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ABSTRACT

A simple, approximate expression for the surface magnetic field due to

a magnetic dipole on a conducting circular cylinder is obtained. This

solution is asymptotic for a large cylinder radius, and is uniformly valid

everywhere on the cylindrical surface including the penumbra and the deep

shadow. In the limit that the cylinder radius is infinite, it becomes

identical to the known exact solution of a dipole on a conducting plane.

For a surface ray propagating in parallel to the axis of -the cylinder, the

transverse surface magnetic field is found to vary asymptotically as (ks)-1 / 2,

where s is the distance from the source. This behavior is distinctively

-1
different from the (ks) variation of the surface ray on a plane, and is

explained in terms of the dependence of the surfacd curvature in the binormal

direction of the ray. We apply our solution to the mutual coupling problem

between two slots on a cylinder, and obtain results which are in excellent

agreement with those calculated from the exact modal solution. A comparison

of the present solution with two other asymptotic (GTD) solutions is also given.

L.
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1. INTRODUCTION

This paper considers a high-frequency diffraction problem by a perfectly

conducting cylinder as sketched in Fig. la. For a given magnetic dipole at

Q' on the surface of the cylinder, the problem is to find the surface magnetic

field (surface current density) everywhere when kR is large (R is the radius

of the cylinder and k = 2u/X). The motivations for our study are the following

* two: (i) The solution of the cylinder problem constitutes a central step in

calculating the mutual coupling between two slots on the surface of a

cylinder [l]-[8]. (ii) More importantly, the cylinder problem is a so-called

"canonical problem" in GTD [9]-[11]. Once its solution is known, it may be

generalized, by following the recipe of the GTD, to give the asymptotAc solu-

tion of the surface magnetic field on any convex, smooth, conducting surface.

The cylinder problem has an exact modal solution, which is in the form

of an infinite series with each term containing an infinite integral [4), [5].

For a large kR, this solution is very slowly convergent and becomes less

useful. Two asymptotic solutions exist in the literature: one given by

lwang, Kouyoumjian, and Pathak (51, [6] (hereafter referred to as the OSU

solution), and the other by Chang, Felsen, Hessel and Shmoys [3], [4] (the

PINY solution). Both are approximately deduced from the exact modal solution

under the condition kR - c. In the present paper, we offer a third asymptotic

solution (the Ut solution), which gives the surface magnetic field everywhere

from the source point to the deep shadow in a single expression, and is based

on a classical work by Fock in 1949 (Chapter 12 of [12]).

The organization of this paper is as follows. In Sections 2 through 4,

the final form of the UI solution is stated and compared with those of OSU

and PINY. In Section 5, the three asymptotic solutions are applied to the

evaluation of the mutual admittance between two slots on a cylinder. Their



2

results are compared with those calculated from the exact modal solutions [2],

[7], [8]. Section 6 describes the derivation of the UI solution. Finally,

a conclusion is given in Section 7. Some formulas of Fock functions used in

the text are. listed in the Appendix.
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2. UI SOLUTION FOR THE SURFACE MAGNETIC FIELD

At point Q' on the surface of the cylinder (Fig. la), there is a tangential

magnetic dipole source described by a magnetic current density (for exp +jwt

time convention).

K(r) M- 6(r.- R)6(p)6(z) (2.1)

where is the magnetic dipole moment (M • r ='0), and (r R,4 = O,z =0)
.4.

are the cylindrical coordinates of Q'. The problem is to determine H at

another point Q = (R,4,z) on the surface under the assumption that kR is large.

First, let us introduce several parameters. According to GTD [91, [11],

the dominant contribution of H at Q is the field on the surface ray from Q' to Q.

. The surface ray is a geodesic on the conducting surface, and in the present

case is a helical path (Figure 1). The arclength of the surface ray is

s= R) 2 + z2  . (2.2)

The tangent, normal, and binormal of the surface ray are (t',-n' ,-b') at Q',

and (t,-n,-b) at Q. Thus, (t,n,b) form a moving trihedron along a surface ray,

pointing toward the longitudinal and two transverse directions. At any point

on the surface ray, the curvature of the conduct ig surface is described by

two parameters:

Rt = the radius of curvature in the direction of t (or that in the

longitudinal direction of the surface ray), and

Rb = the radius of curvature in the direction of b (or that in the

transverse direction of the surface ray).

