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A Nerve Net System in Modal Logic

1. Introduction

Nerve net theory as developed by McCulloch and Pitts (1943), vonNeumann
(1956), Shannon and Moore (1956) and others can represent different input-
output relationships, thus simulating some behavior of living organisms. The
nerve net works essentially as a binary formal logical system, representing
the operations of Boolean Algebra, including counting, and is thus capable
of performing ordinary arithmetic. It can also correct errors, achieving
any degree of desired accuracy at the cost of bulk and complexities. This
mode of representation, for all its advantages, has some obvious deficiencies
in the representing of human behavior. Some of these are connected with the
nature of deductive logic. This logic ignores the content of a proposition,
assessing only its truth value. Hence, any true or any false propositions
are equivalent to each other, and any combination of propositions is either
true or false. In short, in this system, any proposition is relevant to
any other.

This indifference to content contributes to the mathematical elegance
of the theory but makes for difficulties in application. It results even
in needless complexities in the establishment of accuracy: errors in the
transmission of a proposition such as "Two and two is four" must be checked
in the same way as those for a proposition like "It is raining today." It
becomes an even greater obstacle in the understanding of psychological processes,
as in actual practice the truth and falsity of any proposition does not have
implications for the truth or falsity of all other propositions as it is re-
quired in Boolean algebra. There it is a consequence of the definition of
material implication. Attention to content requires a differentiation in the
meaning of truth which is not equivalent to a simple probability measure, but
at least to a distinction between analytic and synthetic truth. It also leads
to the notion of relevance.

A functioning nervous system operates with continuous input and output.
It has been surmised that it typically operates in an analog way and that
digital analysis constitutes a late and refined procedure. (vonNeumann 1957,
Sebeok 1962) Nerve net theory analyses its input and output in a digital
manner because the nerve net consists of binary units, neurons and synapses.
The value of this theory will be increased if features of the analog operation
of the nervous system can be translated into essentially binary calculus of
nerve net analysis. One such approach is the transition from the classical
logical algebra to modal logic.

2. Modal Logic

Modal logic includes all the principles of Boolean algebra and in
addition the operations of necessity and possibility. It is also a three-
valued logic admitting a value of "indeterminate." These features lead to
the inclusion of strict implication which is defined as "It is not possible
that a is true and b is not true." If this relationship holds between two
propositions, b can be deduced from a because of some necessary connection
between the two propositions. If they both happen to be true, strict implica-
tion is indeterminate. Deduction is thus used in its ordinary usage, and the
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meaning of a proposition is recognized, besides its truth value. The
additions made by modal logic permit a closer approximation of networks
to actual processes of organisms.

Since renewal of interest in modal logic through C. I. Lewis' paper
in 1918 (Lewis 1918, Lewis and Langford 1959), several different systems
have been proposed. For the application to nerve net theory a system is
required which has explicit transformation rules, a minimum of primitive
concepts and no differentiation of impulses by content. The best example
of such a system was found in Prior's system Q. (Prior 1957)

Prior defines the modal operators as applying to time: necessity means
"true at all times," possibility "true at some time," true and false refer
only to the present time. As knowledge about other times may be imperfect,
we have to admit a third value - indeterminate - for all times except the
present one. This then is a three-valued logic; although Prior assigns

numerical values to the three states, he does not use them in any ordinal
sense but only as a nominal distinction. We shall identify them therefore
by symbols +, - or 0. Each proposition is then characterized by a string of
these symbols, theoretically infinite, each symbol representing the truth of
the proposition during a particular time interval. The first symbol must be
+ or -. The logic is based on four primitive operations, negation, conjunction,
necessity and possibility. Rules are given for the transformation of each
symbol under each operation. This, then, is the required development of modal
logic. It can be represented in a nerve net or a computer if it is possible
to use the three-valued strings as input and to define the operations in a way

in which the nerve net system can handle them.

3. Rules for Prior's System Q.

Let us first define the four operations. The definitions given here are
equivalent to those used by Prior but modified to bring out certain points
useful for later application.

3.1 Notation
Propositions 4re designated by small letters, a, b .... , operations by

capital letters N, K, L or M. Operation symbols are put before the propositions
they refer to. Propositions consist of a string of symbols +, - or 0, but the
first symbol cannot be 0. Three of the operations have only one argument: Na
(negation of a), La (a is necessary) and Ma (a is possible). The fourth
operation has two arguments: Kab (conjunction of a and b). Operations can be
cumulated and are performed from right to left; e.g. NEa: it is not possible
that not a, or NKaNb: it is negated that a and not b, i.e. material implication.

3.2 Transformation rule of indeterminacy (0).
Any operation which includes a 0, will result in a 0. In a single-valued

operation 0 is invariant. In a two-valued operation, 0 in either of the two
arguments will result in 0. Thus none of the operations will make indeterminate
knowledge determinate. Information cannot be gained through formal logic of any
kind.

3.3 Transformation rules for N and K.
Both of these operators work on single symbols without regard to rest of

the structure. N changes plus to minus and minus to plus. K operates on a
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pair of corresponding symbols in the sequences in the same way as ordinary
conjunction does, i.e. two plusses make a plus, all other combinations are
minus. Zeros are dealt with according to rule 3.2. These two operations
and their combinations make all operations of Boolean logic possible.

3.4 Transformation rules for L and M.
These operators change the symbols according to the type of whole

sequence. We distinguish three types, according to the presence of plusses
in the sequence. Type one consists of sequences which contain only plusses
(propositions which are always true); type two of sequences which contain
plusses and other symbols (propositions which are sometimes true); type three
of those which contain no plusses (propositions of which it is not known if
they are ever true). Type one and type three stay invariant under both L and
M transformation. In type two operator L changes both plus and minus to minus,
and operator M changes both to plus. Again, zero stays invariant. In words,
these rules mean that a proposition is necessary at any time if it was true
at all times and it will be possible at all times if it is true at any time,
except, of course, at those times at which nothing is known about the truth of
the proposition.

3.5 These rules allow all the operations of modal logic, in particular strict
implication which is defined as NMKaNb, it is not possible that a and not-b
occur jointly. For two propositions to be connected in that way, b must be
true whenever a is true. If the truth of b is not known for any time period
when a is known to be true, there is no necessary relationship between the
two propositions although they are not inconsistent with each other. Thus
two propositions can be indifferent toward each other. Meaning is thus defined
as the pattern of times in which a proposition is true.

This system thus permits discussion of several degrees of truth, can
differentiate between different propositions beyond their present truth value,
admits unconnected propositions and does this in a way which consists of simple
transformations of one symbol to another. We shall now construct a scheme of
a nerve net which can perform according to this system.

4. The Network System

4.1 The type of input.
In order to adapt this modal system to use in nerve net theory we have

to specify an input in such a way that a three-valued signal can be transmitted
through an off-on circuit and make the operations conform to the basic operations
of the nerve net. This means essentially that we can specify an output pattern
for each combination of inputs. Thus it can perform the basic operations of
the truth and count, but cannot distinguish between two inputs to an organ
beyond the fact that they are on or off. If these restrictions are observed,
it has been shown that nerve nets can be drawn by simple rules from the input-
output conditions. (Culbertson 1962) Consequently it is sufficient to present
here only the in-out matrices.

As stated above, Prior conceives of each proposition as a string of
three-valued symbols. Our nerve net will consist of a set of parallel organs,
one of each symbol. Although the set is theoretically infinite, it corresponds
in practice to a finite number, say n. Each of these organs consists of two
parts, the determinacy net (D) and the falsity net (F). The inputs in the
D net are firing if the proposition was indeterminate at the time to which
the organ refers, and does not fire otherwise. The input in the F net
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are firing if the proposition is false at the time and do not fire otherwise.
Outputs are read in the same way: If the D-effector fires, the value corres-
ponds to indeterminate (zero) no matter what the F-effector does; if the D-
effector does not fire, firing in the F-effector means "false," no firing
means "true." The whole network has thus (2n) receptors and (2n) effectors.

The rules for the operations divide into two kinds: the two Boolean
operations, K and N and the modal operations L and M. For the former each
organ can function separately and only the three-valued nature of the logic
provides any differences from ordinary nerve nets. For the latter the whole
network has to be analyzed and classified into one of the three types before
proceeding on each organ.

4.2 Input-output conditions for K and N.
For the operator N the rules are as follows. In the D-network the output

equals the input. In the F-network the output is the opposite of the input,
dead on a firing input and vice versa.

K operates with the inputs from two propositions, a and b, the input
for each network are combined separately according to the following table:

Input 11 10 01 00
Output 1 1 1 0

Applying this scheme to the D-network makes the effector fire whenever
one of the propositions is indeterminate; applying it to the F-network makes
the corresponding effector fire only when neither proposition is false. As
the F-effector is irrelevant whenever the D-network fires, it does fire only
when both propositions are true.

4.3 Input-output conditions for L and M.
Before applying the operators the whole input pattern has to be analyzed

and must therefore be stored. The analysis for determination of the type (see
above) proceeds as follows: The D and F input are combined according to the
following table:

Input 11 10 01 00
Output 0 0 0 1

This results in only the "true" symbols firing. After this the number of
firing fibers is counted. The determination of class is as follows:

X (number of outputs of Type
previous table firing)

n I
0 (X(n II

0 I1

After this each organ is treated separately, but there are two kinds of
organs, one for types I and III and one for II.

For types I and III both L and M are simple identity transformations;
the input equals the output.

For type II the D-network transmits the unchanged. In the L-networks all
outputs fire and in the M-network no output fires. This type corresponds to
a proposition which is true at least once, but not at all times. It is there-
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fore necessary at no time and possible at all times at which any information
is available.

With a combination of these organs all operations of modal logic are
possible.

5. Applications.

The use of modal logic gives flexibility to the use of networks and
makes it possible to use them in new contexts. To show two of its most
interesting features, two kinds of applications will be sketched.

5.1 Reliability
The question of possible failure of either the inputs or the system

has been attacked in different ways. Here we can use the differentiation
between analytic and synthetic statements. If we have admitted the necessary
truth of statement (La) at any time, it must be true at all times. Thus, for
any statement of this kind an error which would make the statement true at
some times and not at others is self-detecting and can then be checked. On
the other hand, synthetic propositions which are possible but not logically
necessary allow some errors which would keep them synthetic and only their
truth at different times would be stated in error. It is likely that this
division leads to economy in actual thinking. In propositions whose universal
truth is accepted, any error is automatically expurgated. Other statements
depend on correct input, that is exact empirical observation. In this
connection it is instructive to note that Cowan (1960) has shown the equi-
valence of error correcting codes to the Lewis multi-valued logic. It is
proposed here that starting with a modal logic such as Lewis' and Prior's
system will lead to different and simpler look at the problem of reliability.

5.2 Consistency
Instead of different symbols referring to different time units we may

also conceive that they refer to the relation to different conditions. We
can then analyze different propositions on whether they are consistent, in-
consistent and indifferent under different conditions and under which condi-
tions a person entertaining these propositions is consistent or inconsistent
and what he can do to achieve consistency. This would then be an approach
to "Psychologic." (Abelson and Rosenberg, 1958) The symbols can also be
interpreted as affective relationships, like, dislike and neutral and
consistency of preferences can be analyzed. A number of current psycho-
logical theories postulate a drive toward balance or consistency. (Festinger
1957, Heider 1958, Newcomb 1953, Osgood, Suci and Tannenbaum 1957). The
procedure shown here allows representation of these theories of psychological
processes in terms of these theories. This makes it possible to construct
analytical models demonstrating the differences and limitations of these
theories and also to determine the effect of the introduction of unbalancing
factors as these theories represent limiting conditions. (Back 1962) Under-
standing of imbalance through this logic of possibility and necessity will
then give a more life-like model of human behavior.



References

Abelson, R. P. and Rosenberg, M. J. 1958, Symbolic Psycho-Logic: A Model
of Attitudinal Cognition, Behavioral Science, January, 1-13.

Back, K. W. 1962, Can Subjects be People and People be Subjects? in
Mathematical Methods in Small Group Processes, Stanford University
Press.

Cowan, J. D. 1960, Toward a Proper Logic for Parallel Computation in the
Presence of Noise, in Bionics Symposium, Wright Air Developmer. Division.

Culbertson, J. T. 1962, Nerve Net Theory, in Computer Applications in the

Behavioral Sciences, Prentice-Hall.

Festinger, L. 1957, A Theory of Cognitive Dissonance, Row-Peterson.

Heider, F. 1958, The Psychology of Interpersonal Relations, Wiley.

Lewis, C. I. 1918, A Survey of Symbolic Logic, University of California Press.

Lewis, C. I. and Langford, C. H. 1959, Symbolic Logic, Dover (2nd edition).

McCulloch, W. S. and Pitts, W. 1943, A Logical Calculus of the Ideas
Immanent in Nervous Activity, Bulletin of Mathematical Biophysics,
115-133.

Newcomb, T. 1953, An Approach to the Study of Communicative Acts, Psychological
Review, November, 393-404.

Osgood, C. E., Suci, G. J. and Tannenbaum, P. H. 1957, The Measurement of
Meaning, University of Illinois Press.

Prior, A. N. 1957, Time and Modality, Oxford.

Sebeok, T. E. 1962, Coding in the Evolution of Signalling Behavior, Behavioral
Science, October, 430-442.

Shannon, C. E. and Moore, E. F. 1956, Reliable Circuits Using Less Reliable
Relays, Journal of the Frankline Institute, September and October,
191-208, 281-297.

vonNeumann, J. 1956, Probabilistic Logics and the Synthesis of Reliable
Organisms from Unreliable Components, in Automata Studies, Princeton
University Press.

vonNeumann, J. 1958, The Computer and the Brain, Yale University Press.



Howard A. Baldwin

Page 1

MUSCLE-LIKE CONTRACTIVE DEVICES

Muscle-like devices may be characterized by providing a
contractive force in series with an elastic element. There
are two basic designs - one in which tension fibers or ele-
ments are wound in a double helex around an expandable cylin-
der, and the other in which the fibers are aligned axially
with the expandable cylinder or tube. Both mechanisms depend
on a material or combination of materials to provide an aniso-
tropic modulus of elasticity. The helically wound contractive
device is finding use in prosthetic and orthotic applications
(1) in which muscle-like power is provided to patients who
have lost the use of their own muscles, particularly in their
limbs. It has further been described (2) as a servo mechani-
cal actuator in the control of flight surfaces in millile ap-
Dlications. A method for the control of hydraulic valves is
described in the patent literature (3) using either the heli-
cally wound or linear fiber device.

The linear fiber contractor is of particular interest
because, unlike the helically woven system, theoretically
infinite forces are available at the beginning of contraction
when a finite pressure exists inside the expandable tube.
The potential exists then for very high mechanical efficiency
when the contractive device is coupled to a proper load (4).
Furthermore, the low inertia and control characteristics would
suggest useful employment in dynamic systems as a prime mover
or mechanical transducer.

Figure 1 is a photograph of a contractive device in
which the fibers are aligned axially with the expandable
rubber tube. An ideal contractive device is one in which the
fibers are assumed to be inelastic. Finite pressure inside
the elastic tube serves to force the fibers outward and there-
by draw the ends of the fibers together. It can be shown (5)
that the enuation describing the shape of the fiber under these
conditions is given by -

d, XL

where n number of fibers
T tension in one fiber
p : internal pressure in force per unit area
x and V are the coordinates

We have assumed that the elastic tube has a negligible modulus
of elasticity, and serves merely to load the tension elements
with a force normal to the element. The boundary conditions
are - y - at x a 0 and L.

j47ds 
= L°

0 Is
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0 at x = L/2

d = rest diameter

L = contracted length

L = rest length
0

s = distance along fiber

= angle between fiber and axis of tube

0(.= value of P at fiber attachment.

The non-linear second order differential equation above arises
freauentlv in mechanics (6), but no solution with the stated
boundary condition has been found in the literature. McKibben
(7) treated the case for r = 0 which leads to finite rather
than infinite contractive force. A solution with the given
boundary conditions relating variables of interest is given
by - ) FpTL [ _

7-T[0CIO4-~

where Elt,e) is Legendre's incomDlete elliptic integral of the
second kind with modulus k

F(t,k) is Legendre's incomplete elliptic integral of
the first kind - C

It is convenient to consider the ratio of rest dipmeter d to
rest length L. as a design parameter. The ratio Y4, the
fractional contraction or excursion, is shown plot ed against
normalized contractive force in Figure 2 for s veral ratios.
Notice that the maximum excursion occurs for K'* = 0, the
limiting case for a long, thin device, and that the fractional
contraction is about 45% of rest length. Th thick, short
device with diameter equal to rest length (/= 1) Oives high
contractive force over a shorter excursion.

The excursion versus Dres ure relation for constant load
is shown in Figure 3 for two (74.) ratios. The dotted lines_
indicate asymtotes for maximum excursion values.

ExPerimental devices have been constructed using a
surgical rubber tube with a wall thickness of about .006 inches,
diameter 0.25 inches, and length approximately 2.5 inches.
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Several fiber materials have been employed such as glass,
steel, polypropylene, and nylon. The curves below were gener-
ated with devices using approximately 200 strands of single
end multifilament 10 denier nylon with zero twist. The fibers
are preloaded in the test apparatus; consequently, the effect
of elasticity in the fibers is minimized in the data.

Figure 4 is a plot of pressure vs volume change for
several constant loads lifted a ainst gravity. If mechani-
cal efficiency is defined as Ydv we can plot efficiency

vs load for the data given in igure 4. Such a plot indicates
that small excursions and heavy loads lead to high mechanical
efficiency. In the case of practical devices, energywhich is
used to expand the elastic tube is not usable during contrac-
tion although it is returned to the system when pressure in-
side the tube is reduced.

Direct comparison of these contractive devices with
striated muscle, for example, is difficult because the mecha-
nism for contraction is not well understood (8 & 9). It is
obvious from the data presented that there is some similarity
in the mechanical properties of skeletal muscle and the device
described, however. Muscle cells have been observed to expand
radially while contracting (10), and it is suggested that such
a mechanism in combination with Dronerlv oriented colagen
fiber encasing the cell would serve to generate the observed
mechanical force-excursion relations.

Once the basic contractive device is available it be-
comes possible to produce either linear or rotary motion using
low pressure gas or liquid working fluid. Preliminary models
of three and four "cylinder" rotary engines have been con-
structed in the laboratory, and tests are being conducted to
determine their dynamic characteristics and efficiency under
load.

Another muscle-like device is being studied based on
the sphincter action of specialized muscle systems. If tie
fiber and elastic structure described earlier is constricted
by an increase in nressure on the outside relative to the
inner part of the tube, the tube collanses and serves as a
hydraulic valve for fluid Dassing through the center of the
tube. The pressure-volume change required to effect "cut-
off" is small in relation to the amount of nower controlled.
The hydraulic amplification of ac variations in nressure is
analogous to vacuum tube triode amplification of voltage and
an ac power gain is demonstratable.

Howard A. Baldwin
Laboratory for the Study
of Sensory Systems
4242 E. Speedway
Tucson, Arizona
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fiCURE 1

A photograph of a muscle-like contractive device with axially
aligned tension fibers. It is shown partially inflated, and
is about 3 inches in length.
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FIGURE 2

This figure relates theoretical contractive force or pull to
percent contraction from rest length. The curves represent
three different diameter to length ratios.
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ExDerimental results for a contractive device whose_rest lenpth
is 3 inches, and rest diameter = 0.3 inches giving =O.. The
device was Dreloaded to reduce the effect of elasticitv in the
tension fibers.
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SPECTRAL SCANNING AS A MECHANISM OF COLOR PERCEPTION

George Biernson
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INTRODUCTION

It is generally believed that the eye perceives color by means of dif-
ferent types of photo-sensitive receptors having different spectral response
characteristics. Because of the three-di nsional characters of color sen-
sation and the constancy of color matches, the concensus of opinion is that
the eye has three basic spectral response curves.

Many efforts have been made to calculate the spectral response curves
of the eye, but they have all run into inconsistencies that have not re-
ceived adequate explanation. Figure 1 gives, for example, the spectral
response curves proposed by Koenig and Dieterici in 1884 (ref. 1). In fact,
the whole field of color theory is filled with inconsistency, and this has
prompted the continual generation of more elaborate color theories to ex-
plain (in the words of Troland) "the enigma of color vision."

Although the various color theories may vary greatly in detail, they
appear to agree on one principle: every theory (as far as the author can
determine) that has proposed a plausible mechanism for converting the op-
tical energy into a neurological signal has assumed that the eye has dif-
ferent types of photo-sensitive elements having different spectral response
characteristics. This paper suggests that that basic principle is incorrect.

PRINCIPLE OF ANGULAR SCAN

A fresh approach to attack the enigma of color vision can be found
by examining analogous processes in electronic systems. In color vision,
the eye performs a wavelength discrimination function, which is analogous
to other discrimination functions performed in electronic systems. The
most convenient one to consider is the angular discrimination used in radar
systems in the operation of tracking a target.

As shown in Fig. 2, there are two basic approaches in radar to perform
angular discrimination: (1) by the use of multiple radar detectors having
different angular response characteristics, and (2) by the use of a single
detector which varies (or scans) its angular response characteristic.

Figure 2a shows th.e multiple-detector approach. Detector A (which
may consist of a waveguide horn feeding a crystal detector) is pointed
along the upper dashed line and so has a peak response in that direction;
while detector B is pointed along the lower dashed line. Along the solid
horizontal axis which bisects the angle of the dashed lines, both detectors
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have equal responses. To generate an angular discrimination signal, the
signals from detector B is subtracted from that of detector A. The re-
sultant angular discrimination signal is called an error signal because
it is zero for a target along the horizontal axis (called the boresight),
positive for targets above that axis, and negative for targets below that
axis. For example, a target T, gives a positive error voltage and target
T2 gives a negative error voltage. For targets reasonably close to the
ooresight, the error signal is approximately proportional to the angular
deviation (or error) of the target from the boresight.

Figure 2b illustrates the angular scanning approach. A single detector
is oscillated through an arc, such that its direction of maximum sensitivity
varies with time between the two dashed curves. The effect of this oscilla-
tion, or scanning, operation is to produce an amplitude modulation of the
signal delivered by the detector. We are interested in the first harmonic
of that modulation, which is at the frequency of the angular oscillation
of the detector. For a target along the boresight, the first harmonic is
zero; for a target above the boresight, such as T1 , the first harmonic has
positive phase relative to the detector oscillation; whereas for a target
below the boresight, such as T2, the first harmonic has negative phase.
The first harmonic has ma ximum amplitude if the target lies along one of
the dashed curves; and in the vicinity of the boresight the amplitude of
the first harmonic is proportional to the angular deviation of the target
from the boresight.

The signal from the detector is amplified and the first harmonic is
demodulated by a phase-sensitive demodulator which uses the detector os-
cillation signal as a reference. The demodulator delivers a d-c signal
essentially equivalent to that which is delivered by the multiple-detector
system of Fig. 2a.

Thus both approaches deliver essentially the same angular discrimination
information, but there are some important differences. The multiple detector
system is very difficult to keep in calibration because it requires two
parallel amplifier channels, the gains of which must be kept matched. The
scanning detector system is much simpler to build, but has the disadvantage
that inaccuracies are produced if the signal from the target is modulated
at a frequency close to the angular scan frequency. The angular scan system
can be deceived by a jammer which modulates its return signal, and conse-
quently modern radar systems now generally use the multiple detector approach
despite its increased complexity.

Figure 3 shows how the angular oscillation, or scanning, of the de-
tector modulates the detector signal. Diagram (a) shows the angular re-
sponse patterns of the detector when it is at the extreme points in the
oscillation cycle. The oscillation of the detector vibrates the pattern
between the two curves. The angular positions of targets T and T are
shown. It can be seen that as the pattern vibrates back an forth the
signals produced by radar returns from targets T and T are modulated
with opposite phase; i.e., while the signal due to targit T1 is increasing
that due to target T2 is decreasing. Diagram (b) shows the amplitude of
the first harmonic of the a-c signal as a function of the angular deviation
of the target from the boresight. The different signs indicate opposite
phase of the a-c component.
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Figure (3c) shows the detector signals produced by the radar returns
from targets T1 and T2 . They consist of a-c modulations about an average
or d-c value, and are opposite in phase. If both targets were present
simultaneously and produced radar returns of equal strength, the a-c com-
ponents would cancel and the average value would be doubled. This would
give the false impression of a single target along the boresight. This
problem is avoided in most radars by a range gate that accepts only a single
target return at a time.

It has been shown that there are two basic means of achieving angular
discrimination: with multiple detectors having different angular response
characteristics or by scanning the angular response of a single detector.
When we examine other discrimination tasks in electronics we find that the
same two principles are used. These include discrimination in time, fre-
quency, distance, and many other parameters. It seems logical, therefore,
that both approaches should be considered as possible means of explaining
color vision. However, we find that previous color theories have applied
only the multiple detector approach.

APPLICATION OF SCANNING PRINCIPLE TO COLOR VISION

Let us consider how the detector scanning principle might be applied
to color vision. Assume that the detector oscillated its spectral re-
sponse in the same manner as in angular scan. A monochromatic light would
produce an a-c modulated waveform, just as does a single target with an-
gular scan. A white spectrum of light would correspond to an infinite
number of targets. The components due to the various wavelengths would
cancel, and a d-c signal would be produced. Thus the average or d-c com-
ponent of the signal delivered by the detector would correspond to the
white sensation, and the a-c modulation component would correspond to the
chromatic sensation.

There are two sets of basic chromatic sensations experienced in
vision: blue-yellow and red-green, blue acting as the negative of yellow
and green acting as the negative of red. This suggests that there are two
different a-c modulation component in color vision, one component cor-
responding to blue-yellow and the other to green-red. The phase of a com-
ponent would determine the difference between blue and yellow or between
green and red. The two components could be kept separate by being at
different frequencies or by being 90-degrees out of phase with respect to
one another.

One of the problems associated with conventional radar angular scan
is that the target echo must be present for a time longer than one cycle
of the scan in order for the angular discrimination to be performed. How-
ever, in the analogous color vision situation, the eye is able to see color
from a very short pulse of light, nmuch shorter than any reasonable scan
period. How then can the scanning principle be applied if this condition
must be satisfied? A simple answer was proposed by Robert F. Lucy, an
associate of the author. He postulated that the scanning process in color
vision is performed subsequent to detection, rather than prior to detec-
tion as in angular scan.

Figure 4 shows diagramatically how Mr. Lucy's principle would work.
A prismatic ef2ect within the cone separates the wavelengths of the inci-
dent light, such that different wavelengths are concentrated at different
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regions of the photodetector portion of the cone. The light falling on
the detector excites the photopi&ment and generates electric charges.
An electrical scanning mechanism is employed in the cone to control the
flow of charge. The scanning mechanism scans back-and-forth across the
detector and feeds out the charges from different portions of the de-
tector at different instants of time.

The prismatic effect probably does not separate the wavelengths
discretely. Rather, it is more likely that it merely produces difierent
distributions of energy across the photodetector for different wave-
lengths. Waveguide or interference patterns within the cone may be re-
sponsible for the prismatic effect. The scanning action could be produced
by an oscillating electric field that controls the flow of charge from
the photodetector.

