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ABSTRACT

& simple, approximate expression for the surface magnetic field due to |

a magnetic dipole on a conducting circular cylinder is obtained. This
§olution ié asymptotic for a large cyliunder éadius, and is uniformly valid

‘ everydhere on the cyiindrical sh;face iﬁcludigg the penumbra and the deeb '

. shaéow. In the limit that the cylinder radius is infinite, it becomes
identical to the known exact solution of a dipole on a conducting plane.
For a surface ray propagating in parallel to the axis of ‘the cylinder, the
transverse surface magnetic‘field is found to vary asymptotically as (ks)—l/z,
.where s is the distanée from the source. This behavior is distinctively ‘
diffe;eﬁt from the (‘ks)'-1 variation of the surface ray on a plane, and is
explained in terms of the dependence of the surface curvature in the binormal
direction of the ray. 'We apply our soldtion to the mutuél coupling problem
between two slots on a cylinder, and obtain results whicb are in excellent

agreement with those calculated from the exact modal solution. A comparison

of the present solution with two other asymptotic (GTD) solutions is also given.
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1. INTRODUCTION

This paper considers ahigh- frequcncy diffraction problem by a perfectly
conducting cylinder as sketched in Fig. la. For a given magnetic dipole at
Q' on the sur?ace of the cylinder, the problem is to find the surface magnetic
field (surface current density) ;verywhere when kR is large (R is the radius

of the qyiinde; and k = 2n/)). The motivations for our study are the following

. two: (i) The solution of the cylinder problem constitutes a central step in

calculating the mutual coupling between two slots on the surface of a
cylinder [1]-[8]. (ii) More importantly, the cylinder problem is a so-called

"canonical problem" in GTD [9]-[11]. Once its solution is known, it may be

*  generalized, by following the recipe of the GID, to give the asympto ic solu-

tion of the surface magnetic field on any convex, smooth, conductlng surface

The cylinder problem has an exaéﬁ modal solution, whfch is in the form

" of an infinite series with each term containing an infinite integral [4), [5]).

For a large kk, this solution is very slowly convergent and becomes less
useful. Two asymptotic solutions exist in the literature: one given by
Hwang, Kouyoumjian, and Pathak (5], [6] (hereafter referred to as the OSU

solution), and the other by Chang, Felsen, Hessel and Shmoys [3), [4] (the

* PINY solution). Both are approximately deduced from the exact modal solution

under the condition kR -+ «, In the present paper, we offer a third asymptotic
solution (the Ui solution), which gives the surface magnetic field everywhere
from the source point to the deep shadow in a single expression, and is based |
on a classical work by Fock in 1949 (Chapter 12 of [12]).

The organization of this paper is as follows. In Sections 2 through 4,
the final form of the UI solution is stated and compared with those of 0SU
and PINY, 1In Section 5, the threc asymptotic solutions are applied to the

evaluation of the mutual admittance between two slots on a cylinder. Their
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results are compared with those calculated from the exact modal solutions (2],
[7]1, [8]. Section 6 describes the derivation of the UI solution. Finally,
a conclusion ig given 1ﬁ Section 7. Some formulas of Fock functions used in

the text are listed in the Appendix.
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2. UL SOLUTION FOR THE SURFACE MAGNETIC FIELD

At point Q' on the surface of the cylinder (Fig. la), there is a tangential

-

magnetic dipole source described by a magnetic current density (for exp +juwt

time convention) -

ETe

K@ = Mz 8(r- RSH8(2) RN ¢ Y

where M is the magnetic dipole moment (ﬁ .1 ='0), and (r = R,4 = 0,z =-0)

are the cylindrical )coordinates of Q'. The problem is to determine ﬁ at

another point Q = (R,¢,z)‘on the surface under the assumptidn that kR is large.
First, let us introduce several parameters. According to GTD [9], [11],

the domina;t contribution of H at Q is the field on the surface ray from Q' to Q.

The surface ray is a geodesic on the conducting surface, and in the present

case is a helical path (Figure 1). The arclength of the surface ray is

s = J(Re)? + 22 . , 2.2)

The tangent, normal, and binormal of the surface ray are (E',-S',-G') at Q',
and (E,—ﬁ,—g) at Q. Thus, (E,R,B) form a moving trihedron along a surface ray,
pointing toward the longitudinal and two transverse directions. At any point
on the surface ray, the curvature of the conducting surface is described by
two parameters:

R the radius of curvature in the direction of t (or that in the

t

longitudinal direction of the surface ray), and

the radius of curvature in the direction of b (or that in the

%

transverse direction of the surface ray).
On a convex surface, both Rt and Rb arc nonnegative. For the present case of

a4 conducting cylinder, one has




w,

»

(b) Developed cylinder
(a) 3-D view

(c) Cut along 6-direction

Figure 1. A surface ray from source point Q' to observation point Q on
a cylinder of radius R,
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R .