On a convex surface, both Rt and R are nonnegative. For the present case of

1t conducting cylinder, one has



A A A

b

A1  
Ste

Q6

b

(b) Developed cylinder
(a) 3-D view

/A

(c) Cut along 0-direction

Figure 1. A surface ray from source point Q' to observation point Qon
at Cylinde. of radilus R.
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R' R b (2.3)cos 0 sil2

where 0 is measured from R -axis in Fig. lb, and takes a value between 0 and

2W. The large parameter for our asymptotic expansion is

"" ! t/1/3' •

m = R, ka (2.4)

Thus, our solution is, an approximate (not rigorous) asymptotic solution valid

for m + , up to and including terms of 0(m -). Furthermore, let us introduce

a distance parameter

ms 2)1/3  ksT = k/Rt s =2 (2.5)
t 2m

which is the arclength normalized by k and Rt. Note that $ 0 defines the

lit region (6 = n/2), '< 1 defines the penumbra region, .and >> 1 defines

the deep shadow. Our solution is uniformly valid for all E, > 0.

Due to the point source in (2.1), our final asymptotic solution for the

magnetic field on the surface is given by

II(Q) = • (b'b}1 + t't lt) + O(m4 ), m (2.6a)

where the transverse component is

Hb(Q) ' 1- -v() - , u) + j( kit ) 2  ,(C)

+ j(/2 kRt)-2/3(Rt/R )u'(r)] G(s) (2.6b)

the longitudinal component is

H (Q) j ( + I I (r) + j(F2 kR 2/ 111(c) C(s) (2.6c)