An important question that pertains to the scanning process conce.rns
the relationship between the blue-yellow and green-red modulations. In
order for the scanning to be performed in the simplest manner, these
modulations should be harmonically related. Evidence (which is beyond the
scope of this paper) suggests that the blue-yellow signal is a first har-
monic and the green-red signal is a second harmonic.

Figure 5a shows a first approximation of how the optical energy ap-
pears to be distributed across the photosensitive portion of the cone by
means of the prismatic effect. The sketch shows the energy distributions
'or specific wavelengths in the violet, blue, green, yellow; and red por-
tions of the spectrum. For convenience, the raxi-m energy distributions
are normalized to unity. The horizontal axis labeled "position on cone"
is purposely vague, because the author does not know whether the variation
of energy is longitudinal, axial, or something else.

It is postulated that an electrical scanning raechanism scans back
and forth across the photosensitive portion of the cone in a cyclic ranner,
as is indicated. The effect of this scanning is to produce the waveforms
shown in Fig. 5b for the wavelengths corresponding to the energy distribu-
tions in Fig. 5a. The lower dashed waveform of Fig. 5b is produced by a
mixture of two monochromatic lights, a red plus a violet, which combined
to form a magenta color sensation.

Neglecting harmonics above the second, the yellow and blue wavelengths
generate first harmonics of opposite phase, while the magenta (i.e., violet
plus red) and green wavelengths generate second harmonics of opposite phase.
For the particular wavelengths considered, blue, green, yellow, and
mageuita (i.e., violet plus red), simple waveforms are produced. Intermedi-
ate wavelengths generate both first and second harmonics. It is signifi-
cant and desirable psychologically that magenta (which is a purple red)
is a natural primary in this theory, rather than red, even though magenta
is not a spectral color.

Evidence indicates that the waveforms are demodulated in the retina
to form d-c signals of opposing signs which produce the blue-yellow and
green-magenta (or green-"red") sensations. The waveforms are filtered
to leave the average value, which gives the black-white, or luminosity,
sensation.
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Figure 6 gives a plot of the yellow-blue a-c signal vs the green-"red"
(or magenta) a-c signal for spectral lights of equal energy. The numbers
along the curve show the wavelengths in millimicrons. The shaded regions
give the approximate color sensations evoked by these wavelengths under
normal viewing conditions. The plot was calculated from standard color
mixture data plus a knowledge of the wavelengths at which various types
of color-blind individuals experience a grey sensation. The derivation
of this plot was given in Reference (2), but is beyond the scope of this
paper. Figure 6 shows that our green-"red" sensation is really a green-
magenta sensation.

FURTHER CONSIDERATIONS OF ANALOGY

A confusing aspect of the analogy between angular discrimination in
radar and wavelength discrimination in color perception is that two os-
cillation modes are used in color perception whereas a single oscillation
mode is adequate for radar angular discrimination. The reason for this
difference is that a radar performs angular discrimination on a single
target, whereas a receptor of the eye experiences many different wave-
length regions simultaneously and requires an additional perceptual
dimension to resolve wavelength mixtures.

For example, consider an ideal radar which has a linear error re-
sponse as shovn in Fig. '(a. A target at angle 91 produces an error sig-
nal of +1, one at @2 produces zero signal, and one at Q3 produces a sig-
nal of -1. Thus for single targets, the radar can determine the angle
from the value of error signal. However, if there are targets at angles
@i and @3 simultaneously, the error signals for the two targets cancel,
and it appears like there is a single target at "

The mbiguity caused by multiple targets can be removed by using an
additional scanning mode, which generates a characteristic of the form
shown in Fig. '(b. If multiple detectors are employed, a third detector
can be used which subtracts its output from the sum of the other two.
The targets at angles @1, Q2 , and Q3 produce signals in this second mode
B corresponding to points indicated by (1), (2) and (3).

When the signals from the two modes A and B are plotted on orthogonal
axes, the plot of Fig. 7c results. This figure shows that if targets
appear simultaneously a means has been provided for defining in an un-
ambiguous sense the general positions of the targets, even though the
radar cannot break the multiple target return down into its separate com-
ponents to determine the exact positions of the separate targets.

The dashed circle in Fig. 'c shows the analogous color wheel, and how
the color sensations are oriented around the wheel. By using two chromatic
coordinates in color tracking, the eye is able to distinguish a wavelength
region at the center of the tracking zone (i.e., at point (2) in the yellow-
green) from the sum of two wavelength regions at the ends of the tracking
zone (at point (1) in the red and point (3) in the blue, which combine to
produce point (4) in the purple).

Thus, two chromatic coordinates are required for the eye to distinguish
among the various spectral regions in an unambiguous mrnner. For this
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reason the eye requires two scanning modes for color discrimination, where-
as a radar system tracking a single target needs only one.

It was pointed out that a radar using angular scan can be deceived
if the target transmits a jwming signal modulated at the angular scan
frequency. If the eye receptor uses a scanning mechanisms one would
therefore expect that a similar deception might be achievable. This is
indeed the case. When white lighit is modulated at frequencies -a the
range of 10 cps to 20 cps, chromatic sensations are produced which are
called Fechner colors. The frequency at which Fechner colors are observed
increases with light intensity, which appears to indicate that the ere in-
creases its scan rate with increasing light intensity-.

SU1.2ARY

Although the scanning principle is a st-ndard approach for performing
discrimination tasks in electronic systems, as far as tle author can deter-
mine it has never been considered as a means of explaining the wavelength
discrimination function performed by the e.y)e in color vision. All pre-
vious theories of color that have proposed plausible means for converting
light energy into neurological color sign. ls appear to be based upon the
miltinle-detector principle of wavelength discripAnation.

This paper has applied the scanming principle of discrimination to
color perception and finds that it appears to provide a very simnle ex-
planation for "the enigma of color vision." Because this new theory of
color is based upon a detection principle whicn is fLndaxmntnl1r dif-
ferent from that of previous color theories, it opens up an entirely new
approach to the color phenomenon.
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EXPERIMENTS IN ADAPTIVE PATTERN RECOGNITION

James S. Bryan
Advanced Technology Laboratory

Philco Corporation
Blue Bell, Pa.

Introduction

This paper presents some initial results of experiments carried

out at the Philco Scientific Laboratory with adaptive pattern recognition

systems similar in concept to the Perceptron. Figure 1 is a schematic

representation of the kind of device under discussion. An object is
imaged upon a matrix of photoreceptors whose outputs are quantized to

either ONE or ZERO. Elements of the quantized image are then

weighted with plus or minus values and brought to a summation point at
the input of a threshold commonly called an A unit. Many such A units

are used and their outputs are variably weighted to a subsequent sum-
mation and threshold unit usually called an R unit. The system is
adaptive to the extent that the second layer of weights is adjusted by

some training rule to achieve separation of two training classes by
means of the R unit responses. The system's power of generalization
is then tested by noting its responses to "unknowns, " i. e. , members of

the two classes to which it has not before been exposed.

Experiments described in this paper were carried out using two

entirely different techniques to optimize the adaptive weights: correc-
tive training as used by Rosenblatt, 1 and Bayes's hypothesis weighting
assuming statistical independence of A unit states. One purpose of

this experimentation was to compare and contrast these two approaches.

The corrective training algorithm used was as follows:

Corrective Training Algorithm

a. Test alternately, members of the two dichotomous classes.

b. When the weighted summation at the R unit input lies on the
correct side of the threshold, do not alter the weights.

c. When the weighted summation lies on the incorrect side of
the threshold, modify each weight by a fixed incrementwhose
sign is so chosen as to move the summation toward the cor-
rect side of the threshold.
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Modification To Improve Generalization

d. In order to improve generalization two thresholds are
defined during training for each class with a fixed margin
or zone of uncertainty between them. Any training score
falling in this zone is treated as an error. Performance
error rates, however, are still determined with a single
threshold midway between the two used for training.

Simple Bayes' Hypothesis Weighting

This weighting technique involves computing the joint conditional
probability for each class and picking the larger. In the dichotomous
case where only two classes are involved and the individual A unit
states are assumed statistically independent, Kanal" has shown that
the weighting procedure can be described by the following simple
equations:

N
log k (ai x i + ci)

i-I

where
mi (l - ni)

ai = log -
ni  (I - mi)

ci = log mi)
(1-ni)

m i is the mean output of the i-th A unit taken over pattern
Class L

ni is the mean output of the same A unit taken over pattern
Class 11, with A unit outputs assumed to be either one or zero

k is the likelihood ratio determined by summing all the ai x i
and c i terms; here the x i represent A unit outputs (one or zero),
and the a i represents the "adaptive" weight. Although the
assumption of independence is not always justifiable, the simple
linear discriminant function which results from such a hypothe-
sis has proven to be effective in pattern recognition tasks where
None degree of generalization is required.
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Therefore, the decision rule is to choose Class I whenever X > t,
and Class II whenever X < t, where t is a threshold determined by

a priori probabilities.

Rule For Random Connections

Unlike the random connections originally used by Rosenblatt, 1
which utilize only a few connections per A unit, these experiments
were performed with connections made from every retinal element

(S unit) to every A unit. In general, the positive weights were so
arranged to form a number of random lines on the retina as shown

in Figure 2. Negative weights were applied to the remainder of the

retinal elements of such a magnitude that the total value of positive

and negative weights was approximately equal. The random lines

themselves were generated by photographing an oscilloscope which
was driven by two separate, band-limited random noise generators

on each axis, and the weighted connections were achieved by optical

imaging 3 and summation. The use of random line connections is
believed to yield A units which are markedly more efficient than those

which use random point connections. This technique was first
mentioned by Roberts, 4 and subsequently Gamba 5 has shown the

method to be quite effective in a number of recognition tasks.

Experimental Technique

All of the experiments discussed in this paper were performed

by computer simulation using special purpose hardware for computer

input. The equipment shown in Figure 3 was used to perform optically

the first layer weightings and summations. This equipment has been
described by Hoffman 3 and consists of a 35 mm transport which
carries an endless loop of random line masks through the image plane
of a slide projector. When the light passing through a particular mask
exceeds a preset fraction of the light passing through the sample slide,

a ONE is punched on paper tape. As the series of masks pass the
image at the rate of 24 per second, the corresponding A unit decisions
are punched on tape and become the input for a high speed computer

(the Philco 2000) which simulates the operation of subsequent layers.
This combination of hardware and computer for simulation has been

found to be well suited to studies where a large number of training
samples must be used to obtain statistically meaningful data.

Test Material

Figure 4 shows examples of the three kinds of image classes
used to test and evaluate the systems under discussion. In order of

increasing difficulty these are:
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(1) Hand-print alpha-numerics with considerable size variation,
but roughly centered in the field of view.

(2) Three kinds of normal, human, white blood cells: poly-
morphonuclear leucocytes whose nuclei have two or more
segments; monocytes which have nuclei containing a single
continuous structure, and lymphocytes which have a single-
bodied nucleus more compact and dense than the monocytes.

(3) Gray-scale aerial photographs taken at approximately the
same altitude and sorted into five classes: bridges, roads,
housing developments, urban areas, and open land. Photo-
graphs were processed to emphasize contrast but no other
preprocessing was employed.

Sample Sizes

For the hand print problem, 120 samples of each character
were used with 80 each for training and 40 each for testing perfor-
mance on unknowns. In the case of the blood cells, in all, 50 of each
class were available, 30 for training and 20 for testing. For the
aerial photographs 83 of each of the five catagories were available,
48 for training and 35 for testing. In some cases larger training and
testing populations were obtained by presenting each sample in four
rotations.

Performance

In each case the level of challenge was chosen to give large
enough error rates to permit meaningful comparisons. Initial ex-
periments with machine print (variable font typewriter material)
indicated that errors occurred so infrequently that system compari-
son would be difficult using that problem. An initial small sample of
constrained hand print also yielded low error rates (10 on individual
dichotomies). However, a subsequent larger sample was collected
with a wider range of style and size variations, and this gave con-
siderably increased error rates. Results quoted are for this second
sample. Table I presents system results obtained on the unknown
test samples. In this table no attempt is made to compare the two
techniques. Where the two techniques gave different results the best
results are shown. In each case it is clear that some degree of
recognition is being achieved, since error rates are significantly
below those which would be predicted by chance. Yet in no case is
the error rate low enough to offer promise of useful commercial
application without considerable improvement, and in the case of
hand print, better results have been obtained by other investigators
using deterministic feature extraction

-4-



TABLE I

CLASSIFICATION ACCURACIES OBTAINED
FOR THE SYSTEM ON UNKNOWN SAMPLES

Hand Print Blood Cells Gray Scale Aerial
Photographs

Classification 65% 82% 39%
Accuracy over A - H 3 catagories 5 catagories
Several (chance 12. 5%) (chance 33%) (chance 20%)

Catagorie s

Accuracy for 94% 88% 84%

Single C vs. A - H one class vs. one class vs.

Dichotomy (chance 50%) other two another
(chance 50%6) (chance 50%)

Comparison of Corrective Training vs. Simple Bayes' Weighting

Only one clear difference appeared between the two techniques in

the course of some fourteen experiments in which their performances
were compared. With the sample sizes used, corrective training
nearly always converged to a zero error rate (perfect identification)
over the training sequence, whereas Bayest weighting resulted in

sizeable error rates in most cases. When the two systems were

tested on unknowns, however, their performance was indistinguishable.
Figure 5 presents two plots of error rates for unknowns tested on the

two systems over fourteen experiments. The initial six experiments
were with the small sample of hand print previously mentioned. For

other experiments with larger error rates, although individual scores
differ, this difference appears to lie well within the noise level of the

error-rate determination. From these data it appears that corrective
training produces a false optimism when evaluated over the training

sequence only. The mechanism for this apparent ability to "memorize"
a training sequence becomes evident when one considers that for cases

where the number of training samples is equal to or less than the
number of A units, the system can be represented by a series of
simultaneous linear inequalities with more unknowns than inequalities.
Each training sample represents an inequality and each adj ustable

weight an unknown. In such a case, a solution (zero error rate) can

almost always be found.
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A few experiments were run with much longer training sequences
(several examples per A unit). For these cases, although a terminal
error rate did appear for the training sequence, no improvement was
observed for the error rate on unknowns.

Some insight into the mechanism of corrective training can be
obtained from Table H. Here the form of corrective training is a
slightly different one suggested by Gamba, though the same basic
principles apply. The first step or iteration represents the results
for simple Bayes' weighting computed over the training sequence. For
all subsequent iterations, the Bayest weights are computed for a modi-
fied training sequence which consists of the previous sequence with the
errors re-introduced to be counted twice. Notice that although the
training scores quickly converge to a low error rate, the scores on
unknowns remain unmodified after the first few iterations. Although
the error rate decreased slightly for corrective training in this ex-
periment, data taken over many experiments indicate that it will often
increase as well.

TABLE II

EFFECT OF CORRECTIVE TRAINING ON BLOOD CELL PROBLEM
(first iteration represents results for simple Bayes' weighting;

subsequent iterations show effect of reintroducing
training errors into weighting computation)

Training Unknown

1st iteration 12%o 22%0
2nd iteration 9% 22%
3rd iteration 8% 22%

4th iteration 3% 18%
5th iteration 3% 18%
6th iteration 30/6 18%
7th iteration 1/ 18%
8th iteration 20%0 18%

The Effect of Increasing Number of A Units

The question of how performance is effected by adding more A
units has received considerable attention from a number of investi-
gators. Results obtained in our experiments appear to indicate that
although infinite Perceptrons have infinite power to memorize training
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sequences, their ability to generalize is quite limited and is not much
greater than would have been obtained with 500 or so A units. The
analysis of experimental data which follows is not conclusive in this
question since it ignores third and higher moments, yet it does yield
some insight into the effect on performance of statistical dependence
among the weighted A unit outputs.

If one plots a histogram for the weighted summation at the input
of an R unit, taken over many test examples, one obtains curves
similar to those shown in Figure 6, showing two separate distributions
for the two classes with the overlap of the two distributions defining
the error rate. To the extent that one can neglect the effect of third
and higher order moments, the error rate is determined by the vari-
ance of the two distributions and the difference of their means. But if
one considers the individual weighted firing of an A unit to be a random
variable Xk with a variance (k then the variance of the sum of random
variables (Sn) produced by all A units is given by the well known ex-
pression1

N

Var (Sn) = k + Z COV (Xi, Xk)

k=1 j,k

the last sum extending over each of the (V pairs (Xj Xk) with j < k. It
is a relatively simple matter to compute Var (Sn) and Eak from
experimental data. When this was done for a series of sixteen experi-
ments in which from 80 to 160 A units were used, it was found that in
every case the variance of the summation into the R unit, Var (Sn),
was larger than the summation of the individual A unit variances,
usually by a factor of four or five. Thus the results implied that the
summed covariances were the dominant factor in determining error
rate. To obtain a quantitative estimate of the effect of the increasing
number of A units it was necessary to assume an average covariance
per A unit pair (COV), an average variance per weighted A unit (0-)

and an average correlation coefficient (i), such that

COV

Then the R unit summation is divided by N (the number of A units) to
keep the difference of the two means constant as N is varied. This
then results in dividing Var (Sn) by N2 to obtain a new variance ((r2)
for the normalized distribution. Carrying out this step one obtains
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Var (Sn) k N (N- 1)
NZ N' + N2 GO-V"
N - N NQ

or - 2

2 = + COV
N

Thus, the variance of the normalized distribution approaches GOV, the
average covariance per mask pair, as N approaches infinity. Alter-
natively one can state this relationship in terms of T, the average
correlation coefficient per mask pair, obtaining,

? z_
= o- (N +

In so far as error rate is determined by the first and second moments
of the two distributions, it is obvious from this last expression that the
advantage of additional A units falls off rapidly after N = 1/i;, and there
is little utility in having more than N = 101- A units.

Thus far in order to preserve generality, no assumptions have
been made concerning the exact shape of the distributions. Although
some readers will consider the assumptions rash and unjustified, in
order to relate N and F more directly to error rate, the family of
curves shown in Figure 7 were plotted for the assumptions of Gaussian
distribution and equal variances for the R unit summation considered
over each of the two dichotomous classes. Here error rate is plotted
as a function of N for problems of varying difficulty,that is, different
values of (A mean / a). The experimental points shown are for various
experiments for which p was determined. N was not a variable in
these experiments so that the points are not expected to follow the
curves. They are included only to show how closely some of our real
experiments approach the terminal error rate predicted with these
assumptions for an infinite number of A units. In Figure 7 the double
triangles represent results obtained on an 80 A unit machine at the
University of Genoa by Gamba. 5 The single triangles represent results
obtained on a 160 A unit machine and the circles are results obtained
with a population of 25 "best" A units selected from an original popula-
tion of 160.

-8-



Conclusions

The comparative results for corrective training and simple first-
order statistical procedures appear to offer no preference of one
technique over the other except as dictated by the economics of imple-
mentation. Further, both analysis and experiment appear to indicate
that for very large numbers of A units, performance approaches
asymptotically to a residual error rate which for difficult problems
may be quite large. More data need to be gathered on the subjects of
A unit efficiency and terminal error rates. In justice to the Percep-
tron it must be said that it does solve problems which can not be
solved by a single majority logic element (template matching). In
order to improve the system further to achieve useful error rates on
difficult problems, we are currently experimenting with higher order
statistical techniques, and the use of statistical principles and pro-
cedures to organize both the presently random first layer, and other
additional layers as well.

Acknowledgment

The author is indebted to E. N. Powers, R. D. Vernot and
R. L. Gayer without whom the experimental work reported in this
paper would not have been possible, and to Prof. H. D. Block who
supplied helpful criticism.

-9-



References

1. Rosenblatt, Frank, Principles of Neurodynamics, Spartan Books,
Washington, D. C.

2. Kanal, L., "A Class of Pattern-Recognition Networks Biological
Prototypes and Synthetic Systems, " Vol. 1 (Proceedings of the
Second Annual Bionics Symposium, Plenum Press).

3. Hoffman, A., " 'The Whirling Dervish, ' A Simulation Study in
Learning and Recognition Systems, " 1962 IRE Convention Record,
Part 4, pages 153 - 160.

4. Roberts, 0. G., "Pattern Recognition With An Adaptive Network,"
Record of IRE National Convention (Part 2) New York, 1960.

5. Palmieri, G., and Sanna, R., "Automatic Probabilistic Program-
mer Analizer for Pattern Recognition, " Estra Ho Rivista Methodus,
Number 48, Vol. XI, 1960.

-10-



oi-

IL-
00

I-

zz

In
-ii-

;;s

Z 0

aa
a4

No.-
20 z

000



0z 0 (n

Imz owi
0-0(/)
0

LL 2
Dw u,w

002-~ Z<
a. Lo

(jE,

Z lie, z

0~.

w ~W

WWa WC0

0 z 0~
Cl 0 z cr

CLQZ W cr x



0 Cl

U) 00

VU)c

w 0 

0. 40

L0 0

avi a. _0c
o IL

zz

0
a.

'0

>-jA
4

a.4



9

40 4

oz

0 .

law L-,

z 0

otz u

W W

P z Wz

W x

FF
U) 0

I-

10O

L * 00

%)3.LVV VOVV3 MILJSAS



0

0#0

0#0

000

w

f 0 0

49 0 a -

0 0

z z

zo "ac
4 U) 0 0ga

0 0

z .-

4c

I D
AIIS3a Al-11VOOb

1w
0 a:

Sal aD



89-

LL.

0

0

0

z

00



RECOGNITION OF SOUNDS BY COCHLEAR PATTERNS

William Fleming Caldwell
Bioacoustics Laboratory

1725 North Swan Road
Tucson, Arizona

Abstract

An electrical analog of the human ear has been developed to pro-

vide real-time cochlear patterns of subjective loudness along the basilar
membrane. Resulting spatial patterns may be analogous to those found in
the auditory centers of the central nervous system. It is hypothesized

that cochlear pattern shapes are of primary importance in the recognition

of sound. It is further hypothesized that the cochlea performs a partial

analysis of the sound and that the higher analysis centers of the central

nervous system perform additional analyses. Concepts and processes of

analysis and recognition are developed. Analysis is discussed from the

viewpoint of an information mapping process in a multidimensional space.

Recognition is discussed as a process of locating unknown points (patterns)

in multidimensional space by relative measures to known points. An experi-

ment is described which demonstrates the similarity in recognition between
the human and the analog using a recognition function based on cross cor-
relation.

Introduction

The following work has been accomplished subsequent to the de-

velopment of an electronic analog of the human ear which displays patterns
of loudness along the basilar membrane of the cochlea. (1,2,3). The study
is devoted to the theoretical aspects of recognition of cochlear patterns
and to an experimental demonstration of their recognition.

It is hypothesized that the sound-to-pattern transformation
achieved by the ear constitutes a partial analysis of sound, and that sub-

sequent analysis of the pattern by the central nervous system provides

recognition of the pattern and, thereby, recognition of the sound. (4,5,6).

In this study the loudness converted patterns of basilar membrane
velocity will be used. From the properties of the cochlea, patterns must

have fixed length, equal to the length along which sensory structures are

distributed. There may be a discontinuity in the pattern only at the heli-

cotrema. The pattern is mono-polar in that it represents an absolute magni-

tude. It follows that the general cochlear pattern of spatial period L may
be described as a function f(x) > 0, where f(xfO) = f(x-L) = 0.
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Pattern Theory

The pattern theory (4,5,6) constitutes a general theory of
sensory stimulus recognition. In sound recognition the theory may be
described with reference to the operation of the cochlea. The dynamic
parameters of the cochlea are such that the energy associated with dif-
ferent frequencies tends to localize in different regions along the
cochlea, high frequencies near the stapes and low frequencies near the
helicotrema. The sensory structures convert this energy into a spatial
pattern of loudness along the cochlea. The fundamental concept of the
pattern theory of sound recognition is: Sounds are recognized by means
of the shape of the spatial pattern of loudness. The recognition of time
varying sounds such as speech corresponds to the recognition of a three-
dimensional surface of loudness in space and time.

Pattern Analysis and Recognition

A common artifice in communications theory is the construction
of a geometrical signal model in abstract multidimensional space. Such a
model will be introduced here to provide a clarification of the recogni-
tion process. A signal is defined as a desired input to a communication
system and is generally mixed with undesired inputs defined as noise.
Noise is generally considered to enter the system independently of the
signal and to affect observations according to how it and the signal are
combined.

The analysis of a signal may be thought of in terms of a mapping
process, in which the signal plus the noise is mapped onto a multidimensional
signal space (n-space). In this space the signal plus noise is represented
by a region about the point that represents the signal alone. The size of
this region reflects the uncertainty about the signal due to the noise.

There are many permissible mappings of a particular ensemble of
waveforms. The choice of a signal space for mapping is determined by the
characteristics of the signal and the desired analysis process. The initial
analysis will assume that, in the case of cochlear patterns, the source must
draw the signal from a limited ensemble of patterns. All of the possible
distortions of the limited ensemble form the ensemble of all-possible sig-
nals from the source.

The limited ensemble of patterns may be represented by regions
in n-space, so that any point in a region may be termed a selection from
the limited pattern ensemble. Thus each pattern from the ensemble of all-
possible patterns will fall within a region which is designated by a pattern
from the limited ensemble.

The recognition of an unknown pattern is the determination of the
region in n-space onto which the unknown pattern is mapped. If the choice
is forced, the ensemble of all-possible patterns must be contained within
the signal space. Generally, however, neither the mapping nor the space is
known, and the relative position of an unknown pattern must be measured by
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determining its differences from each member of the limited ensemble. The

region associated with each point of the limited ensemble is determined by
the measurement of "nearness."

The word "nearness" introduces the concept of distance in n-space,
and suggests the notion of an error criterion. So as to promote practical

utility, the relative weighting of the information-bearing components of
the signal must be determined by the mapping of the analysis process and
the error criterion of the recognition process. The choice of an optimum
mapping for a recognition process is dependent on the relative importance
of the information-bearing components of the signal. The mapping may be
selected to emphasize the information-bearing and de-emphasize the non-
information-bearing parts.

In the study of human sound recognition, the hypothesized analysis
and recognition processes must ultimately be compared with human performance
under similar conditions. The choice of a signal space for sound recogni-
tion is very difficult--the exact analytical solution for an optimum mapping
is probably impossible. There is, however, a system for which certain par-
allels can be drawn which has undergone optimization over a long period of
time--the human hearing system. By constructing analysis and recognition
devices similar to the human, it should be possible to achieve some form

of optimization for a speech recognition system.

Cross-Correlation as a Recognition Process

The Cauchy-Schwarz Inequality for real integrals is

[g(x) d f(x)] 2dx [g(x)] 2dx Eq. I

00 0

The cross-correlation function is defined as

L
f(x) g(x) dx Eq. 2
0

and the normalized cross-correlation function is defined as

L
f(x) g(x) dx

0 Eq. 3/L 2 L 2

rL [f(x)] dx L [g(x)]2dx
0 0
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Assume that f(x) is an unknown pattern which is to be recognized
th

and that g(x) is the m pattern from a dictionary of patterns containing

M possible patterns. The dictionary contains the ensemble from which all
patterns are drawn, and to which all unknown patterns are to be compared
for the process of identification that constitutes recognition. Both func-
tions are real, non-negative, and of spatial extent L. Thus

f(x) -- the pattern to be recognized
th

gm(x) -- the m pattern from a stored ensemble of M patterns

The cross-correlation function is a maximum value when the two
patterns are proportional, in which case the normalized cross-correlation
function achieves its maximum value of unity. It should also be noted
that the normalized cross-correlation function is independent of the
magnitudesof the two patterns.

