis is that it rapidly
defines operational problems. For example, if events clus-
ter by magnitude, a magnitude scaling problem is indicated.
Should this occur, our linearly programmed system for gen-
erating and maintaining data base file structures, and our
programmable interactive capability, provide for the rapid
scaling of the discriminants. Once done, the data base can
quickly be rerun, and the files can immediately be updated
as a normal operating procedure.

Another example of our system analysis approach relates
to clustering station measurements of source parameters.
Suppose, for example, that discriminant clusters observed at
a station are associated with event distance, or even with
particular source regions. In such cases, the operational
problem is one of correcting magnitudes properly with dis-
tance, or, possibly, one of providing source-region-to-
station corrections for magnitude. Cluster analysis provides
a means of determining rapidly whether such problems exist.
Further, the speed with which such operational problems can
be defined and corrected through the use of a systems ap-
proach is one of the principal lessons to be learned from
the Event Identification Experiment.

A summary of our philosophy of event identification is

shown in Figure II-1.
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. FIGURE I1I-1
OUR PHTLOSOPHY OF EVENT IDENTIFICATION

. SIMILAR SQURCE MECHANISMS SHOULD YIELD SIMILAR
DISCRIMINANT PATTERNS

o THE DISCRIMINANT SET WILL EVOLVE TO ENCOMPASS
ALL TYPES OF EARTHQUAKES AND EXPLOSIONS

o STABLE EVENT CLUSTERS DETECTED EMPIRICALLY
MUST BE PHYSICALLY OR OPERATIONALLY CHARACTER-
IZED, OR THEY MUST BE DISCARDED

. . o DISCRIMINANTS SHOULD BE GENERALIZED AND IM-
PROVED UPON BY PHYSICAL SOURCE STUDIES

° PRACTICAL IDENTIFICATION PROCEDURES WHICH ARE
DEVELOPED SHOULD BE IMPLEMENTABLE ON A REAL-
TIME SYSTEM

. A SYSTEMS APPROACH WILL BE APPLIED TO IDENTI-
FICATION IN ORDER TO SPEED THE LEARNING PROC-
ESS, TO PROVIDE FOR FLEXIBLE ANALYSIS, AND TO
EASE DATA BASE MAINTENANCE REQUIREMENTS.
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Br PHYSICAL BASIS FOR DISCRIMINATION

One of the most difficult decisions to be made in the
course of this experiment was that of selecting a set of
discriminants which would effectively separate explosions
from earthquakes. Two considerations went into the selec-
tion. One consideration was that the discriminant set had
to include as many obvious physical differences between ex-
plosions and earthquakes as was possible. The other con-
sideration was to recognize that discriminant measurements
are subject to large random variations, due, simply, to the
complexity of the earth. Note that some redundancy in the
discriminants selected is considered necessary to cover ef-
fectively all of the physical bases for separating explosions
from earthquakes.

Given the considerations above, eighteen discriminants
were initially selected for use in iche exﬁeriment. An ob-
vious issue to be raised with this approach, however, is that
of avoiding the accumulation of large errors which are asso-
ciated with weaker discriminants. These large, random devia-
tions would tend to mask the effect of the better discriminants.
This problem was resolved here by employing a weighting scheme
for gauging the similarity of discriminant patterns. This
procedure is described later in this report in detailed der-
ivations of the cluster analysis procedures. The net effect
of the weighting procedure now in place is to reduce the 'ef-
fective size' of the discriminant set such that it yields
smaller random deviations expected from only a few normalized
discriminants. We believe that this procedure provides an ef-
fective basis for operating with large discriminant sets, but
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with little degradation in the effectiveness of the better
discriminants. Nonetheless, as we learn to operate with
large discriminant sets, we will eliminate those which prove
to be less effective; we will also add discriminants which
prove to be more effective in separating explosions from
earthquakes and in stabilizing the cluster analysis of events.

The physical bases for selecting discriminants relate to
(shallow) depth; to the efficient generation of compressional
waves; to smaller, higher-stress and full, stress-drop sources;
to elastic rebounded or resonant sources; to lower backscat-
tering from smaller, shallow sources; to less complex, first
motion of the source-time function; and to combinations of
the preceding effects. A list of the selected discriminants
is shown in Figure II-2.

. MS is defined as narrowband-filtered ground displacement
magnitudes averaged at four periods (see Legend, Figure II-2).
This definition differs from the conventional definition in
that amplitude measurements are not divided by the period.
As a result, long-period surface wave magnitudes computed
here are relatively constant over frequency, and are compar-
able in value to short-period my determination. The average
period of Ms’ as defined here, is 24 seconds. Discriminants
Dl’ D,, and D, (shown in Figure II-2) are differences of surface
wave ground displacement magnitudes between 50 seconds and

14 seconds period, while discriminants D3, D4, and D11 are
slopes of compressional wave ground displacement magnitudes
between 0.3 and 1.3 Hz. Discriminants D6’ D7, and D8 are
measures of compressional wave energy for a given moment

source as indicated by network my relative to long-period
surface waves or compressional waves. The scaling of D6 is
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FIGURE II-2
DISCRIMINANTS
Dy =M, - M_(50)
D, =M;(14) - Mg
Dy = [m (0.5) - m (0.3)]/0.2
D, = [m, (0.8) - m (0.5)]/0.2
D = Ms(14) - Ms(17)
Dg = 1.14mb - Ms - 1.79 m <4.9
1.55mb - Ms - 3.79 mb>4.9
D7 =m - MS(SO)
D8 =m - mb(O 3)
Dg = mb(3.2) - mb(0.3)
Dig = T - o, (pulse complexity)
D;; = [m (2.3) - m, (0.8)]/0.2
Dy, = [mb(Z.O)Z- mb(o.sg]/o.a
Dz = Min{,/°A%dt/s/'°A%dt} (coda complexity)
Dyg = Dpp * Dg
Dys = 3Dyp * Dy
Dy = 3Dg0 * Dg
Dy7 = 3Djp * Dy
Dig = 3Dy * Dy
LEGEND

Di = The ith discriminant
my = Network bodywave magnitude
Ms = (Ms(33) + MS(ZS) + MS(ZO) + MSCIZ))/4
hg(T) = Narrowband-filtered surface waves of period

T sec
mb(f) = Narrowband-filtered P-waves of frequency f Hz
& = Average frequency of first 1.5 sec of P-wave

pulse
5¢ = Phase standard deviation of first 1.5 sec of |

P-wave pulse j
A(t) = Amplitude-time variation. |
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taken from the result of Strauss (1978) for unbiased Ms-
versus-m, at the Alaskan Long Period Array (ALPA). Discri-

minants D9 and D12 are frequency-dependent magnitude discrim-
inants designed to identify small, full stress-drop events
(see Bache, et al., 1974; Archambeau, 1978, 1979, personal
communications). Discriminants D10 and D13 are time-domain
complexity measures, while D13 is a short-time-gate, minimum-
coda-complexity measure; this discriminant is designed to take
advantage of the smaller backscattering associated with small,
shallow-focus sources (this reflects on the normally large,
scattering attenuation in shallow crustal layers). Discrim-
inant D14 is based on the linear relaticaship which has been
observed between average frequency and average standard devia-
tion of phase angle versus time-of-first-motion ground ac-
celeration (see Unger, 1978). Note that D14 is interpreted

as an alternative measure of small, high-stress or full stress-
drop sources, as indicated by the higher-frequency signatures
and the simpler first-motion of such sources. Discriminants
D14 through D18 are 'combined effect' discriminants which are
based on the observed behavior of discriminant pairs. Figure
II-3 associates the selected discriminants with various phy-

sical mechanisms.

@ CRITERIA FOR EXPLOSION IDENTIFICATION

As indicated above, we are concerned that explosions be
ideniifiable without privr knowledge of the discriminant pat-
terr.. For example, shot arrays from some unknown, tecton-
ically active region could conceivably emit a multiple dis-
criminint pattern which is totally different from that of

ENSCO, INC. II-9




FIGURE I1I-3
PHYSICAL BASIS FOR DISCRIMINANTS

-~

° SHORTER PERIOD SURFACE WAVES AND RISE IN LOW
FREQUENCY P-WAVE SPECTRUM DUE TO SHALLOW DEPTH

Dy = M, - M_(50) Dy = m (0.5) - m (0.3)
D, = M (14) - M D, = f“b(O'_s) - m, (0.5)
Dg = M (14) - M_(17) D= T -5,

° MORE EFFICIENT PRODUCTION OF P-WAVES AND LESS
EFFICIENT PRODUCTION OF SHEAR WAVES

D6 =m - Ms D8 =my - mb(0.3)
D7 =m - ME(SO)
° SMALL, HIGH-STRESS AND FULL STRESS-DROP SOURCES
D12= mb(Z.O) - mb(O.S) D]O= T - o_¢
D9 = mb(3.0) - mb(0.3)
° ELASTIC REBOUND OF SOURCE LEADING TO OVERSHOOT

OF THE DISPLACEMENT PULSE AND TO ROLL-UP OF THE
HIGH FREQUENCY SPECTRUM

D4 = mb(0.8) - mb(O.S) D12= mb(Z.O) - mb(O.S)

D11= mb(1.3) - mb(0.8) D9 = mb(3.0) - mb(0.3)
° LESS BACKSCATTER FROM SMALLER, SHALLOW SOURCE

OR LESS CCMPLEX SOURCE

D13= Coda Complexity

D,y = Pulse Complexity T - c7¢

e  COMBINED EFFECTS
Dy=Dyp + Dg

Dig= 3Dy *+ Dyy
Dyg = 3Dy + D

D17= 3D
D18= 3D

0 * Dy
n *Dp
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known explosions. The system designed to detect explosions,
therefore, must adaptively associate these 'new type' events
by cluster analysis, and label them as being different from
other known types of explosions o:r earthquakes.

In the case of anomalous explosions the discriminants
used to identify and distinguish such events from other types
of events must, through training, be a complete description
of explosions. In like manner, prior training on earthquakes
must be intensive enough to distinguish all conceivable types
of earthquake sources. Thus, if such a 'new type' cluster of
events is detected in an area, and the depth range suggests
that the events are explosions, the are: can then be put
under surveillance as a possible nuclear test site. By def-
inition, at least four events are required here to identify
an anomalous cluster of events; however, it is estimated that
a cluster of from six to eight events would “# required be-
fore identification of a new class of events is made by our
adaptive identification procedure. It should be pointed out,
however, that simulations of evasion scenarios could be pre-
pared to establish cluster patterns for the discriminants
used. In such cases, only one 'event,' or at most a few such
'events,' would be required for the cluster pattern to be
established.

One serious problem which exists in addressing the event
identification problem is related to the uniqueness of any
identification which is made. The question may be posed as
to whether unknown explosion environments exist which yield
completely different discriminant patterns from those asso-
ciated with known explosion environments. Experience gain-
ed by comparing eastern Kazakh events to Nevada Test Site
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events points to the existance of such unknown environments.
It may further be asked: How many such environments, yield-
ing distinguishable discriminant patterns, exist? At this

time, there is no way of knowing. Thus, until we reach the

state where discriminant patterns can be accurately predicted

and simulated on a theoretical basis from known geological
and geophysical parameters, it appears that an adaptive dis-
crimination capability will be needed for event identifica-

tion. Even if such discriminant patterns are unknown, the
adaptive discrimination capability developed here will in-
crease significantly an adversary's risk in testing more than
four events from a new site. The use of the adaptive discrim-
ination capability, therefore, is a necessary adjunct to an

on-line discrimination capability.

A summary of criteria for explosion identification is
given in Figure II-4.

D. EVENT IDENTIFICATION STRATEGY

The first step in the identification process is to
'train' on known earthquake data from a specified geographical
area with the intent being to define cluster models which
characterize the earthquakes. That is, all of the known
earthquakes are placed in an initial training set. For this
training set, medians and standard deviations for each dis-
criminant are obtained, as is outlined in Figure I-1. Next,
our adaptive Anomalous Event Detector (AED) searches for sets
of events which have similar discriminant patterns, but which
are outliers of the training set. If at least four events
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FIGURE II-4
CRITERIA FOR EXPLOSION IDENTIFICATION

NO PRIOR KNOWLEDGE REQUIRED OF EXPLOSION
DISCRIMINANT PATTERNS

NO PRIOR KNOWLEDGE REQUIRED OF THE NUMBER GF
PATTERNS REQUIRED TO IDENTIFY UNIQUELY ALL
EXPLOSION TYPES

ALMOST ALL EARTHQUAKLE DISCRIMINATION PATTERNS
ARE ASCERTAINABLE BY INTENSIVE TRAINING ON
EARTHQUAKES

"NEW TYPE' EVENTS ARE ASSOCIATED WITH ONE
ANOTHER BY ADAPTIVELY DETECTING UNKNOWN, BUT
SIMILAR, DISCRIMINANT PATTERNS

"NEW TYPE' EVENT CLUSTERS ARE OPERATIONALLY
TKEATED AS 'POSSIBLE EXPLOSIONS' UNTIL
PROVEN OTHERWISE

CLUSTERED EVENT TYPES MUST BE DESCRIBED AND
INTERPRETED PHYSICALLY (i.e., THEY MUST HAVE
RATIONAL, PHYSICAL BASES FOR CLUSTERING).
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are detected in one of the outlier sets, these events are
grouped as a cluster; three or less outlier events will re-
main in a buffer as 'unidentified events.' This procedure

is continued until the initial training set of earthquakes is
clustered (unclustered outliers are retained as 'unidentified
events')., As a result of the process, each cluster of earth-
quakes now constitutes a new training set of events from which
medians and standard deviations of each cluster can be deter-
mined. Thus, after initializing the clusters required to de-
fine earthquakes, an entire data base can be processed with
the intent being to identify as many events as possible as
either earthquakes or explosions.