and the function G(s) is



~~~~~ ..........4.a -

6"

k2Y e-jks

G(s) 21Tj ks (2.6d)

Here 0= Y-0/P0)I/2 (1201)-1, v and u are defined" in the Appendix, and v'

is the derivative of v. We'emphasize that (2.6) is an approximate solution.

For one thing, we are not even able to show that (2.6a) contains all the terms

up to O(m- 3), let alone other more subtle questions.

Let us consider several limiting cases of the UI solution given in

(2.6). If the radius of the cylinder becomes infinite

kR -(2.7)

the use of (A-12) through (A-16) in the Appendix in (2.6) leads to

11 [(Q) -s T- JG~ k (2.8a)

H (Q) ~ ~~(1 -j-G(s), kR -~.(2.8b)

When (2.8)'is substituted into (2.6a), we find that H in (2.6a) is identical

to the exact solution of the surface field due to a magnetic dipole on a flat

ground plane [4], [13].

The second limiting case occurs when

O - r/2 . (2.9)

We find from (2.6) that IIt is again given by (2.81) but Ifb becomes

(Q) ,i _ _ 2  3 j1/2 "/4 (ks)l/22ks + - 3  Gs ,)_ _ •! /2j~-V~ 8=2
(2.lOa)

In terms of the planar solution in (2.8a), we may rewrite (2.lOa) as

3 k2YoeJ3li/4 1 -jks

1HB(Q) [ [b(Q)] planar + 0 ks 2
(2.10b)
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The result in (2.10) is most interesting, and in fact somewhat surprising.

The strface ray traveling in direction 0 = 7/2 (Fig. 1) is a straight line

(kRt o). However, due to the finite curvature in the binormal direction

(Rb R), Hb on the cylindrical surface differs from its counterpart on a
Kb

planar surface by the additional term in (2.10b). At a large distance away

from the source (ks + -) in the direction 0 r i/2, and for a fixed kR, we

find that 1Ib on a planar surface and that on a cylindrical surface are given
b

by, respectively,

e-Jks
[ (Q)]planar " A eks .(2'.11)

1 e-jks -jks
H(Q) " B R -- k- A - ' (2.12)
b k W ks (.2

where A and B are constants independent of s and R. Thus, for large ks, Ib

on a cylinder is stronger than that on a plane. Such a phenomenon was first

reported by Hasserjian and Ishimaru [14], and later by the authors of [4]

and [7]. Those previous workers, however, have not explained the phenomenon

in terms of R.b, the radius of curvature in the binomial direction, as we did

in (2.6b).

As a third limiting case, let

- O (2.13)

which occurs when observation point Q is in the deep shadow. Making use of

(A-7) through (A-11), we have from (2.6) that

k2 cos 2/3 0 L - j (12 + 0 + ksj (2.14a)b 1528(kR)l/ 3(ks)/2 exp 088 12

H (Q) Js (Q) (2.14b)

Therefore, in the deep shadow, the field is a slow wave and decays exponentially

along the surface ray.
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In applying the formulas in (2.6) to the mutual admittance calculations

[1]-[8], explicit field expressions are needed for axial and circumferential

dipoles. Theyare listed below.

Axial dipole: 11 (2.15a)

Hz(Q) H b- cos 0 + Ht sin

v([Cos2 %- cos 2j + (i)u( )rsin2.Ol- + kcos2 ]
+ j(r2 kR) -2/3IV(-) cos 2 0 + (i+-) u'() sin2 0])G(s) .

Circumferential dipole: M = (2.16a)

H(Q) -Hb sin2 e+ t cos 2 0

(v()[sin + cos 20] + u( )cos2 o- + sin2

i("s kks/3v (ED sinthe l t case sin + ( hr an 0 +ku'ED cos2 ]) G(s)
(2.16b)

In the limiting case oi (either kR ior 6 /2), (2.15b) becomes

Hz(Q) r, os2 0 + (2 - 3 cos 2 0) 1 - G(s), 40 (2.17)

and (2.16b) becomes

H (Q) [sin2 0 + j- (2 - 3 sin2 0) i -kjs + WG(s), E 0. (2.18a)

where

0, if kR + (2.18b)

W

1/2 J3n/4 (ks)l/2

e k ,if 0 - n/2 . (2.18c)

Note that in the limit kR - o, (2.17) and (2.18) recover the exact solutions

for dipoles on a planar surface.
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3. COMPARISON WITH OSU SOLUTION

For the same problem of a magnetic dipole on a cylinder, an asymptotic

(GTD) solution was derived from canonical problems at OSU. That solution,

given in Section D of [5] or Eqs. (6.64) and (6.80) of [11), can be also

written in the form of (2.6a) with

;i ~Hb(Q) ()()(3.1la)

For the extreme case 0 (either kR 4 o or 0 r/2), the use of (2.7) in

"(3.1) leads to

Hb (Q) " C(s), - 0 (3.2a)

Ht(Q) G ( s) , 4 0 . (3.2b)

For the other extreme case, o, the use of (A-7) and (A-8) in (3.1) leads

to an Hb.identical to that in (2.11a), and

H(Q) I I k2 943(kR) exp 2.03g - j 2+ 1.179 + ks , o

(3.3)

The OSU solutions in (3.1), (3.2), and (3.3) should be compared with our so-

lutions in (2.6), (2.8), (2.10) and (2.14). Several remarks are in order.

(i) In the limit kR + -, our solution in (2.8) is identical to the known

exact solution. On the other hand, Hb in (3.2a) recovers only the term of