The right side of Eq. 1 may be thought of as the product of
the energy of f(x) and the energy of g(x). Since the gm(x) are to be

stored in a dictionary, it is possible to adjust all of the gm(x) so that
they have equal energy, as

If Jgm(x)J 2 dx = A2 , where m = 0,1,2,3,.. .M Eq. 4

0

This normalizes all patterns stored in the dictionary.

Consider the unknown pattern.f(x). In any particular case of
recognition, this pattern will have total energy set by the incoming
pattern magnitude. Thus

Lfif(x), 2 dx = B2  Eq. 5

0

where B is a constant for any particular pattern to be recognized.
Using the Cauchy-Schwarz Inequality and these conditions, there is ob-
tained a further inequality yielding recognition. This is

L

f 0f(x) gm(x) dx AB Eq. 6

Thus the cross-correlation function on the left will, if computed for all
of the M patterns in the dictionary, be a maximum for the one which is pro-
portional to the unknown pattern. Now envision a device that computes the
correlation function of f(x) and each of the gm(x) and then selects that
g (x) showing the maximum correlation function. This is recognition! Note
tat the only normalization required is that of the stored pattern, a com-

paratively easy task.
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Next consider the problem where f(x) does not exactly correspond
to any of the gm(X) due to noise or because of a limited dictionary of
patterns. The mean-square error between f(x) and gm(x) is

2 L2
e 2 If(x) - gm(x) 2dx Eq. 7

0

which expands as

2 L 2 L 2L

e2 = jLf(x) 2dx + I gm(X)2 dx - 2Sof(x) gin(x) dx Eq. 8
000

2
Since e can only be positive or zero, conditions obtain as

2€ > 0 if f(x) # gm(x)

2 = 0 if f(x) = gm(X)

Again using pattern energies and the condition that all gm(x) have the same
energy, there results

2 B2 Am 2 Lx
2 = B + -2 gm(x) Eq. 9

0

Thus if f(x) is not identical to one of the g.(x), the elementary
recognition device will select that g_(x) which shows tffe least mean-square
error with f(x). In addition, an equivalent device may be hypothesized
which measures the mean-square error between the incoming pattern and each
of the stored patterns, and then picks as the recognized pattern the one
having the least mean-square error.

While the present interest is in hypothesizing a process that
may be related to the human, it is obvious that in doing so the fundamental
basis is discussed for a recognition device which might be incorporated in
a general speech communication system. Thus the two devices, human and
machine, may to a degree be treated interchangeably throughout this dis-
cussion.

In hypothesizing analysis and recognition processes, the error
criteria are not actually known and thus may not be used to establish the
correct relations. As more data become available, it may be possible to
compare human and machine recognition processes so as to evaluate human
error criteria.
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Cochlear Pattern Analysis of Eight Vowels

The theoretical concepts of cochlear pattern recognition have
been developed to the extent necessary for sustained sounds. These tech-
niques will now be applied to eight sustained vowels and the results com-
pared with those for human recognition.

In this study, both voicedand whispered vowels will be used.
Although the whisper excitation spectrum is similar to a random noise,
the spectral shape of whispered vowels is not greatly different from
that of voiced vowels (except at relatively low frequencies). As will
be shown later, the recognition of voiced and whispered vowels is not
noticeably different.

Eight vowels were selected to be used in experimental studies
of recognition. The selected vowels are representative of the range of
sustained speech sounds, and are given below in both phonetic symbol form
and in a form which more literally indicates their sound.

Phonetic Approximate Example of
Symbol Sound Sound

(ee) eat

r(i) it

6 (eh) bet

OIL (a) can

4L (ah) father

A (uh) but

(aw) awe

(oo) blue

The eight selected vowels were recorded, both voiced and
whispered. A tape was then made to present, in random order, 48 voiced
(whispered) vowels, each vowel being presented six times. The observers
were presented with samples of about one second duration, and were in-
structed to make a check mark indicating which vowel was recognized.
This tape was presented to a total of 32 trained observers and the re-
sults tabulated into confusion matrices, one for voiced vowels and one
for whispered vowels.

An additional tape was made using the same speaker as used for
the human recognition studies. This tape had longer samples, of about
seven seconds each, so as to implement oscilloscope observations. The
tape was used to excite the analog ear and the resulting patterns were
photographed. Conditions were maintained constant throughout the series
of photographs, and at least three samples of each vowel, voiced and
whispered, were taken.
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The average pattern was used to represent each vowel. The

patterns were quantized to a magnitude scale of 40 levels. It will be

noted that the magnitude scaling is arbitrary and chosen for convenience
in manipulation in the recognition processing. The procedure selected

was to sample the patterns at 19 points along the cochlear pattern--the
end points, which are necessarily zero, are included in the tabulations

for clarity. The sample data estimates of the necessary functions were
then easily computed. The sampled data estimate pattern of the normal-
ized cross-correlation coefficient is

21

7a.b.

p 0 Eq. 10

j 1 21

The cochlear patterns of vowels used in the recognition studies
are tabulated in Tables I and II.

Voiced Vowels

Quantized Pattern Shape Data

Sample No. (ee) ) (eh) (a) (ah) (uh) (aw) (oo)

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0.5 0.5 0.5 0.5 0.5 1.0 0.5 1.0

2 1.0 1.0 2.0 1.0 1.0 2.0 1.0 2.0

3 2.5 4.0 3.5 2.0 2.0 4.0 2.0 3.5
4 5.0 7.0 5.0 4.0 4.0 7.0 3.0 6.0

5 8.0 10.5 9.0 6.5 5.0 11.0 6.0 10.0
6 15.0 14.0 13.0 10.0 7.0 14.0 8.5 14.0

7 16.0 14.5 14.0 12.5 7.5 12.0 8.0 12.0

8 13.0 13.5 14.0 14.5 8.0 10.0 6.0 10.0

9 5.0 9.5 11.5 15.0 10.0 9.0 5.5 9.5
10 2.0 7.0 8.5 14.0 15.0 11.5 8.5 10.5

11 0.5 4.5 5.5 10.0 17.0 10.5 12.0 11.5

12 0.0 3.0 4.0 8.0 15.5 7.5 14.5 10.0

13 0.5 2.5 3.5 7.0 7.0 5.0 14.0 6.0

14 0.5 3.0 3.0 3.0 3.0 3.0 6.0 4.5

15 1.0 3.0 1.5 1.0 1.0 1.5 3.0 4.0

16 1.0 2.0 0.5 0.5 0.5 1.0 0.5 3.0
17 0.5 1.0 0.0 0.5 0.5 1.0 0.5 2.0

18 0.5 0.5 0.0 1.0 1.0 2.0 0.5 0.5

19 0.0 0.0 0.5 1.0 1.0 1.5 1.0 0.5

20 0.0 0.0 0.0 0.5 0.0 1.0 0.5 0.0

21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pattern Energy 779 963 958 1177 1130 1061 922 1112

Pattern Area 72.5 101.0 99.5 112.5 106.5 115.5 101.5 120.5

Average Energy 1013

TABLE I
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Whispered Vowels
Quantized Pattern Shape Data

Sample No. (ee) (i) (eh) (a) (ah) (uh) aw) (oo)

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 1.0 1.0 1.0 1.0 0.5 0.0 0.0 0.5
2 2.0 2.0 2.5 2.0 0.5 0.5 0.0 1.5
3 4.0 4.0 4.0 3.0 1.0 1.0 0.5 3.0
4 7.0 6.0 7.0 5.5 2.0 1.5 1.0 6.0
5 12.5 10.0 10.0 8.0 3.0 2.5 2.0 9.0

6 18.0 16.5 15.0 9.0 4.5 4.0 3.5 15.0
7 15.0 16.0 16.0 10.0 6.0 6.0 5.5 15.0
8 6.0 8.0 15.0 10.5 8.5 9.0 7.0 12.5
9 1.5 3.0 9.0 10.5 12.0 13.0 10.0 11.0
10 0.5 1.0 5.0 10.5 15.0 18.0 14.0 9.5
11 0.0 0.5 4.5 11.5 15.0 17.0 16.0 8.0
12 0.0 0.5 3.5 11.0 7.0 13.0 15.0 6.5
13 0.5 0.5 2.0 3.0 1.5 7.0 10.0 4.0
14 0.5 0.5 1.0 1.0 0.5 1.5 3.0 3.0
15 1.0 0.5 0.5 0.5 0.5 0.5 0.5 2.0
16 1.5 1.0 1.0 0.5 1.0 0.5 0.5 1.0
17 2.0 1.5 1.0 1.0 1.0 1.0 0.5 1.0
18 2.5 2.0 1.5 1.5 1.0 2.0 0.5 2.0
19 3.0 3.0 2.0 1.5 1.0 2.5 1.0 2.0
20 3.0 3.0 2.0 1.5 1.0 2.5 1.0 2.0
21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pattern Energy 900 786 1035 891 794 1163 986 1095

Pattern Area 81.5 80.5 103.5 103.0 82.5 103.0 91.5 112.5

Average Energy 956

TABLE II

The normalized cross-correlation coefficient was computed for the voiced
and whispered patterns for each vowel. The results are shown in the cor-
relation matrix of Figure 1. The matrix shows a normalized correlation
coefficient of about 0.9 or greater in all cases except one.
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Cross-Correlation Matrix of Voiced and Whispered

Vowels for the Normalized Cross-Correlation Coefficient

Voiced Vowels

(ee) (i) (eh) (a) (ah) (uh) (aw) (oo)

0.90

x 0.90

0.98

0.96
0

> 0.94

, 0.83

0.92

0.93

FIGURE 1

The normalized cross-correlation coefficient was computed for all pairs

of voiced and of whispered vowels. The information is summarized by de-
fining a recognition matrix. The recognition matrix is a combination con-

fusion matrix and correlation matrix. There is, however, one important
difference in that vowel confusions that are symmetrical about the diagonal

are combined by summation so that the recognition matrix is symmetric.
This alters slightly the form of the recognition data. However, confusions
which are symmetrical about the diagonal have identicalnormalized cross-
correlation coefficients, so it does not matter how two vowels are con-
fused--the associated correlation coefficient remains unchanged.

The number in the top of each cell of the recognition matrix is the
normalized cross-correlation coefficient. The number in the bottom of
each cell is the number of recognitions from the human recognition tests.
These recognition matrices are shown for voiced vowels in Figure 2 and
whispered vowels in Figure 3.
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Recognition Matrix of Voiced Vowels

Using Cross-Correlation Analysis

i. I L ,,.. A )
(ee) (i) (eh) (a) (ah) (uh) (aw) (oo)

1.00 0.95 0.92 0.77 0.52 0.82 0.55 0.59
190 4 0 0 0 0 0 2

1.00 0.99 0.91 0.72 0.94 0.66 0.93
154 27 0 0 5 1 10

1.00 0.95 0.78 0.95 0.76 0.94
162 23 3 2 0 1

1.00 0.91 0.94 0.78 0.94
173 12 9 3 0

1.00 0.94 0.93 0.91
146 38 35 2

1.00 0.87 0.99
A 153 4 2

1.00 0.90

182 0

1.00
(182

FIGURE 2
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Recognition Matrix of Whispered Vowels

Using Cross-Correlation Analysis

SA
(ee) (i) (eh) (a) (ah) (uh) (aw) (oo)

1.00 0.96 0.86 0.64 0.46 0.31 0.28 0.79

188 2 2 0 0 0 0 0

1.00 0.94 0.71 0.46 0.39 0.35 0.87

T 159 43 1 0 1 0 0

1.00 0.88 0.69 0.63 0.49 0.96

131 53 3 2 0 0

1.00 0.92 0.90 0.88 0.95
176 12 1 1 0

1.00 0.96 0.93 0.82

01 132 33 42 3

1.00 0.98 0.78

A 169 2 1

1.00 0.74
180 1

1.00

_191

FIGURE 3

To compare the results of human and machine recognition, the

pairs of numbers from recognition matrices were plotted on the scatter

diagram of Figure 4. An ideal recognition system would recognize a

pattern only when the normalized correlation coefficient is equal to

one. The addition of noise into an ideal system has the effect of in-

troducing errors. The errors are evidenced by the confusion of patterns

having high correlation coefficients. The theoretically correct curve

should be expected to have a shape such as that defined by the points on

the scatter diagram.
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FIGURE 4. Scatter diagram for cross-correlation
recognition
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Summary

The scatter diagram is thought to sufficiently define the re-
sults--it indicates recognition. It must be kept in mind that it is the
error criterion used in the recognition analysis that determines the

amount of difference between patterns. If the sound-to-pattern transform-
ation and/or the error criterion are changed, the relative position of the
sound will be changed. In terms of the geometrical concept of analysis
and recognition, the analysis and recognition processes are determined
by the mapping and the measure of "nearness."

Acoustical speech is a "channel language" when interpreted in

terms of the ultimate receiver, the human brain. It is believed that more
emphasis should be placed on the end language and less on the channel lan-
guage. The concept of cochlear patterns is believed to be a powerful ap-
proach to the subject of speech analysis and recognition. The problem is
not made simple, but the concept combines work from a number of fields
into a common approach.
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MECHANICS OF PATTERN RECOGNITION
C. W. deCeault, The Boeing Company

I. INTRODUCTION

Apropos of the situation in which the community of scientists and
engineers find themselves in the study of pattern recognition - and
indeed in the general area of inquiry into cognitive processes - is
the introductory statement made by Einstein [i) in an address at
Columbia University.

"But science in the making, science as an end to be pursued
is as subjective and psychologically conditioned as any other
brand of human endeavor - so much so that the question what is
the purpose and meaning of science receives quite different
answers at different times and from different sorts of people."

One might argue that pattern recognition is really a very old
subject of inquiry; for philosophers and psychologists perhaps it is.
But as a subject of inquiry in the exact sciences, it is very young.
As a natural outgrowth of this new inquiry there has arisen a need for
explicit and exacting definitions, descriptions, and measures that are
capable of embodying an enormous and growing mass of evidence concerning
the nature of pattern recognition. From the scientists attempting to
make fruitful gains in their knowledge of pattern recognition, there have
evolved a number of definitions of pattern recognition. A study of
these various definitions indicates that an increasing number of re-
searchers are adopting a common definition of pattern recognition; it
is the essence of this definition which we intend to abstract, elaborate
and state formally in part III of this paper.

II. CONCEPTS OF PATTERN RECOGNITION

In the next several paragraphs are sketched the notions and con-
cepts of pattern recognition as rendered by a few notable investigators;
these few samples are believed to be representative of the opinions of
a great many investigators. These statements are taken out of context
and therefore should not be subjected to close scrutiny without con-
sulting the references indicated.

Minot [2] states that "A pattern may be defined as an arrangement
of matter or energy or both ... " Kelly (3] refers to Webster's diction-
ary which "defines recognize as meaning to know again, implying that
the cognitive mechanism has seen the object before and learned to know
it." Metzelar [4] gives the following definition: " ... pattern recog-
nition is the solution of the problem of sorting different events into
preassigned classes." Minsky [5] renders his concept of pattern recog-
nition as follows: "... pattern recognition methods must extract the
heuristically significant features of the objects ....* assigning
names -- symbolic expressions -- to the defined classes."

David £61 in connection with speech recognition reveals his con-
cept of pattern recognition in the statement: "Such categorization
depends upon abstract properties of the acoustic event, ****" Selfridge
[7J says pattern recognition entails " ... extraction of the signifi-
cant fetWes of data from a background of irrelevant detail."
Dineen ,8 a collaborator of Selfridge, states: "Our theory of pattern
recognition is that it is possible to reduce by means of a sequence of
simple operations a configuration to a single number or by means of a
set of such sequences to a set of numbers."
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An approach to the problem of automatic pattern recognition is
suggested in the question, "What to measure and how to process the
measurements," as posed by Abramson and Braverman [9]

Fischler [1q decomposes pattern recognition into two subproblems
whose solution depends upon a capability of "abstracting significant
features" and "identifying the pattern which gave rise to a particular
set of features." For Sebestyen [1_ pattern recognition techniques
provide "a means for characterizing classes from a small number of
their members," and a capability for classifying "a new input stimulus
,..as a member of one of several classes." Greene [12 mentions a
"crude pattern recognizer capable of recognizing a class of patterns...
the discriminating features, or 'perceptual units' are rigidly built
into the objects to be discriminated."

Lewis [131 writes on "statistical recognition systems, characterized
by the following two statements: (1) information about the patterns
is stored in the machine in the form of pattern properties or character-
istics and (2) the system's decision is based on the methods of statisti-
cal decision theory." Gill [Li states that " ... the recognition itself
is a result of a predetermined series of decision rules.

Finally we mention Estes' [15] remark: "An adequate theory of
pattern perception must not only describe the course of acquisition,
but it must also yield predictions as to the likelihood that a learned
pattern will be recognized under changed circumstances."

III. STRUCTURE OF PATTYM RECOGNITION

Ultimately ones attempt to define such fundamental concepts and
notions as are involved in pattern recognition are likely to end in
unresolved or unresolvable problems in semantics. However, a set of
hypothesis concerning the relationships among primative terms provides
a definite basis against which factual evidence may be tested and upon
which modifications or revisions may be made. In the following para-
graphs we offer definitions and postulates which are believed to be not
contrary to experimental facts and within which the various concepts of
pattern recognition that have appeared in the literature might be sub-
sumed.

The guiding premise in the following development was that the sig-
nificant aspects of pattern recognition as reflected by certain interpre-
tations of pedestrian, non-technical usage of the words pattern and
recognition require only a technical substance in order to initiate an
adequate theory. The particular sense in which the words "pattern"
and "recognition" are taken in ordinary non-technical usage and which
at the same time seems most amenable to our purpose are as follows [16] :

pattern: anything shaped or formed to serve as a model
or guide in forming something else.

recognition: to know as identical with something previously
known.

It is ftom these definitions we wish to construct technical defi-
nitions of "pattern" and "recognition." Most difficult in this task is
establishing a technical counterpart for the phrase "to know," i.e.,
to be cognitive. We consider this problem first.
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In ordinary usage, "to know" means to "fix in the memory" or to
be "aware of" among other interpretations; further the process of cog-
nition does not take place in a vacuum, but in a system. Hence, we
consider the following definitions (analogous to those proposed by
Ashby [17"J ):

variable, x : a quantity which assumes at each instant one
element of a fixed set of symbols,(yj, assoc-
iated with that variable

cognitive system: an ordered n-tuple of variables denoted by
X = IXi ... Xn1

state: the n-tuple of symbols assumed at any instant by X:

X(t) = [xl(t), *.. Xn (t)f , xi(t)c{y}i, i=l...n for
every t.

With this definition of a cognitive system, no implication of
memory or store is made. Rather the system at each instant has merely
an awareness as reflected by its state. The fixity of the sets [yI.,
from which the variables xi must assume their symbols is postulated
in order to avoid the possibility of an ambiguity resulting from an
arbitrary redefinition of the symbols in the sets (Y)i: the tautology
aza, for any symbol, a. occurring repeatedly in a sequence of states
is thus expressly implied.

A recognition system may now be defined as any system which contains
(1) a cognitive system as a coupled subsystem,
(2) a store and retrival, or memory, of any arbitrary set of states or

sequences thereof,
(3) a ruleR o "or establishing whether or not any two states have the

same identity.
Finally a pattern recognition system is a recognition system which

contains a means of formulating rules Rl, R2 , R ... etc which establish
identity among various sequences of states; the name assigned to the
rule is the name of the pattern. Further we postulate that although the
rules R1 R2 ... are perhaps quite different from one another their
formulation is based entirely on an analogy among various sets of states
or sequences thereof. Here we use analogy in the sense stated by
Polya 1181 i.e., "two systems [states] are analogous if they agree in
clearly definable relations of their respective parts."

IV. INTERPRETATION AND PERSPECTIVE

An enormous variety of topics directly and indirectly concerned with
the subject of pattern recognition have been discussed in the literature
[19,201 but less in number are the occasions when the respective authors
have taken time to relate their work to the totality c' the pattern
recognition process. Let us now interpret some aspects of -he profuse
activity of current research on pattern recognition in terms of the
structure suggested in the previous section.

The dichotomization of the universe, U, into a pattern recognition
system, S, and its surroundings, X, can be accomplished with practicable
clarity in nearly all cases of living organisms and automata. Further,
two subsets of entities sC S and §cS are presumed to exist and be
operationally definable by the following scheme. Let I(a,b) represent
the set of interactions between the entities of any two sets, a and b.
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Thus s represents the set of sensors in the system of entities S if

I(S-S93) = (1)

and s represents the set of stimuli in S if

l(F-79S) = W (2)

where p is the empty set. Equations (1) and (2) state that the re-
moval of entities s, 9 from S, S respectively, result in a cessation
of interaction between the pattern recognition system and its surroun-
dings.

It is among the set of states resulting from the interactions
I(S,g) that pattern recognition is sought or conducted. The pattern
therefore cannot be said to exist in the surrounding§ S,but in their
interactions with S. Mention of this simple observation is seldom
made; however, it is felt that a better perspective of the recognition
process can be had by including it in our considerations.

A. Sensors

The sensors utilized by living organisms and the sensors em-
ployed in automata have both received much attention in the past
decade. It is natural that such should be the case, for the
sensors, s, in a pattern recognition system, S, not only link the
system to its surroundings,g, but also they provide an access to
the cognitive subsystem within S and determine in part its state, X.
In the design of many automata as well ts in the Gestalt theory
of perception it is presumed or implied that the output of the
sensors form directly the n-tuple of variables defining the cogni-
tive system and their values determine directly the state of this
cognitive system. On the other hand, there exists evidence,
gathered from studies of living organisms (e.g. references[21,221)
that some processing of sensed data occurs prior to the instant of
cognition; the implication is that the variables xi are the result
of an operational processing from many sensors the collection of
which does not directly constitute a part of the cognitive subsystem.
Therefore some of the most complex studies of pattern recognition
systems are concerned with the discovery of the operational relations
between the sensor inputs, ek, and the variables xi: xi(t)-Oi(ei...eq).

B. Data Processing [23]

One class of processing which has received considerable attention
is that in which a functional form or function value remains un-
changed under specified transformations of the arguments.

Moreover, the concept of invariance under transformation is
essential in the classification of a variety of events into one or
another of several defined sets. Since many of the fundamental
principles of mathematics and physics can be most succinctly put
into a form expressing the invariance of a function, a substantial
background in this area has been established. Suggestions have been
made as to the application of these invariances to pattern recogni-
tion (e.g. Hu 1241 , Golamb [25] ); yet, the scope in this area needs
broadening.
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Invariance of operation of a system under intermittant operation
or failure of components, for example, is a topic which the study of
biological functioning has stimulated; the studies of yen Neumann [(4
and Rosenblatt 14 examplify investigations of this type.

C. Memory

Memory, or the store and retrieval of data is an essential part
of a recognition system. Means of storing and retrieving limited
quantities of data in automata have been studied (e.g. [28,29,303)
theoretically and effected practically in machine computers. In
humans the mechanism of memory remains undiscovered; the multi-
plicity of data that can be fixed in the human memory for the pur-
poses of recognition appears to far outstrip the capacity of even
the largest computers known. Ironically pattern recognition as a
human function appears to be a means of reducing the need for a
virtually infinite and precise store of data as well as a means of
selectively retrieving certain data. While mathematically the
space of all possible combinations of states over a finite duration
is infinite, the context of our hypothesis implies that the rules
Ro, R1, ... etc. restrict the possibilities to a small finite number
of subspaces, and thereby govern the store and retrieval of states
or sequences thereof.

D. Logic

As a means of detecting inconsistancies in and of bringing to
light the implication of a set of premises, deductive logic is as
indispensible in the study of pattern recognition as it is in any
other scientific inquiry. But the formulation of these premises by
a weighing of available evidence is an art or pseudo-science reserved
for inductive logic. For example, by our previous definition of a
pattern recognition system, we hypothesized the existence of a sys-
tem which formulates rules, R1, R2 ... etc. by using the inductive
process of analogy. While arbitrary and plausible, other methods
of induction might be used such as the five "canons of induction"
suggested by Mill [1).

The fundamental problem of pattern recognition is analogous to
the problem confronting one who formulates rules for bidding in
contract bridge; where for successful play the rules must be appli-
cable to any one of the half trillion possible 13-card hands that
might issue from a single 52 card deck. As with the rules evolved
for bridge, the rules R1 , R2 ... etc. formulated in a pattern
recognition system are more likely to be the result of the appli-
cation of inductive logic than a rigorous deductive approach. The
studies in heuristic programming D,32] and general problem solving
(33,34] directly concerned methods of solution of this fundamental
problem of induction and consequently are of utmost importance in
the development of the mechanics of pattern recognition.

E. Decision Theory (35)

Whenever a multiplicity of plausible and creditable hypotheses
are formulated, there arises a natural urge to adopt the one which
best fits in some sense the available evidence. Whenever a given
set or sequence of states is encountered, and it must be categorized
as one of a fixed set of patterns, a decision is required to
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determine to which member of the set it belongs. Decision theory
and a special branch of it known as hypothesis testing, embody a
formal and orderly structure for satisfying under certain conditions
the aforementioned goals. Numerous instances of the application of
decision theory can be cited in the literature; e.g.., see references
[36,37,38). Decision theory is well suited to instances where the
evidence is in sufficient volume to warrant statistical analysis,
as for example alpha-numeric character recognition [59.

CONCLUDING RD4ARKS

The definitions and hypotheses proposed herein provide: (1) a
basis upon which through modification or rejection and replacement
it is hoped that a unified theory of pattern recognition might be
evolved; and (2) an interim structure within which various aspects
of the mechanics of pattern recognition may be put in perspective.
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I. INTRODUCTION

Flexible neural networks have been built that modify their logic functions by the
adjustment of continuously variable controls. The neurons used in these networks
simulate the biological neuron with its variable firing rate rather than a neuron which
makes a simple binary threshold decision. The variable firing rate of the neuron permits
the analog values of the input signals to yield analog values of the output signals. Neural
logic has been found to be an efficient tool for the recognition of speech and visual pat-
terns and for simulating animal behavior.

Although several kinds of electronic models of the biological neurons have been
builtl , 2, 3, only a few neural processes 4 , 5, 6 have been investigated thoroughly. This
paper describes the possibilities of performing logic functions that fully utilize the
analog properties found in the biological neuron. Neural logic recognizes a marginal
decision as a marginal decision, whereas binary logic makes no distinction between
a marginal decision and a firm decision. In neural logic, noise and incidental distor-
tions in the input pattern simply decrease the confidence level of the final decision,
while in binary logic such pattern deviations may result in an erroneous decision. The
advantages of neural logic have been realized in stationary as well as temporal infor-
mation processing7 .