R, = ——

’
. t cos ©

’ _ R
R =72

sin” 6

(2.3)

where 8 is measured from R¢-akis in Fig. 1b, and takes a value between 0 and

2n. The large parameter for oﬁr asymptotic «xpansion is
. ) /3
th .

Thus, our solution is an approximate (not rigorous) asymptotic solution valid

w'= (2

(2.8
2

for m + o, up to and including terms of O(m—3). Furthermore, let us introduce

a distance parameter

- ks
S 2

- ! 2)1/3
2m

£ = = ik/ZRt

- |3

(2.5)

-

which is the arclength normalized by k and Rt' Note that & = 0 defines the
lit region (6 = n/2), £'< 1 defines the penumbra region, and £ >> 1 defines
the deep shadow. Our solution is uniformly valid for all ¢ > O.

Due to the »oint source in (2.1), our final asymptotic solution for the

magnetic field on the surface is given by

W@ =¥+ Grbu + ') + o), mo (2.6a)
where the transverse component is
) r1) 2 -2/3
Hb(Q) i (1 - ks)v(g) - l\k_S-) U(E) + j(‘/i kRC) V'(E)
. -2/3 '
+ 32 th) (Rt/Rb)u (C;] G(s) , (2.6b)

the longitudinal component is

Ht(Q) v (i%)[f(&) + (1 - %&lu(ﬁ) + j(/2 kRL)-Z/Bu'(C;]G(S) , (2.6c)

and the function G(s) is
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‘ G(s) = (2.64d)

Here Y = (¢ /uo)l/2 = (120n)_1, v and u are defined in the Appendix, and v'
is the deriva.ive of v. We emphasize that (2.6) is an approximaLe solution.
For ‘one thing, we are not even able to show that (2. 6a) contains all Lhe terms

up to O(m ), let alone other more subtle questions.

Let us consider several limiting cases of the UI solutlon given in

(2.6). If the radius of the cylinder becomes infinite

kR » « . (2.7)

the use of  (A-12) through (A-16) in the Appendix in (2.6) leads to

. 7
llb(Q) N [:1 - -‘fg - {%)-]lc(s), kR >~ (2.8a)
H Q) ~ (%\ (1 - —lf;)c(s), KR > o ., . (2.8b)

When (2.8) is substituted into (2.6a), we find that H in (2.6a) is identical
to the exact solution of the surface field due to a magnetic dipole on a flat
grouna plane [4], [13].

The second limiting case occurs when
6 »>u/2 . (2.9)

We find from (2.6) that “t is again given by (2.8b) but Hy becomes

. /1 2 3 1/2 /4 (k )1/2—
RN I 2 _11\ J‘n { [ .1
"b(Q)“[l ks \ks) 4 2 A I
) (2.10a)
in terms of the planar solution in (2.8a), we may rewrite (2.10a) as
ks
3 -JJH/4_1; o7 _ 1
By (@)~ [, @5 anar * 3 z K Yo KR — 0=7 -

(2.10b)
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The result in (2.10) is most interesting, and in fact somewhat surprising.
The surface ray traveling in direction 6 = n/2 (Fig. 1) is a straight line
(th + ), However, due to the finite curvature in the binormal directioa
(Rb = R), Hb on the cylindrical surface differs from itskcounterpart on a
planar surface by the additional term in (2.10b). At a large disfanceAaway
from the source (ks + «) in the direction 6 = w/2, and for a fixed kR, we

find that HB on a planar surface and that on a cylindrical surface are given

by, respectively,

-jks \

e .
[Hb(Q)]planar A ks o .f2.ll{
~jks -jks .
: 1l .e e
H (Q) ~ B = + A , . (2.12)
o R e .

Qﬁere A and B are constants independent of s and R. Thus, for large ks, “b

. on a cylinder is stronger than that on a plane. Such a phenomenon was first
reported by Hasserjian and Ishimaru [14], and later by the authors of [4]
anq [7)]. Those previous workers, however, have not explained tﬁe phenomenon
in terms of Rb, the radius of curvature in the binomial direction, as we did
in (2.6b).

As a third limiting case, let

£+ w (2.13)

which occurs when observation point Q is in the deep shadow. Making use of

(A-7) through (A-11), we have from (2.6) that

2 2/3
k™ cos ) 57
0 (Q) ~ = exp [;0.885 - j {55 + 0.51¢ + ks)|, (2.14a)
b 1528(kR)l/3(ks)1/A 12 )
f; - w0
Ht(Q) " ﬁ% “b(Q) sy £ (2.14b)

Therefore, in the deep shadow, the {ield is a slow wave and decays exponentially

along the surface ray.
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In applying the formulas'in (2.6) to the mutual admittance calculations

1}

[1]-[8], explicit field expressions are needed for axial and circumferential

" dipoles. They are listed below.