(ks) , but not the terms of (ks) -  or (ks)- . The latter terms are important

for the field near the source. For 1tt in (3.2b), a factor 2 is missing in

the term of (ks) - 2 , as pointed out in [5].

Note the corresponding notations in [5] and here: (E) - 2e-ji/4 C/2v()

( e-j3n/4 -3/2u(&), a 4 0, a -) R, pg Rt, and t - s.
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(ii) For a large but finite kR, the two solutions in (2.6) and (3.1) do

not agree. In the penumbra region ( < 1), the UI solution in (2.6) should

be more accurate because of (i). In the deep shadow, both /s are given by

(2.14a), but tile two solutions for Ht in (2.14b) and (3.3) are completely

different. in Sections 4 and 6 we will show that (2.14b), not (3.3),

agrees with the PINY solution, and gives more accurate numerical results.

(iii) Because of the observations in (i) and (ii), it appears that Ht

given in (3.1b) is not accurate.

(iv) For a fixed kR and in the direction 0 = 7/2, 11b in (3.1a) becomes

asymptotic for a large ks,

Rb (Q) A ejks (3.4)
ks

which should be compared with the UI solution in (2.12). We note that the

term, attrfbuted to the curvature in the binormal direction of the surface

ray, is absent in (3.4).

(v) For acoustic diffraction by a cylinder, the functions (v,u) arise

when the boundary condition is (hard, soft). We note from the OSU solution

in (3.1) that Itb depends on the "hard" function v, while Ht depends on the

"soft" function u. Such a separation, however, is not possible for the UI

solution in (2.6).

(vi) In Section C of [5], Hwang and Kouyoumjian modified their solution

of Ht In (3.1b) to read

T t (Q) n- T (k))(s) .(3.5)

Here the additional factor T for the present cylinder problem is

I 4 -l \j
T = Co ) , where 0'= sin- z (3.6)K -_ 

I_ S-0



They attributed the presence of T to the torsion of the surface ray. However,

there exist several apparent difficulties in connection with T: (a) For a

nonaxial dipole (0' # T/2), T becomes infinite as 0 -* r/2. (b) If T is indeed

a torsion factor, it should be reduced to uniLy for a torsionless ray propa-

gating in the * direc-tion on a c9linder.(O = 0). However, T calculated from

(3.6) does not. (c) An arbitrarily oriented dipole on the surface of a.

cylinder may be resolved into an axial dipole and a circumferential dipole.

We may calculate fields due to each dipole separately, and later superimpose

them for the original solution. However, if formulas in (3.5) and (3.1a) are

used, such a superposition procedure does not recover the original solution.

Because of the above difficulties, we will use (3.1b), not (3.5), for all

the subsequent discussion of the OSU solution. (In [3], [4] it is (3.5),

not (3.1b), that was usbd in all the numerical calculations.)

We would like to emphasize that the OSU solution represents one of the

very first efforts to apply the ray technique to the surface-field calculation.

Their solution, while inadequate in some situations, has produced many useful

results [10], (11], and more importantly, has laid a conceptual framework

from which the more refined works, e.g., PINY and UI solutions, are deduced.
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4. COMPARISON WITH PINY SOLUTION

Another asymptotic solution (PINY solution) for the cylinder problem was

deduced from the exact modal solution [3], [4], and is given by

Axial dipole: M= z

H (Q) VW' ()cos 2 0 ksJ (2 3 cos 2 )JG(s) (4.1)

Circumferential dipole: M =

H(Q) [ vOsin 2 8 + -Ls (1 3 sin 2 0)"

+ k- sec 2 0 [u(C) - sin 2 0 vl( )]) G(s) (4.2)

where v1 () is defined in the Appendix. In the limiting case E t. 0 (either

kR + or 0 + v/2), (4.1) becomes

H (Q) [os2 0 + -1- (2 - 3Cos2 0 G(s), C 0 (4.31

and (4.2) becomes

H (Q) [sin2 6 + -L (2 3 sin2 0)+ G.(s), C 0 (4.4a)

where

0 , if kR - (4.4b)

1/2 (s 1 /2

1)/2 e-J3ir/4 (kR 1 if 06 w/2 (4.4c)

The PINY solutions in (4.1) through (4.4) should be compared with the UI

solution in (2.15) through (2.18). The following observations are made:

There are several slightly different formulas given in [4]. The ones pre-
sented here are the "full formulas" taken from Eqs. (101) and (111) of [4].
Note the corresponding notations in [4] and here: D - s, xs - C, v0 - V,
v11 vI, and u0 -k u.
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(1) In the limit kR - , the PINY solution recovers the exact solution

-1 2 -3
for a planar surface in terms of (ks)-  and (ks)- , but not in terms of (ks)