The analog properties of the neuron have also been found to be advantageous
in the development of adaptive logic systems. In these systems, it is possible to
quantitatively determine the magnitude of the corrective signal that must be applied
to each variable of the system, thus reducing the period of adaptation.

II. CHARACTERISTICS OF THE NEURON MODEL

The characteristics of the electronic neuron model used in these studies are
shown in Figure 1. The two types of inputs, excitation and inhibition, are summed
at the input of each neuron. The neuron has an internal threshold below which there
is no output signal. Once the threshold has been exceeded, the output firing rates of
the neuron are proportional to the net excitation (excitation minus inhibition) in ex-
cess of threshold until a saturation point is reached. Thus, the neuron contains
digital properties by virtue of its threshold, and analog properties that are realized
by the variable frequency of the output pulses.
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I. PERFORMANCE OF THE BASIC NEURAL NETWORK

The basic neural network shown in Figure 2 operates from two input signals,
A and B, which may be the output signals of other neurons in the system. This
network itself is composed of three neurons N1, N2 and N3, with variable inter-
connecting weights. The input to any neuron is determined by the output level
of the driving neuron and its interconnecting weight. The weights are passive
and can be thought of as variable resistors.

It is apparent that the network as shown can have an almost infinite combination
of input-output relationships, since each of the interconnecting weights and each
of the thresholds of the neurons can be varied continuously throughout their
dynamic ranges. It was therefore decided to limit the performance of the net-
work to functions that are useful for pattern recognition and that permit a ready
comparison with other logic functions. The simplified network, shown in Figure
3, was developed to generate the analog equivalents of the 16 logic functions that
are possible with a two-input digital-logic network. Aside from deleting many
of the interconnections, the threshold levels of the three neurons are set to
zero. Also, it should be noted that certain signal inputs to N3 are summed before
being sent through a weighting element. In this way a single adjustment can con-
trol several inputs. As a result of such grouping, only four variable weights
(W, X, Y and Z) are needed to generate the desired logic functions. An externally
generated signal, Emax, set at the maximum firing rate of the neurons, is also
supplied to the network.

A detailed study of the logic functions of the network has been made. Figure 4
shows the results of a theoretical analysis of eight transfer functions of the network,
which were obtained by setting each variable control to either extreme of its dynamic
range. The additional group of eight logic functions that can be generated are not
shown, since they are simply the complements of those presented here. Figure 5
shows the results of an experimental verification of the logic. The coordinates on
each figure show the full ranges of the two input signals, A and B. In Figure 4 the
output amplitude of the network is shown as the running parameter. In Figure 5 the
output amplitude is proportional to the brightness.

A detailed comparison of each of these neural-logic functions can be made
with reference to Figure 6, which shows the corresponding digital operations.
For example, the lower right portion of Figures 4 and 5 can be likened to the
digital AND function: the output is at a maximum when both of the input signals
are at their maximum. However, unlike digital or binary threshold logic,
neural logic gives a continuous range of output signals throughout the ranges of
the two input signals. Specifically, in this logic circuit, the output signal is
proportional to the smaller of the two input signals.

The upper right portion of Figures 4 and 5 can be likened to the performance
of a digital OR circuit: the output signal is present whenever either of the input
signals is present. More specifically, this circuit responds to the larger of the
two input signals. The other neural-logic circuits have their digital equivalents,
and can be given corresponding functional word descriptors.
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IV. DETAILED DESCRIPTION OF THE NEURAL NETWORK

The operation of the neural network can best be understood by fol-
lowing the signal flow through the network when it is set for AND operation. A
simplified circuit of the AND network is shown in Figure 7, which has been
derived from the circuit shown in Figure 3 by setting control X to the minimum im-
pedance and controls W, Y and Z to the open-circuit condition. An input signal A
will excite N1 as much as it inhibits N2, and an input signal B will excite N2 as much
as it inhibits Ni. Therefore, as long as A and B are equal, Ni and N2 will have no
output. Whenever A is larger than B, Ni will have an output proportional to its net
excitation. Likewise, N2 will have an output when B is larger than A. The inputs
to N3 and hence the output of the network will be equal to

Eo=A (A-B) (B-A) + B
2 2 - 2 2' (1)

if the neuron is designed with a transfer function of unity and if the signals to N3

are attenuated by one-half. Since neurons have no output signals when the net
input excitation is less than zero, the associative laws of addition cannot be ap-
plied. Thus, equation (1) can be simplified to the following extent:

E =A + B = Aor B, whenA= B, (2)
2 2

-A - A-B + -= B, when A>B, (3)Eo 2 2 2

A _B-A B
E° A B-+-= A, when B>A. (4)

These results show analytically that the output of the network of Figure 7 is
proportional to the smaller of the two input signals.

V. CONTINUUM BETWEEN LOGIC FUNCTIONS

A continuum between the 16 logic functions can be generated by this neural
network by gradually changing each variable weight to any impedance level within
its dynamic range. For example, Figure 8 shows a function obtained by setting W
and Z to minimum, and X to one-half, and Y to maximum impedance, thus generat-
ing a function that is midway between the OR and the EXCLUSIVE OR logic functions.
Figure 9 shows experimentally derived data of a network continuously changing its
logic function.

VI. CONCEPTS OF ADAPTIVE NEURAL LOGIC

The functional continuum between the logic states is useful in building an
adaptive logic system that converges rapidly to the desired logic state. A de-
tailed examination of the network shown in Figure 3 reveals that each of the four
variable weights has greatest effect at the extremes of each of the four quadrants
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bounded by the input signal space. Figure 10 shows the position and the extent
of influence of each of the variable weights. These figures also shows two addi-
tional important factors: 1) the effectiveness is distributed linearly, and 2)
controls X and Y affect the entire signal space, while controls W and Z affect
only one-half of this region. Further, it is apparent, from the discussion and
the figures, that any combination of settings of the four variables results in an
output that is the sum of individual outputs. In fact, the equation for the output
of the network shown in Figure 3 is given by

Eo = XB = (Emax - A) Y + Z (A-B) when A>B (5)

E 0= XA + (E max -B) Y + W (B-A) whenB>A (6)

where Emax is the maximum value that A or B may attain.

It is now possible to determine a simple adaptive method that can attain
any desired logic function by a series of successive approximations. For each
desired logic function there is a correct output signal for any pair of input stimuli.
Moreover, it is known which weights have the most control over the output signal.
Thus it is possible to adjust the weights in proportion to their relative significance
and in proportion to the amount of error. Random trials of input pairs can there-
fore correct various combinations of the weights, ultimately resulting in the cor-
rect setting of all of the weights.

VII. THE ADAPTIVE SYSTEM

The details of the adaptive system based upon the above described concepts
are shown in Figure 11. The basic neural network is presented at the left of the
figure, showing only those aspects of the circuitry pertinent to the adaptation
process. The magnitude of the error signal is established by subtracting the
actual output signal of the network, Eo , from the desired signal, Ed. The magni-
tude of the correction signal for each of the four variable weights is obtained by
multiplying the error signal by the degree of control that each of the weights
exercises for the specific pair of input signals. The degree of control is deter-
mined by signals CW, CX, Cy and CZ derived from circuit connections that
satisfy the signal relationships given in equations (5) and (6). The actual correc-
tion signals are then applied to the respective weights to bring the performance
of the system more nearly into line with desired performance.

To determine the speed by which the adaptive network modifies its perfor-
mance, a digital computer was programmed to simulate the adaptive system.
Figure 12 shows the results of this analysis. Each point on the curve is an
average of 16 samples of input signal pairs which were programmed to have a
random distribution. The curves themselves designate the error in the adaptive
system after a given number of instructions. Different modes of adjusting the
weights are shown to illustrate typical limitations of practical adaptive networks.
Curve A shows the system performance when for each trial, each variable weight
is fully corrected. Curve B shows the performance of the system when
the maximum weight correction is limited to 10 per cent of its dynamic range.
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Curve C shows the performance of the system when the weight correction is
limited to a fixed five per cent step. The decrease in system performance for
the two restrictive operating modes can thus be readily assessed.

VIII. CONCLUSION

Some of the performance capabilities of a network of simulated neurons
have been explored; there are indeed many more logic functions possible.
RCA has found networks of simulated neurons to be particularly desirable in
the classification of temporal patterns, since for these tasks, the sequence or
simultaneity of events can be measured efficiently.

Although we do not claim that the structure of our network approximates
the structure of any part of the animal brain, we do sense close similarities
in the externally perceived actions. This feeling is based upon the realization
that all but the most basic living processes exhibit an analog performance
range8. The brightness of a light is perceived to vary from "dull" to "ex-
tremely bright"; the temperature of water is felt to range from "very cold"
to "very hot"; two events are perceived to occur "simultaneously" or with
variable degrees of delay. Since the input stimuli have dynamic ranges, the
responses exhibit dynamic ranges. An animal may decide to run rapidly, to
run, to walk, or not to move at all; a person may decide to react cooperatively,
neutrally or defiantly; a situation may be adjudged to be unfavorable, accept-
able, or very favorable.

In situations where adapation is required, functional continuums also
exist. A person that responds to the louder of two sound stimuli may be taught
to respond to the difference in loudness between these stimuli. Since the
trainee gives analog responses, it is possible to tell him just how much to
correct his response. In this manner the person can continually evaluate his
actual performance with respect to the desired performance, and correct his
actions accordingly.

In summary, we conclude that logic functions and network adaptation can be
achievedwith artificial neurons that incorporate the variable firing-rate capability
of the biological prototype. Such neurons require fewer levels of logic when
simulating human capabilities and human behavior.
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Automatic Variable Decoder

by

Edward J. Farrell*

In this paper, results in statistical decision theory
are applied to the general problem of decoding binary coded
messages in the presence of garbling (noise); optimum de-
coding schemes are described. Certain "adaptive or learning"
capabilities are introduced into an optimum decoding scheme.
The resulting adaptive decoding scheme is shown to have a
relatively simple implementation which would operate with
an input bit rate in the neighborhood of two megacycles.
This adaptive decoder is called Automatic Variable Decoder.

In particular, the Automatic Variable Decoder (AVD) de-
codes binary coded messages which are being received from a
remote station, which may be sent in a partially unknown
code, and which may be garbled in transmission. The AVD
also follows gradual random or systematic changes in the
coding scheme, so that no decoding key is necessary for
the receiving station to "read" the sending station. This
adaptive capability is desirable for communication systems
in which privacy is important. Figure 1 illustrates this
application of AVD.

The basic operation of the AVD is identification of
sequences of binary digits with one of several fixed items,
which may be quantitative or qualitative. The AVD can be
applied to many identification problems. For example, con-
sider a physical experiment that has N possible outcomes.
Each time the experiment is performed a sequence of binary
digits is obtained as the experimental results9 experi-
ments are performed repeatedly. The goal is to select the
correct outcomes on the basis of the experimental results.
If there is an unknown "drift" in the observations, it is
necessary to have a method of selecting the correct out-
come which is independent of the "drift". The AVD can be
used in such a situation.

UNIVAC Division of Sperry Rand Corporation, Univac Park,

St. Paul, Minnesota.
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Genar-al Remarks Mon odn

To discuss the decoding scheme used in the AVD and its
relation to other decoding schemes, it is convenient to
first consider decoding in general. Various terms used in
this paper are defined by Figure 1. Assume one wishes to

trasmt Nmesags,m(l" ) (2) (N)
transmit N messages, m , m , o, m . These messages

are coded into sequences of binary digits each of length n;

c() is the code for m(l) c(2) is the code for m(2) etc

Obviously N S 2n . Let x represent the received message;

x is a sequence of n binary digits. Let Pi(x) represent

the probability of receiving x given that c(i) was sent;

the value of Pi(x) is determined from the characteristics

of the garbling and the codes c() c(2) • On the, c , " Onth

basis of the received message x, a decoded message m
(I )

or m(2 ) or *. or m(N) is selected using a prescribed de-

coding scheme.

There are several measures of the utility of a decod-

ing scheme. Three measures will be considered:

(1) average probability of correct decoding;

(2) probability of correct decoding for "least
favorable" messages;

(3) probabilities of correct decoding which are
in a fixed ratio.

Let pi(D) be the probability of selecting m(i) as the de-

coded message when m(i ) is sent and decoding scheme D is

used. The average probability of correct decoding is

N

Z i Pi(D), where Xi is the probability of sending 
m(i )

i=i

The probability of correct decoding for "least favorable"

messages is min (p (D) p 2(D)7 -..- PN(D). The third

measure of utility is of a different nature. In certain

3.



applications it may be desirable to have the pi(D)'s in a

certain ratio; i.e., wIp (D) = w2 p 2(D) = ... = WNPN(D)

where the wi's are positive. The goal is to select a de-

coding scheme D* that satisfies the above condition and for
which there is no "uniformly better" decoding scheme; i.e.,
there is no decoding scheme D' such that pi(D*) Pi(D') for

all values of i and p,(D*) < pj(D') for some value of j.

These measures of utility lead to decoding schemes that
have the same form and differ only in the value of certain
parameters: viz.,

if x is received and

DKwixiPi(x) = max (w P (x), ..., wNXNPN(x)],

then select m(i ) as the decoded message.

If wi = 1 for all i and if Xi is the probability of sending

message m I 1\ maximizes the average probability of correct

decoding. If wi = 1 for all i and if the Xi's are selected

so that pI(DX) = p () -.. pN(D ), then D> maximizes the

probability of correct decoding for "least favorable"

messages. For given wi's, if the X i's are selected so that

w pi (D%) = w2 p2 (Dx) = .0. = wNPN(Dx), then D. satisfies the

requirements of the third measure of utility, provided all

Xi's are positive. These statements follow directly from

decision theory.*

An adaptive decoding scheme Dk can be easily implemented
when wi = 1 for all i and Xi is the Probability of send-

(i)ing message mi .The following discussion is restricted to

this situation. When Xi is not the probability of sending

message m(i),the implementation of Dx with adaptive

capabilities requires further investigation.

* See "Statistical Decision Theory" by L. Veiss, p. 71 ff.,
McGraw-Hill (1961).



Basic Operation of AU.

The basic operation of the Automatic Variable Decoder
is illustrated in Figure 2. First consider the decoding
operation. From the input x, X 1P (x), X (P x), ... ,

NP() are evaluated simultaneously. IfAN N MiXiPi(x) = max [XIp1 (x), .. , XNPN(x)], M is selected as
the decoded message. The practicality of such a decoding
procedure depends on the probability function Pi(.), which

in turn depends on the code c(i) and the garbling in trans-
mission.

Next consider the adaptive operation. If the code c(i)
changes or is partially unknown, the receiver must estimate
c(i) to evaluate Pi(x) and select decoded messages. The

nominal code ^(i represents the receivers "best" estimate
(j) A(j)of the code for m .c is based on those previous x in-

puts for which the decoder selects m(i) as the decoded
message. The time required to obtain a decoded message
from a given input x depends primarily on the time to
evaluate XiPi(x). The adaptive operation does not directly
effect the decoding time.

Operation of AVD for Simple Garbling

If the garbling is symmetrical and is independent be-
tween digits, the basic operation of the AVD can be simpli-
fied. In other words,

di

Pi (x) = (1-o) --L

1
where p < is the probability a digit of c(I ) will be

changed by garbling and di is the number of digits of c(i)

that have been changed to form x. The decoding scheme D.
can now be written ass

5.



r DELAY 
-b GATE Jl

I CODE
CORRECTORI t

NOMINAL

CODE c^0)
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FIGURE 2- BASIC OPERATION OF AVD
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if x is received and
D ai d i = rain [a+ d ,a + d a '',N + d N]a. + d.=mnal

then select m(i) as the decoded message,

where

log Xi + n log(l-p)

1i log(p/l-p)

If the messages m ( ... , are equally likely,

then a = a = -- = aN *1 2

The operation of the Automatic Variable Decoder for
simple garbling is illustrated in Figure 3. The decoding
operation is relatively simple. The logical sumsx @) -(I) (D(2), .. ,, j(N)(), x ), ---, x () are formed simultaneously.

d i is the number of "1" digits in xE)(); and ai is a
fixed constant as defined above. If di + ai = min[d + a,

dN+ aN1 then m M)is selected as the decoded message.

Since the logical sums can be formed as x enters the decod-
er, there is essentially no processing time; after the
last digit of x is received, the decoder gives the decoded
message. The input digit rate is limited by the time re-
quired to obtain the nominal codes from storage. Using
drum storage synchronized with the input, one can achieve
an input digit rate in the neighborhood of two megacycles.

Next consider the adaptive oDeration; and in par-
ticular the code corrector for ^(I) and the first digit of

&() If the first digit of the logical sum x (E)/*() is
"frequently" 1, the first digit of c is likely to be in-
correct. The corrector counts the number of times 1 occurs

in the first digit of x ®,(1) for successive x inputs
which are decoded as m(l) . If the count for r inputs to
the code corrector is greater than r(p +E), the corrector

changes the first digit of c(). The other n - 1 digits of
c( are corrected in the same way. The value of E > 0
determines the probability the corrector will correct when
it should. This nrobability and the minimum time between
changes in the coding scheme are interchangeable.

7j
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If there is no garbling in transmission, c M is the

previous x input for which the decoder selects m as the

decoded message. In this case, each transmission of m(i)

can use a different code c(i ), provided successive codes

for m(i) differ in at most one or two digits and the codes
for the N messages remain distinct. If there is garbling

in transmission, (i) is based on several previous x in-

puts for which the decoder selects m(i) as the decoded

message. In this case, a particular code for m(i ) mustbe used several times before it can be changed. To adap-

tively decode in the presence of noise, 2n must be greater
than N. The number of "redundant" digits in x depends on
the garbling) the rate at which the codes are changed, and
the number of messages N.

The "digit counts" and nominal codes could be stored
on a drum or in delay lines in synchronism with the input.
The "digit count" one stores is the count for r inputs
minus the integer closest to r(p + e).

9.



SOME CONSIDERATIONS OF POLYSTABIE SYSTEMS

Howard S. Fitzhugh II

Westinghouse Electric Corporation
Electronics Division

Baltimore, Md.

I INRODUCTION

The purpose of this paper is to describe some of the results
obtained from a computer simulation study of polystable systems.
A polystable system may be defined, in most general terms, as any
system having many possible states of equilibria. These many states
of equilibria result from the characteristics of the individual cells
or elements making up the system and the ways in which these elements
affect each other. By determining the modes of operation of such
systems, as a function of the characteristics of the elements in
the system, and the manner in which these elements affect one another,
some new and dynamic processes concerning behavioral activity in
extremely complex systems may be obtained*

The proposed approach to understanding complex system behavior
is similar, in certain respects, to that taken by the statistical
physicists in departing from Newtonian mechanics to describe the
"behavior" of molecules in a volume of gas. Such departures were
necessitated as a result of the complexity of the problem and did
not invalidate many of the previous results, but rather offered new
approaches to the understanding of complex situations.

II ELEMENTS OF THE SISTEM

The basic building block or element of the system under consider-
ation is a simple two input, two output sequential circuit (Fig. 1)
with four possible internal states.

XI YI ZI

X 2  Y2 Z2

Fig. 1

The behavior of linear sequential circuits in general can be
defined by the equations on the following page.

- --



zit - f (X. -- Xl YI 1 2_i- m)t (1)

Y+ f 2 (X1 ,x2 -Xi-X; YJ ,Y2 -Y- - )t (2)

Where Zit is the ith output at time t,

Yit+ l is the ith internal state at time t+1;

Yit is the ith internal state at time t;

Xit is the ith input at time t; and the

Xes, Y's, and Z's are binary variables, 0 or 1.

Equations (1) and (2) can be represented by output and transitional
matrices respectively or a state diagram, an example of which is shown
in Fig. 2.

b/c" --.. __..a /c b b/b

aa/0

c/c/ d/c b = 01
k C= 10

ob d= II
b/c C / b/d

Fig. 2

Where ' n means that if the device is in state a
and input b is applied, the output will be state c and the circuit
will remain in state a. However, if input a,c, or d is applied when
the circuit is in state a, the output will be state a and the internal
state of the circuit will become b.

By stipulating that the output of the element at time t be equal
to the internal state of the element at time t+l, the output and trans-
itional matrices that would ordinarily be required to describe the
behavior of the circuit can be combined into a single matrix, or from
equations (1) and (2), if zit .Yt+i , then

f-2-)



Such stipulation reduces the gating that would normally be required

in the design of such circuits and also greatly facilitates computer

simulation.

A typical state diagram and corresponding transition and output

matrix of a single element is shown in Fig. 3,

b,"c,d /b Yt+l ro b c d
yt a d c c

40 /a ,cjd /d IPTrt- b b b a c

INPTAT b d a c

/c abd/c d TRANSITIONAL AND

STATE DIAGRAM OUTPUT MATRIX

Fig. 3

The transitional and output matrix may be represented by four

boolean matrices, one for each possible input state as shown in Fig. 4.

da b C Yt+ d yt+

a 1 000 a 0 1 0 0

a n b 0 00 1 bin b 0 1 0 0

c 0 0 1 0 c 1 010 0

d 0 d00 1 0
yt yt

(a) (b)

abC d yt+' abC d yt+l

a 0 1 0 0 a 0 1 0 0

b 0 0 0 I din  b 0 0 0 1

c 1 0 0 0 c I 0 0 0

d 1 0 d 000
yt yt

(c) (d)

Fig. 4
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If the input sequence a,c,d,b, were applied to this single element,
the resulting transitional and output boolean matrix would be obtained:

1000 0100 00 1001
0001 0100 0100

0010)l1000j 1000 - 0100
00101 I;10010 0010 0100

a c , d , b

From the resulting boolean matrix, the new state diagram could
then be obtained as shown in Fig. 5.

C d

Fig. 5

This state diagram represents a situation which tends toward
state b, for the applied stimuli sequence a,c,d,b. (If the sequence
a,cpdpb were applied a second time, state b would be reached no matter
what the initial state of the element.)

Rather than looking upon the element or circuit as a specific
logical design, consider the conditional probabilities of changes taking
place within the circuit. There are a number of ways of calculating
the probability of a change. One method is to first determine the
probability occurrence of a given internal state as a result of random
inputs, and then determine the over-all probability of a change in the
internal state of an element by multiplication with the conditional
probabilities of a change from that state. If P (A) is the probab-
ility of a change in the internal state of an element, then:

P(&) =P(a) P(A/a) + P(b) P(A/b) + P(c) P(A/c) + P(d) P(A)/d) (4)

or
i-d

P = z P(i) P(A/i)
i-a where a,b,, and d are the possible states

of the element. We can then define a quantity S - 1-P(& ) as the
stability of the element. This was done for a number of state diagrams
as shown in Fig. 6.

-4--



a /a b/b

a,b,d /a aqd/d b,c/a tAd/d

d/ ad/c/ Sq C/ d
c/c d1d od/c

25% STABILITY 29% STABILITY

(UNIDIRECTIONAL) (UNIDIRECTIONAL)

al 0/i0l , / b/b/ , -cb

a/a b,/ac//

a/a cd/c b/b d/ d

40% STABILITY 25% STABILITY
(BI DIRECTIONAL) (MULTI - DIRECTIONAL)

Fig. 6

Notice that the state diagrams can also be used to define the trans-
itions as either multi-directional, bidirectional, or unidirectional,
depending upon which transitions are allowed.

III PHASE SPACE CONSIDERATIONS

Since each element can exist in one of four possible states, a
system of N elements will generate a phase space of (4)" possible
system states, each state being a binary word 2N digits in length
and representing a single point in the phase space.

If these N elements are then connected or joined together in
some manner, forming a system, and input stimuli, in the form of
binary words, are applied to the system, a trajectory will be mapped
throughout the phase space as the system changes from one internal
state to another looking for a state of system equilibrium.

- 5 -



Systems currently being studied consist of randomly connected
elements, i.e., a single randomly selected output is joined to a
single randomly selected input. This applies to all elements in the
network except those serving as input elements. No internal feed-
back is allowed to these elements.

System behavior was observed by plotting the number of elements
that changed internal state against time, as various stimuli were
applied to the system. Although networks of multidirectional, bidir-
ectional, and unidirectional elements were simulated, only the changes
in the bidirectional and unidirectional element networks are represen-
tative of the number of binary variables changing within the system
between any two clock pulses. This is because the individual unidir-
ectional and bidirectional elements change only one binary variable
(Gray coded) in going from one state to another. Then, by counting
the total number of elements that changed state between clock pulses,
the Hamming distance between subsequent states of the system is obtained.

In this sense, the scaler quantity, "number of elements changing
state", is also the vector magnitude or Haming distance between
subsequent states of the system.

Consider the following example of a network consisting of 2 elements.
There will exist (4)2 - 16 phase space points as shown in Fig. 7.
Assume some stimulus is applied to the network causing the follow-
ing trajectory: 0000, 1001, 1111, 0101, 0001, 0000.

10-

01-

0

O0 0 I I 10

Fig. 7

If the trajectory shown by the vectors is plotted against time,
we obtain a plot as shown in Fig. 8,

X X X X
A

X X

t--

Fig. a
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where , the number of elements changing within the network, is the
Ham ing distance between subsequent states of the system, and t is

the successive system clock pulses.

This particular path represents a closed trajectory or orbit in

the phase space and corresponds to a condition where no single point

of equilibrium is reached for the given input stimLlus. In other

words, if the internal state of the system happens to be any one of

those points in the orbit at the time the stimulus is applied, the

resulting cyclical activity will be observed, and no single point

of equilibrium reached. On the other hand, if the applied stimulus

causes the system to undergo the state transitions shown in Fig. 9,

O. - C10

0001 Ly1

Fig. 9

a point of equilibrium would be reached after 3 system clock pulses,
assuming the initial state of the system was 0000, and the activity

vs. time plot would be that shown in Fig. 10.

X X

t

Fig. 10

Notice, however, the final state of the system is a Hamming
distance of only 3 away from the initial state of the system.

In general, an n point phase space, represented in two dimensions

by a Karnaugh map or Veitch diagram, etc., will have n(n-1) closed
2

2 point trajectories or orbits. There exist n(n-1)(n-2) closed
3

-7-



3 point trajectories or orbits, including both the "clockwise" and
"counterclockwise" orbits. If all n points of the phase space are
considered, there exists nJn-1)(n-2)--1 = (n-l)! 'In-point orbits", again

n
accounting for both the clockwise and counterclockwise orbits. Therefore,
the total possible number of orbitsQ Qin the n point phase space is:

n + n(n-1) + n(n-1)(n-2) + --- (n-l)! (5)
2 3

n
T n! (6)
I (n-k)!k

It can be observed, however, that the orbits formed in the phase
space are in some way determined by the clock pulses or time allocated
to the formation of the orbits, since transitions from one system state
to another take place between these system clock pulses or "bit times".
The number of paths or trajectories that can be taken from a given
system state (phase point) aid return to that same system state in P bit
times is (a )N, where 1S is the number of paths or trijectories
for an individual element that can be made starting from a given point
and returning to that same point (state) in P bit times, and N is the
number of elements in the system.