To separate explosions from earthquakes, a two-step
process is used. Correlation thresholds are set on each
earthquake cluster based on stability criteria. Acceptance
thresholds are set as high as possible to identify unknown
events, but low enough to keep cross-talk (jumps from one
cluster to another) at an acceptable level. The first step
of the process involves the identification of obvious earth-
quakes by their association with an established earthquake
cluster. These identified earthquakes are then removed from
the queue of unidentified events. The second step applies
an Anomalous Event Detector to search for new clusters.
Events in these clusters are designated as possible explo-

sions,

Cluster analysis sifts and associates event descriptor
information out of a large data base. The results depend
on the search strategy employed. Decision thresholds asso-
ciate unknown events with a previously observed discriminant
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pattern. This, obviously, is an empirical, statistical
learning process (Figure II-5). It is important, therefore,
to understand, either operationally or physically, why events
cluster. 1If clusters are associated with operational prob-
lems, then the problem should be resolved. Examples of op-
erational problems include clustering of events having few
detections; clustering of events by magnitude; etc. On the
other hand, if clusters are associated with physical factors,
then such factors are established as statistically signifi-
cant observations. Examples of physical factors include
associations with event depth; high-frequency P-wave peaks
(indicating overshoot); anomalously high P-wave amplitudes;
etc. Only clusters based on physical characterizations can
be expected to provide meaningful identification results.

In the course of the Event Identification Experiment, a
threshold strategy was pursued to reliably associate known
events with established event clusters. The established
clusters consisted of event gfoupings which were obtained by
training intensively on the earthquake discriminant data.

Our identification and threshold strategy employing a cluster
analysis is summarized in Figure II-6.

Training on earthquakes produced eight earthquake clus-
ters. The optimum thresholds determined for use in cluster
association are shown in Figure II-7. Observation errors of
cluster association are reduced to unit normal Z-statistics
as gauged by the difference between observed discriminants
and median discriminants, divided by the standard deviation
(this procedure was described earlier in Figure I-1). Errors
less than one standard deviation are weighted zero (0);
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FIGURE II-S
STATISTICAL LEARNING PROCESS

(] TRAIN ON EARTHQUAKES

L] ASSOCIATE UNKNOWN EVENTS TO ESTABLISHED
CLUSTERS

(] IDENTIFY REMAINING UNKNOWN EVENT TYPES BY
ADAPTIVELY DETECTING NEW CLUSTERS

(] INTERPRET THE CLUSTERED EVENT GROUPS
PHYSICAL CHARACTERIZATIONS
REGIONAL ASSOCIATION

OPERATIONAL PROBLEMS
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FIGURE II-6

THRESHOLD STRATEGY FOR RELIABLY ASSOCIATING
UNKNOWN EVENTS WITH ESTABLISHED CLUSTERS

° SET HIGH ACCEPTANCE LEVEL FOR STABLE CLUSTERS

. SET LOW ACCEPTANCE LEVEL FOR UNSTABLE CLUSTERS

° TEST THE STABILITY OF THRESHOLD CHANGES

. CONSTRAIN THRESHOLD SETTING TO ASSURE LOW
FALSE-ALARM RATE
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FIGURE II-7

THRESHOLDS FOR CLUSTERING EVENTS

Predicted Predicted
Cluster Threshold* |Percent Likelihood
Associated**| Ratio***
Stage I EQ-1 0.84 60% 1.5
EQ-2 0.97 67% 2.0
EQ-3 0.84 60% 1.5
EQ-4 0.84 60% 1.5
EQ-5 0.63 47% 0.9
Stage I1I EQ-6 0.84 60% 1.5
EQ-7 0.84 60% i.5
EQ-8 0.60 45% 0.8
EX-1 1.63 87% 6.7
* Deviations from the cluster median in standard devia-
tions; normalized as shown in Figure I-1
& Based on unit normal statistics, positive and negative

deviations less than the indicated threshold

*#%%*  Based on unit normal statistics, ratio of capture
probability to miss probability for indicated cluster
population.
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larger, one (1). As previously described, this weighting

scheme is designed to reduce the accumulation of errors which
are usually associated with the less effective discriminants.
Based on unit normal statistics, Figure II-7 shows the per-
centage of unknown events which can be correctly associated
with a cluster. That is, this percentage of events is ex-
pected to be correctly identified. The likelihood ratio for
correct identification is also shown as the ratio of 'captures'
to misses. Percentage captures close to 100%, and large like-
lihood ratios, are indicators of stable cluster identifica-
tion.

With respect to event identification, two steps were in-
volved. First, identifications as earthquakes were based on
application of the first twelve discriminants. Then, the
full set of eighteen discriminants was applied to analyze
further earthquake clusters EQ-6 through EQ-8. The Anomalous
Event Detector (AED) was applied to the remaining set of un-
known events, and this resulted in the detection of the ex-
plosion cluster EX-1. The remaining, unassociated events
were assigned. 'unidentified' status.

E: RESULTS OF CLUSTER ANALYSIS

Cluster identifications are based on the thresholds
shown in Figure II-7; these identifications are shown in
Figure II-8. The analysis was performed on a data base of
128 events, 22 of which are believed to be explosions. With
regard to explosions, only one decision error was made.
Specifically, one explosion was incorrectly associated with
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FIGURE II-8

PRIORITY II NETWORK PERFORMANCE BASED ON

CLUSTER IDENTIFICATION

Event Event Event Event
Number Decision | Number Decision [Number Decision |Number Decision
1 X1 39 QS 79 U 172 U
3 Q4 41 Q3 80 U 173 Q2
4 Q1 45 Q5 81 X1 175 Q6
6 Q7 46 Q2 143 Qs 176 Q1
7 Q7 47 U 144 Q3 177 U
8 U 48 Q3 145 Q2 178 Q8
9 Q3 49 Q6 146 Qs 179 Q6
10 Q2 50 Q6 147 Q3 180 Q1
14 X1 53 X1 148 Q3 *182 X1
16 X1 55§ Q2 149 Q6 183 Q1
17 X1 56 Q1 150 Q2 184 Q3
18 X1 57 Qs 151 Q1 *185 X1
19 X1 58 Q3 152 Q7 186 U
20 X1 59 Q7 153 Q1 187 Q2
21 X1 60 Q2 154 Q3 188 Q2
22 X1 61 Q2 155 U 189 X1
‘ 23 Q2 62 Q1 156 Q1 190 Q1
24 Q5 %63 X1 157 Q5 191 Q2
25 Qs 64 U 158 QS 192 Q2
26 Q2 65 U 159 Q2 193 Q5
27 Q7 66 Q2 160 Q2 194 Q2
28 Q7 67 Q7 161 Q2 195 Q6
29 Q2 68 Q5 162 Q8 264 Q3
30 U *69 X1 163 Q6 265 X1
51 Q6 70 Q7 164 Q6 266 X1
32 Q6 72 Q7 165 Q7 267 X1
*33 QS 73 Q8 166 8] 268 X1
34 Q2 74 Q7 167 Q2 269 X1
35 Q7 75 U 168 Q2 270 X1
36 Q7 76 Q7 169 Q4 274 X1
37 Q4 77 Q1 170 U 272 U
38 Q3 78 U 171 Q4 273 X1
LEGEND: * ....¢..... Decision Error
U......ov Unidentified Earthquake
Q5 s mresEs jth Earthquake Cluster
Xi@mEene 1 X jth Explosion Cluster
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earthquake cluster EQ-5, which is associated with a group
including deep events and which had few, if any, detected

signals. Figure II-9 summarizes the network performance for
the Priority IT data set. The observed identification of

91% of the explosions corresponds closely to the 87% identi-
fication level predicted from normal statistics (Figure 1I-7).
Of the explosions not identified as explosions, one was clas-
sed as 'unidentified' and one was missed (i.e., false iden-
tified as an earthquake).

An alternative performance evaluation can be given which
omits events #33 and #79. The data for both of these events
probably contain editing errors. Event #33 was apparently
detected at three stations with travel-time residuals between
20 and 30 seconds. At NORSAR, it was detected with a P-wave
magnitude deviation of +1.0. Event #79 had an apparent short-
period signal detected at ILPA. Using this signal, however,
the event is computed to occur 37 seconds late with a P-wave
magnitude error of +1.7 magnitude units. Neglecting these
two events, the network performance was as follows:

° Explosions correctly identified 100%
° Earthquakes correctly identified 82%.

0f the 18% of the earthquakes not correctly identified, 14%
were unidentified and 4% were false alarm explosions.

The results above are considered a baseline from which
improved discrimination procedures can be gauged. Further,
implementation of the following procedures should procude a
significant improvement in event discrimination performance:
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FIGURE II-9

SUMMARY OF NETWORK PERFORMANCE FOR

THE PRIORITY II NETWORK

Number
IDENTIFIED EXPLOSIONS 20
UNIDENTIFIED EXPLOSIONS 1
MISSED EXPLOSIONS 1
IDENTIFIED EARTHQUAKES 87
UNIDENTIFIED EARTHQUAKES 15
MISSED EARTHQUAKES kFALSE 4

ALARM EXPLOSIONS)

|

Total number of earthquakes
Total number of explosions
Total number of events

106
22
128

}

Percent

91

82

14

ENSCO,

INC.

I1-22




° Improve signal and event measurement techniques.

° Properly scale the discriminants for event magni-
tude.

° Train on earthquakes with properly scaled discrim-
inants.

Cluster analysis represents a significant step forward
in the use of multiple discriminants for identification pur-
poses. In the case of this experiment, the partitioning of
earthquakes into clusters produced the following results:

° Events in clusters EQ-1, EQ-2, EQ-5, EQ-6, and
EQ-8 are predominantly shallow earthquakes.

) Events in clusters EQ-3 and EQ-7 are associated
with deep earthquakes.

° Events in cluster EQ-4 are anomalous, shallow
earthquakes which are explosion-like in that they
exhibit enhanced, high-frequency compressional
waves.

° The median magnitude my of cluster EQ-5 i5 4.1;
of cluster EQ-6, 4.9; and of cluster EQ-8, 5.3.

With respect to the last result above, an operational problem
is evidenced by the partitioning by magnitude; that is, the
discriminants need to be scaled with magnitude to more ef-
fectively and reliably separate earthquakes and explosions.
To some extent, the clustering of events with no detected
signals in cluster EQ-5 indicates another operational prob-
lem. Here, the results suggest that the procedure used for
estimating unbiased magnitudes is underestimating the
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' spectral magnitudes of events with few detections. This
procedure needs to be examined closely, and it probably re-
quires improvement. The only physical factor indicated by
the result is the partitioning of events by depth. This can
also be viewed as an operational factor in that the scaling
of discriminants by depth may improve the performance of the
discriminants.

ke OPERATIONAL PROBLEMS

The purpose in clustering events using multiple discrim-
inants is to characterize earthquakes and explosions by their
'like' discriminant patterns. In performing such analyses,
several operational problems were identified; these include:

° A scaling problem with some of the discriminants,
‘ as was indicated by the dependence of clustering
on event magnitude.

° A bias problem caused by network averaging, as
was indicated by the dependence of clustering on
the number of station detections for a given event
(i.e., events with less than two network detections
were clustered).

° A station bias and variance problem which was
caused by the leakage of energy from outside of
the spectral band of the filters which were used
to measure the variable frequency magnitudes.

The magnitude scaling problem flagged by cluster analysis
must be resclved. Otherwise, discrimination performance could
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be misleading because of the dependence of the results on
superfluous factors such as the magnitude of the earthquake
and explosion populations. Using the Priority II network
together with some other stations, the discriminants were
scaled by setting each of the discriminants equal to a func-
tion of network magnitude, F(mb). In particular, linear
scaling was performed, where F(mb) =com 4 d. The param-
eters ¢ and d reflect the magnitude dependence of the dis-
criminants. A robust method developed by Claerbout (1976)
was used to determine the value of the parameters for each
discriminant. Only those discriminants for which the vari-
ance was significantly reduced by the scaling process were
scaled.

Figure II-2 showed the baseline discriminants which
evidenced operational problems (in particular, magnitude-
dependent clustering). Figure II-10 shows the results ob-
tained by appropriate scaling of each discriminant to remove
network magnitude dependence. Note that discriminants in-
volving surface wave magnitudes required non-linear scaling,
with the break-point in the linear trend at mb=4.9. The
trend curves for groups of larger and smaller magntiude
events were obtained by scaling clusters of large and small
groupings of shallow earthquakes. In general, the non-linear
scaling of discriminants which are associated with surface
wave measures significantly reduced the variance of the dis-
criminant values; this was not the case for discriminants
involving short-period P wave magnitudes. The results shown

here for magnitude scaling were taken from Sax, et al. (1979).
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FIGURE II-10
SCALED DISCRIMINANTS DI=F(mb)

D, = 3.5 [M5 - M, (50) - 0.10]

D, = 2.5 [0.55mb + M_(14) - M - 1.89] m <4.9
2.5 [ m o+ M _(14) - M - 4.10] m 2 4.9

D, = 1.0 [mb(O.S) - m (0.3) - 0.3m + 1. 84]

D, = 1/3[m (0.8) - m (0.5) - 0.33m + 2.17)

D, = 2.5 [0.34mb + M_(14) - M (17) - 0.92] m < 4.9
2.5 [0.54mb + M_(14) - M_(17) - 1.90, m 2 4.9

Dg = 2.5[1.30mb - M, - 1.18] m < 4.9
2.5 [1.71m - M, - 3.29] m 2 4.9

D, = 2/3[1.24mb - M_(50) - 0.97] m < 4.9
2/3 [1.86mb - M, (50) - 4.01) m 2 4.9

Dg = 3.0 [0.81mb - m (0.3) + 1.14)

Dg = 2.5 [mb(S.Z) - m (0.3) + 3.96)

Dy, = 12 [T - E¢]

Dy; = 1/2 [mb(l.S) - m (0.8) + 0.l4m - 0.23]

Dy, = 1.5 [mb(Z.O) - m (0.5) + 1.67]

D 5 = 3.5 [or®A%at/ss10A%dt - 0.35]

D, = 1.0 [1.67 D), + D¢]

D, = 1.50 3D+ 5 D]

Dyg = 2.0 3D+ D]

Dy, = 2.5 ( 3Dy, + Dl

'Dyg = 1.5[ 3D+ 1.67D,]
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As a result of anplying the scaled discriminants, the
eight clusters obtained by trairning on earthquakes merged
into a single earthquake cluster. This result indicates
that the clustering of cur baseline discriminants appeared
to stem from the magnitude scaling problem. Further, we
now know the importance of removing operational problems
before gauging the effectiveness of the discriminants used.
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SECTION III
EVENT IDENTIFICATION SYSTEM - METHOD

Our method of event identification involves six basic
analysis procedures (see Fi; ITI-1). Given the complicated
nature of the identification problem, it is useful to review
some of our general observations and concerns about the anal-
vsis procedures used; these are summarized in Table III-1.
Detailed, amplifying material, is provided below.