Axial dipole: M=z - . (2.15a)

H (Q) H cos2 0+ H sin2 8

n {,(5) [cosz 8 - _155 cos 26] + (ij—) u(E)[;in 6\1 - { cos ]

+ (/2 th)_2/3[v-'(€) cos® 6 + (1 '+£—) u' () sin® (ﬂ} G(s) .
i ® (2.15b)

©->

(2.16a)

Circumferential dipole:

Hy(Q) = H, sin® 6 + H, cos? 9

n {v(ﬁ)[sinz 6 +-£-S- cos 2;3} + (T?E) u(g)[cos?' ) (l - %B + [chg) sin2 %

+ 32 th)—2/3[:v'(€) sin2 0 + (t:an4 8 + Ejé-)u'(é;) cos2 E))} G(.s)
(2.16b)

mde -
—

In the limiting case £ + 0 (either kR -+ @ or 6 =+ 7/2), (2.15b) becomes

H_(Q) ~ [cosz 0 +£§ (2 - 3 cos® 6) (1 - %ﬂc(s), £+ 0 (2.17)

and (2 16b) becomes

Hy(Q) v [Zsinz 0 +-£§ (2 ~ 3 sin® 0) [L- -35) + ;JJG(S), E+0. (2.182)

—— — \

where

0 y 1f kR » = (2.18b)

__3_(,' )1/ -33n/4 (ks) ™" 1/2

4 kR ’ if 6 » “/2 . (2-180)

Note that in the limit kR » «, (2.17) and (2.18) recover the exact solutions

for dipoles on a planar surface.

~e ik we .

- ma— m— -
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3. COMPARISON WITH OSU SOLUTION

} For the same problem of a magnetic dipole on a cylinder, an asymptotic
(GTD) solution was derived from canonical problems at OSU. That solution,
given in Section D of (5] or Eqs. (6.64) and (6. 80) of [11], can be also

written in the form of (2.6a) with

B, (Q) v v(E)G(s) R C W P

i@ v [Huose (3.1b)

N ————

For the extreme case § - 0 (either kR + ©or 8 -+ 1/2), the use of (2.7) in

“(3.1) leads to

(@ nG(s),  £»0 (3.2a)
1@ ~ Lo, ev0. (3.25)

- ——x % L]

For the other extreme case, £ + «, the use of (A-7) and (A-8) in (3.1) leads
to an Hb‘identical to that in (2.11la), and
2 1/2 2
i ) kT (ks) cos” 0 _ it -
HA(Q) v 5L TR e [.2.035 i3+ e+ ksD, £ao .
(3;3)

The 0SU solutions in (3.1), (3.2), and (3.3) should be compared with our so-

lutions in (2.6), (2.8), (2.10) and (2.14). Several remarks are in order.

(1) In the limit kR + =, our solution in (2.8) is identical to the known
exact solution. On the other hand, Hb in (3.2a) recovers only the term of
(ks)-l, but not the terms of (ks)-2 or (ks)-3. The latter terms are important
for the field near the source. For Ht in (3.2b), a factor 2 is missing in

the term of (ks)-z, as pointed out in [5].

% - -
Note the corresponding notations in [5] and here: ¢(£) - 2e jﬂ/ag l/2v(€),

B(E) » e-j3"/45-3/2u(£), o+ 06, a->R, pg > Rt’ and t » s.
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(11) For a 1arge but finite kR, the two solutions in (2.6) and (3.1) do
not agree, Iy, the penumbra region (§ < 1), the UI solution in (2.6) should
be more accurate because of (i). 1In the deep shadow, both H;% are given by
(2.14a), but the two solutions for Ht in (2.14b) and (3.3) are completely
diféerent. in Sections 4 and 6 we will show that (2.145), not (3.3), .
agrees with the PINY solution, and gives more accurate numerical results.

- (111) Because of the observations in (i)‘and (ii),‘it appears that Ht

given in (3.1b) is‘not accurate.

(iv) For a fixed kR and in the direction 6 = a/2, H_ in (3.la) becomes

b

asymptotic for a large ks,

_'jks .
e
H'b(Q) v A ks ' ) * (3'4)

which should be compargd with the UI solution in (2.12). We note that the
term, attributed to the curvature in the binormal direction of the surface
ray, is absent in (3.4).

{v) For acoustic diffraction by a cylinder, the functions (v,u) arise
when the boundary condition is (hard, soft). We note from the OSU solution
in (3.1) that "b depends on the "hard" function v, while Ht depends on the
"soft" function u. Such a separation, however, is not possible for the UI
solution in (2.6).