These trajectories include the L,,4 orbit.r, the (Lt -1 ) orbits
---down to the single one point orbitLt 1 in which the system never
changes state in /3 bit times. If only the number of (? point orbits
are desired, the others must be subtr-tcted. For all orbits less than
,6 points, there will be at least one bit time at which a loop wi.l
occur, and the state will not change for those bit times. It should
be noted that when this condition occurs, the system has reached a phase
point of equilibrium for the particular stimulus appliud and will, in
effect, not necessarily form a closed trajectory or orbit, but will
remain at that point until another stimulus is applied. For a (0 -1)
point orbit, there will be one loop (Q) in 0 bit times. This loop
may occur with equal probability between any of the $ bit times. Thpre
are .3 repetitions of the same (8 -1) point orbits inclucted in
each having a one bit loop at a different time.

In order to compute the number of t2 point orbits within the set
it is necessary to subtract from that set those orbits contain-

ine one or more closed loops in their trajectory. We now define the
quantity 6 as the number of orbits containing 8 phase space points
starting from a particular point in A bit times. A (13 -2) point
orbit can be formed in 03 bit times, if there are two one bit time loops
in the orbit. One loop can occur during one of the bit times, and the
other loop must occur in one of the remainingI -1 bit times. There are
other ways of forming(JO -2)point orbits in A bit times, but for
simplicity, only the single point loops will be considered.

- 8-



The number ofo -2 point orbits that can occur with this restriction
in 8 bit times is therefore:

2 L03 -1 ) -2)2

In general, with the same restriction on the trajectory of the orbit,
a (. -k) point orbit formed in g bit times will have k one bit time
loops. They will occur at any time, but they must occur at different
times. The number of ( -k) point orbits that can be formed in G bit

times is:

IG Wk!' (A -k)

Then an upper bound on the number ofig point orbits in the phase
space penerated by N elements in 13 bit times starting from a particular
point is:

• t Zr 
(7)

_, -

Since an orbit may start from any point in the ph4se space, the
total number of orbits starting from any point is:

(4' / (8)

For an orbit containing 0 points, it makes no difference from

which point the orbit starts. Expression (8) counts these differences.
There are ( points from which the orbit may start, and the total number
of a poi:.t orbits in the phase space will be:

( 4  W 'a (9 )

Equ ition (7) is a set of simultaneous linear equations. Solving
for ((')1 t 2--- (4, the different size orbits in the phase spice start-

ing from any given point can be found. Once these are found, the total
number of orbit-s can be foimnd from (9). Before equation (7) can be solved,
however, must be determined. One method of doing this is by enumer-

ation of the po 3sible transitions of the particular state diagram under
consid,.rt,tion. Thir can be obtained from the following types of diagrams.
Assume the state diagram under consideration is that shown in Fig. 11.

- 9-



c d

Fig. 11

Such a state diagram may be redrawn as follows (Fig. 12):

b

0 1 2 3 4 5

Fig. 12

This type of diagram then gives us all the possible orbits (-Q,8) that
may occur for a given state diagram in P bit times. The particular
example shows the possible transitions that may occur in 5 bit times,
starting from state b and returning to state b. To aid in the enumer-
ation process, all possible paths may be redrawn as shown in Fig. 13.

b2 b3  b4 I b5

b"* 0 0

d2  C3  a4  2 b5

bo/

C3  04 4 b5
* 0 0

- 10-

0 I

di --- 04 6 b5
* 0

0

C3 04 b

Fig. 13.
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There exist 6 possible closed trajectories in 5 bit times
starting from any given state. Notice, however, that for all of
these orbits to be possible, the input stimulus to the circuit
would have to be changed, since once a loop is established at a
particular state, a different input is required to displace it to
a subsequent state.

The existence of these possible types of trajectories in the
phase space would suggest ways of classifying various stimuli to
the system into classes, or as Farleyl expresses it, "result ini
a kind of 'locking-in' of input to class". However, a further
discussion on the establisILment of property classes is somewhat
beyond the scope of this paper at this tirile.

IV OELERV3D RE,ULTS

For systems constructed of single networks ranging in size
from a few to 1728 elements, four basic types of activity have
been observed, depending on the stability and type of state diagram
of the individual elements making up the network. The first type
of activity or behavior was generally exponential convergance to
zero activity with the possibility of some initial buildup before
the convergence? It was found that the relative number of inputs
to network or system size determined the initial activity. The
other three types of activity did not converge to zero. In one
of these, the system reached finite levels of activity, which
involved changes of a constant number of elements between bit
times. In another type, the activity, instead of being constant
at some finite level, varied with a fixed period. The fourth type
is also a time varying behavior, but with a period that approlches
(4)N bit times, where N is the number of elements in the system.

A period of seemingly random activity during the "organization"
of the system sometimes preceded the steady or cycle activity.
It should be noted that for N large, the time required to observe
one cycle of behavior, for the case where the cycle approached
(0) N, becomes prohibitive.

Results so far indicate that systems with either bidirectional
or unidirectional transition elements with stabilities of 4C% or
higher, renerally converge exponentially to zero (i.e., plotting
the number of element changes vs bit times). This represents the
situation where a trajectory in the phase space terminates at some
point of equilibrium for the applied stimulus.

For networks constructed of elements with bidirectional transition
characteristics and stabilities of 33% or less, activity also generally
converges to zero. For networks with elements of 3rv stability and
unidirectional transitions, both convergent and cyclical activity have
been observed. This same behavior has also been observed in networks
with elements of 35% and bidirectional transitions. It is interestinp

B. G. Farley - "Self-Organizing Models for Learned Perception",
Self-Orpanizing Systems, 1960, p 20.
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to note that the borderline between stable and cyclic behavior is a
value equal to I/e. The significance of this is not known at the
present time.

The following figures are plots of activity (i.e., number of
elements changing internal state) vs time, for various size networks
with elements of various stabilities. All the networks are randomly
connected except for the input elements, which can be vie"ed as a
sort of buffer between the system and the outside world.

Fig. 14 shows the similarity in behavior of two networks vary-
ing in size from 1000 to 1728 elements of like stability, and approx-
imately the same ratio of inputs to network size. Note that the peak
activity reached in both cases is approximately 22% of the network
size (neglecting the input elements). In both cases, elements of
4C% stability and unidirectional transitions were used in the networks.

40% STABILITY UNDIRECTIONAL

360

1728 ELEMENTS
300- 400 INPUTS

240- 240

1000 ELEMENTS
8200 INPUTS

120 120-

60 60-

01 06 II 16 6 II 16 21

BIT TIMES

Fig. 14
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Fig. 15 shows the effect of varying the percentage of input
elements to network size. The network size in this case was 125
elements with 40% stability and unidirectional transitions. Note

that for 52 inputs, the convergence to zero is practically a straight
line. Reducing the number of inputs to 22 results in an initial

activity of 25 changing elements, building up a peak activity of

32 changing elements. By further reducing the number of inputs to

2 (a single input element), the buildup to a peak activity of just

10% less than that for the 22 input case is observed. Notice that

the time required to reach zero activity is inversely proportional
'to the relative number of inputs to the networks.

125 ELEMENTS 40% STABILITY UNIDIRECTIONAL

40 40 40

52 INPUTS 22 INPUTS
2 INPUTS

30 30-• 30-

Z20 20- 20

I0-- I0.- 1 0--

0 0- 0
I 4 7 I 4 7 10 13 I 4 7 10 13 16 19 22 25

BIT TIMES

Fig. 15
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Fig. 16 shows a comparison between networks with the same con-
nections between the elements, but of different stabilities and
transitional characteristics. The network in this case consisted
of 125 elements with 50 inputs.

Curve A shows the behavior of the network with the elements
of 40% stability and bidirectional transitions. Curve B is the
behavior of the network with elements of 45% stability and unidirect-
ional transitions. Curve C is the network behavior with elements
of 37% stability and unidirectional transitions; and Curve D is the
behavior of the network using elements of 35% stability and bidirect-
ional transitions. In all cases, the activity converged to zero.

125 ELEMENTS 50 INPUTS SAME CONNECTIONS

0 G O0
54- 54- C

48- 48 / 37% STABILITY (UNIDIRECTIONAL)

42- 42--j

38- ~36-
50- B 45%STABILITY "

Iq (UNIDIRECTIONAL)

24-- 40%SABILTY 2-- 135% STABILITY (BIDIRECTIONAL)
24 ~ D 40SABILITY 2(BIDIRECTIONAL)

I A I-

12 12

6- 6
0 0 ' I

I 4 7 10 13 16 14 7 10 13 16 19 22 25 28 31

BIT TIME

Fig. 16
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In Figures 17 through 20, examples of system behavior which
converge to either a finite level or a cyclical condition is
presented.

Fig. 17 shows the effect of two different stimmili to a network
with 125 elements of 35% stability and bidirectional transitions.
There were 20 inputs to this network. Input No. 1 caused the network
activity to converge to 2 elements constantly changing state, whereas
Input No. 2 caused convergence to zero after 27 bit times. Initial
states of the system were the same in both cases.

125 ELEMENTS 20 INPUTS 35% STABILITY BIDIRECTIONAL

50

45,

40.- (

S30 I 2 INPUT NO.1

25--
ZO.- INPU N . \

15.

io

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

BIT TIMES

Fig. 17
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Fig. 18 illustrates the difference between network behavior of
elements with similar stability but different transitional charac-
teristics. The network in this case was 1000 elements of 29.4%
stability with 200 inputs. The bidirectional elements caused system
convergence to cyclic activity after 120 bit times, whereas the uni-
directional elements cause the system to approach an extremely high
level of activity, which went on for some time.

29.4% STABILITY 1000 ELEMENTS 200 INPUTS

660

600-

00-

480

420-
:k.k BDIRECTIONAL

S360. UNIDIRECTIONAL

240-

ISO

CYCLIC12 
ACTIVITY

60
I 10 20 30 40 I I0 20 30 40 50 60 70 80 90 100 110 120 130 140

SIT TIMES

Fig. 18
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Fig. 19 illustrates the difference between networks of elements
of 25% stability and either unidirectional or multidirectional trans-
itions. The network consisted of 1000 elements with 200 inputs.
For the multidirectional case, convergence to zero was observed.
However, for the unidirectional case, a condition of saturation was
encountered. In this case, build up in activity occurred for 46
bit times, after which a constant level of 889 changes per bit time
took place. An inspection of the connections between elements
revealed that 11 elements had both their inputs coming from input
elements, thus leaving 889 elements free to change. This type of
behavior was found to be independent of the number of inputs, the
network size, or the connections between elements, and once it is
started, no stimulus will change the behavior. It will remain in
this saturated or runaway condition.

25% STABILITY 1000 ELEMENTS 200 INPUTS

880.

800- SATURATION
889 CHANGES/BIT TIME

720-

UNIDIRECTIONAL
. 560-(RUNAWAY)

480.-I-.

IK 4 0 0 - -

320-

160.-

MULTIDIRECTIONAL EQUILIBRIUM

I 5 10 15 20 25 30 35 40 45 50 55 60 65 70

BIT TIMES

Fig. 19
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Fig. 20 shows several cyclical or periodic conditions which have
been encountered. In all cases, the network consisted of 25 elements
with 25% stability and unidirectional transitions. There were 10 inputs
to the network. Included in the simulation program is a sub-routine
which, after determining that a period or cycle exists, compute the rms
value of the period. This value is in effect the rms Hamming distance
between subsequent states of the system, once a closed trajectory is
formed (i.e., a period established).

CYCLIC ACTIVITY
25 ELEMENTS 10 INPUTS 25% STABILITY-UNIDIRECTIONAL

SAME CONNECTION TABLE

INPUT INPUT INPUT INPUT
II 1 11 1 III II I IIIIII 00 000 1111 1 11III I I IIIII

20 RMS 5.54 RMS=9.14

I-15

-P-h-
5- RMS=13A8 RMS =10.11

A BC D
0"

15 101520 30 1 10 20 I 1020 30 40 I 10 20 30 20 280
BIT TIMES

Fig. 20

For Curve A, an input of 11 11111111 caused a period to be formed
after 26 bit times. The cycle was 9 bit times in duration and had
an rms value of 5.54. Curves B and C show similar types of periodic
behavior. Curve D shows a condition which points out the desirability
or the rms sub-routine. A period of 248 bit times and an rms value
of 10.11 was found. This would have been extremely difficult to locate
visually.

Using the most efficient program, networks ranging in size up to
1728 elements and bit times up to 4000 can be simulated on the 7090.
At this point, the computer time required for simulation becomes exces-
sive (about 15 minutes) and the standard 32k memory becomes saturated.
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V CONTINUATION OF THE STUDY

As a continuation of our study of polystable systems, it is
planned to conduct some learning experiments and investigate the
dynamics of establishing classes (possibly closed trajectories) within
the system for various stimuli and various internal states of the
system. Since habituation has been demonstrated as one capability
for those networks which converge to either zero or low finite levels
of activity, a type of learning should be within the capability of
such systems. Loosely joined groups of tightly connected elements
should also exhibit some interesting and somewhat varied behaviors
and are planned for further study in the immediate future.
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THE EFFECTS OF GRAATICAL STRUCTURE UPON VERBAL ENCODING HABITS

JOHN D. FORD, JR. AND EKCRY H. HOLMES
SYSTEM DEVEL0PNE C(PORATION

SANTA MONICA, CALIF RNIA

Introduction

One of the most compelling characteristics of human communication is that
information is encoded in a grammatical structure or framework. Yet, when
the systematic research of hunan information handling is examined, it is
found that very little attention has been paid to this characteristic.
Instead, one finds research on nearly all aspects of such behavior except
the role played by grammatical structure. While there have been mwny
studies of the effects of various characteristics of verbal material
upon learning and retention, very few studies have been directed to the
effects of sentence structure.

Generally, two kinds of human information handling tasks have been inves-
tigated. These tasks are encoding and decoding. Encoding means the
production or preparation of verbal statements to convey information.
Decoding means the extraction of information from verbal statements. Verbal
statements, in the form of words, phrases, or sentences, have frequently
been used as stimuli for memory or learning studies. In such cases, the
experimenter is usually interested in studying the effects of certain
characteristics of verbal material upon human performance requiring immedi-
ate or short-term memory. A number of recent studies have indicated that
connected discourse, when used as stimuli in memory studies, has approximately
the same effect on the various characteristics of learning as single words
(Epstein, 1962; Newman and Saltz, 1960; Richardson and Voss, 1960; Sharp,
1958; Slamecka, 1959). However, such findings tell us very little about
the effects of structural characteristics of sentences .upon the information
handling processes.

Studies of readability provide a further hint of the effects of sentence
structure upon information handling. Chall (1958), in a review of read-
ability research, concludes that two variables account for most of the
effect on readability. These variables are vocabulary load and sentence
complexity. Indeed, when reading comprehension tests are examined, it is
found that the difficult reading passages consist of more difficult words
and more complex sentences, sentences containing a greater number of subor-
dinate clauses.

These findings, however, apply primarily to the decoding task in information
handling. Surprisingly little experimental work has been done on information
encoding tasks. The modern linguists who are interested in developing gen-
erative gra mrs certainly address themselves to the problem of encoding of
information in natural language form. The work of Chomsky (1957) and of
Harris (1957) is relevant here. Of special interest is the depth hypothesis
proposed by Yngve (1962). He characterized the number of binary decisions
that a speaker of a language must keep in mind when producing a sentence.
From this he developed the concept of the depth of a sentence. Upon
examination of a large number of sentences in English, he found that the
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depth never exceeded seven, rarely exceeded four or five, and was more
often of the level of two or three. This work is certainly directed towards
determining the effects of grammatical structure upon information encoding
by humans. However, these linguists are not especially interested in the
relationship of structural characteristics to difficulty of encoding infor-
mation but rather in devising rules or models that will generate English
sentences.

In child psychology there has been a long-term interest in studying the
development of language habits in children. Development or changes in
the gramatical characteristics of utterances of children have been
studied. For example, Templin (1957, p. 104) in a recent study of children's
language skills concludes that, "After the age of three, the parts of speech
used in both the total number of words and different words uttered show
little change. This is in agreement with other studies and is an indication
that the language of children is functionally similar to the language of
adults. At this age the structure of adult grammar has already imposed the
pattern of word selection upon children." Other grammatical characteristics
are learned at a relatively early age, not as early as age three, as cited
for this particular characteristic, but certainly by the age of eight or
nine which was the top age group of Templin's sample. Thus, by the time the
individual reaches adulthood he has acquired, and probably has greatly over-
learned, essentially all of the structural or grammatical characteristics of
the language. Perhaps it is because these verbal habits are so highly over-
learned that there has been little attempt to investigate their effects upon
information encoding.

The Experiment

We were interested in studying the behavior of humans in preparing short
abstracts of newspaper articles. In the field of information retrieval
systems there is considerable interest in devising methods for preparing
short abstracts of documents. We were interested in studying how humans
would go about this task, and how their behavior would either change or
stabilize during the initial learning period. In a preliminary study we
found that when subjects were constrained to prepare a substantive abstract
of a news article in approximately 10% of the length of the original article,
they encountered considerable difficulty, some of which could be attributed
to the relative inefficiency of expressing certain thought units in sentence
form. We therefore decided to compare abstracting behavior under two pro-
cedures: a natural language sentence format and a special arrangement of
sentence elements which we called a term diagram. Figure 1 is an example
of a term diagram abstract prepared by one of the subjects. Figure 2 is
an example of a natural language abstract prepared by another subject from
the same news report. Thus, we were able to compare the relative fluency,
adequacy, and general efficiency of encoding information under two variations
of gramatical or sentence structure. Our experiment also included a measure
of the adequacy of each of these structural forms for an information decoder
or user.

The reports to be sumiarized were New York Times articles on the new nations
of Africa. The articles were subdivided into those about the Congo and those
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about other nations of Africa. Thirty-six reports in each category were used.
The abstracts prepared from these reports were restricted to approximately
10% of the length of the original reports.

A factorial design with replication was employed. To control for individual
differences, all subjects worked with both natural language and term diagram
abstracts; one-half started with natural language and the other half with
term diagram. In all, a total of 32 abstracters was used. Each abstracter
worked for 10 sessions of 1-1/2 hours each. In addition, it was necessary
to counterbalance the type of content to reduce possible contamination in the
information users' responses. The design also permitted evaluation of the
effects of the order in which the two procedures were presented. These
conditions resulted in a 2 x 2 x 2 design. The factors were: procedure

(natural language versus term diagram), content (Congo versus non-Congo),
and order (first week versus second week). The subjects, in teams of three --
two abstracters and one information user -- were assigned randomly to the
2 x 2 factorial consisting of two types of procedures and contents. During
the second week they shifted to the factorial opposite condition. This design
permitted the application of the analysis of various Type V. Designs as given
by Lindquist (1956).

The Results

Table 1 presents the results of analysis of variance for abstracters' and
information users' scores. Table 2 suarizes the results. Since our
primary interest was in comparing the behavior of abstracters under natural
language and term diagram procedures, we will concentrate on the results in
the row labeled "Procedure" under "Within subjects" in Table 2. If
grammatical skills for encoding in natural language format are highly over-
learned, then a procedure which runs counter to certain features of these
skills should result in performance degradation. Table 2 indicates that
two of the results support this hypothesis. The first is the significantly
larger mean time for the preparation of abstracts using term diagram compared
to natural language procedures. The actual mean times are 14.2 minutes for
the term diagram compared to 13.1 for the natural language procedure. Thus,
within the limits of four experimental sessions 9% more time is required to
prepare abstracts using the new term diagram procedure.

The second result that supports our bypothesis is the significant difference
in mean number of words in the abstracts. Term diagram abstracts contain

fewer words than natural language abstracts. The number of words produced in
preparing an abstract might be considered an indication of verbal or word
fluency. Here we see that word fluency is depressed when the subjects used

the term diagram procedure. Both of these results indicate interference with
previously learned verbal or grammatical encoding habits in the production of
sentences.

In addition, we were interested in determining whether the term diagram format
could convey more ideas or information than the natural language format. To
answer this question we developed an information unit which we called an in-

formation element. An information element was defined as the word or word
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group that functions as a grammatical subject, predicate, direct or indirect

object, in dependent or independent clauses. Table 2 shows that there was
no significant difference in the mean number of information elements in term
diagram and natural language abstracts. However, we have already noted that
the mean number of words in term diagram abstracts was smaller than in
natural language abstracts. To make a comparison that was insensitive to
the total word length of abstracts, we devised a measure of information element
density. This measure is calculated by dividing the number of information
elements in an abstract by the number of words in that abstract. Table 2
shows that the information density of term diagram abstracts is significantly
greater than that for natural language abstracts. This partially supports
our bypothesis that term diagram abstracts contain more information than
natural language abstracts.

So far, the results presented apply to information encoding behavior. The
experiment included one measure to assess the effects of the term diagram
procedure on an information decoder. For the decoding task, we chose the
extracting of information from abstracts for the purpose of answering infor-
mation requests. Again, the evaluation is made by comparing the performance
of subjects using term diagram and natural language abstracts. Table 2 shows
that information users supply significantly more correct information when
using term diagram than when using natural language abstracts. This format
seemed to enhance information decoding performance.

Discussion and Conclusions

The evidence from this experiment suggests that variations in encoding format
that depart from the grammatical sequence of natural language discourse
result in performance degradation for an information encoding task, at least
during the initial period of learning. The term diagram format departs most
radically from natural language in the use of word position and directed lines
in place of function words. Word position and directed lines also take the
place of sequence or order, which in natural language discourse serves to
indicate relationships of modification and subordination. The grammatical
elements, that is, subjects, predicates, direct and indirect objects, are
similar for both term diagram and natural language format. However, in
producing term diagram abstracts one can ignore sentence markers and other
punctuation. Apparently, natural language encoding habits are so highly
averlearned that the term diagram procedure results in a moderate amount of
interference, at least initially.

The term diagram format is more compact or dense in information elements.
However, the word fluency is reduced and thus the absolute amount of informa-
tion conveyed is no greater than with natural language format. It is
intriguing to speculate whether a coupact format could be developed by
increasing the efficiency of the grammatical features of the language. The
indications are that a more efficient structural arrangement of sentence
elements results in more efficient decoding behavior.

Research involving the grammatical feature of language has not occupied
a central position in the interest of psychologists. A recent article by
Miller (1962) is a welcome exception. Som of the problems in the identification
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and quantification of grammatical variables are severe. This experiment
illustrates that it may be useful to employ realistic verbal encoding and
decoding tasks to isolate and assess the effects of grammatical character-
istics of language on human information processing behavior.
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ABSTRACT

Mathematical models of complex physical or bionic systems involve many

simultaneous nonlinear equations. These groups of relationships are

difficult to manipulate and even simulation on a computer is unwieldy

because most computational paths are multidirectional and are either

over- or under-constrained. The foundation and purposes for an algebra

of constraints are outlined in this paper.

A typical application of constraint algebra would be as a supervisory

routine for a digital program, operating on the topological properties

of the set of the equations and determining the allowable computational

paths. At the conclusion of these logical operations, which are per-

formed with the aid of a constraint matrix, normal programming can be

employed for the quantitative operations on the allowable paths. Thus,

one more rational function in the man/computer relationship -- that of

the generation of perfectly constrained relationships -- can now be taken

over by the computer.

The inclusion of a theorem from thermodynamics allows quite a different

application: new variables may be deduced from the constraints which,

together with their corresponding equations, simplify the model. This

ability to synthesize new concepts (variables) and relationships

(equations) which tend to simplify models can be considered as an analog

for the cognitive process of abstraction.



1. INTRODUCTION AND NDTIVATION

Consider the following, apparently unrelated, problems:

1.1 Flow Graphing of Nonseparable Relationships

As the analysis of multivariate systems becomes more complex, it has been
shown that the plotting of the system variables and functions in a flow
graph has many advantages. The flow graph adds structure, suggests com-
putational manipulations, and lends an intuitive picture to an otherwise
chaotic set of equations. All in all, it contains exactly the same in-
formation as the set of equations and represents a more satisfactory
model of the system or phenomenon under study.

However, the signal flow graph theory as established by Mason (Ref. 1) and
Lorens (Ref. 2) has the limitation that the only functions which can be
handled are either linear functions, or linearly separable functions.
That is to say, functions of the type:

Z = klx + k 2y ()

are easily handled by signal flow graphs (Figure 1). Functions of the
type:

Z = k 3xy (2)

are more difficult since x and y must be separated logarithmically:

log Z = log k3x + log y (3)

before it can be represented in a signal flow graph (Figure 2). If many
of the system functions are of this type, it is unlikely that the advan-
tages of the flow graph format can be maintained. Functions such as

Z = sin (x + y) (4)

are extremely unwieldy to represent in flow graph form (Figure 3) since
they require an infinite number of branches. This type of function, as
well as truth table functions such as

Z 12 x T'
14 2 3 4 5 (5)

y 12 4 5 6 8

3 8 9 11 13

are not sufficiently separable for representation by signal flow graphs.

The fact is, however, that most practical problems involve relationships
far more complex and inseparable than (4) and (5). This is especially
true of the field of bionics, where, it has often been suggested,
nonlinear, nonanalytic behavior on a component level is essential for

-2-



"intelligent" behavior on a system level. For example, only the most

trivial of neural models can be attempted without including such poorly

behaved functions as threshold, saturation, and recovery.

1.2 Indicating Allowable Computations

Typically, when a complex system is first attacked analytically, func-

tional relationships are written down between all variables which could

conceivably be of importance. In general, a mathematical model consist-

ing of a set of nonlinear, nonseparable equations will be the result.

If n variables, xl, x2 , . . . . . . xn are involved in this set of equa-

tions, then the most common questions asked of such a model are:

1) If p of the variables are held fixed, what are the unique values

of the remaining (n - p) variables?

2) If q of the variables are held fixed, what is the functional rela-

tionship between xi and the remaining (n - q - 1) variables?
(Frequently, one of these remaining variables is time.)

Normally, it is far from obvious from inspection of the mathematical

model that these questions represent allowable computations. Although
methods have been suggested (Ref. 3) for automatically analyzing the

correctness of a digital computer program once it has been established,

no general method has been proposed which deals with the allowable com-

putations on a mathematical model as a function of the constraints
imposed upon it. This problem is normally left for the hit-and-miss
tactics of the analyst himself.

1.3 Model Simplification

Aside from manipulating the mathematical model into producing specific
results, it is frequently desirable to achieve the simplest model which

still retains all the essential elements of the system under study.
This process usually involves the painstaking consideration of the set
of variables, reviewing them for possible elimination or recombination.

1.4 Mechanization for "Abstraction"

One of the central themes of bionics is the establishment of mathematical

or physical models of intelligent behavior. Behavior such as sensing,
positive and negative feedback, memory, arithmetic computation, and

deductive logic is well established in state-of-the-art computers and
servomechanisms. Behavior such as adaptation, conditioned response, and

certain facets of learning is presently being established -- if not in
complete physical mechanizations, then at least in the form of precise
mathematical and logical statements.

A key behavior area for future attack is that of the cognitive function

of abstraction -- the ability to discern the simple essence of a complex
phenomenon. Once a model for abstraction can be established and combined

with a mechanism which allows abstractions to be compared, a basis will

exist for an attack on the even more difficult behavior areas of
inductive logic, language formulation, and the establishment of theories.
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2. PURPOSE

The purpose of this paper is to outline an "algebra of constraints" which
furnishes at least a partial answer to the problems described above.