A, ACCESS SIGNAL TIME WINDOWS
dis Short-period signals

Short-period signals are accessed at estimated arrival
times computed from reported focal parameters. These paranm-
eters are origin time, location, and depth of the event. We
found that errors in these parameters make it necessary to
start the edit process by sampling four-minute records. An
automatic detector then compresses these larger records to
smaller one-minute, signal-centered edits. Next, signal
neasurements are performed and classified as signals or noise
by an automatic decision process. These signal or noise
neasurements are then stored on standard format magnetic tape
records. The automatic detector for accessing short-period
data and initializing the measurement of seismic signals is

described in Appendix A.
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FIGURE III-1
EVENT IDENTIFICATION SYSTEM ANALYSIS PROCEDURES

° ACCESS SIGNAL TIME WINDOWS

) EXTRACT SIGNAL WAVEFORMS

° MEASURE SIGNALS OR NOISE

. L ESTIMATE SOURCE PARAMETERS

° COMPUTE DISCRIMINANTS

0 CLASSIFY EVENTS USING CLUSTER
ANALYSIS
- EARTHQUAKE CLUSTERS
= EXPLOSION CLUSTERS
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The function of the short-period edit detector is to
extract short P-wave signals of several seconds duration from
a much longer seismic record. The edit problem is complicated
by non-stationary seismic noise, system noise, and interfering
seismic signals. The diversity of seismic signals (emergent,
impulsive, 'multipathed', coda scattered, etc.) causes prob-
lems in designing an effective automatic edit detector which
operates well under all conditions. Thus, although the
short-period automatic edit process now used performed well,
it can be improved, and additional study of such edit proces-
sors is recommended.

2; Long-period signals

Analytical dispersion relationships are shown on Figure
ITII-2. These relationships predict frequency-dependent ar-
rival times of dispersed surface waves. The analytical re-
lationship is used to automatically set the start and end
time of a signal edit window which is to be processed by
narrowband Gaussian filters. Magnitudes are computed by
searching for the maximum amplitude in these frequency-
dependent time windows. The edit's detection status as signal
or noise is determined by a threshold set 12 dB above the mean
noise level. This noise level is measured in a time window
preceding the signal edit window. There was no need for a
signal detector, as was the case for short-period signal
editing, because the signal windows encountered are a large
fraction of the window predicted by the analytical dispersion
relationships.
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B. EXTRACT SIGNAL WAVEFORMS

Extracting the waveform of a strong signal presents no
problem, but advanced signal analysis techniques appear nec-
essary to effectively extract weak signals which are obscured
by interfering noise. Presently, we are editing signals with-
out the benefit of such advanced techniques. Thus, half of
our events had only one or no detected signals, and cluster
analysis indicated that problems existed in interpreting

these signals.

The following extraction techniques can be used to im-

prove weak-signal detection and measurement:

° Beamforming and adaptive beamforming (ABF) of
short-period and long-period array data.

° Polarization filtering of three-component, short-

period records at regional distances.

° Polarization filtering of three-component, long-

period phases.

) Fixed and adaptive Wiener filtering of single-
sensor and three-component sensor data.

° Complex cepstral analysis (to reduce interfircuces
between snbient and coda noise).

These signal analysis techniques should eventually be tested,
calibrated, and integrated into the signal edit process.
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C. MEASURE SIGNALS OR NOISE

In part, our bascline approach to earthquake and explo-
sion identification depends on the availability of accurate
frequency-dependent magnitude measurements of seismic signals.
In many cases, smaller signals are invisible because of seis-
mic noise. This leads to biased sampling of the larger sig-
nals in order to derive event magnitude measurements. To
eliminate this bias, Ringdal (1974, 1975) developed a maximum
likelihood technique for unbiased estimates of event magnitude.
This technique modeled the deviations of signal magnitudes as
normal statistics. This and other techniques of event param-
eterization will be considered later. First, however, we
describe below the techniques used to obtain high quality
measurements of the seismic signals which are used as input
to an event source parameter measurement process.

1. Instrument response correction

Different seismic sensors used in the Priority II net-
work exhibit significant variations in their frequency
response to earth motion. Therefore, instrument response
correcions are needed to obtain consistent measurements of
ground motion. A simple analog apprcach to making instru-
ment response corrections is to fit instrument calibration
data by the ratio of rational polynomials of s, where s=iw.
In particular, the polynomials represent the system response

as
m
. (s+a.) Zeros
A(s) = i
3 (s+ak) poles.
ENSCO, INC. III-10




Determination of A(s) is obtained graphically by corner fre-

quency analysis of log-log plots of the calibrated displace-
ment amplitude versus frequency. Corner frequencies of zeros
are indicated by frequencies above which the log-log slope
increases by 6 dB/octave; poles, by -6 dB/octave. This pro-
cedure approximates analog response curves to within an ac-
curacy of at least 10%. Note, in passing, that this model
approximates the phase as well as the amplitude response of
the system. Filters to invert the system response are read-
ily implemented by inverting these zeros and poles. This
time-domain approach removes the anplitude and phase response
of the system at all frequencies.

A point often overlooked is that the analog system re-
sponse A(s) is not equivalent to the digital system response
of uniformly time-sampled data. Conversion of the real roots
of A(s), (s+a), to real roots of a point sampled delay opera-
tor (a-bZ—l), where Z=exp'in and T is time between samples,
is accomplished by invoking a criteria for impulse response
invariance. That is, the sampled delay operator, transformed
back to the time domain, has an impulsive response which is
a time-sampled equivalent of the continuous analog impulse
time function. For example, a Laplace -transformed pole
representing an analog exponential response is equivalent to

a digitally sampled exponential response as follows:

s+3 ~ exp(-at) t20
——E—TT + b = exp(-anT) (n=0,1,...,=)
a-bz
where
b = exp(-arl).
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Thus, A(s) is transformed to the equivalent impulse invariant
sampled delay operator function,

I
B(Z) = g T
I (-exp (22 )

(l-exp(-ajT)Z-l)

The effect of each pole is exactly removed by successively
applying a difference operator,

Yi %X - bkxi-l’ where bk = exp(-akT).

This operation is stable, presents no problem with roundoff
errors, and tends to reduce the interference of signals with
microseismic noise. Complex poles are similarly removed by
second order difference operators; these, too, are stable.

Since the zero's of the system response occur at multi-
ple roots near zero frequency, their removal is accomplished
rigorously by numerical integration, Yi=Yi-1%%;¢ Since the
root modulus, |Z] =1, is on the unit circle in the Z-plane,
the operation is quasi-stable leading to errors at low fre-
quency caused by amplification of seismic noise and drift
errors due to integration of roundoff errors. Consequently,
the inverse of a low frequency zero is performed approximate-

ly as

Yi = C3Yi-1*%ivdyn Rty mtpdx(ty)

where the recursively filtered component ¥y is augmented by
the weighted output of a bank of narrowband filters, Fm
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(which approximate the system response at low frequencies).
This operation is stable and accurate between 0.2 Hz and the

Nyquist frequency. Selection of constants Cj’ d and nar-

jm’
row bandpass filters are designed to invert the system re-
sponse with a maximum error less than 20%, and to provide a

stable inverse of the system response zeros.

2. Application of bandpass filters to measure
frequency dependent magnitudes

One purpose of filtering seismic signals is to obtain
accurate, frequency-dependent station magnitude measurements.
Such measurements are our main source of data for character-
izing seismic source mechanisms.

Physical validation of any derived relationship between
station mangitude measurements and source mechanism depends
on properly scaling amplitude measurements with distance and
depth. It is expected that a number of different frequency-
dependent magnitudes must be measured to uniquely describe
and identify different rupture mechanisms (e.g., shear, ten-
sile, and compressional dislocations). Environmental factors
such as source depth, regional crustal geology, and tectonics,
as well as such physical factors as stress, stress drop, and
source dimension, are expected to influence the relationship
between frequency-dependent magnitude and source mechanism.

A summary of these factors expected to influence the physical
validity of magnitude models is given in Figure III-3.

The design of optimized bandpass filters for variable
frequency magnitude measurements is described in Appendix B.
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FIGURE III-3
PHYSICAL VALIDITY OF MAGNITUDE MEASUREMENTS

° PROPER SCALING
- DISTANCE-ATTENUATION
- DEPTH

. COMPLETENESS
- DIFFERENT RUPTURE MECHAMISMS
- DIFFERENT MEDIUM PROPERTIES

) PHYSICAL PARTITIONING
- DEPTH OF SOURCE

- STRESS, STRESS DROP, PHYSICAL DIMENSION OF
SO LE

- CRUSTAL GEOLOGICAL AND TECTONIC ENVIRONMENT
OF SOURCE AND RECEIVER.
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This problem is of concern since filter-sidebond-leakage
errors can lead to significant magnitude bias ¢rrors and large
variance of variable frequency magnitude measurements. These
errors occur mainly at short periods above the corne: fre-
guency where the roll-off of the source spectrum and of
absorption combine to cause the filtered signal to peak well
outside of the filter passband (defined by the 3-dB-down
points of the filter). Our experience indicates that the
censtraint of measuring magnitudes only at times when the
dominant period of the signal is within the filter passband
will only partially correct this problem (this was the tech-
nique used in the present study). Additional means are need-
¢ oy which to perform band-limited magnitude measurement in
those cases where the dominant period of the filtered signal
is not within or is rarely within the prescribed frequency

bpand limits.

3. A recommended procedure for eliminating spectral
leakage errors from filtered magnitude measure-

ments

The following spectral whitening technique is a candidate

rocedure for reducing spectral leakage in future studies.

st, remove the ground-displacement system response. Then,
if the frequency corresponding to the measured magnitude
(vhen the measurement is made at the dominant frequency) is
below the specified filter passband, modify the ground motion
measurements by successively applying a first difference
sperator, Y =X.-X. ¢, N times until this observed low fre-
suency bias is removed. The amplitude spectrum is thus
transformed by N stages of this difference operator; that is,

2
5 s
i
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the spectrum is modified by the factor Il-expi(-Zanp)lN,
where T is the time between data samples and fp is the
dominant frequency of the measured displacement magnitude.
Division by this factor, corrects the magnitude measurements
for the effect of successive difference operators which were
required to whiten the data in the passband of the filter.

The above technique should provide an efficient means
by which to obtain high-resolution measurements of ground
displacement magnitudes. Further, these measurements will
be optimized for each filtered band. As such, the leakage
problem associated with the filter bandwidth should be
eliminated by application of this method.

A physical justification of this high-resolution tech-
nique is as follows. Above the corner frequency of a seismic
signal, the spectrum is expected to roll-off as £a (where a
is equal to one, two, or three). For a=1, envelope measure-
ments of ground velocity are measured to compute magnitudes;
for a=2, ground acceleration is measured; and for a=3, the
first derivative of the ground acceleration is measured. Thus,
the high resolution inverse operator ]1-2]N is specifically
designed to whiten the spectrum for each filter band in ac-
cordance with the variable roll-off which characterizes the
seismic source spectra. The results shown in Figure III-4
indicate that absorption alone does not appear to cause a
leakage problem up to 2.0 Hz, but that absorption, combined

a’ does cause a leakage prob-

with a spectral roll-off of f
lem. At higher frequencies, however, the increased roll-off
due to absorption may require the use of a higher difference

operator to whiten the spectra. These difference operations
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are stable and should, in general, enhance the signal-to-
noise ratio in the band of the bandpass filter.

4. Time-domain measurements of complexity

An instrument response correction was applied to seismic
waveforms to represent, as accurately as is possible, the
ground displacement produced by seismic signals at each sta-
tion. For purpose of measuring signal complexity, accelera-
tion waveforms were generated by differentiating the dis-
placement waveforms. The purpose in doing this and in select-
ing certain time windows was to accentuate scattering effects
associated with a (presumed) complex earthquake source at fre-
quencies above the corner frequency, and also, to reduce the
effect of microseismic noise on the complexity measurement.

The coda complexity was computed as the energy ratio of
the acceleration waveform envelope integrated from 5 to 10
seconds after the signal start time, to that integrated from
0 to 5 seconds. The first measure represents the energy in
the signal while the second measure (from 5 to 10 seconds)
gauges the coda characteristic. It was expected that pP ef-
fects from explosions would be contained in the onset window
(0-5 seconds); pP effects from earthquakes, however, were ex-
pected to occur at times greater than 5 seconds after arrival
onset. Even for deeper earthquakes, it is expected that
heterogeneous crustal layers would not attenuate backscatter-
ed energy as rapidly as they would for shallow explosion
sources. Thus, low values of this coda complexity are con-
sidered an indicator of shallow and less complex seismic
sources. As a result, the complexity defined here should
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gauge well the complexity characteristics of explosions and
earthquakes. However, the use of the 5 and 10 second time
windows in computing complexity are, to some extent, arbitrary.
Clearly, the tradeoffs involved in making these coda complexity
measurements need further study.

An even smaller-scale measure of complexity which was
also used, referred to as 'pulse complexity,' was defined by
Unger (1978). Using this method, the phase standard deviation
and average frequency of the pulse are determined for the
signal first motion from a model of phase versus elapsed time
(measured from the onset of the signal). The derivation of
these quantities are shown in Figure III-S5.