(vi) In Section C of [5], Hwang and Kouyoumjian modified their solution

of Ht in (3.1b) to read

i, @ ~ T ucerscs) (3.5)

Here the additional factor T for the present cylinder problem is

\
ZQ A -~
‘ - >
T= ,EQ&JL) , where 0' = sin it 2 l. (3.6)
cos O |i‘3l
I
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They attributed the presence of T to the torsion of the surface ray. However,

there exist geveral appareﬁt difficulties in connection with T: (a) For a

' nonaxial‘dipole (0' # 7/2), T becomes infinite as 6 =+ /2. (b) If T is indeed

a torsion factor, it should be reduced to unity for a torsionless ray propa-

‘gating in che $ direétion on a cylinder.(8 = 0). However, T calculated from

(3.6) does not. (c) An arbitrarily oriented dipole on thec surface of a,
cylinder may bé ;esolved into an axial diéole and a circumferential dipole.
We may calculate fields due to each dipole separately, and later superimpose
them for the original solution. However, if formulas in (3.5) and (3.1a) are
used, such a superposition procedure does not ;ecover the original solution.
Because of the above difficulties, we will use (3.1b), not (3.5), for ail
éhe sﬁbsequent discuésion of Fhe 0oSu sol&tion. (In_{3], [4] it is (3.5),
not (3.1b), that was uséed in all the‘numerical calculations.)

We would like to emphasize that the OSU solution represents one of the
very first efforts to apply the ray technique to the surface-field calculation.

Their solution, while inadequate in some situations, has produced many useful

results (10], [11], and'more importantly, has laid a conceptual framework

‘from which the more refined works, e.g., PINY and UI solutions, are deduced.
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4. COMPARISON WITH PINY SOLUTION

Another asymptotic solution (PINY solution) for the cylinder problem was

F : *
deduced from the exact modal solution [3], [4], and is given by

Axial digoie: ﬁ = 2z

H (Q) ~ v(&)[cosz 9 +r'£; (2 - 3 cos’ G;JG(S) . BRI Y

Circumferential dipole: ﬁ = $

B¢(Q) N {/(E)[:sinz o + -13; (L -3 sin’ ei] .

+ i%- sed2 o [u(g) - sin2 ) vl(E)i} G(s) (4.2)

where vl(E) is defined in the Appendix. In the limiting case § = 0 (either

kR + © or 0 + n/2), (4.1) becomes

Hz(Q) N [cos2 8 +'ﬁ% (2 ~3 cos2 0%] G(s), §=+0 (4.3)

and (4.2).becomés~

u¢(q) n Lsinz o + —13; 2-3 sin 0) + W] G(s), £-0 (4.4a)

where

0 , 1f kR » e (4.4b)

— . if 6 » /2 (4.4c)

1/2 1/2
n -33n/4 (ks)
(3) e kR

ne

The PINY solutions in (4.1) through (4.4) should be compared with the UI

solution in (2.15) through (2.18). The following observations are made:

There are several slightly different formulas given in [4]. The ones pre-
sented here are the "full formulas" taken from Eqs. (101) and (111) of [4].
Note the corresponding notations in [4] and here: D - s, xg £, v
vy > vy and U, »> u,

+V,

0
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(i) In the limit kR - «, the PINY solution recovers the exact solution
for a planar surface in terms of (ks)"1 and (ks)—z, but not in terms of (ks)_3.
(11) For a fixed kR and in the direction 6. = /2, both H¢ of the PINY
solution in (4.4) and that of the UI solution in (2.18) vary asymptotically
as (ks)~1/2,.which is distinctively different from the (ks)-'1 behavior in the
planar solution. However, the factor W in!i2.l8c) contains an extra factor
(5/&) ;hen'compared with its counterpart in (4.4c).

(iii) In the deep shadow £ =+ =, both H and H, of the PINY solution decay
2

¢
exponentially according to the "hard" function v(§), which is in agreement
with our solution in (2.11). In particular, at 8 = 0, H¢ in (4.2) of the

* PINY solution becomes
H,@ = B, ~ [L] B, =0 (4.5)
where Hb(Q) is given in (2.14a). Note that (4.5) agrees with the UI solution
" in (2.14b), but disagrees with the 0SU solution in (3.3). It has been demon-
strated in [4] (see Figures III-2 and III-13) that the use of (4.5) for mu-
tual admittance calculations between slots shows good agreement with an
exact numerical solution, while the result calculated from (3.3) deviates
markedly from the exact solution.
(iv) Hz in (4.1) depends on the "hard" function v(§) only, whereas our
solution in (2.15) depends on both v(§) and u(§).