3. THE INVERTED FLOW GRAPH

Consider the set of nonlinear, nonseparable functional relationships:

f, (a, b, e, f, g) 0
f (c, f, g, h) 0 (6)

f,y (d, e, h) =0

A topological representation of these equations, shown in Figure 4,
differs from the usual signal flow graph in that the branches represent
the variables and the nodes represent the functional relationships. In
this format, nonlinear and nonseparable functions can be represented as
easily as the simplest of additive linear functions.

Once the connectivity of Equations (6) is written down, it is necessary
to indicate the allowable directions of computation through the node.
Thus, if f A could be manipulated into the unique functions:

g = f1 (c, f, h)
h = f2 (c, f, g)

but c and f could not be represented uniquely, then only the g
and h branches of node A show an arrowhead (Figure 4), indicating that
they are allowable outputs from that node. Reasons for not considering
a variable as an allowable output include:

1) Ambiguity - f may be of the form:

c2f4 + g - h = 0 (8)

and the 8 node is not equipped with additional information, such as
1c>0" or "choose the largest f," regarding which of the available
roots is the proper one.

2) Computational Convenience - f may be of the form:

f3 (c, f) + g + h = 0 (9)

where f3 is a function that is generated in the computer by a trun-
cated series expansion. Although c and f may still have single-
valued (monotonic) relationships to g and h, the computation can
still be conveniently mechanized in one direction only.

The flow graph of Figure 4 has all the advantages of a signal flow graph
with the exception that it cannot become a computational aid as immedi-
ately as a signal flow graph can. However, with signal flow graphs, the
desired computational path is already obvious. Figure 4 can be considered
as a precomputational aid which helps determine, for example, that
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f = f5 (e, h) (10)
c, a, b constant

and

b = f6(e, h) (ii)

a, c, d, f constant

are not allowable computations; but that

b = f7 (e, h) (12)

a, c, f constant

is allowable.

4. THE CONNECTIVITY-DIRECTIONALITY MATRIX

As could be expected, all the information contained in the flow graph of

Figure 4 can also be represented by a suitable matrix. This transforma-
tion to a matrix format is certainly desirable if the manipulations of

constraint algebra are to be performed on a digital computer. Such a

matrix, furnishing all the required information on the variable connec-
tivity and computational directionality of Figure 4, is shown in Figure

5. If the typical row is * and the typical column is i, each *i

element of the matrix is one of three values:

1) "0"; if the ith variable branch does not appear at the Vth functional
node at all

2) "+"; if the ith variable branch is an allowable output of the *
th

functional node

3) "-"; if the ith variable branch appears at the * th functional node,

but is not an allowable output.

Each row, consisting of an ordered set of O's, -'s, and +'s, represents

the elements of the algebra; operations are discussed in the remainder

of this paper which either replace or add to the original set of rows.

5. DESIRED RESULTS

Before the manipulations of constraint algebra are discussed, a restate-

ment of the goals will be made in the new format. This should serve to

motivate and give direction to the operations which follow in later

sections.

Axiom: The computation

x0 = f* (XV x2 ... xp (13)
)I y' Y2' "'Yq

constant
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is allowable if and only if the connectivity-directionality matrix
(CD matrix) can be manipulated into a form (see Figure 6) such that one
row has:

1) A + in the x column

2) A + or a - in each of the xl, x2 ... xp and y,, Y2 ... yq columns

3) A 0 in each of the columns of all the remaining variables.

Definitions: It is difficult to define "simplicity" precisely and still
have the definition apply to all situations. However, two forms of sim-
plicity which can be defined in constraint algebra format will -- either
singly or in combination -- probably cover a wide variety of situations
amply:

1) Variable simplification involves the minimization of the total num-
ber of variables.

2) Connective simplification involves the minimization of the total
number of nonzero entries in the CD matrix.

6. NODAL MERGING AND VARIABLE ELIMINATION

The most obvious operation which can be performed upon two rows of the
CD matrix corresponds exactly to the operation of consolidating two equa-
tions into one by eliminating a common variable.

Two nodes, G and 0, can be merged into a new node V1 only if they have
at least one branch in common. Moreover, at least one end of this
branch must be an allowable output. In terms of the matrix row repre-
sentation, there must exist either two +'s or a + and a - in the same
column of the 0 and 0 rows.

The merging of the two rows into one is accomplished column-by-column,
based on the rules summarized in Table 1. An example of the application
of these rules is given in Figure 7.

By the repeated application of the merging rules and the invoking of the
axiom in Section 5, the allowability of any desired computation can be
established.

7. NETWORK DECOMPOSITION

While nodal merging may be the most direct manner in proving that a com-
putation is allowable, it is not efficient in proving that a computation
is not allowable. Frequently, an application of the following network
decomposition rules will rapidly prove that a desired computation is
not possible.
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1) The first step in network decomposition is the examination of
the CD matrix for columns which have only O's and -'s (non-plus
columns). If such columns exist, temporarily change their -'s

to O's.

2) The next step is to examine the altered matrix (and all matrices
composed of permutations of the rows and columns of the altered

matrix) to determine if there exists a column division and a row

division such that two opposite "quadrants" form zero arrays

(Figure 8).

3) If such a division exists, the two non-zero quadrants (with the

appropriate O's reverting back to -'s) form two independent sub-

systems of relationships.

Thus, if the desired computation involves variables from more than one

independent subsystem, it can be stated immediately that the computa-

tion is not allowable.

8. VARIABLE ADDITION AND CONNECTIVE SIMPLIFICATION

The last section described not only a method for determining allowable

computational paths but a method for model simplification as well.

This section discusses a method of connective simplification which

actually involves the adding of one or more variables.

This method is based on a theorem by the mathematician Caratheodory

which was originally applied to the field of thermodynamics:

Theorem: Given three functions,

FI (Xa .... X) 0

F 2 (XB .... X) = 0 (14)

F3 (Xc, .... X) = 0

let JXJ be the set of all variables which appear at least once in these

three functions. If there exist three disjoint subsets, IX11, X21,

and IX 3 1, of JXJ such that:

" The union of X1, IX2 and IX31 equals JXJ

" The subset 1X1 1 is missing from F1

* The subset IX2 1 is missing from F2

* The subset IX3 1 is missing from F3,
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then there exist three other functions, fl, f2 ) and f3) such that:

f (l0xii) = f 2 (OX20= f3 (OX30) = y(15)

The application of this theorem to constraint algebra involves the fol-
lowing rules:

1) Examine the rows of the CD matrix three at a time to determine if
their variables can be grouped into three subsets which fulfill the
conditions of the Caratheodory theorem. For example, in the partial
CD matrix shown in Figure 9a,

* The subset (a, c, h) is missing from a
" The subset (b, d, e, f, g) is missing from
" The subset (g, k, 1, m) is missing from-y
• The union of these three disjoint subsets equals the set of all

the variables involved in a, B, and -y.

Note that these four conditions are met if each column of the three-
row submatrix has exactly one zero.

2) If the conditions are met, then the three rows are transformed as
shown in Figure 9b. Despite the fact that one new variable, y, has
been added, the number of non-zero elements is reduced from 24 to 15.

Of greater importance is the fact that the new variable, synthesized
from a combination of existing variables, has a central significance
similar to that of a "variable of state." In general, the new
variable will probably contribute more to the understanding of the
model than any of the original variables.

9. SUMMARY AND CONCLUSIONS

9.1 The structure of an algebra of constraints has been established,
based on:

1) A flow graph representation which is equally capable of handling
separable and nonseparable functions

2) A connectivity-directionality matrix composed of ternary elements.

9.2 Three types of operations -- all amenable to digital computers --

have been described:

1) Nodal merging by variable elimination

2) Network decomposition

3) Connective simplification by variable addition.
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9.3 Establishing an allowable computational topology from a mathematical
model has hitherto been the work of human analysts or programmers. The
employment of constraint algebra allows a digital computer to take over
this function and perform the topological constraint analysis as well as
the (allowable) computations themselves. Specifically, constraint alge-
bra can perform the following functions:

1) Determination of the allowable computations inherent in a complex
mathematical model

2) Simplification of the model.

9.4 The ability of the Caratheodory theorem to add a variable and yet
simplify a model is strongly suggestive of the cognitive process of ab-
straction. An artificial intelligence which can conceive of new
"essences" or "concepts" which simplify the models presented to it may
perhaps be on its way to constructing languages, performing inductive
logic, or establishing theories.

9.5 Although they can serve useful functions, the constraint algebra

rules and formulations described here are far from complete. Further
work along the following directions appears promising:

1) Many of the powerful theorems of group theory and topology probably
have useful counterparts in the constraint algebra domain.

2) Additional, less conservative rules may exist for merging a
variable from two equations. That is, the rule should detect those
instances when a + and + actually merge to another +, rather than
conservatively assume that it will be a -. (See Table 1. Note
that, for certain cases, two +'s can even become a 0.)

3) Introduction of a more general CD matrix -- whose elements are the
integers, 0,1,2,3, ... rather than 0, -, +, -- may be useful. The

new elements would describe the exact number of distinct values (or
roots) that each nodal relationship furnishes any given variable.
By comparison, 0, +, and - mean: "none," "one," and "more than
one," respectively.
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Figure 4 Typical Constraint Algebra Flow Graph
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Figure 5 Matrix for Figure 4
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Figure 6 Allowability Criterion
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Table 1 Nodal Merging Rules

e- i and 0- i * - i
Elements Element

The Eliminated Variable

+ + 0

+ ,0

All Other Variables

0,0 0

+ 0 +

+ ,+ - *

+ ,- _ *

* These could be either + or -;
however, the conservative entry
of - is given.

e - branches (- branches e- branches
A - , 0 A 0- A 1

a b c d e f g h

e + - + 0 0 0 + - +

' 0 0 0 - + - 4 -

a b c d e f g h i

* + - I+ - + - 1 0 - I I

Figure 7 Nodal Merging and Variable Elimination
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a b c d e f g

OL + + 0 0 - 0 0

0 0 0 + 0 0 +

y 0 0 + + - 0 0

6 0 + 0 0 - + 0

Temporarily change e to zero;

permute p and 6 , cand f.

a b f c d g e

C + + 0 0 0 0 0

6 0 + + 0 0 0 0

0 0 0 + + 0 0

0 0 0 0 + + 0

a b f e c d g e

a + + 0 - + + + 0 -

6 0 + + - 0 + + 0

Figure 8 Network Decomposition
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INTRODUCT ION

The importance of signal separation and classification in the search,
selection, and retrieval of information has long been recognized. In order
to facilitate such separation and classification it is desirable, in some
instances, to have a method of assigning numbers to bandwidth-limited wave-
forms which exist over some finite time interval. If the method of assignment
is such that each individual waveform is assigned a different number, then it
is possible to deal with these "numerical descriptors" in place of the signals
themselves. If use of the method results in every input's being assigned a
number, whereas each number thus assigned represents an entire class of inputs,
the result obtained is the "classification" of the inputs. In this case it is
then possible to deal with the numerical descriptors in place of the input
classes represented. Depending on the mechanization used, these descriptors
can range from simple binary words to complex combinations of analog signals.

The effectiveness of such a method depends upon its being based on some
measurable property of the input waveforms in the sense that a given input is
always mapped into the same descriptors. This implies that experiments can
be performed with the inputs whereby the numerical descriptors are assigned.

Devices which transform input waveforms into numerical descriptors on
the basis of such experiments or measurements of waveform properties are
referred to as "property filters". Many examples of property filters can be
given. Digital communications receivers can be thought of as property filters
in that they map amplitude, relative pulse position, or frequency into ones
and zeroes in some sequence. In a similar sense it is possible to design
property filters for a pattern recognition device whose input consists of the
waveform obtained by scanning printed forms and whose output consists of in-
dications of the devicets classification of the input. Indeed, such a device
has been constructed and it is this device which is described in this paper.
Following the discussion of the underlying theoretical considerations of the
concept is presented a description of a proof-of-principle model which was
built to demonstrate the feasibility of the basic concept*

SYSTEM CONCEPT

A system comprised of random property filters and an adaptive logical
learning network can be trained to recognize any phenomenon which is uniquely
transformed into an electrical waveform.

A block diagram of such a system is shown in Figure 1. An analog voltage
input having a period of T seconds is fed to each of the n random property
filters, F1 through F , The individual filters are so constructed that, if
the input signal has he property for which the filter is selective, the voltage
appearing at the output of the filter at time T exceeds some predetermined
threshold value. By constructing a sufficient quantity of different filters
it is possible to differentiate between practically any number of input patterns.
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The threshold devices, T1 through Tn, dichotomize the outputs of their asso-
ciated filters as a result of their having been sampled following the
appearance of an input signal. Thus, the filters and threshold gates produce
n-bit digital descriptors of input waveforms.

The digital descriptor is fed to an adaptive logical learning network
which, in the organized state, provides a specific output whenever a given
descriptor is present as an input. The human operator is provided with the
appropriate "training" controls with which he may organize the learning net-
work to provide the required outputs. The learning network itself is simply
a device capable of providing output voltages whose amplitudes are proportional
to the number of favorable bit-by-bit comparisons between the input descriptor
and the various stored words. Thus, the output of greatest amplitude flags
the location of the stored descriptor which is logically nearest that of the
input pattern presently within the device's purview,

The outputs from the learning network are fed to the least distance
categorizer. The catogorizer determines which of the previous training
patterns had produced filter outputs which are logically nearest (in the Ham-
ming sense) those caused by the present input. (The logical distance between
two binary words is defined as the sum of the number of ones in the term.-by..
term EXCLUSIVE-OR combination of the two words. Thus, the logical distance
between 0000 and 0010 is 1, whereas the distance between 0110 and 1101 is 3.
These are given as 0000 * 0010 - 0010 and 0110 * 1101 - 1011 respectively.)
Assuming that the distance between the stored descriptor selected and the de.-
scriptor assigned the present input is less than some maximum allowable value
previously determined by the operator, an output indicati i is provided. If
none of the previously introduced training patterns had produced descriptors
sufficiently near that of the present input, a No Recognition indication is
provided, indicating that the new input pattern is, for the present setting
of the Distance Limiter, unrecognizable.

The Property Filters and Threshold Devices

The success of this recognition scheme depends upon the realization of
a set of n different filters and associated threshold gates so constructed
that each of the filter/gate combinations has a probability of 0.5 of pro-
ducing an output following the analysis of a randomly selected input waveform.
When the further requirement that the impulse responses of the filters be
statistically independent is met, an expression for the probability of success-
ful recognition by the system in terms of the number of filters used, the
number of distinctions to be made, and the maximum number of representations
of each class may be derived.

Assume that a set of n different filters and associated threshold gates
has been constructed so that each of the n filters has a probability of 0.5 of
producing an output which exceeds the threshold value at time T for a randomly
selected input signal. Consider that these filters provide binary outputs to
the learning network which will allow the network to distinguish k classes of



-3-

signals, each class containing r members. The probability of any two
signals producing identical descriptors is

PI .2n 
()

If the total number of binary combinations of threshold-gate outputs is
much greater than the total number of different inputs, then the probability
of successful recognition by such a system of a randomly selected input is

P2 a (1 - 2"n)m (2)

where m is the total number of distinctions which are to be made.

Inasmuch as the first set of r signals must be distinguished from the
remaining (k - l)r signals, the second set from (k - 2)r signals, etc., the
total number of distinctions required is

m- r2k(k- 1). (3)
2

Hence, the probability of distinguishing inputs on the basis of their
binary descriptors is

r 2 k(k - 1)
2

P 2 - (1i- 2" n )  ,(4)

which, upon partial binomial expansion, becomes

P2 - 1- [ 2-(n + l)r 2 k(k- 1)]1 (5)

Thus, the fundamental relationship is derived which allows the designer
to establish the size of the required system in terms of the desired probability
of successful classification (P2 ), the number of filters and threshold gates
(n), the number of signal classifications (k), and the number of variations
within each class (r). Note that no a priori knowledge of the real properties
of the input is required, i.e., the properties used are Orandom and need never
be known in realistic terms to the designer.

The balance of this section describes the realization of a property
filter which is partly digital in nature.

Consider that an output h(t) is produced when an input f(t) is applied
to a linear network having an impulse response g(t). By use of the convolution
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integral, the output at time T is found to be

0

h(T)" -Jf(t) g(T - t) dt. (6)

A property filter is implemented as shown in the block diagram of Figure 2.
The current generator's output i(t) is given by

i(t) - f(t) • g(t). (7)

Consider that the function g(t) above is derived from the output of
one stage of a binary counter, Consider further that the waveform thus ob.
tained has a period of T seconds and is restricted to the values of +1 and
-1* The voltage appearing at the current integrator's output at time T must
have a probability of 0.5 of being greater than zero when a randomly selected
waveform f(t) is input. The threshold value may therefore be set at zero
volts and any output h(T) exceeding zero will cause a binary 1 to be read out
from the threshold gate. Thus the requirements for one of the filters, F1 say,
may be implemented,

A further requirement is that the responses of filters F2 through Fn be
mutually independent from F1 and each other. That is, the output of any one
filter has a 0.5 probability of being a binary 1 without regard to the output
of any of the other filters at time T. This may be realized by providing a
binary counter waveform for g2 (t) whose frequency is twice that of g 1 (t). Thus,
an n-bit binary counter whose most slowly changing output gl(t) has a period
of T seconds and whose other stages provide the signals g2(t), ..., gn(t) pro-
duces the waveforms which in turn provide the desired filter characteristics.
An inspection of the n output waveforms of an n-stage binary counter driven by
a fixed-frequency clock shows that the two required criteria (equal likelihood
and mutual independence of responses) are attained.

There are countless other binary waveform combinations which might be
used to provide the desired filter characteristics. The only constraints
imposed are that each waveform provide equal likelihood of producing an output
which exceeds the threshold and that the waveforms represent a mutually in-
dependent set*

The Learning Network

The learning network used in conjunction with property filters for
signal recognition differs from those described by Carne which are capable of
forming any logical connective of their inputs. Such networks require m . 2n



-5-

switches for an n-input, m-output configuration and are capable of realizing

the union of any number of minterms as an output function. By contrast, it

is not necessary that this network be capable of realizing more than a single

minterm per output. This fact, coupled with the requirement for analog out-

puts,led to the development of a different form of network which is described

below.

Figure 3 shows schematically the form of the learning network used. The

threshold gate outputs and their complements are input at points A, A, B, B, C,

C, ..., N, and N, while the outputs are available at points 1, 2, ... , and k.
When the network is in the untrained state all switches are in the open position.

Assume that the filtering and dichotomization of some input signal has

produced the descriptor ABC...N at the input to the learning network. Should

the operator choose to designate this pattern and others like it as 1, the
application of a "learn" signal to L1 would cause switches SfI , 

S BI , SCI, go*$
and SNl to close as shown. Should he choose, at some other lme, to have the

device "forget" the 1 designation, he would simply apply an input to Fl, which

causes switches SA1, SBl, SC1 , ... , and SN1 to return to their open positions.

Thus, the device may be trained, cleared, and subsequently retrained as is

warranted by the situation at hand. Further inspection of Figure 3 shows that
the switches associated with output 2 had been organized at a time when a

pattern which produced the descriptor ABC ... N was input. In addition, the

switches associated with output k are all seen to be in the untrained state.

If an input 0 is represented by a O-volt signal and an input 1 by an

E-volt signal, then the output currents I, I2' ..., IK are seen to be functions

of E, the positions assumed by the associated switches during the most recent

training, and the present inputs. Thus, if the switches are set as shown in

Figure 3 when the input descriptor ABC ... N is present, current I1 would be

3E/R larger than current I2, and current IK would be zero. In this case, the

fact that output 1 passes the largest current may then be used to indicate

that the pattern presently being examined is recognized as pattern 1. It can

be seen that the currents vary directly as the number of favorable agreements

between the settings of the individual switches and the bits of the input de.-

scriptor. Thus, whenever an input is presented, the current is maximum in
that output whose training pattern's descriptor is logically least distant
(in the Hamming sense) from the present input.

The Least Distance Categorizer

All that remains for the least distance categorizer to do in assigning
the output designation is to determine which of the k output currents from

the learning network is maximum. This is the manner in which the Hamming

distance function is implemented.

It is possible to compute the effectiveness of the least distance cate-
gorizer in improving the recognition process. Assume that the training patterns

are randomly coded by the property filters into binary words wl, w2 , ... , and

wk. Assume further that the actual input signals have a probability P3 of
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yielding a different binary output from each of the n thresholds. This con-
dition may arise either from noise or other slight deviations of the present
input from that used for training. It is now possible to determine the
probability that one class of signal will not be confused with another.

Assume that the descriptor associated with pattern 1 was received with
some error code e. That is, the word received was w * e. In such a case
Pattern 1 will be confused with pattern j if

1Wl * el> lwj * el , j a2, 3, ... , k (8)

and will not be confused if

tI l * eI4< IIwi * ej (9)

That is, if the code received is closer to wj than it is to wl, then it
will be mistaken for wj. Note -that equation (8), which represents the
condition for confuAon, may be written as

th w * e *wjj 1> le1- (10)

Since the w's were assumed to be randomly coded, the numbers (wl * e * wj)
are also independently random. The inclusion of the zero (no signal) word
results in k randomly chosen numbers whose lengths must not be less than lei
If

I el- d,()

then the probability that each of these numbers is less than or equal to
fel is

S(d c n 2n)k
4 J=)'. (12)

The probability that equation (11) is satisfied is binomial, that is,

p5 Cn  Pd( 1  n " d, (13)
d 3' (13)

where P is the probability of error in any of the filters. Thus, the
probability of successful recognition by the system is

F Cn  2 ") k Cn d(l )n-d (14)
XP6 ( 4



-7-

Shown in Figure 4 is a block diagram of the least distance categorizer.
The output currents from the learning network are transformed by the adders
into voltages which are then fed to the current switches. Immediately prior
to the interrogation of the learning network, a reset pulse causes the re-

ference current switch to turn on, thereby producing a No Recognition output.
Through the action of the voltage reference bus, which allows only one switch
to conduct at any one time, any other switch which may have been conducting
is turned off.

At the time of interrogation for recognition of an input pattern, the
adders are each fed a current proportional to the number of favorable com-
parisons between bits of the descriptor of the associated training pattern.
The combined action of current switches 1 through k is to turn on that switch
whose associated adder has maximum current input, thereby causing an output
on the line associated with the training pattern whose digital descriptor is
logically nearest that of the present input pattern. In cases where sub-
stantial disagreement exists between the input and the nearest training pat-
tern, the Distance Limiter control and reference current switch function to
prevent the generation of all but the No Recognition output indication.

THE PROOF-OF-PRINCIPLE MDDEL

A proof-of-principle model has been built which demonstrates that a
system comprised of random property filters and an adaptive logical learning
network can be trained to recognize electrical waveforms*

After consideration of equation (5) and various hardware constraints, it
was decided that the proof-of-principle model would comprise eight filters
(n - 8) and would be required to distinguish between eight characters (k - 8),
each having only one representation (r a 1). Substitution of these values
into equation (5) indicates that the model should provide a success likeli-
hood of 89% when all eight filters are utilized.

For convenience, the input is derived from a scanning device which views
printed forms. Thus, relatively complex, repeatable waveforms are available
for presentation to the recognition system. Waveforms obtained from the scan-
ning device when viewing input characters C, D, E, and F of a given font are
shown in Figures 5, 6, 7, and 8 respectively. Each photograph shows two os-
cilloscope traces: the upper trace which has a time base of 50 milliseconds
shows all of the signal produced by the scanner whereas the lower trace which
has a time base of 10 milliseconds shows more waveform detail. Shown below
each photograph is a listing of the outputs from the eight filters.

The model provides the operator with eight Pattern Identification in-
dicators, each having an associated Learn/Forget switch. An Identification
Request button is also provided. After initial application of power all of

the Forget switches are depressed, thereby causing the device to clear its
memory. After the insertion of a character slide into the input scanner,
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the Identification Request button is pressed. At this time none of the
Pattern Identification indicators are lighted, whereas the No Recognition
indicator is. By depressing a particular Learn button, the operator may
organize the device to cause the associated Pattern Identification indi-
cator to light whenever the same pattern is recognized subsequently. After
repetition of this process for up to seven additional characters, the model
should then be able to distinguish these eight characters with an expected
success of approximately ninety percent.

During one particular evaluation using the 26 letters of the alphabet,
it was found that no two input patterns produced the same combination of
filter outputs. Thus it was possible to distinguish any one letter of this
particular alphabet from any other one on the basis of the digital descrip-
torse.

The Property Filters and Threshold Devices

As previously described, it is essential that there be constructed a
set of statistically independent property filters, each of which yields an
output at time T which has a probability of 0.5 of exceeding some threshold
value for any randomly chosen input which started at t - 0. This section
discusses the realization of the filters used in the proof-of-principle model.

Figure 9 is a schematic of the property filter/threshold gate combina-
tion. The input signal f(t) is aplied to terminal 1, whereas the counter
waveform g(t) and its complement g(t) are applied to terminals 2 and 3, re.
spectively. Reset and sample pulses are applied to terminals 4 and 5 whereas
the output is available at terminal 6.

Shortly before an analysis cycle begins, a reset pulse is applied. This
causes the voltages across Gl and C2 to change to -E volts. During the analysis
cycle resistor R1 in the common-emitter circuit of transistors Q1 and Q2 es-
tablishes a current whose instantaneous value is proportional to the input
voltage. Transistors Q1 and Q2 , whose bases are controlled by the compli-
mentary waveforms applied to terminals 2 and 3, steer the input current i(t)
into either capacitor C1 or capacitor C2 depending upon whether g(t) is nega-
tive or positive, respectively. As long as the maximum allowable capacitor
voltage is small with respect to the value of the negative supply, -E, an
essentially linear integration of the currents il(t) and i2 (t) occurs. During
the course of the T-second sampling period, current i(t) is directed alter.
nately into capacitor C1 and capacitor C2 as the counter signals applied to
terminals 2 and 3 change polarity.

At the end of the sampling period, the voltage across C is proportional
to the time integral of f(t) during those intervals when g(t) was negative,
whereas the voltage across C2 is proportional to the integral of the input
during the intervals when g(t) was positive. Thus, all that remains to be
done in order to decide whether or not to provide an output bit is to compare
the voltages across Cl and C2. The application of a negative-going sample
pulse to terminal 5 causes the appropriate transistor of the pair, Q3 and Q4'
to short the capacitors C1 and C2 together. Thus, either a clockwise or counter-
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clockwise loop current flows through R2, C1, Q3 (or Q4) , C2, and R3 , thereby

developing a voltage difference between the bases of transistors Q7 and Q8.

The output of the comparator comprising transistors Q6 through QIO is seen

to be positive for samplings where the voltage across C1 is greater than

that across C2. This output is further amplified and then used to set a

flip-flop which stores the result obtained. Subsequent application of a re..
set pulse assures the existence of the proper initial conditions and that
the filter is then ready to operate again.