Unger observed that for both earthquakes and explosions,
a linear relationship exists between the dominant £frequency
of signals and their phase standard deviation. This is shown
in Figure III-6. The linear trends of eafthquakes and explo-
sions (at least for the events examined) appear to be dis-
placed enough to effectively separate the two populations.
On the basis of the results discussed above, the pulse com-
plexity discriminant was defined by Unger as the difference
between the phase standard deviation and average pulse fre-
quency. This discriminant measures the separation between
the explosion and earthquake trend lines, and is based on the
assumption that explosions are expected to be smaller and
less complex sources than are earthquakes.
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FIGURE III-5

DERIVATION OF PHASE STANDARD DEVIATION AND
AVERAGE FREQUENCY OF SHORT-PERIOD P WAVES

PULSE COMPLEXITY MEASUREMENTS i
° Signal represented as modulated envelope and phase

x(t) = E(t) cos¢(1)

where x(1) the presumed signal waveform

T = elapsed time from the signal onset
¢(t) = instantaneous phase measurement
E(t) = instantaneous envelope measurement
T = length of signal time window.

° Least squares quadratic phase model; $ fit to measured
¢ as

?(t) = aj + a;T o+ aztz.

¢ Signal parameters
- phase standard deviations

0y {% ofT[¢(T) - @(T)]z dt}”

- mean frequency
1
f = 3 [al + T az].

e Pulse complexity: Oy " T.
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D. SOURCE PARAMETERS ESTIMATED FROM SIGNAL MEASUREMENTS

Source parameters are derived from the signal measure-
ments described in the preceding section. One such param-
eter is the coda complexity of the source. To minimize the
effect of multiple signal paths and later seismic phases,
coda complexity is defined as the minimum value of station
measurements of coda complexity. Only detected signals are
used here. Other time-domain source parameters, which de-
scribe the dominant frequency and the phase variance of the
initial acceleration of the source, are estimated by arith-

metic averaging of signal measurements.

Most of the source parameters used as a basis for dis-
criminating between earthquakes and explosions are derived
from the broadband and spectral magnitudes of propagated seis-
mic phases. These source parameters differentiate source
types by means of the spectral 'shape' of the (perceived)
emitted energy and by relative excitation of the propagated
phases. There is some evidence that source magnitudes are
biased by averaging only detected signals which exceed the
noise. Ringdal (1975), however, developed a method for esti-
mating unbiased source magnitudes by combining magnitudes of
detected signals with noise magnitudes, the latter taken as
upper-limit estimates of the source magnitude at non-detecting
stations. Ringdal's method is to estimate unbiased source
magnitudes by maximum likelihood fitting of a normal curve
to magnitude deviations of s¢ignals propagated from the
source. This procedure provides a basis for estimating
jointly 1) the unbiased magnitude of the event, and 2) a
normal model for variable absorption and path scattering of

signals.

ENSCO, INC. I11-22




Strauss (1978) tested Ringdal's method on measurements
of long-period surface waves recorded at ALPA. Significant
positive bias was observed at probability of detections less
than 0.9. Ringdal's method apparently removed this bias
down to a station probability of detection of 0.25. Thus,
the threshold for obtaining bias-free measurements of M, was
extended to smaller events (roughly 0.6 to 0.9 units lower
in magnitude). At probability of detections less than 0.25,
Ringdal's method was observed to overcorrect for bias; this
suggests that underestimates of magnitudes will result for
events having few detections. Our observations suggest that
this problem is operationally significant in that cluster
analysis segregated events with one or no detections. In
order to examine Ringdal's method, and, possibly, to under-
stand the observed problem of magnitude over-correction, we
review Ringdal's method in Figure III-7. Here, too, we de-
rive a modification of Ringdal's method which may more ac-
curately determine magnitude when only a few detections are
possible. The modification shown in Figure III-7 takes into
account the conditional dependence of detected signals ex-
ceeding noise. The adequacy of this modification needs to
be tested.

A simple example can be used to demonstrate the signifi-
cance of equation (2) in Figure III-7. Assume 20 observa-
tions of noise and one observation of signal, all character-
ized by an equivalent magnitude, m. The maximum likelihood
magnitude determined using Ringdal's method is, approximate-
ly, (m-1.80); using the modified method, however, the magni-
tude is given as (m-1.40). With large standard deviations of
the signal population, o, then this example illustrates that
Ringdal's method yields a significant over-correction of the

magnitude.
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FIGURE III-7

MAXIMUM LIKELIHOOD ESTIMATION OF
UNBIASED EVENT MAGNITUDE

Ringdal's method finds the mean magnitude u and standard
deviation ¢ which maximizes the probability of the ob-
served network detection

m.-y a.-u
Pypr = T P L) * 1 P(-L) (1)

]
all detections all non-detecticns

m. are observed signal magnitudes
a; are observed noise magnitudes
p probability density of signals
P probability that signal is less than noise.

Modification of Ringdal's method

bi«u m, -u a.-y
Ppr = Tf 1P| p(5) * ;t P(—L—) (2)

where b. 1is the observed noise magnitude associated

with a signal magnitude m, .

Logical statement of the modified network probability
- at detection stations, the signal exceeds noise
and is detccted

- at uwon-detecting stations the signal is less than
observed noise.
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It is suggested that Ringdal's method either be modified
and tested to handle more effectively the case of few detec-
tions or that thresholds be lowered sufficiently to insure
that at least three stations detect an event. The latter
strategy could be implemented by progressively lowering the
threshold until signals are detected at stations where the
expected noise magnitude is less than the network-determined
event magnitude (i.e., at stations where the probability of
detection is at least 50%). This provides a tradeoff of
noise effects for, perhaps, larger errors in the magnitude

estimates.

Network determinations of short-period P-wave magnitudes
present other problems. Upper-mantle absorption and crustal
scattering can affect both signals and noise in the same way.
For example, upper mantle absorption can reduce the magnitude
of trapped mantle modes made up of noise, as well as it can
attenuate a P-wave signal. Observational evidence for this
was cited by Dietz and Sax (1978), who used seismic station
magnitude-bias observations prepared by North (1977) and by
Evernden and Kohler (1976). Then, too, seismic noise obser-
vations of Fix, et al. (1973), Evernden and Kohler (1976),
Hair, et al. (1964), and others, were also analyzed for this
effect. These results have implications relative to the
validity of Ringdal's method for computing unbiased P-wave
magnitudes as follows.

Ringdal's method assumes a model in which noise levels
and magnitude deviations are statistically independent. On
the other hand, Dietz and Sax observed several noise groups
for which a strong linear relationship existed between noise
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levels and magnitude deviations. These apparent noise groups
were considered to be significant because they had noise mag-
nitude standard deviations of less than 0.1 units. Four such
groups were observed with mean zero-to-peak noise levels of
1.6, 3.8, 9.1, and 15.8 mﬂ which extended geographically over
large regions. These are interpreted by us as being primarily
composed of mantle noise modes at the quietest site<, of trap-
ped crustal and sedimentary structure-related Rayleigh wave
modes at still noisier sties, and of propagating ocean-
generated noise at the noisiest stations (these were situated
near coastlines). Stations within each group exhibited a
large correlation of seismic noise with magnitude bias (e.g.,
higher noise levels appear to be associated with positive
magnitude deviations). Thus, there is some observational
evidence that station magnitude bias should be carefully

taken into account, together with the station noise, when ap-
plying the maximum likelihood technique to determine unbiased
P-wave event magnitudes.

Some problems were also encountered in combining magni-
tude measurements at various stations to determine the event
magnitude. Some stations are observed to be mnre effective
in discriminating event types. This suggests the possibility
of degrading seriously the event discrimination capability of
a network by averaging data for stations having good discrim-
ination capabilities with those which have poor capabilities.
As discussed in subsection C above, this problem may stem, *o
some extent, from recognized problems associated with signal
measurement techniques. Also, the maximum likelihood or
other signal averaging techniques employed need to be care-
fully reexamined. Finally, path absorption and scattering
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effects should possibly be more adequately accounted for in
determining accurate event magnitudes. These areas of con-
cern are left as subjects for future study.

To optimize the estimation of unbiased P-wave magntiudes,
it is desirable to include station corrections in order to
remove signal magnitude measurement bias. These corrections
should also be applied to the noise magnitude measurements in
order to remove any station selection bias. Our experience
with cluster analysis indicates that spectral magnitude mea-
surements of events with few detections presents a serious

operational problem.

In sum, the present technique of estimating unbiased
magnitudes needs to be carefully reexamined and modified.

E. COMPUTATION OF DISCRIMINANTS

Our baseline approach is to select plausible discrimi-
nants which reflect the physical differences between earth-
quakes and explosions. These selected discriminants are ap-
plied empirically to separate explosion and earthquake popu-
lations. Our approach is evolutionary in that ineffective
discriminants will be dropped, and effective discriminants
will be modified to optimize performance. In this work, all

candidate discriminants were used.
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. 1. Empirical basis of our methodology l

Our strategy is to select what we believe to be a com-
plete set of discriminants and to infer seismic source types
by clustering; in performing this analysis we do not require
that characteristics of the various source types be specified
in advance. Instead, intensive training is to be performed
on earthquake data. If available, this training could also
be performed on synthetic data. The purpose of such training
is to obtain tightly clustered distributions of the discrimi-
nants, and to relate observed discriminant patterns to known
event types. Such training with earthquakes is considered
essential before any attempt is made to identify explosions.

Initially, a set of discriminants was selected in order

to categorize events by observable differences of spectral
. shape, and by time-domain measurements of pulse and coda

complexity. To be acceptable, these discriminants are ex-
pected to provide a rational basis for separating explosions
from earthquakes. Some discriminants are expected to be more
effective in identifying earthquakes; others, more effective
in identifying explosions. Regardless, the use of a large,
diverse set of discriminants is expected to result in stable
identification of seismic sources by providing sufficient in-
formation and sufficient redundancy of information to separate
different source types by consistently observed discriminant

patterns. Figure III-8 illustrates the physical basis and
redundancy of the initially selected set of baseline discrim-
inants. Subsection II-B gave a more detailed discussion of
these baseline discriminants.
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FIGURE ITI-8
PHYSICAL BASIS FOR DISCRIMINANTS

SHORTER PERIOD SURFACE WAVES AND RISE IN LOW
FREQUENCY P-WAVE SPECTRUM DUE TO SHALLOW DEPTH

D, = M, - M_(50) Dy = m (0.5) - m (0.3)
D, = M (14) - M, Dy = m,(0.8) - m(0.5)
Dg = M (14) - M_(17) Dyp= ¥ - 3,

MORE EFFICIENT PRODUCTION OF P-WAVES AND LESS
EFFICIENT PRODUCTION OF SHEAR WAVES

Dg = my - Ms D8 =m - mb(0.3)

D7 =m - MS(SO)

SMALL, HIGH-STRESS AND FULL STRESS-DROP SOURCES
Dy, = mb(Z.O) - mb(O.S) Dy = T - c?¢

D9 = mb(3.0) - mb(0.3)

ELASTIC REBOUND OF SOURCE LEADING TO OVERSHOOT

OF THE DISPLACEMENT PULSE AND TO ROLL-UP OF THE
HIGH FREQUENCY SPECTRUM

D4 = mb(0.8) - mb(O.S) D]2= mb(2.0) - mb(O.S)
Dy = mb(l.S) - mb(0.8) Dy = mb(3.0) - mb(O..‘S)
LESS BACKSCATTER FROM SMALLER, SHALLOW SOURCE
OR LESS COMPLEX SOURCE

Dz = Coda Complexity

Dy = Pulse Complexity f - 5¢

COMBINED EFFECTS

Dy=Dyp * Dy
D= 3Dy * Dy Dig= 3Dy * Dy
Dy = 3Dy + Dy
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Sometimes, discriminant clusters will exhibit operation-
al problems. Events, for example, separate because of their
limited range in magnitude, epicentral distance, focal depth,
source/station tectonic classification, number of detected
signals, etc. It should be possible to correct such opera-
tional problems by proper magnitude scaling of the discrimi-
nants, and by inclusion of adequate spectral corrections and

of corrections for distance.

Magnitude scaling problems and other scaling dependen-
cies are expected for a fixed set of spectral discriminants.
For example, larger events are expected to have lower corner
frequencies than those observed for smaller events. Consider
two approaches to handle this particular scaling problem.

One approach is to abandon fixed filters and to scale the
center frequency of the bandpass filters to a fixed ratio of
the corner frequency. However, since these corner frequencies
are not easily measured, we took another approach. Specifical-
ly, we computed magnitudes using fixed spectral bands. On
that basis, discriminants based on spectral shape eventually
had to be subjected to my scaling (as is outlined in Figure
I1I-9). Other signal or event measurement scaling problems
involving source-to-receiver distance, absorption, depth,
etc., can be treated in a similar way. Cluster analysis can
provide an efficient means of detecting these dependencies.

2r Physical basis of discrimination
To be reviewed are some of the expected spectral and
time-domain characteristics of earthquakes and explosions.

Specifically discussed are differences in these characteris-
tics for earthquakes and explosions, and in particular, the

ENSCO, INC. ITII-30




FIGURE III-9
PROCEDURE FOR My SCALING OF DISCRIMINANTS

DISCRIMINANT SCALING METHODOLOGY

Small and large normal shallow earthquake discriminant
models are grouped by cluster analysis.

th

Initial model for i~ and jth frequency band

Dij = m(fi) - m(fj) = ¢ = constant.
Determine the linear scaling model which minimizes the
variance

Dij = m(fi) - m(fj) = a +b my

where a and b are scaling constants and My is the net-
work magnitude of the event.

Possible non-linear scaling is determined by determin-
ing a2 and b separately for the large and small earth-
quakes.
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rationale for using spectral shape and complexity as primary
criteria for differentiating event types.

a. Physics of earthquake sources

A basis for discrimination is the expected spectrum of
earthquakes in terms of a rupture growth model described by
Archambeau (1979, personal communication). To first order,
such sources are characterized by a quadrapole component.
The low frequency spectrum scales as a source volume propor-
tional to the final dimension of the rupture. At higher
frequencies, a quadrapole corner frequency is inversely pro-
portional to the compressional velocity (according to a two-
thirds power law) and to rupture velocity (according to a
one-third power law). For very low rupture velocities, the
corner frequency is lower, and the roll-off of amplitude with

2 over a considerable frequency

frequency varies as £l to £
range before rolling off as f—s. For rupture rates approach-
ing the shear velocity, the f—3 roll-off occurs abruptly
above the quadrapole corner frequency. Shock-driven rupture
rates which greatly exceed the shear velocity are not expect-
ed; if encountered, however, they result in f'2 roll-off
above the corner frequency. The quadrapole spectrum of shear
waves is similar to that for P waves except that the former
have a flat low-frequency component which is about five times
that of P waves. The corner frequency of shear waves is ex-
pected to be slightly lower than that for P waves (about two-

thirds that of compressional waves).