(v) In Eq. (123) of [4], an expression for H was given for an arbitrarily

oriented dipole., It has the form

H(Q) ~ M+ [D'BA + t'tB + $'4C) (4.6)

which should be compared with (2.6a). The presence of the cross term C in

(4.6) is unique.
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Next, we present a numerical comparison of 1I, for all three solutions:

¢
the UL solution in (2.16b), the 0SU solution in (3.1), and the PINY

solution in (4.2). For a cylinder with radius kR = 9.5325, H¢ on three

surface rays (6 = 0°, 45°, and 90°) is displayed in Figs. 2 to 5 as a

function of ks, the distance from the sburce. The magnitude of H¢ is ’
normalized by H¢ (ks = 0.2,6) of the UI solutioh, whereas the normalized
phase is equal to Arg(jejksﬂb). Discussions of these numerical results are

given below: (a) As ks + 0, only the UI solution exhibits the correct

behavior (ks)-3. This fact explains the marked disagreement among the three

_solutions in the range 0 < ks < 1. (b) In the direction 6 = 0 (Fig. 2), UI

and PINY solutions converge to each other for ks > 6 (or £ > 1), while thel
0SU solution is much too small, as noted in (iii) above. (c) In the direction

6 = 90° in Fig. 5, both the UI and PINY solutions vary as (ks)—l/2

, while
the OSU solution varies as (ks)-l: (d) Overall, the three solutions are
significantly different. In applications where accuracy within one or two
db is reéuired, the selection of a proper for&ula becomes crucial,

To present an overall.view of the surface magnetic field due to a circum-
ferential dipole {M = $), three-dimensional plots of |H¢| and |Hz| calculated
from the UL solution (2.6) are given in Figure 6. Fields in both plots are

normalized by IH¢| at ks = 0.43 and 6 = w/2, which has a value 0.00503 a/m

and is at zero db. Field values above 7.475 db are not shown in these plots.

il
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' on a cylinder with kR = 9,532
= @) calculated from (2.6).

due to a circumferential dipole (ﬁ
Values above 7.475 db are not shown.

Figure 6. Surface magnetic field |H¢l
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5. APPLICATION} MUTUAL ADMITTANCE OF SLOTS

Let us apply the asymptotic solutions given in the previous three sections

to the calculation of the mutual admittance le between two slots on a

eylinder. This is done not only because the Y., calculation is an important

12

practical problem, but also because of the existence of the exact modal solu-

.

tion for le, which provides a convenient numerical check of the accuracy

of the asymptotic solutions.

Referring to Fig., 7, let us consider two identical circumferential slots

on the surface of a cylinder. Under the condition that
(a/A) * 0.5 and (b/A). << 1 ' _ (5.1)

it is reasonable to approximate the aperture field of the slot 1 (or slot 2)

by
"E,(y,2) T 2V /JL cos —y , for |y| < a/2, |z] < b/2 (5.2)
1Y 1V ab a’’ ’

where y = R$ is the angular distance along the ¢-direction, and Vl is the
voltage difference across the slot. Once the "one-mode" approximation in
(5.2) is accepted, it can be shown [2], [4] that the mutual admittance between

the two slots in Fig. 7 is given by

.2 ' n AP :
Y125 IA dy) dz) JA dyy dzy cos 2y cos 3y = ¥g) 8(y2y3¥pe2y) -

(5.3)
Here Al and A2 are the apertures of the slots, and (yo,zo) are their center-

to-center distances. The Green's function g in (5.3) represents the H, at

¢
(yz,zz) due to a unit-strength, ¢-directed magnetic dipole at (yl,zl). For

UI, OSU, and PINY asymptotic solutions of le, g is equal to H, in (2.16b),

¢
(3.1), and (4.2), respectively.

© e w—— o~ —— - s - s -
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Two identical circumferential slots om the surface of a cylinder.
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12°

expression of le in terms of cylindrical eigenfunctions as given in Eq. (8)

In addition to the th;ee asymptotic solutions of Y there exists an
of [2].* Within the "one-mode" approximation, this expression is exact; and
contains an infinite gerieg with each term in the series being an infinite
integral, This expressidn has been eyaluated‘by two differené numerical
techniques. We call the one reﬁorted in [2], [7] the Hughes modgl solution,
and the one in [ 8] the UI modal solutions.

~ Now we will present some numerical results calculated froﬁ the two (exact)
modél solutions, qnd’the three (approximate) asymptotic soiutions. The .

parameters of the cylindér and the slots are
f=9GHz, a=0.9", b =0.4", R=1,991" . (5.4)

As a function of slot separation (z ), qu is listed in Tables I to III in

0’ %o
(db value, phase in degree), where the db value is calculated from the
relation

3

db = 20 log,, |Y12/ lylll = 1.7075 x 10 °~ mho . (5.5)

vyl

From .the comparison made in Tables I to III, we conclude: (a) Considering
the numerical integration error involQed, the UI asymp;otic solution is in
excellent agreement with the (exact) modal solution. (b) The PINY
asymptotic solution is reasonably accurate, while OSU is not. 1In addition
to the data presented in this paper, we have calqulated nearly 100 different
le's over a wide range of parameters. The above two conclusions hold for
all the calculations provided that kR > 5.