(ii) For a fixed kR and in the direction 8 = 7/2, both H of the PINY

solution in (4.4) and that of the UI solution in (2.18). vary asymptotically

as (ks)- 1 2 'which is distinctively different from the (ks) behavior in the

planar solution. However, the factor W in (2.18c) contains an extra factor

(3/4) when'compared with its counterpart in (4.4c).

(iii) In the deep shadow + , both Hz and H of the PINY solution decay

exponentially according to the "hard" function v(&), which is in agreement

with our solution in (2.11). In particular, at 0 = 0, H1 in (4.2) of the

PINY solution becomes

H (Q) H (jQ) nu (j-) RbQ, (4.5)

where Hb(Q) is given in (2.14a). Note that (4.5) agrees with the UI solution

in (2.14b), but disagrees with the OSU solution in (3.3). It has been deon-

strated in [4] (see Figures 111-2 and 111-13) that the use of (4.5) for mu-

tual admittance calculations between slots shows good agreement with an

exact numerical solution, while the result calculated from (3.3) deviates

markedly from the exact solution.

(iv) H in (4.1) depends on the "hard" function v(E) only, whereas ourz

solution in (2.15) depends on both v( ) and u(C).

(v) In Eq. (123) of [4], an expression for H was given for an arbitrarily

oriented dipole. It has the form

i1(Q) , M . [b'bA + t'tB + C'$C] (4.6)

which should be compared with (2.6a). The presence of the cross term C in

(.6) is unique.
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Next, we present a numerical comparison of 11 for all three solutions:

the UI solution in (2.16b), the OSU solution in (3.1), and the PINY

solution in (4.2). For a cylinder with radius kR = 9.5325, H on three

surface rays (0 = 0°, 45°  and 90') is displayed in Figs. 2 to 5 as a

function of ks, the distance from the source. The magnitude of H is

normalized by H (ks = 0.2,0) of the UI solution, whereas the normalized

phase is equal to Arg(je Jks ) Discussions of these numerical results are

given below: (a) As ks + 0, only the UI solution exhibits the correct

behavior (ks) - . This fact explains the marked disagreement among the three

solutions in the range 0 < ks < 1. (b) In the direction 0 = 0 (Fig. 2), UI

and PINY solutions converge to each other for ks > 6 (or > 1), while the'

OSU solution is much too small, as noted in (iii) above. (c) In the direction

0 = 900 in Fig. 5, both the UI and PINY solutions vary as (ks)- /2 , while

the OSU solution varies as (ks)- .. (d) Overall, the three solutions are

significantly different. In applications where accuracy within one or two

db is required, the selection of a proper formula becomes crucial.

To present an overall view of the surface magnetic field due to a circum-

ferential dipole (M = j), three-dimensional plots of III I and IHIz calculated

from the UI solution (2.6) are given in Figure 6. Fields in both plots are

normalized by IIH I at ks = 0.43 and 0 = w/2, which has a value 0.00503 a/m

and is at zero db. Field values above 7.475 db are not shown in these plots.
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'Figure 2.- H along a surface ray in 0 =0* direction on a cylinder vs. the distance fr({the f-directed magnetic dipole.
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17

-I0 500
' I

-20 0OSU . o

PHASE.

'l \ ~ ~PINY,---'"- -

-30- -500 U\<

10 e
z w

- N
• "\ 8 900 .

kR = 9.5325
-40 OdB = 0.05170 _10000~z

"..PINY

-50 MAG -1500

-60 J..2000
2 3

ks

F gure 4. It along a surface ray in 0 = 900 direction on a cylinder vs. the distance fro

the -directed magnetic dipole.



18

C ' OS(PHASE) K

A\

-4-0

UI

\w

- 0

*00
N

'/J

PINY (PHASE)

8 = 9 0

kR = 9.5325
0dB =8.386 x 1F

6 8 1O 12 14 1 82
ks

*Figure 5. H along a surface ray in o = 90' direction on a cylinder vs. the
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due to a circumferential dipole (I = ) calculated from (2.6).
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5. APPLICATION: MUTUAL ADMITTANCE OF SLOTS

Let us apply the asymptotic solutions given in the previous three sections

to the calculation of the mutual admittance Y12 between two slots on a

cylinder. This is done not only because the Y12 calculation is an important

practical problem, but also because of the existence of the exact modal solu-

tion for Y12, which provides a convenient numerical check of the accuracy

of the asymptotic solutions.

Referring to Fig. 7, let us consider two identical circumferential slots

on the surface of a cylinder. Under the condition that

(a/X) - 0.5 and (b/X). << 1 (5.1)