Higher-order multipole components emitted from earth-
quake sources are due to variations in initial stress,
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material properties, and rupture velocity. These components
are generated on a time scale less than that associated with
the quadrapole corner frequency. The effect, which is highly
directional, tends to mask the quadrapole corner frequency.
It also distorts the signal by producing apparently large

high-frequency peaks or holes in the spectrum due to con-

structive or destructive interference of multiple arrivals

from multipole components. It can be argued hypothetically

that the first arriving time terms of the signal are repre-

sentative of homogeneous prestress conditions which existed

at the time of the initial rupture. These are followed by

higher multipole components which are caused by source com-

plexity, and which propagate as multiple pulses having dif-

ferent group arrival times. These multiple pulses will have
time-of-arrival separations which are dependent on spatial

separations of stress concentrations, and on spatial varia- |
tions of material properties within the rupture envelope.
The effects produced by these higher multipole components
have a strong azimuthal dependence, and exhibit large varia-
tions in dominant period, station magnitude, and frequency
band magnitude. Because of contributions from multiple com-
ponents, observational corner frequencies can be expected to
shift to higher frequencies by as much as an octave. Yet, at
some azimuths, the source may appear homogeneous by its ex-
hibiting the expected quadrapole spectrum, unencumbered by
source complexity effects. These source factors are further
complicated by path and receiver absorption, and by scatter-
ing effects. These effects point out the difficulty of re-
ducing magnitude measurements to event related parameters.
If not taken into account by regionalization models, higher-
order multipole moments can cause severe variance problems
in any selected set of discriminants.
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b. Physics of nuclear explosion sources, and a
comparison of earthquake and explosion
characteristics

Initially, vaporization produces a cavity of radius Rc'
The material beyond RC is liquified by a strong shock front
to radius Re- Beyond Re, the material is subjected to -pore
collapse and plastic flow to radius Rp. Beyond the plastic
radius, R_, macrocracks and partial pore collapse occurs to
the elastic radius, Ro' The detailed behavior of rock mat-
erial as a result of this sequence of actions depends on
equations of state for the material involved. Order-of-
magnitude variations in some material parameters, especially
those for near-surface crustal rocks, can result in signifi-
cant variations in the spectrum of compressional waves which
are produced by the explosion process. The most important
variables influencing the character of seismic signals are
the strength and void porosity of the material. Despite the
diversity of signals produced by nuclear explosion sources,
however, certain common features have been observed.

A common feature of explosion signals is the enhanced
emission of compressional waves in all directions (as com-
pared to earthquake signals). For an ideal, purely compres-
sional monopole component emitted from the explosion cavity,
the displacement spectrum increases linearly with frequency.
This contrasts with the flat, low-frequency quadrapole term
which is a dominant component of earthquake signals. This
explosion-related effect, together with the destructive in-
terference which results from the free surface reflection,
should make it difficult, at long periods (~20 seconds), to
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see waves emitted directly from a cavity which is buried at
depths of about one-half kilometer. That such waves are
clearly visible for explosions, however, indicates that a

significant secondary mechanism for generating long-period
surface wave signals exists. Tectonic release associated
with explosions provides such a mechanism.

Some recent results of Rivers (1979) and Hsiao (1978)
indicate, from analysis of long-period surface waves, that
tectonic prestress is released at depths of several kilo-
meters below an explosion cavity. This seems plausible in
that higher ridigities and higher concentrations of prestress
may be encountered at deeper depths. Further, it was observed
that the tectonic release mechanism, as observed using long-
period signals, is almost purely deviatoric, indicating a
purely shear type source. These results suggest that the
long-period waves are 'seeing' a secondary tectonic release
mechanism in rigid crustal strata underlying the source, and
for the most part, they are 'not seeing' the energy emitted
uniformly at the cavity boundary.

The material above is interpreted as follows. At short-
periods (~1 second), one expects to see a predominant mono-
pole component of compressional waves which is uniformly emit-
ted from the explosion cavity. This component is expected to
be combined with a smaller quadrapole component which repre-
sents tectonic release. At long-periods (~20 seconds), only
the quadrapole tectonic release part of the source is ap-
parently seen. At long-periods, too, the monopole component
of cavity emission is invisible as a result of the linear
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decrease with frequency of the monoponle component, and, in

part, as a result of destructive interference produced by the

free surface reflection.

Another significant secondary mechanism can affect the
spectrum of some explosions. Shallow-focus explosions have
been observed to exhibit strong free surface interaction
which is produced by the large tensile stresses associated
with wave reflection at the free surface. This effect may
be intense enough to split rocks at their bedding planes and
along pre-existing fractures. In such cases, the material
can spall under large, normally oriented tensional tractions,
and subsequently, will collapse because of gravity. This
collapse process would result in a more complex signal at
later lag times. In addition, high frequency scattering is
expected as a result of opening and enlarging tensile frac-
tures. This spall effect is expected to attenuate the
surface-reflected depth phase, and to act as a low pass fil-
ter on the depth phase. This effect, then, further complicates
explosion spectra.

Many explosions (and some earthquakes) exhibit time do-
main overshoot. This effect is characterized by a large-
displacement spectrum peak just below the corner frequency.
The physical mechanism responsible for overshoot is not well
understood, but the effect on explosion signals is observed
to be very material dependent. The effect can be interpreted
as a medium-dependent impedence function applied to energy
which is incident to the elastic boundary of the explosion.
As such, the spectral signature called 'overshoot' may be
useful to identify explosions by the excitation of high fre-

quency P-wave magnitudes.

ENSCO, INC.




>

Factors influencing complexity also reflect differences
between earthquake and explosion sources. Low stress drop
events are probably associated with heterogeneously-distributed
material properties within the rupture zone. Such complex
events may yield variable time-lagged, higher-multiple com-
ponents with spectral peaks at frequencies above the quadrapole
corner frequency. This effect influences the pulse complex-
ity measurement of ground acceleration seismograms. Signals
of low stress drop events are also expected to contain high-
er deminant frequencies which are also observed to be asso-
ciated with larger instantaneous frequency fluctuations. This
observation of both earthquakes and explosions is the basis
of our pulse complexity discriminant. The relationship for
earthquakes and explosions is illustrated in Figure III-6.

in general, signals from explosion sources of a given my tend
to contain higher frequency components because the source is
smaller than an equivalent earthquake. Explosive signals
also tend to be lower in phase standard deviation because
gxplosions are less complex sources. These relationships
separate the populations, with the explosion populations in-
terpreted as smaller, higher stress drop events than earth-
quakes.

c. Justification of the multiple discriminant
approach

Observaticas of spectral shape and complexity over the
Zull frequency range of measurements is the basis of our
discrimination apprcach. It is justified by the many phy-
sical factors which influence seismic waves from earthquakes
and explosions. This approach should result in a more
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effective separation of the various possible types of earth-
quakes and explosions. We recognize that some discriminants
are more powerful than others in separating certain types of
events. Thus, care must be (and is) taken to avoid influenc-
ing the identification process adversely by unduly weighting
weak discriminants. On the other hand, relying on only one
or two discriminants increases the risk that the discrimina-
tion process will not separate all of the earthquake and ex-
plosion types which one is likely to encounter.

Ea CLASSIFY EVENT TYPES EY CLUSTER ANALYSIS

The intent of any system used for event identification
is to classify events as earthquakes or explosions. To this
end, cluster analysis enables one to comb files of seismic
measurements in search of consistent discriminant patterns
by which to adaptively identify new event types or to asso-
ciate an observed discriminant pattern with a known event
population. In short, cluster analysis uses an efficient
learning process to systematically classify events as earth-
quakes or explosions.

1. Systems approach to event identification

A highly automated adaptive system was developed to
analyze edited signal waveforms, to estimate parameters char-
acterizing propagated signals, to estimate source pa‘ameters
from signal and noise measurements, and to classiiy events
as earthquakes or explosions. The system mua:imizes the
amount of time a scientist has for actual dat=z 1nterpretatica.
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It is linearly programmed to provide 'assembly line' process-
ing. That is, the output of one processing function is taken
as input to the next function, until classification of an
event as an earthquake or an explosion is made. As shown in
Figure III-10, each function sequentially generates files re-
quired by the event identification process. The functions

are defined as follows:

o SEP - Signal Extraction Process inputs event
locations and raw records of signals, it
times the signal, measures parameters, and
forms compressed edits of signal waveforns
for further study, if needed.

° QCP - Quality Control Process provides for visual

inspection of data.

° EMP - Event Measurement Process transforms mea-
surements of signal parameters to measure-
ments of event parameters; these parameters
physically characterize the source.

° EDP - Event Discrimination Process generates a
scratch file of discriminants to identify
the event as an earthquake or an explosion.

) ECP - Event Classification Process identifies the
event as an earthquake or an explosion based
on 'cluster' analysis of the discriminants.

Permanent files are generated by the SEP to collect sig-
nal measurements which expand as the network adds more seis-
mic stations. Also, this library of event information in-
creases, as more 'users' are added to the system.
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2, Events with unknown discriminant patterns

The process of classifying events using discriminants
is adaptive in that no prior knowledge of explosion discrim-
inant patterns is required. Instead, after training on
earthquakes (or even on synthetic data), any consistently
observed discriminant clustering which cannot be associated
with previously detected earthquake patterns is assumed to
represent a new event type (possibly indicative of explo-
sions). This adaptive discrimination algorithm is performed
as follows (see, also, Figure III-11). Each discriminant
component of the vectors is presumed to have been normalized
such that normal earthquakes can be approximated as unit
normal statistics; this was shown in Figure I-1. Events which
exhibit abnormal discriminant patterns are interpreted ini-
tially as outliers of known normal earthquake populations.
These events may (or may not) exhibit discriminant patterns
which correlate better with the discriminant pattern of some
other type of event. The problem of establishing such a new
(anomalous) event type is to find several outliers with near-
ly identical discriminant patterns. These events are then
classified as anomalous events or possible explosions. From

physical considerations and experience, we expect to see
several distinct types of earthquakes. It is therefore nec-
essary to first train extensively on earthquakes so as to
establish the patterns needed to identify these obvious earth-
quake types. As an initial step, these obvious earthquakes
are associated with a known earthquake cluster and are re-
moved from the data base of unknown events. The adaptive
cluster analysis procedure is then used to identify the re-
maining events. Some of these events will ultimately be

classified as possible explosions.
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FIGURE III-11

INDUCTIVE PROCEDURE FOR DETECTING ANOMALOUS EVENT
GROUPS DISPLAYING CONSISTENT BUT UNKNOWN
DISCRIMINANT CHARACTERISTICS

ADAPTIVE DISCRIMINATION ALGORITHM

° Select a candidate outlier set i containing discriminant

patterns D, different from the normal event pattern Dy
|Di-DN|>11.

¢ Search set i for a pair of events DA 1 and DA 2 with

the largest correlation product above threshold 2

[DA,l’DA,Z] = max{DmDn}>1'2 m#n.

° Initialize the average anomalous dlscrlmlnant pattern
DA, = (DA ; * D 2)/2

] Find other correlated events in set i and update the
average anomalous discriminant pattern

= _ 21 1
DA, = T Dap-1 * 704, (R23).
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Decisions for clustering a group of events with a fixed,
>ut unknown, discriminant pattern are controlled by three
thresholds. The first decision is controlled by a threshold
which is used to extract from the data base those events with
2 significantly different discriminant pattern. If a pair of
these outlier events exhibits a high enough correlation pro-
duct, their discriminants are averaged to initialize the
(rossibly new) anomalous event group. Other events with char-
acteristics similar to those of this anomalous pair are
sequentially associated to update the new discriminant pat-

ern by averaging the discriminants. This association step
i1s controlled by a second threshold which sets the criteria
Zcr ceternining whether the correlation product is high
srough to indicate an acceptable degree of similarity be-
tween discriminant patterns. Finally, a third threshold is

(ol

used to simply count the number of events in # cluster in
order to determine whether to accept the group as a new event
trpe. Presently, this last threshold is set to a count of at
least four events. That is, the minimum number of events re-
quired here to establish the statistical parameters needed '
to characterize a new event group (following the procedure

shown in Figure I-1).

An essential step of the adaptive clustering process is
the calculation of correlation products between vectors which
describe the observed discriminant patterns (referenced in
Figure III-11). It is desirable to use large sets of dis-
crininants in order to provide sufficient information and
recundancy to separate reliably the different seismic source
zvzes. On the other hand, if too many weak discriminants
re ussd, a noise problem is created in the computation of
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the correlation products by mixing strong, effective discrim-

inants with weak, (noisy) ineffective discriminants. We ef-
fectively resolved this problem by applying a non-linear
algorithm to compute the correlation products. Normally a
correlation product would simply be the dot product of two
vectors, where each element of the vector is a discriminant
normalized as is shown in Figure I-1. Here, however, each
elemental product which is summed to obtain the dot product
of two discriminant patterns is weighted by a zero or a one,
depending on the following conditions. The weight is one:

° If each discriminant of the pair is above a pre-
scribed threshold (in this study we used one as
a threshold), and

° If each discriminant of the pair is of the same

sign.

Otherwise, the weight is zero.