As discussed in Section 2, the surface ray propagating in the direction

6 = 1/2 on a cylinder has a stronger i, than its counterpart on a plane.

b

There is a misprint in the definition of ¢, . The correct one should read
¢ = sin~1 (b/290). It should be also pointed out that the corresponding
definition used in (5.2) is ¢ = (b/2po). For numerical data presented in
this paper, the two slightly different definitions of ¢ have negligible
effects.
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TABLE I

FOR ¢0 =0 (E—PLANE)

Modal Solutions ‘Asymptotic Solutions Planar
Hughes Ul Ul 0SuU PINY R =
-7.27db | -7.27 | -7.19 | -8.87 | -6.35 | -8.04
-72° -712° | -72° | -43® | -68° ~67°
-16.52 -16.43 | -16.31 | -18.32 | -15.61 | -18.18
-117° -117°  |-116° [-100° [-118°  |-106°
-26.95 -26.49 | -26.48 | -30.11 | -25.45 | -30.05
33%° 34° 3% | ss° 34° 54°
-31.13 | -31.25 | -36.06 | -29.91 | -36.05
-4° -1° 20° -4° 19°
-36.60 | -37.11 | -43.99 | -35.48 | -43.98
-115° ~110° -83°  |-112° -83°

- 23



TABLE II

— 7"
le FOR ZO = 2
¢0 Modal Solutions Asymptotic Solutions
(deg) Hughes U1 Ul 0Su PINY
5 ~16.52 db ~16.43" -16.31 | '~18.32 -15.61
0 :
: -117° ~117° ~116° -100° -118°
o -22.25 -22,07 -22.34 -23.90 -21.25
30
175° 175° 177° -170° 172°
o -34.63 -34.65 -34.82° | -35.76 -33.06
60
-4° -3° -1° 6° -10°
6 -47.82 -47.17 <47.75 ~48.48 | -46.34
90 : '
116° 120° 116° 119° 1069
TABLE III
Y, 2y = 0 (H-PLANE)
¢o Modal Asymptotic Solutions
(deg) | Hughes Ul 0su PINY
50 | "25+98 @b ~25.99 -34.37 ~27.79
-77° -75° -62° -60°
e -34,52 -34.67 -43.31 -35.76
168° 170° 174° -180°
58° 61° 58° 69°
60 | 4662 -47.13 -57.24 ~47.58
-49° -47° -55° -39°

24
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Since le along the E-plane (¢0 = () is proportional to Hb, this phenomenon

is also seen in Figure 8, wﬁere we plot the ratio

-

le on a cylinder with radius R

le on a plane

.as 'a function of R for 2y = 8" and ¢g-= 0. We note that the convergence

rate of the cylindrical Y,, to the planér Y., is not as rapid as one would

12 12
normally expect. For example, at kR = 50, the cylindrical le is still

about 10 percent higher than the planar one.
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6. DERIVATION OF UI SOLUTION

The UI solution given in (2.6) will now be derived. The derivation is

based on the following observation. Consider a surface ray (a geodesib)

on an arbitrary convex surface. In the neighborhood of the ray, the geo-

metriqal properties of the surfaée depend on two radii of curvature: R; in‘
the direction of tangent t and Rb in’ the directién of binormal b. It is
well-known that the dominant asymptotic solution of a.surface field depends

on Rt’ not Rb (see the dis?ussion in pp. 192-193 of [11]): Thqs, for the
purpose of determining .the dominant term of the surface field in the direction
of 6 in Fig. 1, the cylinder may be replaced by, for example, a sphe}e of

rddius‘Rt. In other words, our problem is then to solve the radiation of a

magnetic dipole on a perfectly conducting sphere.

In studying wave propagation around the earth in 1949, Fock éonsidered'
the radiation of a horizontal electric dipole on a lossy dielectric sphere [12].
He first obtained an exact solution in terms of spherical harmonics, and
next extracted the dominant high-frequency terms from it. By the duality
principle, Fock's solution can be converted to the one that is sought by
us, We will give below the solution after the conversion is done.

Consider a magnetic di;;le in the x—direcégon (ﬁ = x), located on a
perfectly conducting sphere of radius“Rt (Fig. 9). The total field can be
derived from a magnetic Hertz potential U and an electric Hertz potential V.