The device described above is seen to be capable of dichotomizing an
input sample as required for any situation in which the g(t) signal is
positive for a total of exactly one-half the sampling period. This single
circuit is used for realizing each of the system's property filters, the
different filter responses being provided by the use of different g(t)
functions. The proper choice of values for RI, Cl, and C2 allows this cir-

cuit to be used over a wide range of sampling periods*

The Learning Network

As described earlier, the learning network used is simply a logical
network capable of being organized to provide the outputs appropriate for
the combination of its internal state and its inputs, The required memory
and logic functions are both realized through the use of multiple-aperture
magnetic cores.

The characteristics and operation of the two-apertured transfluxor are
reviewed here for convenience. The core is made from a magnetic material
having a nearly rectangular hysteresis loop. Control of the flux transfer
between the three legs of the magnetic circuit provides for the storage and
gating of electrical signals as well as for signal transmission according to
stored settings. As an example of how the transfluxor is utilized as both
a memory and a logic element, consider the following example with reference to
the transfluxor in the upper left of the partial schematic of the learning
network shown in Figure 10. When the operator presses the Fl button current
is drawn through the block winding (on the lower leg) which sets up a counter-
clockwise flux path about the large aperture and right-to-left flux paths
through the two upper legs. Note that the pressing of the Fl button has
caused all 16 transfluxors associated with output 1 to be blocked. The sub-
sequent application of a prime pulse to all transfluxors in the network
immediately prior to the sampling of the threshold gates produces no changes
in flux about the small aperture because of saturation conditions* Should
the sampling of the threshold gates produce an A rather than its, complement,
then a positive level would be applied to input terminal A and a positive
pulse would be applied to terminal a. This pulse serves as the drive for
all eight cores across the top row of the schematic. The application of
this drive pulse, however, produces no output since the core is in the blocked
state.

Should the operator choose to have the present input pattern classified
as falling in category 1, he would press the L1 button which causes current
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to flow from terminal A through the set winding (on the center leg) and the
diode to the switch. This set pulse causes a reversal of the flux in the
center leg and a reduction of the total flux in the lower leg. On subse-
quent applications of a prime pulse immediately prior to samplings of the
threshold gates, the direction of the flux in the two upper legs is reversed*
Thus, whenever a pattern produces an A output, the pulse applied at terminal
a causes a reversal of flux in the two upper legs which produces a voltage
in the output winding on the upper leg. Each voltage thus produced causes
one increment of current to flow in the output line to adder 1. Thus, the
learning network is capable of providing outputs the amplitudes of which are
proportional to the number of favorable bit-by-bit comparisons between the
input descriptor and the various stored words. The output of greatest ampli-
tude flags the location of the stored descriptor which is logically nearest
that of the input pattern currently within the machine's purview.

The use of transfluxors as switch elements allows significant reductions
in the hardware complexity and physical volume of the large networks required
for pattern recognition.

The Least Distance Ctegorizer

The least distance categorizer is supplied inputs from the adders
which are connected to the outputs of the learning network. It functions
to provide an output indication of the results of the linear-boundary de-
cision process. A partial schematic of the circuitry used in the model is
shown in Figure 11.

The application of a positive reset pulse causes transistor QR1 to

conduct since its base is more positive than that of any transistor whose
emitter is connected to resistor R1. In addition, any other transistor
whose emitter is connected to R1 and which may have been conducting is now
switched off. Conduction of QRl causes the voltage at the base of QR3 to

become more negative than the base of any other transistor whose emitter is
tied to resistor R2. As a result, QR3 conducts and any other transistor whose
emitter is connected to that of QR3 is driven out of conduction. Conduction
of QR3 causes the base of transistor QR2 to go sufficiently positive to allow
it to latch in conduction following the removal of the reset pulse. During
this time the base of transistor QR4 has gone sufficiently negative to cause
it to conduct and light indicator IS, the No Recognition light.

Whenever the learning network is interrogated, pulses of various
amplitudes are applied to the input terminals of the categorizer. As pointed
out above, the pulse of greatest amplitude flags the storage location of that
descriptor which is logically least distant from the descriptor of the input
being analyzed. Provided that this most positive pulse exceeds the voltage
level set by the Distance Limiter control, the No Recognition light is ex-
tinguished and the appropriate output indicator is turned on. As an example
of this operation, consider that the digital descriptor produced by an input
being analyzed is logically nearest the descriptor of training pattern 1.
In this case, the pulse applied to the base of transistor Qll is more positive
than any other input pulse. If, in addition, this pulse is more positive than
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the level established by the setting of the Distance Limiter control, then

Qll conducts and the latching action of Q1 3 and Ql causes Q to conduct,

turning on indicator Ll. During this operation all other transistors whose

emitters are connected to either ,, R or R3 are dropped out of conduction,

thereby extinguishing any other indica?or which may have been lighted.

Thus, the least distance categorizer performs not only the required

Hamming linear decision function but also stores the result of this decision

at a cost of only four transistors per signal class.

Performance of the Model

In a series of tests using various repeatable inputs, the hardware model

has demonstrated its ability to distinguish eight randomly selected input

characters 91% of the time, a figure which compares most favorably with the

design objective of 89%. The inputs for the majority of these tests were

derived from the photoelectric scanning device which views letters of the

alphabet, abstract patterns, and photographs. Inputs for other tests were

derived from magnetic recordings of various physical phenomena.

The system described above is insensitive to variations in signal ampli-

tude but is quite sensitive to all changes along the time scale, be they either

phase or duration changes. Thus, when the device is used with the scanner as

a reading machine, changes in position, rotation, or character size have a

deleterious effect on the recognition process, while changes in character illum-

ination do not degrade performance. Work which hopefully will lead to the re-

moval of these deficiencies is currently in progress.

CONCLUSION

The use of random property filters in conjunction with an adaptive
logical learning network provides a simple means of recognizing certain classes
of patterns which may be transduced to voltage waveforms. Such a recognition
system as the one described differs rather radically from other approaches
to the problem in that little a priori knowledge of the characteristics of the

signals to be classified is required. The one basic recognition unit, when

connected to various input sensor elements, might be used in any of a number

of diverse recognition and classification systems.
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ANALOG NETWORKS FOR WORD ASSOCIATION

Vincent E. Giuliano
Arthur D. Little, Inc.

Cambridge, Mass.

I. INTRODUCTION

Problems like automatic information retrieval and automatic language
translation require methods for dealing with the meaning of words which
are concisely definable and, in fact, translatable into computer programs
or electronic devices which accomplish a useful task. This paper is con-
cerned with a specific problem of semantics, that of obtaining measures
of association among substantive words, phrases, or other semantic units.
A method for obtaining such association measures is presented, and it is
shown that the method can be realized using certain simple analog networks.
Four experimental networks are briefly described, and examples of network-
produced associations are given in an Appendix.

Before proceeding with the technical discussion, a few areas of possible
applications of word association techniques will be mentioned.

The first example is from an area with which the writer is familiar -
automatic document information retrieval. Suppose that, within the con-
text of an automated information center, large numbers of documents are
indexed according to key words they contain, and that these index terms
are then recorded on magnetic tape for subsequent searching by a computer.
In particular, suppose that document A has to do with the "Oxidation
of Ferrous Materials in Saline Solutions," and is indexed with the three
underlined key terms. At some later point, a requestor may come to the
center and ask for all documents on the "Rusting of Iron in Sea Water."
If the computer finds nothing on searching, who is to blame for the
failure to locate document A ? Obviously, it is not the requestor's
fault, for he has accurately stated his own interests. Likewise it can
hardly be considered to be the author's fault, for he could.not be expected
to anticipate every possible way that his document could be requested.
The facts of life are that natural language allows many alternative ways
of expressing the same semantic content, and that there is in general no

Acknowledgment. The linear method of association was originally
suggested by R. F. Meyer in an oral communication; the writer has
collaborated closely with P. E. Jones in its subsequent develop-
ment. This work has been sponsored in part by the Operational
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National Science Foundation.
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one unique way of expressing a given thought. Clearly what is needed
is a means of automatically recognizing associations present among
words, so that requests with roughly equivalent meanings will retrieve
roughly the same documents.

Next, consider a somewhat more speculative example drawn from the area
of machine translation. Suppose that a computer is programmed to trans-
late from English to say, Russian, and it comes upon the English word
"bank," - should this word be translated as "EMKI,, (financial institu-
tion) or as "ePer , (shore or water bank)? The answer to this question
cannot be found by investigating formal lexical or syntactic clues; it
must depend on the semantic content of the neighboring context. Obviously,
if "bank" is found in conjunction with such words as "money," "finance,"
"loans," "mortgage," "checking," etc., the first interpretation is pre-
ferable, but if it is found with words like "boat," "water," "river,"
etc., the second is to be preferred. The example suggests that knowledge
of association patterns of words might be highly useful in resolving
semantic ambiguity in machine translation - the major stumbling block in
the current state of this art.

A third example is perhaps even more speculative; it is the use of
machines for assisting in the analysis of psychiatric interviews. The
use of machine aids in this connection is clearly desirable in order to
reduce the costs of psychiatric treatment. It is well known that clues
present in the connotations of words used by patients are often more
important than what is actually said. If a patient relates a dream about
"eating ice cream in a cozy hotel room with sleek furry rugs and a warm
bed with a satin cover," it takes little imagination to see that he has
more on his mind than ice cream. Again, this example suggests that
association links among highly connotative or emotive words might be
modeled in order to enable a machine to suggest possible connotations
underlying statements made by patients.

The need for methods of semantic association brought out in all three
of these examples follows from the fact that the meanings of words are
richly overlapping. It is difficult (if not impossible) to find two
words which are synonymous under all interpretations - this is well known
by writers who struggle to avoid repetitious use of a single word. What
is more surprising is that it is difficult to find two words with com-
pletely disjoint meaning. The reader may be interested in doing the
following experiment: pick two words A and B at random, and find
the "distance" between them in Roget's Thesaurus as follows: find all
the classes that A belongs in and all those that B belongs in. If
A and B both fall in a common class, then consider the distance
between them to be zero. If not, look up all the words in the classes
A belongs to and all the words in the classes B belongs to; if one
of the A words falls in a common class with one of the B words, then
consider A and B to be separated by distance one. Likewise, if a
word of distance one from A falls in the same class with a word of
distance one from B then consider A and B to be separated by
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distance two, etc. What then is the reader's guess as to the average
minimum distance between two randomly selected words? Distance ten?
One hundred? It is probably more like two or three - at least this
has been so in the few tries made by the author. The game is a bit
arduous, but the reader is invited to try it for himself. It is sur-
prising how quickly one can go in this manner from a given word to one
of opposite meaning! For example, "extortion" is distance one from
"valor" via tje chain: extortion - parsimony (819) - tenacity - courage

(861) - valor. In fact, all substantive words in natural language are
more or less associated - the real question is how much more or less,
and that is the subject of this paper.

II. SYNONYMY AND CONTIGUITY ASSOCIATION

This paper is basically concerned with word association based upon formal
statistical properties of a limited body of language data, the goal being
to define an objective procedure for determining numerical measures of
association strength among words present within a given set of contexts.
Before proceeding however, it is necessary first to say a few words on
what might be meant by the association measures.

To start with, it seems reasonable that a useful measure of association
should model synonymy, i.e., similarity of meaning among such terms as
"canine," and "dog," "lamp" and "light," "elephant" and "pachyderm," etc.
But is synonymy association all that is required? Obviously, if this
were the case, associations could be established by compiling a thesaurus
(treasure of words), and listing within the thesaurus estimated strengths
of synonymy between related word pairs. Indeed, major efforts have been
made recently on the compilation of thesauruses for such applications as
automatic information retrieval.2

Unfortunately, though, the thesaurus approach to word association is
beset with certain fundamental difficulties which stem from the nature
of language itself. The first difficulty is that there is rarely such
a thing as complete synonymy. Synonymy, when it is found, is almost
always partial and extremely difficult to measure. A wolf is a canine
but not a dog; some lamps are not lights and some lights are not lamps,
etc. A second difficulty is even more fundamental: synonymy is not the
only kind of association present among words. In fact, for many applica-
tions, it may not even be the most important kind of association. This
is because synonymous expressions are readily constructible of non-
synonymous components or parts, which are nonetheless associated. It is
simply not possible to anticipate beforehand all such possible combina-
tions of words which yield synonymous expressions. As an example con-
sider the two expressions, "Coherent Optical Radar," and "Pulsed Laser
Reconnaissance Device," the two expressions are nearly synonymous under
a certain interpretation, but none of the individual words in the first
expression can be considered to be synonymous with any of the individual
words in the second expression without a stretch of imagination. I.e.,
the expressions are synonymous, but the parts are not.
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The example of the last paragraph suggests that a second type of word
association should be considered, association which is primarily due to
close real-world relationships among the objects or actions which the
words designate. Examples of this type of. association are those between
"table" and "top," "hammer" and "nail," "food" and "eat," "bank" and
"money," etc. This type of association has been called "contiguity"
association by psychologists, since the objects or properties denoted by
the words are presumed to be contiguous in some sense in the real-world 3 .
Now, considering the example from the last paragraph from the contiguity
viewpoint, "Coherent" and "Optical" both bear contiguity relationships
with "Pulsed" and Laser," and "Radar" bears contiguity relationship with
"Pulsed," "Reconnaissance" and "Device." The situation is illustrated in
Figure 1, where the expressions "Coherent Optical Radar" and "Pulsed
Laser Reconnaissance Device" are shown to have multiple paths of con-
tiguity cross association.

oher=en ===-fifi t Cal . ar

Pulsed Laser Reconnaissance ice

FIGURE 1

EXAMPLE OF COMBINATION OF CNTIGUITY ASSOCIATION PATHS

Under one interpretation, the expressions "Coherent Optical Radar,"
and "Pulsed Laser Reconnaissance Device" have the same meaning,
although no words in the first expression are synonyms of any in
the second. By considering the combined effect of multiple con-
tiguity association paths between the words, however, the two com-
binations may be recognized as being highly associated with one
another.

This example raises a question: Is there a possibility of combining a
number of possibly weak contiguity associations among words, so as to
strongly associate combinations of words which have closely related mean-
ings, but which do not associate in the word-by-word synonymy sense?
Obviously, it is not possible to accomplish this end by anticipating every
possible combination of contiguities in a "thesaurus" compiled beforehand.
Fortunately, however, an entirely different approach to the recognition
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of associations exists, and statistical methods such as those described

below give measures of association which reflect the effects of contiguity.

III. ASSOCIATIONS BASED ON STATISTICS OF WORD CO-OCCURRENCES

Assumptions Underlying Statistical Association Schemes

Statistical approaches to word association have been investigated by

psychologists for a number of years,
4 and recently have been of considerable

interest to those interested in document information retrieval 
research.5 ,6'7

Although rarely stated, there are two fundamental assumptions which underlie

any such an approach. In general form these are: (I) if two words are

found within a given context, then this may be taken as a small piece of

probabilistic evidence that the two words are in fact related in at least

the contiguity sense. That is, the context can be taken as asserting a

relationship, although possibly a weak one, between the objects, properties

or actions denoted by the words. (2) The second assumption is that by

accumulating small pieces of probabilistic evidence of association from a

large collection of contexts, it is possible to arrive at over-all measures

of association which are both meaningful and valid with respect to the given

contexts.

In general, the association measures determined by such a statistical process

are to be used within an application that relates to the contexts from which

the associations were derived, so the question of whether these associa-

tions are representative of the language as a whole is not an important

one. Thus, for example, if there is a strong association between the words

"tractor" and "vinyl," this may merely reflect the fact that the body of

information has a good deal to do with the making of plastic toys, and

in particular the making of toy tractors out of vinyl, and the associa-

tion might in fact be quite a useful one.

If both of the aforementioned assumptions are valid, then there is a

possibility of automatically deriving word association measures valid for

a given body of information. The proof of the first assumption, however,

is only in the testing of the results of an over-all association process,

and the problem immediately boils down to defining meaningful contexts,
and to finding a satisfactory mathematical method for generating the

over-all association measures. The first task, selection of contexts,

depends critically on the application involved and cannot be discussed in

general; * attention in the rest of this paper will therefore be focused

What is meant by two words being "in the same context," of course, is

subject to considerable variation depending on the application and

objectives involved. For certain applications, this might mean that

the two words are found to be directly adjacent in a stream of speech;

in others it might mean that they are both used to describe a given

dream, etc. If the words are index terms, then the fact that two words

are used to index a given document may be sufficient to consider them

to be contextually related. In much of the writer's research on Infor-

mation Retrieval, the basic unit of context has been taken to be either
sentences of syntactic subunits of sentences.

5
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on the second task, that of finding a satisfactory mathematical procedure
for generating over-all association measures.

Statistical Association Formulas

Several procedures for generating over-all association measures have
been proposed and discussed extensively in the literature and have, to
varying degrees, been experimented with.4 ,5,6,7,8 Each of these procedures
involves the use of a mathematical formula for computing associations, and,
in general some form of accompanying data processing techniques to make
these associations suitable for the application involved. However, because
different computers, different collections of contexts, and different data
processing techniques have been employed, and because published informa-
tion as to the performance of these various association techniques has
been largely limited to examples, comparison of these over-all procedures
is extremely difficult and will not be attempted here.

The mathematical formulas used to generate association measures do lend
themselves to comparison, nonetheless, and some typical ones are listed
in Appendix A. It is pertinent to comment that most of these formulas
share a basic feature - which is in fact a basic limitation. The feature
is that associations are based only on the number of contexts in which a
given pair of words directly co-occur; that is, two words which co-occur
very frequently are considered to have a high association coefficient,
and ones which do not co-occur at all are considered to have a zero associa-
tion coefficient. It is argued in the following paragraph that this basic
feature may also be a basic limitation, because synonymy association may
not be adequately reflected in the measures, even though contiguity
association is.

The nature of this limitation can readily be seen in the example illustrated
in Figure 2. In the example, it is presumed that many contexts contain
"aircraft" together with words from the center list, and that many other
contexts contain the word "airplane" together with words from the center
list, but that no context contains both "aircraft" and "airplane." Such
might well be the case, for example, if the contexts are documents and
the words are used as index terms to characterize documents; some indexers
may use "airplane," others may use "aircraft," but few will use both to
characterize the same document. A human who knows no English (say a
clever Chinaman) could infer from studying the co-occurrence patterns of
these words within their context that "aircraft" and "airplane" are highly
associated - he might even go on to speculate that they are somewhat
synonymous since they appear to be used interchangeably in similar con-
texts. However, none of the association formulas which are based only
on strength of direct co-occurrences are capable of recognizing associa-
tion between "aircraft" and "airplane" in the example, since these for-
mulas do not go beymd immediate co-occurrence neighbors in determining
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association.

Airframe

usi 

lage// Autopilot

I
aircraft I'airplane

Stabilizer

Rudder
Win>

FIGURE 2

EXAM"LE OF TWO SYNONYMOUS WORDS WHICH ARE UNLIKELY TO CO-OCCUR
BUT WHICH ARE LIKELY TO HAVE SIMILAR CO-OCCURRENCE PATTERNS

WITH OTHER WORDS

The situation brought out by this example is likely to be a comon one,
since synonyms in general will tend to co-occur with like patterns of
other words, rather than with each other. The synonyms in Figure 2, are,
so to speak, "twice removed" from each other. A method of recognizing
the weighted sum effect of "once removed" contiguity associations, "twice
removed" associations, "thrice removed" associations, etc., is suggested
in the following section.

In summary of the development so far, two types of word associations have
been characterized: "synonymy" and "contiguity." It was argued that
normally compiled synonym lists can be used to model the first but not
the second kind, and that existing statistical association methods model
the second kind better than the first. In the following section, a
statistically-based network method of association is proposed which models
the combined effects of both synonymy and contiguity.

Recognizing this limitation of formulas based only on direct co-occur-
rence, some workers on computer-based word association schemes apply
their formulas twice or more, once to expand to "first generation"
words once removed from a given word, once to expand the "first genera-
tion" words to obtain words twice removed from the given word, etc.
The point being made here is that the formulas themselves account for
only a single generation of association.
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IV. LINEAR ASSOCIATION AND LINEAR ASSOCIATIVE NETWORKS

A. The Method

This section is devoted to a brief discussion of a 'linear" method of
automatic word association under development by the writer and his
colleagues. The method offers a number of novel features, among these
are: (1) it offers a framework for modeling indirect as well as direct
associations among words, (2) the method offers a framework for modeling
not only "associations" but also "relevance," a difficult-to-grasp con-
cept which is at the heart of such fields as document information retrieval,
and (3) the technique lends itself to realization by means of an analog
network memory, and association can be performed instantaneously by means
of such a network without a need for sequential digital scanning. Moreover,
such a network need involve only passive resistive or capacitive elements
and can therefore in principle be constructed at a small fraction of the
cost of a conventional digital memory.

Mathematical equations of the linear association process can be arrived
at through any one of at least three parallel avenues of reasoning:
(1) reasoning based upon the imposition of certain mathematical constraints
on the association transformation, primarily consisting of certain assump-
tions of the linearity and normalizability of transformation matrices.
(2) Reasoning along probabilistic lines, in which association is regarded
to be a certain type of Markov process. (3) Reasoning based upon an
intuitive development of an electrical network analog. All three ap-
proaches are ultimately equivalent in that they lead to the same set of
mathematical relationships for the association process. The approaches
differ in the interpretation they provide; each gives a different avenue
of appeal to intuition. The electrical network approach will be pursued
in the next few pages, since it is the most intuitive and can be presented
using nonmathematical arguments. Following this, some of the analog
devices which we have built and are currently experimenting with will be
briefly described. The reader interested in a more thorough understand-
ing of the linear association method is referred to Appendix B and to
references 5, 9 and 10, as well as to an excellent paper by P. Greene on
the general applicability of linear transformations to models of biolog-
ical information processing systems. 1 1

B. Development of the Linear Association Technique

1. The Case Without a priori Word Connections

Suppose that, at a given time, a fixed number of contexts and words are
recognized within the scope of a particular application; and that each
context is essentially indexed by only those words which best characterize
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it. Suppose further that it is possible to define a positive numerical

connection strength between a context and each of the words which applies

to it. Although these values can all be equal in the simplest case, they

need not necessarily be so restricted. This situation is illustrated

graphically in Figure 3, where diamonds represent contexts, circles re-

present words, and the numbers next to the links represent relative

connection strengths between the contexts and the words. Thus, the

context-word configuration can be conceptually represented by a network.

There may be only one direct path between a context and a word, but there

may be a multiplicity of indirect paths.

6> 3
0 Words

3
K> Contexts

FIGURE 3

GRAPH SROWING CONNECTION STRENGTHS
BETWEEN A FEW CONTEXTS AND Wq)RDS

To obtain the electrical circuit analog, each context node and each word

node in the context-word graph is considered to represent an electrical
binding post, and each connection is considered to be a resistor with

conductance equal to the connection strength. Finally a set of "leak"

resistors (say with conductance values presumed to be small, compared to

any of the word-context conductances) should be affixed between each node

and some common return "ground" node. As seen in Appendix B, these leak

resistors determine the normalization which is applied to words or con-

texts to compensate for the effects of variable word frequencies, co-ocur-

rence contingencies, context lengths, etc. Also, association can be made

A variety of legillglpb1c, syntactic, and statistical techniques have
been suggested,9 ' 14 for the automatic isolation of "content"

words, but these will not be treated here. The point is that associa-

tion measures have little meaning when applied to "function words"

such as "of," "and," etc., and that such words might best be filtered
out from the onset.
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either "narrow" or "free" through proper choice of these bias resistors.
The resulting network for the graph of Figure 3 is shown in Figure 4.

15 10 10

11
33

O Words

<> Contexts

FIGURE 4

ELECTRICAL NETWORK OBTAINED FROM GRAPH IN FIGURE 3
(Figures next to resistors represent conductances)

So far, nothing has been said about how such a network can be actually
used to associate. To adopt a general viewpoint, an association transfor-
mation can be considered to consist of an input, consisting of a given
assignment of positive or negative values to one or more selected words
which are of interest, and a resultant output consisting of values as-
signed to all words and contexts recognized within the association system.
For the association process to be meaningful, the output value assigned
to a word should reflect its relevance to the given configuration of input
words and values. The more relevant it is, the higher should be its value.

In the electrical analog, the input consists of fixed currents injected
into the terminals for the given input words, with return being the ground
terminal. The input values are merely the values of the currents injected;
they need not necessarily be all equal, and may in fact be negative when
anti-association is desired. The output values are simply the voltages
appearing on the various terminals in the network, both for words and
for contexts, as a result of the currents being applied to the input word
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terminals. Corresponding to the values appearing on the terminals, they
will be effectively ranked according to the decreasing order of these
values. The linear association algorithm takes this ranking to be that
of the relative association, i.e., the relevance of any given item to
the input configuration is determined by the voltage appearing on its
terminal.

The behavior of the network can be grasped at this point. When currents
are injected into some of the terminals, namely the terminals for those
words specified on input, voltages appear on all of the terminals in the
network, both those for words and those for contexts. The voltage appear-
ing on any word terminal will depend on how strongly that word is connected
with the words in the inquiry via all direct and indirect paths. The
further a word is in the network from a word in the input, the lesser will
be the voltage appearing on its terminal. Three parallel paths exist
between words 1 and 2 in the circuit of Figure 4, for example, and there-
fore a current injected into the terminal for word 1 will induce a high
voltage on the terminal for word 2, and a relatively low voltage on the
terminal for word 3. Words are thus automatically associated depending
on their degree of direct and indirect connections with each other.

The association between a given pair of words is thus seen to be the
voltage response at the terminal for one word to a unit of current in-
jected at the other word, or, in terminology more familiar to electrical
engineers, the transfer impedance between the two terminals. As is known
by a "reciprocity" theorem of electrical networks, transfer impedance is
a symmetric function, so that the association between words A and B
is the same as that between B and A .

Of course, injection of currents into terminals for selected words in
an input also results in all of the terminals for contexts assuming
greater or lesser positive voltages. The voltage appearing on the ter-
minal for a context will depend on: (a) how strongly that context is
connected to words specified in the input, and (b) how strongly that
context is connected to other words which are in turn strongly connected
to words in the input. The voltages on the context terminals will there-
fore give a ranking of the contexts according to their association with
the input words. Such a voltage can also be considered to model the
'frelevance" of a context to an input.

In the case of document information retrieval, when the contexts are
documents and the words are used as index terms, the input represents a
combination of terms which state the interests of a literature searcher
The linear association process ranks all documents according to a con-
tinuous scale of relevance with respect to the search question, utiliz-
ing in the determination of relevance not only words present in the
actual question, but also words highly associated with these. Presumably,
the documents of greatest interest to the searcher will be among those
listed topmost in this ranking. Further discussion of the applicability
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of linear association to the document information retrieval problem can
be found in references 5, 9, and 10.