Computation of this threshold-controlled dot product
effectively eliminates the accumulation of errors caused by
the use of a large number of weak discriminants. In fact,if
two uncorrelated discriminant patterns are modeled by unit
normal statistics, the expected value of the correlation
product is less than one (for eighteen discriminants applied
with a threshold of one). In effect, this procedure reduces
the accumulation of errors of eighteen discriminant elements
to what would be expected from only a few discriminants. In
cases where it is desirable to use even much larger discrim-
inant sets (e.g., sets consisting of forty or fifty discrim-
inants), this method could effectively control the errors
accumulated in the clustering process by setting an even
higher threshold criteria (e.g., a threshold of two).
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Application of the above procedure does not require any

a priori knowledge of the effectiveness of any particular
discriminant, and it significantly improved the results we
obtained with our set of baseline discriminants.

3. Event association by means of discriminant patterns

Events are identified as earthquakes or explosions by
iterative application of adaptive cluster analysis. That is,
cluster analysis is used to associate events with discrimi-
nant patterns (i.e., event types) previously established by
cluster analysis.

The process is initialized by training on a large set
of known earthquakes. The entire data base of earthquakes
is set up as a normal reference group, and population sta-
tistics are determined. Cluster analysis of outliers is
iteratively performed until the earthquake data base is de-
composed into a number of clustered earthquake types having
uniquely similar discriminant characteristics. Not all of
the earthquakes will exhibit a similar enough discriminant
pattern to associate with one of the clusters. These and
explosion type events are expected to be dissimilar to the
previously established earthquake clusters, and so, they
should be rejected as members of any of the clusters.

Initialization is followed by an association process
which is applied to the entire data base, including presumed
explosions. The association procedure is shown in Figure
III-12. This process extracts events which are obviously
correlated with the known earthquake population. These
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FIGURE III-12

PROCEDURE FOR ASSOCIATING NEW OBSERVATIONS
WITH KNOWN CLUSTERS

ASSOCIATION OF DISCRIMINANT PAT"ERNS

Establish statistical parameters of known populations
+

(Mj, 95 03; see Figure I-1)
Do -M- -th . . .
i 7. e A i~ unknown discriminant pattern
ij o, normalized with jth clustered popu-
J lation statistics

- Find Min {IZijI} ; most likely association by
searching over j unknown event clusters.

1f Min'{IZijI} <rj; the event discriminant is
associated with the jth cluster,

The association is unambiguous if no more than one
cluster is below threshold Tj.

The association is ambiguous if more than one cluster
is below Tj (cross talk).
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events are detected by the minimum deviation of their dis-
criminant measures from established discriminant patterns.
As previously described, a threshold is used to control the
accumulation of errors in the parameter used to measure this
minimum deviation from established discriminant patterns.

The association process is followed by a second stage
of adaptive cluster analysis. The purpose here is to see if
new clusters can be found which describe the remaining un-

identified events.

If the discriminants prove to be effective, at least one
cluster will contain explosions, and it will contain few, if
any, earthquakes. Because of statistical variability, how-
ever, some explosions are expected to slip below the associa-
tion thresholds to be classified either as unidentified
events or to be falsely associated with an earthquake cluster.

Our experience indicates that the number of missed ex-
plosions correspondé closely to that expected from considera-
tion of normal statistics. Therefore, a hypothesis that a
single, central Asian explosion population exists cannot be

rejected.
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SECTION IV

ABILITY OF CLUSTER ANALYSIS TO SEPARATE
EARTHQUAKES AND EXPLOSIONS

The results produced by applying cluster analysis using
discriminant patterns were summarized earlier (Section II,
subsection E). This section includes a network summary of
discrimination performance, the predicted operating charac-
teristics of clustering based on threshold control assuming
normal statistics, and cluster classification of events in
the data base. It is notable that the predicted operating
characteristics of the clustering technique are close to the
observed network discrimination performance, and as such,
there is no plausible basis for rejecting the hypothesis that
a single explosion cluster exists.

Cluster analysis is an empirical procedure. The results
are significant only if they are physically or operationally
interpretable. The interpretation of the eight earthquake
clusters is shown in Figure IV-1. The absence of cluster
EQ-1 in the figure indicates that events formally associated
with this cluster were passed into other clusters as a result
of the iterative association process. Physically, cluster
analysis identified and categorized normal, deep, and
'strange' explosion-like shallow events. The latter group
exhibited strong, overshoot and high, apparent corner fre-
quencies. High corner frequencies result from the presence
of higher multipole moments in the source.
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FIGURE IV-1

PHYSICAL AND OPERATIONAL INTERPRETATION OF THE
RESULTS OF THE EIGHT EARTHQUAKE CLUSTERS

INTERPRETATION OF CLUSTERING MODELS

] NORMAL EARTHQUAKES

EQ-5 Shallow depth, my of 4.1, few stations detected

EQ-2 Intermediate depth, median My of 4.5, few sta-
tions detected

EQ-6 Shallow depth, my of 4.9, many stations detected
EQ-8 Shallow depth, my of 4.9, many stations detected

] EARTHQUAKES ASSOCIATED WITH DEEP EVENTS

EQ-3 my, of 4.5, few stations detected
EQ-7 my of 4.5, average number of stations detected

e  REGIONAL EARTHQUAKE CLUSTER OF 'EXPLOSION LIKE' EARTH-
QUAKES

EQ-4 my of 4.7, many stations detected.
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As used here, clustering of earthquakes showed a =trong
correlation with magnitude and with the number of stations
detecting the events. This indicates that we had operational

problems in the following areas:

o Proper magnitude scaling of the discriminants.
o ° Detecting and measuring weak signals.
) Proper determination of unbiased network magnitudes.

These problems were discussed thoroughly under Section III as
methodology considerations.

The two aspects of gauging performance ... separation of
explosions or defining clusters through the use of low-
variance discriminant values ... are summarized in Figures
IV-2 and IV-3. These figures clearly show the benefit of
using many discriminants; they also display what could be
considered as weaker discriminants (such as Dl’ DZ’ D3, and
D11’ as is seen in Figure IV-2). However, even some of the
weaker discriminants, such as D1 and D3, seem to be useful
in defining earthquake clusters with low variance, while
even D11 helps to reduce the variance of the explosion popu-
lation (as is seen in Figure IV-3). The inclusion of these
weaker discriminants in the clustering process has the ad-
vantage of reducing the false alarm rate. Network perfor-
mance, shown in Figure II-9, confirms that several false
alarms were encountered in classifying the data as earthquakes
or explosions. At this point, then, it is prudent to defer
merging or eliminating redundant discriminants until the
operational problems flagged by clustering are eliminated.
Finally, note that the resolution of operational problems
might alter the relative effectiveness of the discriminants

used.
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FIGURE IV-2
SEPARATION OF EXPLOSIONS
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Discr.|EQ-1 | EQ-2 | EQ-3 | EQ-4 | EQ-S | EQ-6 | EQ-7 | EQ-8
D, 0 0 0
D, 0 0 0 0
D, 0 0 0 0
D, 0 0 0 0 0 0
D¢ 0 0 0 0 0
D 0 0 ’ 0 0 0 0 ’
D, |0 0 0 0 0 0 0 0
D8 ] ] ] 0 ] 0 ]
Dg 0 0 0 0 0 0
D10 ] 0 ] ]
Dy, 0
Piyo 0 0 0 0 0
Dy, ' 0
Dy, 0 0 0
Dys 0
D¢ 0 0
Dl 0
Dig ’ 0
O: OVER 50% EX's SEPARATED FROM EQ GROUP
9: OVER 85% EX's SEPARATED FROM EQ GROUP




FIGURE IV-3
POPULATION PINS

Discr.|EQ-1| EQ-2 | EQ-3 | EQ-4 | EQ-5 | EQ-6 EQ-7 | EQ-8 | EX-1

D, 0 ’
D, | O 0 0
D, ’ . ’
D, 0 . 0
D 0 0 0
Dy | @ ' 0 ' 0 0
D, | © ’ 0 ’ 0
Dg | ® . 0

° Dy 0 0 0 0
Dig | © ’
Dy 0
b, | o 0
o 0
D14
D15 ]
Dig
Dy7 0
Dig

O < 25% OF DISCRIMINANT RANGE
¢ < 12.5% OF DISCRIMINANT RANGE
‘ ENSCO, INC. IV-5




SECTION V
CONCLUSIONS

Our najor contribution to the Event Identification Ex-
veriment was the development and demonstration of a systematic,
objective, and robust procedure for performing event identifi-
cation. This procedure allows us to rapidly implement, test,
and improve effective event discrimination procedures.
Specifically, the procedure used accurately classifies events
as earthquakes or as explosions by means of their 'like' dis-
criminant patterns. The association of various events with
one another is based on an empirical cluster analysis tech-
nique. Using this technique, we not only demonstrated that
events can be accurately classified, but also, that magnitude
scaling problems and other operational problems, as well, can
be identified with speed and certainty. Furthermore, the
systematic clustering procedure used allowed us to correct
the main operational problem of magnitude scaling, to process
the properly scaled discriminants, and to obtain corrected
results within a short period of time (a matter of a few days).

Using Jdiscriminants corrected for magnitude scaling prob-
lems,, we found that we could identify events using only a
single earthquake cluster and a single explosion cluster.
Without proper magnitude scaling, on the other hand, eight
earthquake clusters were required to produce this same re-
sult.
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Another more subtle aspect of the results obtained was
that by properly scaling the discriminants, their relative
effectiveness was dramatically changed. The latter result
demonstrated the importance of insuring that all operation-
al problems are resolved before prejudging the efficacy of
the individual discriminants.

The Event Identification Experiment was a significant
learning experience. In Figure V-1, we list eleven factors
which strongly influenced our performance. Considerable
improv- went in event identification performance should be
obtained by implementing automated quality control into the
editing process and by implementing advanced signal analysis
procedures for minimizing the influence of seismic noise.

The use of cluster analysis to identify events by their
physical source characteristics and to identify operational
difficulties which prevent event classification is a new ap-
proach to event identification by means of multiple discrim-
inants. The technique is basically a statistical learning
process which gives the scientist a capability to group ex-
plosion events without requiring any prior knowledge of ex-
plosion or earthquake discriminant patterns. That is, the
technique is based only on observing consistent repeatable
discriminant patterns. Other analysis means, such as phy-
sical medeling and extended signal analvsis, can subsequently
be used to identify clusters of anomalcus or unusual events
as probably explosions. This statistical learning process
is summarized in Figure V-2.
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FIGURE V-1
FACTORS INFLUENCING PERFORMANCE

10.

11.

QUALTIY CONTROL
SIMPLE STANDARD AUTOMATED PROCEDURES
EARTHQUAKE TRAINING

PHYSICAL VALIDITY OF DISCRIMINANTS
STATISTICAL LEARNING

ADAPTIVE DISCRIMINATION (DETECT NEW CLUSTERS)
DISCRIMINANT PATTERN ASSOCIATION (CLUSTERING)
NOISE MINIMIZATION

SUFFICIENT DATA

REDUNDANCY

STABILITY TESTING
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. FIGURE V-2
CLASSIFICATION OF EVENTS AS EARTHQUAKES OR EXPLOSIONS

STATISTICAL LEARMING PROCESS
° TRAIN MULTIPLE DISCRIMINANTS ON EARTHQUAKES

° IF POSSIBLE, ASSOCIATE EVENTS WITH ESTABLISHED
EARTHQUAKE OR EXPLOSION CLUSTERS

° GROUP OTHER EVENTS BY ADAPTIVE CLUSTERING

. NEW CLUSTERS ARE IDENTIFIED AS EARTHQUAKES OR
EXPLOSIONS BASED ON:
‘ - PHYSICAL CHARACTERISTICS
- ASSOCIATION WITH KNOWN EARTHQUAKES OR
EXPLOSIONS (BASED ON NON-SEISMIC INFORMA-
TION).
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As noted above, several operational problems were iden-

tified as a result of applying cluster analysis and of quality

control checking of the waveform editing process. These op-

erational problems are summarized below:

ENSCO,

Eliminate large timing errors, and, consequently,

large magnitude measurement errors.

Use advanced signal analysis techniques to minimize
the influence of seismic noise (i.e., to improve

the signal-to-noise ratio of weak signals).

Apply a high-resolution filtering technique in the
measurement of band-limited magnitudes. To do
otherwise produces bias in estimates of the variable
frequency magnitudes.

Re-examine and modify the network magnitude averag-
ing technique currently employed. Presently, the
method used grossly underestimates the magnitudes
of events having few detections.

Apply more effective discriminants and eliminate
those discriminants which are shown to be ineffec-
tive. However, this should only be done after

eliminating obvious operational problems.

Use synthetics as an alternative source of data

for cluster analysis.

Consider the application of discriminants on the
basis of seismic region. This obviously requires
a much larger data base in order to sample all
seismically active regions as well as to sample

large aseismic, plate regions.
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In sum, our approach to event identification is to
assemble a set of effective discriminants and to associate
and identify events by their 'like' discriminant patterns
(clusters). The underlying philosophy to this approach is
summarized in Figure V-3; what we have learned in our first

attempt to apply cluster analysis is summarized in Figure
V-4.
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FIGURE V-3
OUR PHILOSOPHY OF EVENT IDENTIFICATION

BOTH EARTHQUAKES AND EXPLOSIONS ARE COMPLEX -
PHYSICAL PROCESSES REQUIRING THE USE OF
MULTIPLE DISCRIMINANTS FOR UNIQUE EVENT
IDENTIFICATION

SIMILAR SOURCE MECHANISMS SHOULD YIELD SIMILAR
DISCRIMINANT PATTERNS

THE DISCRIMINANT SET WILL EVOLVE TO ENCOMPASS
ALL TYPES OF EARTHQUAKES AND EXPLOSIONS

STABLE EVENT CLUSTERS DETECTED EMPIRICALLY MUST
BE PHYSICALLY OR OPERATIONALLY CHARACTERIZED,
OR THEY MUST BE DISCARDED

DISCRIMINANTS SHOULD BE GENERALIZED AND IM-
PROVED UPON BY PHYSICAL SOURCE STUDIES

PRACTICAL IDENTIFICATION PROCEDURES WHICH ARE
DEVELOPED SHOULD BE IMPLEMENTABLE ON A REAL-
TIME SYSTEM

A SYSTEMS APPROACH WILL BE APPLIED TO IDENTIFI-
CATION IN ORDER TO SPEED THE LEARNING PROCESS,
TO PROVIDE FOR FLEXIBLE ANALYSIS, AND TO EASE
DATABASE MAINTENANCE REQUIREMENTS.