The asymptotic solutions of U and V are found to be [from (7.09) and (7.10)

on p. 252 of [12]]*

The divergence factor DF of the surface ray on a sphere has been removed in
(6.1) [DF = (8/sin 0)1/2]. Note the corresponding notations in [12] and
here: 1+ (-j), u»>U, v=>V, a=~ Rt’ and x > §,



e ————

28

»(r,6,)

SPHERE

A horizontal magnetic dipole on the surface of a perfectly

~ Figure 9.
conducting sphere.
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U@E) ~ G(s) -E%f-iL eI/ 4 gy 1/2

2k Rtm
: (t)
. "jEt ' p . wl
II‘ e ‘%—)wz(t)[:wl(t - yl? - _—wz(t) w, (€ - yl)] dt  (6.la)
l .
'E,(rg] v 6(s) “HRL v(p) . (6.1b)
r=R k Rt

o ———

where yl = (k/m)(r - Rt)’ and (r,6,¢) are the sphé}ical coordinates of T.

* Parameters G, m, ahd £ in (6.1) are defined in Section 2, while gﬁe others

are in the Appendix. The magnetic field is calculated from the relations

2
-+ 1 9. ] 1 9
H (r) = [—-——-—— sin 8 — +-———]U (6.2a)
T r sin 6 996 96 r sin2 6 8¢2
H(*)-—-l-a2 (t0) + —— 2y (6.2b)
o'/ = T T Bree \F i cin 0 99 y
@R = - —— i (xU) + jk =V ' (6.2¢)
¢ r sin 6 9rd¢ I* 36 ) t
Substituting (6.2) into (6.1) and using the ;Eéults
C 3.k 3 _ .3 _ :
or  m 3y, °’ 30 - Re 38 - ™3¢ (6.3a)
[—ai’; (rUE] = 2222 a(s)u(e) (6.3b)
r=R k”s
t
we obtain the magnetic field on the surfééé:m;amely,
H.(Ry,0,¢) % 0 (6.4a)

He(Rt,8,¢) v cos ¢ (t%){}(&) + (1 - %%) u(g) + t%i u'(gﬂ G(s) (6.4b)
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H (R ,0,¢) v -sin ¢ G.- 4L>V( ) - Ll)z (&) + M|G(s) (6.4c)
¢ t’ ,¢ s n \ A kS E.; '\ks u l’; S «4C

where

-i—v (&) . (6.5)

From the derivetion of U and V in (6.1) it may be shown that (6.4) is asymp—
totically accurate only up to and includlng terms of order (kR ) /3. Thus,
the last terms in (6.4b) ‘and (6. 4c), which are of order (kR ) , may or may

not be completed. We hereby modify the facter M in (6.5) to read

R ‘
M=£Rl[v'(g) +§§ut(g£] (6.6)
t

The only "justification" for replacing (6 5) by-(6.6) is that this replace-
ment yields no appreciable difference in the sphere. problem (where R /R = 1),
but significantly improves the numerical solution for the cylinder problem
(where R.t/Rb may be very large) as shown in Section 5. We have not yet
succeeded in finding a rigorous justification for using (6.6). Referring to

the cylinder geometry sketched in Fig. 1, the following substitutions are made
H -+ H s (H /cos ¢) > H e (H /51n ¢) =+ “H, ¢ > 8 . (6.7)

Then (6.4) and (6.6) become identical to (2.6).

It should be mentioned that expressions similar to (6.4) were given by
Wait in 1956 [15], and by Hasserjian and Ishimaru in 1962 [14], [16]. Their
expressions contain only (ks)“l terms, and therefore only the "hard" function

v(£) is used.
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7. CONCLUSION

for a given magnetic dipole located on a perfectly conducting cylinder,
the surface magnetic field is given in (2.6), which is an approximate asymp-~
totic solution valid for.lérgé kR, and may be used for any observation point
on‘EAe cylinder. The &erivation of (é.ﬁ) ié based ogiéhe following
observation: the dominant contributioﬁ of the surface field deéends on the
curvature of the surface in the longitudinal Airéction of the ray, not that ‘
in the transverse direction. Hence, we simply adopt the classical solution
of Fock for a dipble on a sphere for the.present cylinder problem. To
include tbe effect of the curvature in the binormal direction of the surface
réy,vwe h;ve arbitrarily replaced a factor M of the Fock solution in (6.5)
by tha; in (6.6). A rigorous justification of this replacement is yet to
be foupd. A remarkable feature of the solution in (2.6) %s that in the
limit kR\+ o, it becomes identical to the known exact solution of a dipole
on a flat ground plane. The application of (2.6) to the mutual admittance
calculation yields excellent numerical results, and therefore (2.6) may be
regarded as an improvement over two previous asymptotic solutions. A
future research problem is to generalize (2.6), according to the recipe of

GTD, so that it may be used for an arbitrary convex conducting surface.

