REPORT NO. 710/6

THE RELATION OF CHARPY IMPACT VALUES TO THE BALLISTIC LIMIT OF LIGHT ARMOR PLATE

BY

WM. J. LATIMER, JR.

1933

INDEXED

WATERTOWN ARSENAL
WATERTOWN, MASS.
Best Available Copy
REPORT NO. 710/6

THE RELATION OF CHARPY IMPACT VALUES TO THE BALLISTIC LIMIT OF LIGHT ARMOR PLATE.
INTRODUCTION

The purpose of this investigation was to determine the relation between the Charpy impact test and the ballistic limit of light armor plate.

STATEMENT OF CONCLUSION

There is apparently a definite relation between the Charpy impact test and the ballistic limit of light armor plate. The curves of Charpy vs. plate thickness, Fig. 4, and ballistic limit vs. plate thickness, Fig. 2, are both straight line curves with equations of the form, \(y = ax + b \). By combining these two curves, the resultant curve, Fig. 5, of Charpy vs. ballistic limit is a straight line curve of the form, \(y = ax \). These conclusions, then, tend to show that for a plate of this composition and treatment, we can predict the ballistic limit by the simple expedient of measuring the Charpy of the given plate.

HISTORICAL DEVELOPMENT

As far as can be ascertained, no previous work has been attempted to correlate the Charpy impact test and ballistic limit of armor plates.

THEORETICAL CONSIDERATION

The energy absorbed in the Charpy impact test produces both elastic and plastic deformation and heat.

The kinetic energy of a bullet, when it strikes an armor plate, is dissipated in the following manner:
1. Punching a hole through the plate - as in a punch press.

2. Converted into heat (Ft.Lbs. x 778 = BTU) to raise temperature of bullet and plate.

3. Deforming the plate both elastically and plastically. It is believed that the energy used to deform the plate is again converted, into heat energy, absorbed by the plate.

The difference, then, in the energy dissipation in the two cases, is that the ballistic energy, in addition to performing all the work done in Charpy test, is also absorbed in shear, and heating the bullet. Also, the difference in time of the two actions enters into the relation.

EXPERIMENTAL PROCEDURE

The apparatus used in ballistic tests was:

DISSTCN homogeneous plates: 7 - 3/16" plates
8 - 1/4" "
8 - 3/8" "
2 - 1/2" "

126 Cartridges, caliber .30 A.P.; Model 1522, 165 gr. bullet.

1 Caliber .30 Mann barrel: Model 1503

1 Standard frame for supporting thin armor plate (drawing A.P.G. 1445-A3)

A.P.G. Chronograph, range and facilities

Apparatus used for Charpy impact test

Moulton-Pendule 300 kgm. Charpy impact machine.

14 Test specimens from 3/16" plates
32 " " 1/4" "
16 " " 3/8" "

-4-
A new Charpy specimen was developed for this test. Its dimensions are shown in Fig. 6. The standard test bar was tried at first but proved impracticable. Trials on two 1/2” plates showed only 2 or 4 ft. lbs. A special fixture was used to hold the new type specimen in the Charpy machine.

6 Charpy values were used in calculations of 3/16” plate: 24 values for 1/4” plates; and 8 values for 3/8” plate. An equal number of specimens in each set were with and against major axes of rolling. The reason for rejecting some values was the proximity of some of the specimens to bullet holes and the fact that the beginning of rupture could be definitely traced to prick-punch marks made to outline the specimen before cutting. Both of these effects caused results which were not in line with other results. For these reasons, the values obtained from the 1/2” plates were not used in determinations.

There was a mean variation of 7.06 ft. lbs from the trend of values with a maximum variable of 65 ft. lbs., 105 ft. lbs. and 62 ft. lbs. for 1/16”, 1/4” and 3/8” plates respectively. The Charpy machine is accurate within 5 ft. lbs.