it is reasonable to approximate the aperture field of the slot 1 (or slot 2)

by

El(y,Z) zV 1 JL cos y , for {yj < a/2, Izi < b/2 (5.2)

where y = R is the angular distance along the -direction, and V1 is the

voltage difference across the slot. Once the "one-mode" approximation in

(5.2) is accepted, it can be shown [2], (4] that the mutual admittance between

the two slots in Fig. 7 is given by

= A dy1 dzl dY dz2  Y cos n (Y2 - YO) g(yl'z;y 2,z2
Y12 a-bA 1  A* a2 z2' zos

1 2 (5.3)

Here A1 and A2 are the apertures of the slots, and (yO,zo) are their center-

to-center distances. The Green's function g in (5.3) represents the H at

(y2,z2) due to a anit-strength, 4-directed magnetic 
dipole at (yl,zl). For

UI, OSU, and PINY asymptotic solutions of Y12' g is equal to H in (2.16b),

(3.1), 4nd (4.2), respectively.
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DEVELOPED CYLINDER

Z 01

z a

Figure 7. Two identical circumferential slots on the 
surface of a cylinder.

The figure shows the developed cylinder.

L. ______________
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In addition to the three asymptotic solutions of Y1 2' there exists an

expression of Y in terms of cylindrical eigenfunctions as given in Eq. (8)

of [2]. Within the "one-mode" approximation, this expression is exact, and

contains an infinite series with each term in the series being an infinite

integral. This expression has been evaluated by two different numerical

techniques. We call the one reported in [2], [7] the Hughes modal solution,

and the one in [ 8] the UI modal solutions.

Now we will present some numerical results calculated from the two (exact)

modal solutions, and the three (approximate) asymptotic solutions. The

parameters of the cylinder and the slots are

f = 9 GHz, a = 0.9", b = 0.4", R = 1.991" . (5.4)

As a function of slot separation (z0,O), Y12 is listed in Tables I to III in

(db value, phase in degree), where the db value is calculated from the

relation

db = 20 log10 IY12/YI ,Yll I = 1.7075 x 10
- 3 mho . (5.5)

From .the comparison made in Tables I to III, we conclude: (a) Considering

the numerical integration error involved, the UI asymptotic solution is in

excellent agreement with the (exact) modal solution. (b) The PINY

asymptotic solution is reasonably accurate, while OSU is not. In addition

to the data presented in this paper, we have calculated nearly 100 different

Y I over a wide range of parameters. The above two conclusions hold for

all the calculations provided that kR > 5.

As discussed in Section 2, the surface ray propagating in the direction

0 = 11/2 on a cylinder has a stronger H b than its counterpart on a plane.

There is a misprint in the definition of The correct one should read
b = sin-i (b/2p). It should be also pointed out that the corresponding

definition used in (5.2) is b = (b/2po). For numerical data presented in
this paper, the two slightly different definitions of b have negligible
effects.



23

TABLE I

Y2 FOR = 0 (E-PLANE)

z 0 Modal Solutions Asymptotic Solutions Planar

(inch) Hughes UI UI OSU PINY R =

-7.27 db -7.27 -7.19 -8.87 -6.35 -8.04
0.5"

_72o 72°  72°  430 -68o -67o

-16.52 -16.43 -16.31 -18.32 -15.61 -18.18
2" -117 0 -117 °0 -116 °0 -100 0 -118 0 -106 °0

.-26.95 -26.49 -26.48 -30.11 -25.45 -30.05
8"1

330 34o  370 550 34o  540

-31.13 -31.25 -36.06 -29.91 -36.05
16"

-40 -i 200 -40 190

-36.60 -37.11 -43.99 -35.48 -43.98
40"

-1150 -ii0° -83° -112 ° -830
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TABLE II

YI2 FOR z = 2"

*O Modal Solutions Asymptotic Solutions

(deg) Hughes UI UI OSU PINY

00 -16.52 db -16.43' -16.31 -:18.32 -15.61

-117 -117 °  -116 o  -100 °  -118

-22.25 -22.07 -22.34 -23.90 -21.25300

1750 1750 1770 .-1700 1720

60 -34.63 -34.65 -34.82* -35.76 -33.06
000

40 30 -1 0 60 -10°

-47.82 -47.17 -47.75 -48.48 -46.3490
o0

1160 1200 1160 1190 1060

TABLE III

YI2 FOR z0 = 0 (H-PLANE)

*O Modal Asymptotic Solutions

(deg) Hughes UI OSU PINY

30o  -25.98 db -25.99 -34.37 -27.79

-770 -75°  -620 -60°

400 -34.52 -34.67 -43.31 -35.76

1680 1700 1740 -1800

500 -40.96 -41.37 -50.60 -42.08

580 610 580 690

600 -46.62 -47.13 -57.24 -47.58

490 470 550 39
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Since Y12 along the E-plane (0 = 0) is proportional to 11b this phenomenon

is also seen in Figure 8, where we plot the ratio

- YI2 on a cylinder with radius R

Y12 on a plane

,as'a function of R for z0  8" and 0-= 0. We note that the convergence

rate of the cylindrical Y to the planar Y is not as rapid as one would