AT W g R R E Gt W R  eak Wt Sl A W wvr Bt A Pt ‘¥ Sa
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APPENDIX

FOCK FUNCTIONS

In this appendix we define and list some useful formulas of the functions

wl(t),.wz(t), v(E), u(t), and vJ(g). These functions are éommonly known as

Fock functions,

(1) Definition: For a complex t and a real &,

wl(t) =L J dz exp (t:z - -:1-3- 23} (A-1)
‘T .
1
« * » .
wz(t) =L J dz exp (tz - %-23)’= wl(t) (A-2)
alr ’
N 2 .
()
v(E) = % ej"/(‘sllz L w?(t) e I8 g (A-3)
/E«rl 2
‘ rowo(e) .
u(g) = ej3"/4€3/2 L wz(t) e I ¢ (A-4)
/n Jrl 2
wo(t)
vy(g) = 13432 L J t oy e o de (A-5)
/o r, 2
where integration contours Pl and Pz are sketched in Figure 10, and wé(t) is the
derivative of wz(t).
(ii) Zeros of wz(t) and wé(t): They are given by
t=t = ltnle"j"/:; ,and t = ¢! = |t,'1|e—j“/3 , (A-6)

respectively. The magnitudes of the first ten zeros are

vy
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w3 1,2
/3 T —Ret
‘\zsaos 'OF W,(t) OR Wj(1)
) N
\

ry, for

Figure 10. Contours T and T'. on the complex t (or z) plane.
~2n/3 and

example, goes from « to 0 along the line Arg t =
from 0 to » along the real axis.




n e | e}

1 | 2,33811 | 1.01879
2 | 4.08795 | 3.24820
3 | 5.5206 | 4.82010
4 6.78671 | 6.16331
5 | 7.99417 | 7.37218

(1ii) Residue

series representation:

34

n |t | |t ]

6 | 5.02265 8.48849
7 | 10.06017 9.53545
8 | 11.00852 10.52766
9 | 11.93602 11.47506
10 12.82878 12.38479

For real positive £,

w(g) = WA 2y ey T (A-7)
n=1 n
. e —jEt
u(g) = ej"/42/§ £3/2 z e n (A-8)
n=1
...jgt'
vl(s) = ej"/42/; €3/2 e n (A-9)
n=1
1§/ ~1/2 % B LN
Vi) =5 e g L Q- 328e)(e) e (A-10)
el n’ ' n
® -jEt
u'(g) = ejn/43/; 51/2 ) [l -j= gtn}e (A-11)
n=1

(iv) Small argument asymptotic expansion:

For real positive £ and § - 0,

v(g) v 1 - %? W42 I

u(e) w1 - LIBT3 3y
Juogmfa 3/2 14

V(@) v 1+ ety -1 6

Vg o 31 /— j3n/4 1/2 4__;1 ;

3

+

3—

1/
512

51
64

2/
64

63/
1024

e 3492 4 i 10730 4 L.
(A~12)

eIMAIIZ 5 501 « 10728 4 .
(A~13)

IME I ses « 10720 & L
(A-14)

CIVAET2 g g5 x 1072 + .

(A-15)
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45V L

33n/4 1/2 £
128

2 _ 5991 x 10787 + ...

(A-16)

u' () m~% /1 e +-—1-g +

(v) Relation to Fock's attenuation factor: The attenuation factor V(x,y,q)
is defined by Fock in p. 207 of [12], and it reads (after replacing i by -j)
w;(t - y)

' L Jn/e 12 1 ~jxt )
V@,y,q) = et x = f G RN e e . (A-17)

The functions v and u are related to V by

V) =3V (y=0,920) (a-18)
u(x) = jx lim q[g—!] . ‘ o (A-19)
Q> By=0

(vi) Relation to functions defined by Logan [17]:

w(g) = 3 M2 ) ' (4-20)

J3ﬂ/4 3/2-

u(g) ¥(g) . (A-21)

(vii) Tabulation: Functions wl(t), wz(t) and their derivatives are tabu-
lated in [12]), while y(£) and Y(£) are tabulated in [17]. Numerical curves
of u, v, and v, can be found in [4], [14], [15].

(viii) Numerical evaluation: For § > £, the residue series representation
Z %5 p

with the fiist ten terms in the summation may be used. For § :_50, the small
argument asymptotic expansion with the first five terms may be used. It has
been indicated in [4] that the smoothest crossover is obtained if &0 = 0.6,
In the present study, we set CO = 0.7, where the difference in the two

representations is as follows,




" Difference at £ = 0.7
— -
. Mag. (%) Phase (deg.)
v 0.00 0.00
u 0.11 i 0.01
vy 0.02 - 0.08
v' 0.09 f 0.15
l

u' 0.10 © o 0.90

"%
% = |1 - (Residue/Small arg.)| x 100
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