Ballistic limits, in foot pounds, were taken from the "Fiftieth Partial Report on Test of Thin Armor Plate", Aberdeen Proving Ground, April 25, 1932. The results with 1/2” plates were too few in number to be used in determinations. Ballistic limits are accurate within 30 ft. lbs.
Experimental Results

Table I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A-221</td>
<td>.155</td>
<td>805</td>
<td>485.1</td>
<td>463.8</td>
<td></td>
</tr>
<tr>
<td>A123</td>
<td>.212</td>
<td>868</td>
<td>655.3</td>
<td>546.2</td>
<td></td>
</tr>
<tr>
<td>3811</td>
<td>.212</td>
<td>860</td>
<td>-</td>
<td>527.4</td>
<td></td>
</tr>
<tr>
<td>D611</td>
<td>.216</td>
<td>873</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>D711</td>
<td>.215</td>
<td>824</td>
<td>564.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H221</td>
<td>.210</td>
<td>853</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H611</td>
<td>.210</td>
<td>861</td>
<td>527.4</td>
<td>550.1</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>455</td>
</tr>
<tr>
<td>A1E2</td>
<td>.276</td>
<td>1270</td>
<td>806.9</td>
<td>836.2</td>
<td></td>
</tr>
<tr>
<td>A221</td>
<td>.260</td>
<td>1071</td>
<td>768.5</td>
<td>720.3</td>
<td>720.3</td>
</tr>
<tr>
<td>A611</td>
<td>.258</td>
<td>1171</td>
<td>749.0</td>
<td>711.3</td>
<td></td>
</tr>
<tr>
<td>A711</td>
<td>.255</td>
<td>1079</td>
<td>701.5</td>
<td>788.8</td>
<td></td>
</tr>
<tr>
<td>B122</td>
<td>.273</td>
<td>1207</td>
<td>749.0</td>
<td>797.2</td>
<td></td>
</tr>
<tr>
<td>C111</td>
<td>.267</td>
<td>1287</td>
<td>739.9</td>
<td>806.9</td>
<td></td>
</tr>
<tr>
<td>D121</td>
<td>.273</td>
<td>1174</td>
<td>749.0</td>
<td>797.2</td>
<td></td>
</tr>
<tr>
<td>H711</td>
<td>.280</td>
<td>1128</td>
<td>875.3</td>
<td>758.7</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>875</td>
</tr>
<tr>
<td>A222</td>
<td>.377</td>
<td>1821</td>
<td>1082.6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A211</td>
<td>.369</td>
<td>1660</td>
<td>1092.4</td>
<td>1073.6</td>
<td></td>
</tr>
<tr>
<td>A311</td>
<td>.373</td>
<td>1813</td>
<td>-</td>
<td>1073.6</td>
<td></td>
</tr>
<tr>
<td>A3-1</td>
<td>.383</td>
<td>1837</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A412</td>
<td>.373</td>
<td>1820</td>
<td>1112.0</td>
<td>1073.6</td>
<td></td>
</tr>
<tr>
<td>A531</td>
<td>.377</td>
<td>1789</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>B112</td>
<td>.395</td>
<td>1946</td>
<td>-</td>
<td>1092.4</td>
<td></td>
</tr>
<tr>
<td>B221</td>
<td>.466</td>
<td>1698</td>
<td>1230.6</td>
<td>-</td>
<td>1760</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1085</td>
<td></td>
</tr>
</tbody>
</table>
TABLE II
DISSTCN PLATE C-1

See "Fortieth Partial Report on Test of Light Armor Plate", A. F. G.

<table>
<thead>
<tr>
<th>Bullet Caliber</th>
<th>Ballistic Limit</th>
<th>Vol. of Metal Removed</th>
<th>Ballistic Limit per Cu. In.</th>
<th>'f's/cu.in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>.30</td>
<td>2584</td>
<td>.02455</td>
<td>105,300</td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>7564</td>
<td>.0753</td>
<td>105,500</td>
<td></td>
</tr>
</tbody>
</table>
DISCUSSION OF RESULTS

Figure 4 shows the relation of Charpy to thickness (and to volume) of plate. This is a straight line relation, as expected. This straight line relation has been observed in the laboratory at Watertown Arsenal for a great many years. Niles¹ and Warner² have conducted experiments on the relation of Charpy to volume (and thickness). Their results further confirm this relation.