FIGURE V-4
WHAT WE HAVE LEARNED

A SYSTEM APPROACH TO DISCRIMINATION FACILITATES
- MODIFICATION OF PROCEDURES

- TURNAROUND ON LARGE DATA SETS

- LEARNING

- QUALITY CONTROL

BY TRAINING ON EARTHQUAKES WITH CLUSTER ANALYSIS, WE
LEARNED THAT
2 MAGNITUDE SCALING IS OUR MOST SERIOUS PROBLEM

- NOISE (i.e., lack of detection) IS ALSO A SERIOUS
PROBLEM

BY USING CLUSTER ANALYSIS OF EVENTS OBSERVED AT DIF-
FERENT STATIONS, WE LEARNED THAT THE

= MAGNITUDE-DISTANCE SCALING USED APPEARS VALID

- CALIBRATION OF ABSOLUTE MAGNITUDES APPEARS VALID

= TREATMENT OF NOISE IN NETWORK AVERAGING IS A
SERIOUS PROBLEM

MULTIVARIATE DISCRIMINATION IS NOT FEASIBLE UNTIL
- INDIVIDUAL DISCRIMINANTS ARE PROPERLY SCALED

- AT LEAST ONE STABLE CLUSTER IS OBTAINED FOR
EARTHQUAKES AND EXFLOSIONS

= DISCRIMINANTS AND CLUSTERS MUST BE PHYSICALLY
WELL BASED.

ENSCO, INC. V-8




SECTION VI
REFERENCES

Anglin, F. M., 1971; Discrimination of Earthquakes and-Ex-
plosions using Short-Period Array Data, Nature, Vol.
233, 51-52,

Bache, T. C., J. T. Cherry, and J. M. Savino, 1974; Applica-
tion of Advanced Methods for Identification and Detec-
tion of Nuclear Explosions from the Asian Continent,
Systems, Science and Software Semi-Annual Report No.
$8S5-2-75-2483, Contract Number F44620-74-C-0063, La
Jolla, CA.

Bell, A. G. R., 1978; Application of Two Multivariate Class-
ification Techniques to the Problem of Seismic Discrimi-
nation, M.S. Thesis, The Pennsylvania State University,

University Park, PA.

Booker, A., and W. Mitronovas, 1964; Application of Statis-
tical Discrimination to Classify Seismic Events, Bull.
Seismol. Soc. Am., 54, 961-971.

Claerbout, J. F., 1976; Fundamentals of Geophysical Data
Processing, McGraw Hill, New York, NY.

Dietz, D. L., and R. L. Sax, 1978; Relationships Between
Noise and m, Bias Applied to Seismic Station Site Selec-
tion, Texas Instruments Report No. ALEX(01)-TR-77-12,
AFTAC Contract Number F08606-77-C-0004, Texas Instru-
ments Incorporated, Dallas, TX.

ENSCO, INC. VIi-1




Evernden, J. F., 1967; Magnitude Determination of Regional
and Near-Regional Distances in the United States, Bull.
Seismol. Soc. Am., 57, 591-639.

Evernden, J. F., and W. M. Kohler, 1976; Bias in Estimates
of my at Small Magnitudes, Bull. Seismol. Soc. Am., 66,
1887-1904.

Fitch, T. J., M. W. Shields, and R. E. Needham, 1978; Com-
parison of Crustal Phase Magnitudes for Explosions and
Earthquakes, Seismic Discrimination Semi-Annual Tech-
nical Summary, Lincoln Laboratory, MIT, Lexington, MA.

Fix, J. E., J. G. Swanson, and W. D. Ballard, 1973; Study of
Selected World-Wide Seismograph Network Stations, Seis-
mic Array Analysis Center, Report No. 11, Teledyne
Geotech, Garland, TX.

Hair, G. D., J. H. Funk, and Research Staff, 1964; Noise
Study, Special Report No. X, Texas Instruments Incor-
porated, Dallas, TX.

Hsiao, H. Y. A., 1978; Application of a Combined Source
Model for Seismic Discrimination, Technical Report No.
21, Texas Instruments Report No. ALEX(01)-TR-78-09,
AFTAC Contract Number F08606-77-C-0004, Texas Instru-
ments Incorporated, Dallas, TX.

Liebermann, R. C., and P. W. Pomeroy, 1969; Relative Excita-
tion of Surface Waves by Earthquakes and Underground
Explosions, J. Geophys. Res., 74, 1575-1590.

Marshall, P. D., and P. W. Basham, 1972; Discrimination Be-
tween Earthquakes and Underground Explosions Employing
an Improved my Scale, Geophys. J. R. Astr. Soc., 28,
431-458.

ZINSCO, INC. VI-2




North, R. G., 1977; Station Magnitude Bias - Its Determina-
tion, Causes, and Effects, Technical Note 1977-24,
Lincoln Laboratory, MIT, Lexington, MA.

Nuttli, 0. W., 1973; Seismic Wave Attenuation and Magnitude
Relations for Eastern North America, J. Geophys. Res.,
78, 876-885.

Ringdal, F., 1974; Estimation of Seismic Detection Thresholds,
Technical Report No. 2, Texas Instruments Report No.
ALEX(01)-TR-74-02, AFTAC Contract Number F08606-74-C-
0033, Texas Instruments Incorporated, Dallas, TX.

Ringdal, F., 1975; Maximum Likelihood Estimation of Seismic
Event Magnitudes from Network Data, Technical Report No.
1, Texas Instruments Report No. ALEX(01)-TR-75-01,
AFTAC Contract Number F08606-75-C-0029, Texas Instru-
ments Incorporated, Drllas, TX.

. Rivers, W. D., 1979; Effect of Tectonic Strain Release on
Surface Wave Magnitudes, Talk presented at VELA Seismo-
logical Center Research Review, Alexandria, VA.

Sax, R. L., 1976; Design, Simulated Operation and Evaluation
of a Short-Period Seismic Discrimination Processor in
the Context of a World-Wide Seismic Surveillance System,
Technical Report No. 9, Texas Instruments Report No.
ALEX(01)-TR-76-09, AFTAC Contract Number F08606-76-C-
0011, Texas Instruments Incorporated, Dallas, TX.

Sax, R. L., and Technical Staff, 1978; Event Identification -
Applications to Area of Interest Events, Technical Re-
port No. 20, Texas Instruments Report No. ALEX(01)-TR-
78-08, AFTAC Contract Number F08606-77-C-0004, Texas
Instruments Incorporated, Dallas, TX.

ENSCO, INC. VI-3




Sax, R. L., A. G. R. Bell, and D. L. Dietz, 1979; (S) Event
Identification Experiment: Combined Priority I/Priority
IT Data Sets (U), Technical Report No. 7, ENSCO Report
No. SAR(01)-TR-79-07, AFTAC Contract Number F08606-79-
C-0014, ENSCO Incorporated, Alexandria, VA.

Strauss, A. C., 1978; Application of Ringdal's Method to Un-
biased Measurement of the Ms-mb Relationship, Technical
Report No. 15, Texas Instruments Report No. ALEX(01)-
TR-78-03, AFTAC Contract Number F08606-77-C-0004, Texas
Instruments Incorporated, Dallas, TX.

Unger, R., 1978; Automatic Detection, Timing and Preliminary
Discrimination of Seismic Signals with the Instantaneous
Amplitude, Phase, and Frequency, Technical Report No. 4,
Texas Instruments Report No. ALEX(01)-TR-77-04, AFTAC
Contract Number F08606-77-C-0004, Texas Instruments
Incorporated, Dallas, TX.

Veith, K. F., and G. E. Clawson, 1972; Magnitude from Short-
Period P-Wave Data, Bull. Seismol. Soc. Am., 62, 435-
452,

ENSCO, INC. VI-4




APPENDIX A
THE AUTOMATIC EDIT DETECTOR

The detector designed by Unger (1978) operates on.time
sequences of instantaneous amplitude and phase measurements.
The detection concept is based on a simplified model of a
random phase, modulated noise component which is vectorially
added to a fixed signal component as follows:

s(t) S(t)cos(anot+¢s(t)) (T1<t<T2)

n(t) N(t)cos(Zﬂfot+¢n(t)),

where T and T, define a time gate containing the signal, and
S(t) and N(t) are instantaneous envelope traces of the seis-
mic signal and noise, respectively. The envelope modulation
components are slowly varying compared to the phase modulated
component in the above waveform representations. Also, the
instantaneous phase ¢n(t) is presumed to vary rapidly, ran-
domly, and uniformly between 0 and 27 with respect to the
signal phase ¢S(t).

A simplified model representing interfering signals and
noise was obtained by adding s(t) and n(t). Further, S(t)
and N(t) are approximated by fixed nominal values S and N in
the signal window between T1 and TZ; ¢S(t) is arbitrarily
set to zero. Modulation of the signal is modeled by random
phase changes of the interfering noise component A¢(t).
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This leads to the following simplified model for additive

signal and noise:

L(t)

s(t)+n(t) = E(t)cosO(t) = Scos(anOt)

+

Ncos(anot+A¢(t)),

where E(t) is the envelope. Phase modulations, A¢(t), of
noise arz equally likely to ocrur between 0 and 2wr. By geo-
metrical considerations, this procedure provides an analytical
basis for estimating the probability that the envelope E(t)

of interfering signal and noise in the signal gate T1 to T,
exceeds noise. This concept for timing signals by counting
excessions of noise in a leading time gate is shown graphical-
ly in Figure A-1. For implementation purposes, noise N would
be gauged from instantaneous envelope measurements of noise
preceding a moving-gate, signal time window.

The results derived in Figure A-1 indicate the follow-

ing:

° For signals less than 6 dB over noise, peaks of
P(E(t)>N) correspond to S/N=max<2. Therefore, the
algorithm is a maximum likelihood timer of weak
signals, and it is independent of the statistical
distribution of the noise.

® For signals 6 dB over noise, P(E(t)>N)=1.0, i.e.,
always exceeds noise.

° First encountered occurrences of maximum peak above
a threshold or saturated unity values of P(E(t)>N)
are taken to indicate the onset time of a signal.
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Vectors from origin, O, represent possible states of

Noise Preceding Signal Interfering Signal + Nois

: se

(
E(t) : N
I -

o __ L8 [ Ad E>N for hatched states

- N AARE e.g.,: El(t) <N

\ Ez(t) S

Y,
EE{t}
s

E represents the envelope of interfering signal + Noise;
N, noise; and S, signal.

S sels S

coslA¢ = N Ad = cos ™

Since A¢ is equally likely to occur between 0 and T, the
fraction of interfering cignal and noise exceeding noise is
shown for the model by the hatched line. The probability
of E(t) exceeding the noise level, N, is given by:

P(E(t) >N) =

i = ;rl-cos-l(-z-sﬂ-) (0 <§-5 2)
{ (1)

1 S>2 .
Even for an infinitesimal signal, E(t) exceeds noise half

the time. P(E(t)>N) ranges from 0.5 to 1.0 and is 1.0 for

§>2.

FIGURE A-1

PROBABILITY OF MEASURED ENVELOPE EXCEEDING NOISE
AS A ROBUST DETECTION CONCEPT FOR TIMING WEAK SIGNALS
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These results formed the concept of a detector which optimal-
ly times the arrival of short-period P waves. The detector
gauges P(E(t)>N) by measuring the fraction of excessions of
N by E(t) in a leading four-second time window. This is
potentially a robust algorithm for detecting signal onset
times. For example, estimates of N by the mecian of noise
preceding a signal are insensitive to large fluctuations due
to non-stationary noise or signals, or due to system noise.
Ramps characterizing the onset of emergent signals will not
greatly affect this estimate of N until at least half of the
noise gate overlaps the signal. Counting the number of
E(t)>N states in the signal window is also a robust calcula-
tion, and is similarly insensitive to spikes, 'glitches',
and to other sources of large amplitude errors.

Analyst comparison tests of the automatic timing detec-
tor given by Unger (1978) indicated that nearly half of the
events examined were timed with no apparent error. All but
a few of the 28 events were timed with errors less than 0.5
seconds. Unger observed that the detector had a slight ten-
dency to pick arrival times late by ignoring small peaks at
the beginning of the signal. This tendency was corrected by
detecting the first envelope peak, measuring the period of
the peak, and backing up three-quarters of a cycle to time
more accurately the first motion of the signal.

Experience gained from using Unger's detector in the
Event Identification Experiment indicated that the detector
produced a negligible number of false alarms. Almost all
detected signals were accurately timed, including cases with
barely visible signals. A problem was encountered with missed
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signals. In most cases these were either gradually emer-

gent signals, or short, impulsive signals of duration much
less than the leading four-second time gate. There are many
ways these deficiencies can be corrected; e.g., using a
variable-length time gate, employing median in place of maxi-
mum estimates of noise in the time gate preceding the signal
window, and by parallel operation of a power detector which
is designed to capture large emergent signals of short dura-
tion. In a few cases, large, easily detected signals ot at
least four seconds duration were missed. This problem could
have also been avoided by changing the algorithm from the
presently used maximum noise peaks to median noise preceding
the signal in order to prevent short intervals of large noise
or spikes from inadvertently shutting off the detector.

Another problem observed in automatically timing signals
stemmed from (apparent) multiple event arrivals. The short-
period edit process involves timing events of approximately
known origin time, distance, and magnitude. The problem of
correctly associating one of several event or phase arrivals
with a known event can be accomplished as follows:

) List all apparent phase arrival times detected on

the seismic record.

° Compute magnitude and time residuals associated

with each phase arrival time.

° Select the P phase most likely to be associated
with the event as that which minimizes the apparent

travel-time and magnitude errors.