12 12

normally expect. For example, at kR = 50, the cylindrical YI2. is still

about 10 percent higher than the planar one.
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6. DERIVATION OF Ul SOLUTION

The UI solution given in (2.6) will now be derived. The derivation is

based on the following observation. Consider a surface ray (a geodesic)

on an arbitrary convex surface. In the neighborhood of the ray, the geo-

metrical properties of the surface depend on two radii of curvature: Rt in

the direction of tangent t and Rb in'the direction of binormal b. It is

well-known that the dominant asymptotic solution of a surface field depends

on Rt, not R (see the discussion in pp. 192-193 of [11). Thus, for the

purpose of determining the dominant term of the surface field in the direction

of 0 in Fig. 1, the cylinder may be replaced by, for example, a sphere of

radiusR t . In other words, our problem is then to solve the radiation of a

magnetic dipole on a peifectly conducting sphere.

In studying wave propagation around the earth in 1949, Fock considered

the radiation of a horizontal electric dipole on a lossy dielectric sphere [12].

He first obtained an exact solution in terms of spherical harmonics, and

next extracted the dominant high-frequency terms from it. By the duality

principle, Fock's solution can be converted to the one that is sought by

us. We will give below the solution after the conversion is done.

Consider a magnetic dipole in the x-direction (M = x), located on a

perfectly conducting sphere of radius Rt (Fig. 9). The total field can be

derived from a magnetic Hertz potential U and an electric Hertz potential V.

The asymptotic solutions of U and V are found to be [from (7.09) and (7.10)

on p. 252 of [12]]*

The divergence factor DF of the surface ray on a sphere has been removed in
(6.1) [DF = (0/sin 0)1/2]. Note the corresponding notations in [12] and
here: i (-j), u -) U, v -+ V, a - Rt, and x 4 f.
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* Figure 9.A horizontal magnetic dipole on the surface of a perfectlY

conducting sphere.
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U(r) G C(s) cs J. (10 2
2k 2Rt m

r e t{W2( 1 (jww2()J - Yl)  w(t) w(t Y, dt (6.1a)

1V(r) n G(s)-sin v( (6.1b)

r=Rt  k 2Rt

where y1 = (k/m)(r - Rt), and (r,O,4) are the spherical coordinates of r.

Parameters G, m, and in (6.1) are defined in Section 2, while the others

are in the Appendix. The magnetic field is calculated from the relations

r _ 0 (sin e + u (6.2a)

L r sin 2  U

H0() -(U)a k(2
r Dr3O + sin 0 V (6.2b)

H¢() - 1 22 0

r sin r (rU) + jk -" V (6.2c)

Substituting (6.2) into (6.1) and using the results

D k 9a =R ar = -M -Yl ,0 To=t as 5C(63a

[~- (rUJ = cos- G(s)u() (6.3b)

t

we obtain the magnetic field on the surface, namely,

Hr(Rt,0,) O 0 (6. 4a)

H0 (Rt,OO) ' cos [-)IVM + k- uM + k U'( ( G(s) (6.4b)
0 sL s
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H (Rt,00) nu -sin - U(( + G(s) (6.4c)
L~ ks \ks MJGs

where

M = m -v ' ) . (6.5)kRt

From the derivation of U and V in (6.1) it may. be shown that (6.4) is asymp-

totically accurate only up to and including terms of order (kR)2/3. Thus,

the last terms in (6.4b) and (6.4c), which are of order (kR )-i may or may
t

not be completed. We hereby modify the factor M in (6.5) to read

r t
=m t  + _ U( (6.6)

The only "justification" for replacing (6.5) by .(6.6) is that this replace-

ment yields no appreciable difference in the sphere. problem (where R t/Rb = 1),

but significantly improves the numerical solution for the cylinder problem

(where I t/Rb may be very large) as shown in Section 5. We have not yet

succeeded in finding a rigorous justification for using (6.6). Referring to

the cylinder geometry sketched in Fig. 1, the following substitutions are made

Hr 4 H n , t 0 /) H -Hb, e . (6.7)

Then (6.4) and (6.6) become identical to (2.6).

It should be mentioned that expressions similar to (6.4) were given by

Wait in 1956 [15], and by Hasserjian and Ishimaru in 1962 [14], [16]. Their

expressions contain only (ks) terms, and therefore only the "hard" function

v(g) is used.
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7. CONCLUSION

For a given magnetic dipole located on a perfectly conducting cylinder,

the surface magnetic field is given in (2.6), which is an approximate asymp-

totic solution valid for. large kR, and may be used for any observation point

on 'the cylinder. The derivation of (2.6) is based on the following