Figure 2 shows the relation of ballistic limit to plate thickness, (and volume of metal removed by bullet). This curve is also a straight line. Reference to Figure 1, where individual plate ballistic limits are recorded, shows all plates passed specification requirements when tolerances of +.03", -.02" are taken into consideration.

Figure 5, a combination of Figures 2 and 4, shows the relation of ballistic limit to Charpy. This is a straight line, as would be expected, since both figures 2 and 4 are straight lines. This line also passes through the origin, which again is as expected.

2. W. I. WARNER, welding engineer at Watertown Arsenal, conducted Charpy tests with bars similar to those used in these tests; January-February, 1932.
The thickness of Charpy specimens differed slightly, due to irregularities in thickness of plates as manufactured. The Charpy results were plotted against actual thicknesses in figures 3A, 23 and 3C, and Charpy values for 3/16", 1/4" and 3/8" plate thicknesses taken from trend shown for plotted values.

This same procedure was followed in determining the ballistic limit for plates of 1/4" and 3/8" thickness, (see figures 1A and 13). The trend for ballistic limit for 3/16" plates was indeterminate, therefore the average ballistic limit of 85 ft. lbs. for average plate thickness of .2103" was used in figure 2 to determine the actual trend of all plates.

Figure 2 shows ballistic limit vs plate thickness and volume of metal removed. To determine the volume of metal removed, the pierced holes in all sets of plates were measured. The .30 caliber bullet pierced a hole approximately 1/4" in diameter. The .50 caliber bullet pierced a hole approximately 7/16" in diameter. Since volume is equal to \(\frac{\pi d^2}{4} \times t \), or \(\pi t \) for same caliber bullet, it is evident that the ballistic limit varies with an increase in volume. An interesting fact, which perhaps should receive some further investigation, was discovered in connection with this relation of ballistic limit to volume of metal removed. From the "Fortieth Partial Report on Test of Light Armor Plate", Aberdeen Proving Ground, wherein are results of firing with both .30 and .50 caliber bullets at plate C-1,
can be calculated the ballistic limit per cubic inch of metal removed. These show 105,300 ft. lbs per cu. in. for .30 caliber and 105,500 ft. lbs. per cu. in. for .50 caliber. See Table II. These results tend to indicate that the ballistic limit per cu. in. of metal removed is the same for all calibers on same plate. However, this should be further substantiated by additional tests.

Conclusions

From the foregoing it is evident that ballistic limit and Charpy values are correlated, and that by determining the Charpy for a given plate thickness, the ballistic limit of that plate can be read from curve, figure 5.

This is true for these plates tested. Whether or not it is true for other makes and compositions of plates, remains to be confirmed or disproved by further tests.

No conclusion will be drawn at present regarding the percentage dissipation of ballistic energy. This will be attempted later.

Respectfully submitted,

Wm. J. Latimer, Jr.
2nd Lt., Crd. Dept.

D. J Martin
1st Lt., Crd. Dept.
Figure 1.

DISSTON LIGHT ARMOR PLATE
HOMOGENEOUS

Ballistic Limit vs. Thickness

- Center of Gravity of Group
- Average of Group (Trend)

Source: A.P.G. Partial Report #50.
Figure 1A.

Disston \(\frac{1}{4} \) " Plate
Homogeneous

Ballistic limit vs. thickness

Figure 1B. Disston \(\frac{3}{8} \) Plate Homogeneous

Ballistic Limit vs. Thickness

Figure 2.
Disston Armor Plate
Homogeneous
Ballistic Limit vs. Thickness
(Composite Results)
Ballistic Limit vs. Volume

Source: Figures 1, 1a, 1b.
Figure 3B.
Disston \(\frac{1}{4} \) " plate
Homogeneous
Charpy vs. thickness

Source: Table I.
Figure 3c. Disston 3/8 plate homogeneous Charpy vs. Thickness

Source: Table I.
Figure 4.
Disston Armor Plate
Homogeneous

--- Charpy vs. Thickness (Composite Results)
--- Charpy vs. Volume
Figure 5.
Disston Armor Plate
Ballistic Limit vs. Charpy

Source: Figures 2&4