For the event identification data base, this association
process is facilitated by a statistical summary of magnitude
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and time residuals, along with the corresponding standard
deviations for these parameters.
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APPENDIX B

VARIABLE FREQUENCY MAGNITUDE MEASUREMENT BY A
FIXED BANK OF SHORT-PERIOD AND
LONG-PERIOD BANDPASS FILTERS

A. OPTIMUM DESIGN OF BANDPASS FILTERS

Gaussian bandpass filters were optimized to measure
frequency-dependent magnitudes. A mathematical analysis of
the filtering process is shown in Figure B-1. The envelope
of a Gaussian-filtered impulsive signal is exp[-ﬂ(Af)ztz].
For two, equal-amplitude signals separated by a time inter-
val At, the envelope trace &(t) is given by:

2(t) = exp-m(85)°(t-55H% + exp-n(ap)i(e+bhH?,

where At is the separation of envelope peaks in the time do-
main and Af is the filter bandwidth. Consider the envelope
trace for the case where Af-At=1. Midway between the two
signals, at t=0, 2(0) <0.9; at t=+At/2, 2£>1.0. On this basis
the peaks are distinguishable if Af-At21. If time-domain
peaks occur in a much smaller time interval than At=1/Af,
they are integrated into a larger single peak which biases
and increases the variance of magnitude measurements. This
lower limit of At for resolving the two signals as envelope
peaks is minimized by the use of Gaussian filters.

The main design problem in the use of filters is to
provide sufficient frequency resolution consistent with an
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FIGURE B-1
MATHEMATICAL DERIVATION OF FILTERING PROCESS

GAUSSIAN FILTERS

° The following are symbol definitions

frequency-domain time-domqin
Seismic Data D(f) d(f)
Gaussian Filter B(f) b(f)
Filtered Data F(f) ().

° The spectrum of the Gaussian filter is given as follows

f-f _
B(f) = exp - “[_KTQJ (1)
where f = frequency
f = center frequency of filter

° Y-

° The impulse response is obtained by Fourier transforma-
tion

full bandwidth of filter.

b(t) = Af {exp-mAfitl) cos21£ t. 2)

° The spectral and time-domain state of the filtered data
is given by the product of the spectrum;

F(f) = B(£)D(f)
£(t) =-wf "F(£)2 12Tt g,

or by convolution of the time-domain filter with the
data

+o
£(t) = o/ b(t-t )dt .
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adequate resolution of the envelope peaks of signals occur-
ring in a signal time window. In the Event Identification
Experiment, this tradeoff was evaluated empirically using

variable bandwidth measurements of the magnitude of P-wave

signals.

Inspection of equation (2) in Figure B-1 indicates that
for a filtered unit-amplitude impulsive signal, the envelope
peak is equal to the bandwidth, Af. This indicates that peak
envelope measurements of signals are consistently related to
the magnitude of a broadband input signal by dividing these
measurements by the full bandwidth of the filter, Af. How-
ever, P-wave signals are not impulses; they are, instead,
complex waveforms which include a random coda component. The
validity of normalizinz filtered signal magnitudes, then, by
dividing peak amplitude measurements by the filter bandwidth,
was tested experimentally. The results of these tests are
shown schematically in Figure B-2.

In all cases tested, covering a wide range of short-
period frequencies from 0.3 to 3.0 Hz, normalization by the
filter bandwidth provided accurate and consistent signal
magnitudes provided that the Q-1 (as defined in Figure B-2)
of the filter is constrained to lie between 0.3 and 0.6. In
fact, Q'l of 0.45 appeared to be optimum, and this value was
used to design all of the short-period filters used in the
Event Identification Experiment.

The result of testing long-period magnitude measure-
ments, which were filtered at frequencies from 0.02 to 1.0
Hz, was quite different. The long-period data that were

[#2]
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Interference of multipath
and coda noise peaks due
to lack of time resolution.
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FIGURE B-2

NORMALIZATION OF SHORT-PERIOD FILTERED
MAGNITUDE MEASUREMENTS

Leakage of spectral noise and
signal peaks due to lack of
frequency resolution.




tested indicated that filtered amplitude peaks were consist-
ently less dependent on Q-1 and on filtered bandwidth. Thus,
a quasi-sinusoidal signal model, having an effective band-
width which is equal to, or less than, that of the signal,
appeared to be the most appropriate model for long-period
magnitude measurements. For example, a signal having its
peak amplitude at 25 seconds period yielded approximately the
same magnitude for different filters with Q'1 values ranging
from 0.3 to 0.6. This result was not unexpected for dis-
persed sinusoidal signals. Consequently, we measured the
filtered, long-period magnitudes based on the assumption of
a quasi-sinusoidal signal input having bandwidth less than
that of the filter. For this purpose, a fixed bandwidth of
0.01 Hz was used for long-period filter magnitude measure-
ments. These data were not normalized by dividing by Af, as
was the case for the short-period filtered magnitude measure-

ments.

Figure B-2 schematically illustrates the bias and vari-
ance of filtered magnitude measurements which fell outside
of the empirically determined, acceptable range of filter
bandwidth. If the bandwidth is too small, time peaks are
integrated, and produce a large positive bias of the magni-
tude. The variance of the magnitude measurements is also in-
creased since effects produced by multipath signals and coda
vary from station to station. If the bandwidth is too large,
positive bias and increased variance of filtered magnitude
measurements are produced by leakage from spectral peaks
associated with the noise or the signal.
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This empirical approach to optimizing the filtered
magnitude measurements was considered necessary because of
the speculative nature of any theoretical treatment of the
problem (due, in large part to the complexity and diversity
of seismic signals and noise). For a more complete evalua-
tion of filters, additional data, covering different source
and receiver tectonic environments, and different source
mechanisms (e.g., shallow and deep earthquakes, and explo-
sion sources) need to be examined.

B. SAMPLING OF SPECTRAL MAGNITUDES AND MINIMIZATION OF
RADIATION PATTERN EFFECTS

Our initial, simplified approach to the discrimination
problem was to model event-filtered magnitudes as a set of
constants which characterize the source type. These magni-
tudes are estimated from signal and noise measurements through
application of the maximum likelihood criteria. In the pre-
ceding section on filter optimization, we noted that empirical-
ly, a narrow range of Q filters was found to be optimum for
measuring short-period magnitudes. We further noted that these
optimum filters were rather broadband, in nature, with Qs
ranging from 1.7 to 3.4. Further, from design optimization
considerations based on time-frequency sampling analysis,
short-period magnitudes are measured at logarithmically
spaced center frequencies, as is shown in Figure B-3. For
filtered, long-period magnitude measurements, filters were
centered uniformly along the frequency axis, with a bandwidth
of 0.01 Hz.
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In using fixed-magnitude levels as basic information

from which to compute event discriminants, a source of errors
are holes in the spectrum which occur at stations lying along
a node of the source radiation pattern, (holes are in the
spectrum because of source dynamics). These effects are
ninimized by broadband frequency sampling provided by the
short-period filters. In addition to covering spectral holes
of narrow bandwidth, there is sufficient time resolution to
sample several independent degrees of freedom in the signal
window by means of coda backscattering and multipath propa-
gation of energy from rays not oriented along the node. Thus,
use of low-Q filters should tend to smooth comp exities of
source geometry, and should provide better correspondence to
a simplified model of fixed, spectral-magnitude levels char-
acterizing different types of sources. Observations of
earthquake source spectra for several event-station pairs,
after correcting for absorption, correspond closely to simple
signal models with (roughly) flat spectra at low frequencies,
and uniform roll-offs above the apparent corner frequency.

s ERROR ANALYSIS OF SPECTRAL LEAKAGE

A filtered signal amplitude spectrum is equal to the
product of the signal and filter amplitude spectra. Since
magnitude measurements are derived from peak-amplitude mea-
surements, frequency variability of spectral peaks is a
significant source of magnitude measurement error; this is
especially true for events for which the signal spectrum
changes rapidly with frequency. If the peak frequency of the
filtered signal spectrum occurs outside an acceptance band
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for valid magnitude measurement (e.g., within a frequency
interval where the filter response is less than 3 dB down),
the magnitude measurement is considered to be invalid. Such

erroneous magnitude measurements are considered to result

from spectral leakage from signal or noise signatures too

far removed in frequency to be representative of the desired
frequency band. The main effect of spectral leakage is to
cause a positive bias to filtered magnitude measurements;
then, too, for each source type, spectral leakage increases
the variance from event-to-event and from station-to-station.
Event-to-event variations occur primarily at high frequencies,
and are evidenced by variable corner frequencies and variable
roll-off characteristics above the corner frequency. Station-
to-station variations occur mainly at high frequencies, and
are probably associated with the variable absorption of energy
along the propagation path.

The significance of the spectral leakage effect was
evaluated numerically for several plausible earth models. A
simple model was used to evaluate the significance of errors
caused by cspectral leakage. Signal parameters affecting
spectral leakage are:

° Absorption

° Corner frequency

° High frequency spectral roll-off
° Filter response characteristics.

The roll-off of a source model's amplitude with frequency is
expected to be close to zero below the corner frequency.
Above the corner frequency, the roll-off is proportional to

ENSCC, INC. BEg




£7%, where the integer a varies between one and three. Ab-
sorption of short-period P waves is approximated by a t*
mcdel as exp[-m(t*f)].

The following example illustrates the effect on
frequency-dependent magnitude caused by variations in t*. A
very low absorption path (perhaps too low) is represented by
t#*=0.3; nominal absorption, by t*=0.6; and high absorption,
by t*=1.0. These values are considered representative of
different absorption paths. The magnitude and frequency de-
viations caused by these effects, therefore, are assumed to
typify the variability of magnitude measurements one would
observe. The results of the frequency-dependent-t* study
are shown in Figure B-4 for a filter centered at 2.0 Hz, and
for an optimum Q'1 of 0.45 (see Figure B-2). The results
indicate that for a typical earth model, a leakage problem
exists when one attempts tc m2asure high frequency magni-
tudes above the corner frequency. The poéitive bias of mag-
nitude measurements made at 2 Hz varies between 0 and 0.6 my
units depending on which earth model is assumed for a par-
ticular event-station path. '

A stability problem also exists in measuring the magrni-
tudes of signals with peak frequencies occurring in the side-
band of the Gaussian filter. Because of multipath arrivals
and scattering through a heterogeneous earth, instantaneous
frequency fluctuations are normally observed in the 10-second
singal window. The effect of the filter response of such
fluctuations occurring in signals with the dominant frequency
in the side-band of the filter is to increase greatly the
variance of the magnitude measurements. For example, for a
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signal spectrum roll-off proportional to f'3, an absorption
t* of 1.0, and a frequency uncertainty of +0.15 Hz, the mag-
nitude uncertainty is about 0.6 my units. On the other
hand, for a flat signal spectrum and a t* «f 0.3, the magni-
tude uncertainty produced by the filter side-band 'amplifica-
tion' is only +0.1 My units. Thus, the nerminal magnitude
measurement errors shown as a function f{ie-uency error in
Figure B-4 have (approximately) equal, sarge uncertainty
limits produced by normally observed peak-f+cquency fluctua-
tions. A consequence of this variance of the magnitude bias
is that there is probably no reliable means by which to cor-
rect such magnitude errors by sensing the frequency error
associated with the measured magnitude. For example, in Fig-
ure B-4, if the 2 Hz filter output is sensed to be 1.4 Hz, a
correction of -0.6 my units is indicated. WHowever, the un-

certainty associated with this correction i. * . *ad to be
about $0.6 my units. Thus, correcting magnitudes u. . fre-

quency measurements is probably not adequate. Some other
action must be taken to cope with the positive magnitude bias
and the variance problem associated with spectral leakage.

PRESENT METHOD OF FILTERED MAGNITUDE MEASUREMENT TO
MINIMIZE SPECTRAL LEAKAGE ERRORS

For teleseismic events (A>20°), filtered magnitudes are
calculated by using Veith and Clawson-(1972) P-factors. Re-
gional phase magnitudes are calculated from relationships
given by Evernden (1967) for Pn; Fitch, et al. (1978) for Sn;
and Nuttli (1973) for Lg.




After the data trace is filtered, the instantaneous sig-
nal envelope and frequency are generated by complex signal
analysis. A filtered waveform x(t) is taken as the real part
of the signal. The imaginary part of the signal, y(t), is ob-
tained by means of a Hilbert transform, which shifts the phase
of each spectral component of x(t) by m/2. The complex signal
waveform so constructed is given by z(t)=x(t)+iy(t). Instan-
taneous measurements of signal amplitudes and frequencies are
obtained by the method described in Figure B-S5.

The following method is now applied to avoid large mag-
nitude errors caused by spectral leakage. The magnitudes of
filtered signals are determined from peak amplitudes in a 10-
second signal time window. Each observed instantaneous am-
plitude %(t) is associated with an instantaneous frequency
measurement f(t). If If(t)-fol (where f  is the center fre-
quency) exceeds a threshold of 8§f, then &(t) is considered to
derive from leakage, and so, %(t) is weighted zero (0). The
threshold criteria presently used for this frequency test is
to reject filtered signals of the dominant frequency shift 6f
where the filter response is more than 6 dB down. If the fre-
quency deviation of the filtered signal is equal to, or less
than, §f, the envelope measurement &(t) is considered valid.
The maximum value of valid amplitude measurements in the 10-
second signal window is used to compute the magnitude of the
signal. This concept of a frequency acceptance band is il-
lustrated in Figure B-4; here, a 3 dB-down criterion is ap-
plied to validate signal amplitude measurements.
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A FIGURE B-5

ENVELOPE AND PHASE MODULATED SIGNALS

COMPLEX SIGNAL ANALYSIS

spectrum of X(t) is

X(£) = __S™X(t)expiZnftdt = C(f) + iS({).

as v(t).

X(t) is defined as the real measured signal waveform. The

The spectrum of the imaginary signal component, constructed
as iX(f) = -S(f) + iC(f), is transformed to the time domain

The complex signal in rectangular and polar coordinates is

z(t) = X(t) + iy(t) = 2(t)[cose(t) + isine(t)] . (1)
‘ The time-varying envelope as the modulus of z(t) is
’

p(t) = Jz(0)]| = (x(0)% + y() By, (2)

The time-varying phase angle of z(t) is

¢(t) = tan [y (t)/x(1)]. (3)

The time-varying dominant frequency component is

dy (t) dx(t)-
x(t) - y(t)
O s i @
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