observation: the dominant contribution of the surface field depends on the

curvature of the surface in the longitudinal direction of the ray, not that

in the transverse direction. Hence, we simply adopt the classical solution

of Fock for a dipole on a sphere for the present cylinder problem. To

include the effect of the curvature in the binormal direction of the surface

ray, we have arbitrarily replaced a* factor 1 of the Fock solution in (6.5)

by that in (6.6). A rigorous justification of this replacement is yet to

be found. A remarkable feature of the solution in (2.6) is that in the

limit kR , it becomes identical to the known exact solution of a dipole

on a flat ground plane. The application of (2.6) to the mutual admittance

calculation yields excellent numerical results, and therefore (2.6) may be

regarded as an improvement over two previous asymptotic solutions. A

future research problem is to generalize (2.6), according to the recipe of

GTD, so that it may be used for an arbitrary convex conducting surface.
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APPENDIX

FOCK FUNCTIONS

In thia appendix we define and list some useful formulas of the functions

Wl(t), w2 (t), v(9), u(9), and vl( ). These functions are commonly known as

Fock functions.

.(i) Definition: For a complex t and a real L,

w2(t)= W dz exp (tz - I Z 3 t (A-1).~t r 1

v(9) = -1 eJ14 1/2 1 w2 (t) -J dt (A-3)2 - 2rw~t

J37r/4 3/2 1 I w2 (t) -j t
E w (- e dt (A-4)

' ' w2 (t) -~

VlM ) = eJ3u/4 3/2 1 t , e dt (A-5)fi 1 w2(t)

where integration contours r and r2 are sketched in Figure 10, and w2(t) is the

derivative of w2 (t).

(ii) Zeros of w2 (t) and w2(t): They are given by

t = t n  Ie-'j/ , and t = t' = It'Ie-" 1 3  (A-6)

n n n n

respectively. The magnitudes of the first ten zeros are
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lIMt

7T/3 7,2Re t
r/ 3

\EROS'0F W2(t) OR W2(0)

Figure 10. Contours r 1and r 2on the complex t (or z) plane. _ ~ for an

example, goes from - to 0 along the line Arg t -n1 n

from 0 to -along the real axis.
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n itIIn n ItnI I t I

1 2.133811 1.01879 6 S.02265 8.48849

2 4.08795 3.24820, 7 10.04017 9.53545

3 5.52056 4.82010 8 11.00852 10.52766

4 6.78671 6.16331 9 11.93602 11.47506

5 7.99417 7.37218 10 12.82878 12.38479

(iii) Residue series representation: For real positive ,

v( ) e-J/4,rt/2 (tn)-ne (A-7)

n=1
e j , 2Fr 32c -j gtn

u() = eI /42v 3/2 e (A-8)
n=1

- 1er/4  r 1/2 -J&-1

Vl(1Q = eJ/2 32 [ e (A-9)

n=1

1 e -J 4 r -1/ 2 n -l -J~ t n

v'(= e/ (1 - j2Ct n)  1 (A-10)2 n.l

J j tnu' )= J 43 /2X I - j tn e.(-I

n=1

Civ) Small argument asymptotic expansion: For real positive and 0,

e jn/4 3/2 + 3 7v e-ju/49/2v( ) 1 - _ +Q +512 e - 4.141 x i03 6 +..

(A-12)

1 V j /4&3/2 + a 3 5Vr -jv/4c9/2 -262--2- + 64 - 3.701 x 10-2 +..

(A-13)

'V + e~J1/4 3/2 7 j~3 7v' _-I/4 9/2 -
V 12 - -64 e 1 + 4.555 x 10-2 C.6 + (A-14)

3A e-3'' / 0 3 - 47/2 -

V ' ,-- e/--ff j c/2 + 21 + 3-0 e-ji/4 - 2.485 x 10-2c5 + ...8 20 1024(A-15)
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3 -j3r/41/2 + 5i2 45A -jn/4 7/2 15
Sv +r +-y -e -2.221 x 10C +

(A-16)

(v) Relation to Fock's attenuation factor: The attenuation factor V(x,y,q)

is defined by Fock in p. 207 of [12], and it reads (after replacing i by -j)

r- w2 (t - y) -x

V(xyq) ejTr/4 xl/2 1 f w 2(t) - qw2(t) e dt . (A-17)VFxyTq = 1 W2i t w2t

The functions v and u are related to V by

1
v(x) = -V (x,y = 0, q = 0) (A-18)

u(x) = jx lir q -(A-9)q- - 193A-19=
q- Ly=0

(vi) Rdlation to functions defined by Logan [17]:

1 e+Jn/41i/2()
v(C) = . e zC/(C) (A-20)

u(C) = eJ3u/4 E3/2 (C) (A-21)

(vii) Tabulation: Functions wl(t), w2 (t) and their derivatives are tabu-

lated in [12], while (C) and (C) are tabulated in [17]. Numerical curves

of u, v, and v1 can be found in [4], (14], [15].

(viii) Numerical evaluation: For C > C0) the residue series representation

with the fiist ten terms in the summation may be used. For C _ %0 the small
argument asymptotic expansion with the first five terms may be used. It has

been indicated in [4] that the smoothest crossover is obtained if = 0.6.

In the present study, we set = 0.7, where the difference in the two

representations is as follows.
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Difference at =0.7

Ma g. M% Phase (deg.)

v 0.00 0.00

u 0.11 0.01

v1  0.02' 0.08

VI 0.09 0.15

ut 0.10 0.90 j

% 11 (Residue/Small arg.)I x 100
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