2. Case with Inter-Contextual Linkages and Inter-Word Linkages

The discussion in the previous subsection presumed the absence of direct
linkages between words and other words, as well as the absence of direct
linkages among contexts. Within the scope of certain applications,
however, introduction of such direct linkages may prove useful. For
example, consider again the case when the contexts are documents and the
words are used as index terms. If the documents are themselves inter-
related, say by being written by the same author, it may be desirable
to reflect these relationships with inter-document links. Information
present in inter-document citations might also be used to generate inter-
document links. In another case, when individual contexts are sentences
in a continuous stream of communication, strong inter-sentence linkages
can provide in part for the effects of antecedence. In any event, direct
intercontextual linkages in the network analog can be modeled by simply
fastening conductances between the pairs of context terminals involved.
Also, it could conceivably be desirable to establish a priori linkages
between words which are nearly synonyms. Such linkages would provide a
direct means of introducing a priori "semantic" information not present
in the body of the corpus of information itself. Again, using the elec-
trical network analog, such linkages can be achieved by directly connect-
ing resistors between the word terminals involved.

C. Network Realization of Association Functions

The equations of the linear association technique given in Appendix B
appear to be considerably more complex than those of many other associa-
tion methods, but they have a singular advantage - they are linear network
equations, and linear networks are the easiest and simplest kind of elec-
trical circuits to build! For this reason, we have begun to investigate
the practical use of actual analog electrical networks to solve the linear
equations directly.

As of the present date, four experimental analog devices for linear
association have been built, and we also have programmed a flexible dig-
ital computer simulation of the linear association technique. We call
the association devices ACORNS, standing for "Associative Content Re-
trieval Network," and, although they are on a fairly small scale, some
interesting preliminary experiments are being done with them.

ACORN-1 is shown in Figure 5; it associates 41 sentences and 41 selected
index terms. It is used to demonstrate the applicability of linear associa-
tion to automatic sentence retrieval, and consists of resistors and neon
bulbs as output elements. ACORN-2 is shown in Figure 6; it associates 41
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topics with 101 libraries having special subject collections dealing
with these topics. It is used to demonstrate associative library iden-
tification, and, like ACORN-I, uses neon bulb outputs. It also has
variable biasing resistors, inhibitory inputs and an auxiliary plug-in
"thesaurus." Both ACORN-1 Ind ACORN-2 have been used for limited ex-
perimental purposes for some time. The devices about to be described,
ACORNS-3 and 4, and the digital simulation ACORN, have just become
operational, and analyses of their behavior patterns must still be made.
ACORN-3 is shown in Figure 7; it associates 140 index terms with 60
documents. The documents are selected from "Facts on File" and deal
with the topic of space. The device is constructed for experimentation
on variable network dispersion, and output is currently accomplished by
means of stepping switches feeding into a paper strip recorder. The
recorder will soon be replaced with a digital voltmeter, a voltage dis-
criminator, and a paper tape printer. Dispersion is made variable
through use of diode-gated bias currents. ACORN-4 is shown in Figure 8;
it is wired for 240 sentences indexed semi-automatically by 240 nouns
contained within them, and was built by P. E. Jones. The device is
designed for further experimentation on associative sentence retrieval
methods, and consists of a wired matrix pre-programmed by punched cards
which are also used as structural elements. This device will use the
same output circuits used for ACORN-3.

The digital computer-simulated associator consists in its present form
of sets of matrix-inversion programs for the IBM 7090 computer, together
with programs for actually performing the association transformations on
an IBM 1401 computer. This system is also currently in its initial stages
of testing, and will be used for association of a thousand or more words
and roughly two thousand contexts. In addition, the writer and his col-
leagues are planning the construction of one or more wired associators
on a substantially larger scale for the near future. The analog associators
share the advantage that their response to an input is instantaneous,
while a substantial amount of computer use time is required to invert a
large matrix.

Some examples of the behavior of ACORN networks are given in Appendix C,
and more thorough discussion of the behavior of ACORN-1 is given in
reference 5. In summary, ACORNS-1 and 2 behave as if the relevance order-
ings were produced as a result of the interaction of four main factors.
In simplified form, the relevance of a context to an input increases with
(a) the number of words shared by the input and the context, (b) the degree
of indirect association between the words in the input and words in the
context. The relevance value tends to be reduced as (c) the relative fre-
quencies of the input words rise and (d) the number of extraneous words
in the context rises. The patterns according to which these factors appear
to interact are fairly complex, however, and require further study with
larger bodies of experimental data. On the whole, when used for infor-
mation retrieval, the result produced by these networks appears to be
remarkably good, although the design and undertaking of an objective program
of experimental evaluation must still be carried through.
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Since there is a considerable latitude allowed in the selection of nor-
malizations, there appears to be a multiplicity of different possible
association strategies which can be realized using an ACORN network for
a given set of words and contexts. Thus, there is very much still to
be learned through experimentation with these networks. It seems in-
tuitively clear that the behavior pattern of a relatively small network
should just as well be reproducible for a much larger network involving
many more contexts and words, because the matrix equations governing
the association process (given in Appendix B) always have a solution, and
because discrimination can always be made as sharp or as broad as desired
by applying negative biases to unwanted words or contexts.

V. PROSPECTUS

In conclusion, a few paragraphs of speculation will be devoted to how
the linear association technique may prove useful for automatic document
retrieval. As was seen previously, the need for word association in re-
trieval arises when attempting to de4l with natural language texts such
as books or journal articles. Because of the inherent limitations of
structured classificatory indexing systems, most of the present generation
computerized retrieval systems depend on the use of "coordinate" index
terms - in most cases these are merely selected words, used to represent
the contents of documents. A major problem of such an information re-
trieval system is that a user, in formulating a request to the system,
will probably not use the same language as that employed by the indexer
who originally assigned terms to the documents. Thus, searching for
documents on "Coherent Optical Radar," relevant documents indexed under
"Pulsed Laser Reconnaissance Device" may be missed.

How can the linear association method help this situation? Actually, it
might do this in a number of different ways. Say five years hence, it
may not be too far afield to think of a small digital computer being
provided with an inexpensive but very high capacity ACORN-type memory
device, consisting of a network of modifiable micro-miniaturized resist-
ors. The digital computer would be used for input-output of documents
and inquiries, editing, logical analysis, monitoring of the retrieval
operation, and for obtaining relevant documents from a photographic or
magnetic disk file and printing them. The brunt of the association and
retrieval functions, however, would fall on the ACORN network which would:

1. Respond instantaneously to an inquiry, because of the parallel
network nature of the processing.

2. Respond to an input inquiry by ranking all documents with respect
to an inquiry according to a continuous scale of relevance.

3. Perform index terms associations, thus facilitating use of
natural-language type of indexing, reducing human labor and
enabling improved recall of relevant documents.
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4. Associate in such a way as to consider all paths connecting

a pair of index terms (synonymy as well as contiguity as-

sociation).

5. Provide a framework for the incorporation of

(a) document to document associations,
(b) index term "thesaurus" associations.

6. Provide high redundancy. Component failure in an ACORN net-

work is apt to be unimportant, because of the large number of

redundant connections; likewise, component tolerances are non-
critical.

7. Facilitate interaction between man and machine in retrieval by

(a) allowing a requestor to look at as much or as little ma-
terial as he wishes,

(b) allowing a requestor to control the degree to which index

term associations are brought into play, - association
can be either narrow or free.

8. Allow a requestor to start with a document and retrieve documents

most like it, or start with a document and retrieve index terms

most like it, etc. (As a matter of fact the electrical current

within the network itself does not know whether a given terminal
represents a document or an index term).

Of course, realization of such a linear retrieval system requires that

continued theoretical and experimental investigations of the linear re-

trieval method be carried out and found promising, as well as that large-

scale linear memories be developed with modifiable connection strengths,

say, large network of micro-miniaturized resistors with controllable

values. Finally, for such a system to be practicable, the ACORN memory

must be connectable to a digital processor which can perform the input-

output and other auxiliary functions necessary for a retrieval system to

be effective. These requirements require a program of continued develop-

ment of both concepts and hardware.
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APPENDIX A

MATHEMATICAL METHODS PROPOSED FOR THE FORMATION
OF WORD ASSOCIATIONS FROM A BODY OF CONTEXTS

The purpose of this Appendix is to review as briefly as possible several
different mathematical formulas which have been proposed in the previous
literature for the generation of word associations.

Mathematical Notation

Suppose that a collection of d contexts numbered 1, 2, ---d is indexed
by means of t words numbered 1, 2, ---t . In general, suppose that the
indexing operation assigns a connection strength 0\<cij\<l between con-
text i and word j , depending on how strongly i is characterized by
j For any given context, most of the cij will be zero, reflecting
the fact that word j does not apply to context i . Let

d d

f(t.) = > cj and f(tj, tk) = cij Cik
-ii

In the commonly occurring case when all assignments of c connection
strengths have values 0 or 1 , f(tj) is simply the freqency of occur-
rence of word ti  (the number of contexts containing it), and f(t , tk)
is the frequency of co-occurrence of words j and k (the number Af
contexts containing both). The matrix C = ci ) is called the context-
word connection matrix. The matrix CCT is-a ontext-context connection

matrix and CC is a word-word connection at rix. Let CT represent
the i row of C and C represent the j column of C . The
results of subtracting a veclor CT or Cj from a vector of all ones
(binary complementation) will be denoted respectively by Cf or Z1

All of the methods for association are concerned with generating out of
the quantities described in the foregoing paragraph a word-word associa-
tion matrix A , where Aij given an overall measure of association
between words i and j.
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A. Parker- Rhodes-Needham
1 5

In the referenced paper, three formulas for defining A are suggested;
they all presume that C ia a binary matrix containing only O's and l's.
The association formulas are:

(1) AT - f(tl t CT C . frequency of co-occurrence(I ij f( i tj i  =

of the two words.

(2) Aij - Cj C + C Cj = frequency of co-occurrence plus

frequency of contexts in which neither occurs.

T

f(t t) CC
(3) A = i i ji f(ti) + f(tj) - f(ti, t) CT C T - CT

ci ci C1 C1  C

frequency of co-occurrence normalized by number of contexts
which contain at least one of the terms.

The first formula, the simple frequency of co-occurrence of the two words,
will be seen to be the heart of all of the association measures to be
discussed. In its simple form (1), however, it suffers in that it fails
to take into account variations in the absolute frequencies of words,
which are in practice very considerable. According to (1), a frequently
occurring word associates highly with almost everything, a rarely occurr-
ing term can associate only weakly with anything. The second formula
associates according to where words are absent as well as according to
where they are present, and therefore is unsatisfactory since it tends
to give high association measures among all terms. The third formula
was also proposed independently by Tanimoto1 6 and by Doyle , it is the
best of the first three given.

B. Maron and Kuhns
6

Maron and Kuhns have suggested use of the association formula:

T -rT - T -r-T(C.i C.)Ci (Ci) -TC
(4) A =j T ;_ -T- '_(Ci C) (C i C + (C iC (Ci C.

This formula can be written
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(4')Ai 
t1 d - f(t M

j (C T C) (C~ T~ ± (C~ TC) (C Tc'C

which, from the form of the numerator, is seen to compensate for ex-
pected "contingency" frequency of co-occurrence, assuming random dis-
tribution of words with no synonyiy or contiguity-producing influences
present.

C. Stiles
7

Stiles also proposed a formula which compensates for contiguity occurrences:

f(ti, tj) d - f(t )f(t) - d

(5) ij 0 f(t (d - f(t (d f(t)

Stiles characterizes this formula as being "a version of the chi-square
formula using the marginal values of the 2 x 2 contingency table and
the Yates' correction for small samples." Association can be negative
using this formula, when f(ti) f(t ) > f(ti , tj) d , but this fact must
be recognized during the computatioal process since the sign of Aij
as obtained from the formula is always positive.

D. Salton
17

Salton has used the measure of association

T Ccc

(6) Au -j

This formula will be recognized as giving the direction cosine in the
context space of the angle subtended by the two word vectors CT and C

i j

E. Osgood
4

Osgood has proposed a measure of association which is similar to (1), except
that it is based on deviations of elements cij for term J from the ex-
pected value

f(t )
Cj d
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T Tf (t i ) f (y1

(7) Aij = (C -C 1 ) (C - CJ)=T_(Cki- d)(ckj d

k

This formula can be thought of'as measuring associations between words
about the "centers of gravity" of the words.

F. Bennett and Spiegel
18

None of the previously mentioned association measures takes into account
the total number of words available to index contexts, or the distribution
of the number of words assigned to the contexts. Both of these factors
are of importance and are taken into account in a formula proposed by
Bennett and Spiegel:

t (t+l) f ( t i '
O t ) f(ti) f(tJ) 1

(8) Aij =L2 2

2 N N N 0

where No = the total frequency of co-occurrence of all words.
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EQUATIONS OF THE LINEAR ASSOCIATION METHOD

Let us presume that contexts are numbered from 1 to m , words from
m+l to m+n . Then the graph of connection strengths can be represented
by a connection matrix:

I C

B D

nm nn)

where C is a context-word connection matrix, B is its tranpose, 9
is a context-context connection matrix, and D is a word-word connection
matrix. These connection strengths, it may be recalled, are to be inter-
preted as electrical conductances, and it is presumed that each element

gij E G represents the conductance of a resistor soldered between ter-
minals i and j . Finally, we presumed that a "leak" resistor g is
soldered between each word terminal j and a c, rn terminal o , °fd
that a leak resistor gio is soldered between each context terminal i

and the common terminal o

To pose an input, current is injected into the terminals for words in the
input Q in such a way that the voltage specified for a given word qi
in the input is 4dded to that which would otherwise be present on the ter-
minal for qi .5 The equation of behavior of the network can now be set
down.

By conservation of current J at any context terminal:

m +

T J p + Jpi + Jo -o (2)

Now let r be the voltage on context terminal p , be that on a
word termiRal j . Then, writing out Ohm's Law using t9e notation of (1):
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lon

2pi3 (rj - rp) + Cpj (wj - rp) +CPO r =0 (3)

i-i

giving:

3 Im+n

r im- 4pm m+n

C p Epj + Cj

Likewise, by conservation of current at any word binding post, t:

m n27 i + 7 jit + jot +Jiecdm (5

Applying Ohm's Law and collecting terms:

m m+n

Bit ri + - Dit w,

Si=++ (6)wt =m M+n + t(6

Cot +TBit +- Dit

ifl i-m+l

Equations (4) and (6) describe the behavior of the process. To better
see what the process means, it is useful to shift to matrix terminology.
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Let, for lk(m

kk m m+n (7)

Cko +2jTki +2 C k j

j1 j=m4+l

and for m+l\(k.<m+n , we let:

kk m m+n (8)

Cok + Bik + Dik

Obviously, 0 Akk\<l Let Abe the diagonal matrix = ! .
Then: r /

AG - (9)

B D

has row sums normalized to unity or less, and equations (4) and (6) can

be written in matrix form:

d h(10)

and therefore,
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which when solved yields the solution:

R ... ..(I D 1 B ) ( D Q (12)

which is the analytic form of the solution. The factor

(I - D) I

gives a word association mapping, which takes into account word intercon-
nections, word-context interconnections and context-context interconnec-
tions. The factor U gives a discriminant mapping from word values to
context values. Finally, the factor (I -1)-1 gives a context associa-
tion mapping which takes into consideration direct connections between
contexts.

When no a priori linkages are pEesent and association is purely due to
word-context connections, I = D - 0 and

R C LI -Bj Q (13)

This can be written as a matrix power series

R C [I +/A B C + (/ABccGABW-J - -j Q (14)

which means that interconnections over paths of all length are considered
in forming the association. Since the matrix A can be multiplied by a
controllable qcalar multiple /\o , association can bT made either "free"
by setting A near 1 or "narrow" by selecting /I near 0 . Note
that with A - 0 , conventional non-associative term superposition re-
trieval logic is obtained as a special case.



APPENDIX C

EXAMPLES OF ACORN-PRODUCED WORD ASSOCIATIONS

Several typical examples of ACORN-generated word associations are given

in this Appendix. The interested reader will find several other examples
discussed in considerably more detail in reference 9.

In general, it is exceedingly difficult to evaluate the quality of a set

of word associations, and the task is even more difficult when the associa-

tion strengths are described quantitatively. A realistic evaluation pro-
cedure requires careful experimental design, including identification not

only of what is being measured, but also of some at least partially objec-

tive criteria against which specific measurements can be compared. The
writer and his colleagues are currently attempting the design of such an

experimental evaluation procedure. In its absence, however, it is dif-

ficult to attribute much more than face values to such examples of associa-

tion as are given below.

The first three examples were generated using ACORN-3, and are of index
term associations. ACORN-3 is currently wired for 60 short articles deal-
ing with the general area of Space, with each article being indexed with
from one to twelve different index terms selected out of a group of 120

index terms. The contexts on which the associations are based are the

articles themselves. Some of the index terms involve multiple words, such
as "Cape Canaveral." These three examples are given in Tables 1, 2, and

3, where each table shows an ACORN-3 output curve drawn by an automatic

pen recorder. The peaks and valleys show the voltages appearing on the

various index term terminals on the ACORN network in response to an input.

Some of the highest peaks on each table have been subsequently labelled
and listed on the table according to their decreasing order.

Example I

Table 1 shows the word-association response of ACORK-3 for the input
index term Federation Aeronautique Internationale. The list of terms

associated with the Federation Aeronautique Internationals contains both

direct contiguity-related terms and terms less directly directed. Specif-

ically, the only articles containing the given index term have to do with

awards by the Federation to various astronauts for manned orbital flights

and manned sub-orbital flights. Thus, Gherman Titov, Capt. Virgil Grissom,

Yuri A. Gaaarin and Alan B. Shephard come in as a result of direct con-

tiguity relationships with Federation Aeronautique Internationals. The

terms manned sub-orbital flight and manned orbital flight, also come in

as contiguity relationships since they are contained in the documents

containing the given index term. The index term USSR-Soviet Union, and
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parachute, are both direct and higher order associations - each occurs
in one of the articles containing the given index term, however, USSR-
Soviet Union also co-occurs elsewhere with Titov and Gagarin, and parachute
occurs in many other articles mentioning astronauts.

The appearance of the index term Lt. Col. John H. Glenn, is of interest.
It is purely a second-order associate, since it does not co-occur with
the given index term in any document. However, since Glenn does co-occur
in many other articles dealing with the other astronauts, he is still
strongly associated with the Federation Aeronautique Internationale. As
a matter of fact, a short time after the body of information in ACORN-3
was prepared, Glenn was actually presented an award by the FAI just like
the others!

Example ,2

The second example was also prepared on ACORN-3, and the ACORN output is
shown in Table 2. The input term in this case is TV cameras. When ex-
plained, the ordering of terms associated with TV cameras is again a very
logical one in terms of contiguity associations. TV cameras, according
to the doctments in ACORN-3. are used in Ranger satellites, and in Tiros
satellites. Tiros is built by RCA and, in addition to TV cameras it
contains infra-red sensors, and it is used for solar research. Ranger
is fired by an Atlas-Aiena rocket, and placed into parking orbit around
the earth. Tiros is launched by a Thor-Delta rocket. Both contain other
cameras and are launched from Cape Canaveral. Of the associations listed
in this example, parking orbit, and cameras, are second order associations
since these terms do not co-occur with TV cameras. One is tempted to say
that the appearance of cameras as being associated with the completely
different index term TV cameras is an example of the second generation
synonymy-type associations mentioned in the text.

Exmp le 3

This example was also prepared on ACORN-3, and corresponds to the output
shown in Table 3. The input term in this case was atomic power source.
The explanations of the associations are as follows: insofar as the
articles in ACORN-3 are concerned, an atomic power source exists only
within Transit satellites, which are launched simultaneously with TRAAC
satellites by Navy Thor-Able Star rockets, for purposes of providing
navigation aids and gravitational field data.

The remaining examples of word associations are based on use of the digital
simulation ACORN. The contexts are syntactic proximity frames within a
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body of sentences selected from the article "Laying the Great Cable in
Space" from Fortune magazine. 19 The article deals with the subject of
space comunications, primarily with respect to its business aspects,
and compares the economics of space communications with those of cable-
based comunications. The words are nouns selected automatically from
the sentences, using a syntactic analysis program developed at Harvard
University, and the association network is based on the syntactic sen-
tence structures present in the text.9 Roughly 350 words and 170 sen-
tences are included.

Example 4

The input words are birth and marriage. The high-ranking output words
are:

VALUE WORD

1.145 Birth
.710 Marriage
.621 Technology
.541 Compromises
.541 Disadvantages
252 Scrambling

Example 5

The input words are reliability and cost. The high-ranking output words
are:

VALUE WORD

.710 Reliability

.078 Cost

.072 Imponderable

.071 Estimates

.025 Cable

.016 Facilities

.015 Project

.013 Launch

.009 Roles

.006 Maintenance

.006 Decision
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Example 6

The input word is Cuba. The high ranking output words are:

VALUE WORD

.313 Cuba

.135 Castro's

.106 Russia

.075 Light

.068 Regulations

.050 Countries

.012 Continents

.009 Nations

.006 Position

Example 7

The input words are cable and space. The high-ranking output words are:

VALUE WORD

.263 Cable

.063 Capabilities

.034 Space

.032 Race

.026 Cost

.024 Astronautics

.024 Electronics

.023 Telegraph

.019 Engineering

.019 Imponderable

.019 Estimates

.017 Freedom

.014 Law

.011 Test

.011 Industries

.010 Project

.009 Seas

.009 Codes

.009 Cooperation

.008 Communication
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Example 8

The input term is G.E. The high-ranking output words are:

VALUX WORD

.184 G.E.

.179 Com Sat's

.179 Officers

.015 A. T. and T.

.010 System

Example 9

The input terms are communication and satellite. The high-ranking output
words are:

VALUE WORD

.022 Co=munication

.020 Comon-carriers

.017 Satellite

.016 Record

.015 Score

.015 Pros

.015 Package

.015 Cons

.015 Bet

.015 Complexity

.015 Repeater

.015 Distances

.015 Hurdles

.013 Data

.012 Parallel

.011 Investigation

.010 Industries

.010 Pioneer V

.010 Space

.009 Balloon

Example 10

The input terms are ionosphere, interference and broadcasting. The high-
ranking output terms are:
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VALUE WORD

.580 Ionosphere

.575 Interference

.082 Broadcasting

.024 Area

.014 Government

.012 System

.011 Radio

.011 Television

.009 Rivalry

Example 11

The input terms are imponderable and know-how. In this case, the high-
ranking contexts instead of words are listed. They are:

VALUE CODNTEXT

482 In that new element some of the astronautical and astro-
electronic companies have more experience and know-how
than A.T. and T.

.220 The cost of any satellite system is still a vast impon-
derable, since no specific system has been chosen as yet
and launching costs are undetermined.

.114 But before this can come about the industry needs much
experimental experience in actual satellite operation.

.079 The closest counterproposal to this plan was made last
Spring by G.E., which was suddenly galvanized into study-
ing how it might put its considerable electronic and
space-satellite experience into this new business.

.078 The astronautical firms with longer experience in space
problems are more optimistic, however, that before such
an experiment is mounted the capabilities for a high-
altitude test will be here.

.072 The total cost would be some $250 million.

Note that only the first two sentences contain an input term, but that
the others nonetheless have a feeling of imponderable and know-how about
them.



TITLES OF PHOTOGRAPHS

FIGURE 5. ACON-I: It is wired for 40 sentences using 40 index terms.
To pose an inquiry, the wires with the clips are attached to the terminals
for the index terms and/or sentences deemed to be relevant by the user.
As the large knob is turned the voltages on these wires are raised, and
the neon bulbs light up in the order of "relevance" of the various sen-
tences. Relative voltages on the individual wires are controlled by the
other knobs. Association may be set either "free" or "narrow" by varying
the setting on the lower right hand knob.



FIGUUE 6. ACOI-2: Contexts in this associator are 100 technical
libraries, represented by the outer terminals. The 41 inner terminals
represent the subjects the libraries deal with. Variable normalization
resistors are not shown. It is used in the same manner as ACORN-1.



FIGURE 7. ACORN-3: The horizontal wires represent 140 index terms in
a document collection and the vertical wires represent the 60 documents
indexed. Resistors can be seen to be soldered at arne of the intersec-
tions. Read-in is accomplished by the clip-leads shown. Read-out is
currently accomplished by the stepping switches shown in the background
of Figure 8, and a pen recorder.
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A MODEL OF THE PLASTIC NEURON

V. V. Griffith

Goodyear Aircraft Corporation

SUMARY

A model of learning using neuron-like elements is
presented below which apparently does little violence to physiology
and is based on the observed micro- and macro-behavior of living
creatures. Much of the model is, of necessity, speculative. The
speculations are, however, supported by a significant body of
physiological data and by the results of computer simulations.

The model differs from much current work in the following
respects: (1) It is not a simple majority logic element. Its
inputs are not boolean, nor is its output. Inputs are pulse trains
of variable repetition rate, and the output is also a pulse train
of variable rate. (2) The model does not have special inputs
which selectively adjust its internal parameters. (3) Networks of
elements like the model described here adapt to their "environments"
without an outside operator, or "teacher*, to direct the adjustment.

INTRODUCTION

The basic assumption of the following discussion is that
the neuron is the fundamental building block of adaptive behavior,
much as the operational amplifier is the basic building block of
the analog computer and as and, or, and not gates are a basic set
for digital computation. Ea-ch neuron adjusts its afferent connect-
ions autonomously. The possible range of behavior of a net of
neurons is limited by the range of possible internal connections.
This range is determined genetically. The specific behavior is the
result of connection adjustments that have taken place at each
neuron and which result from the history of input and output
activity. There is no "extra circuitry" which directs selectively
the adjustment of any particular neuron. The work presented here
continues previous work by the writer.26

This basic concept has a long history in physiology.
Kappers advanced his notions of neurobiotaxis in 1921.1 His ideas
were elaborated by Goghill.2 A connectivity concept was used by
Hebb to explain Pavlov's results.3,4 Hebb's work was extended to



include inhibition by Milner.5 Some work by Sperry appeared at
first to challenge the connectivity ideas.6,7 But Sperry used
this work to elaborate the theory further.7,8 Quoting Sperry,
"Regeneration of a motor axon into a new muscle could be conceived
to cause same kind of trophic breakdown in the synaptic end-feet
on that neuron to be followed by the formation of new end-feet
fram other fibers having the proper chemical affinity." "..
the primary motor neurons become stamped with . . . specificity
by the muscles they operate. . . . An equally refined and more
complicated differentiation must take place . . . among the
association neurons. . ... 8

The model presented here postulates that the "chemical
affinity" which has so far eluded detection could be a dynamic,
rather than static, phenomenon. A neuron does not have to be
*labeled" chemically in all cases. It can sometimes be identified
by the history of electrochemical activity in its vicinity.

System - A block diagram of the system which will contain the
neurons is presented on figure 1. It diagrams a student-teacher
relationship fairly realistically. The teacher can act only on
his personal environment (which includes the student). He can
sense the student's actions only as they are transmitted to him
by imperfect sensors. The student in turn receives inputs only
from his personal environment, which of course, includes the
teacher and the teacher's actions. Each of these two, the teacher
and the student, attempts to alter his actions and his sensed
environment so as to meet individual internally generated criteria.

Figure 2 presents a system which seems to resemble human
learning, but which is not suitable for the present purpose. The
most important discrepancy between figure 2 and a realistic
conditioning situation is in assigning to the "teacher" powers he
does not ordinarily have. Teachers cannot adjust their students,
they can only adjust their students' environments. In figure 2,
the "teacher's" signals to the "student" (or to the "neural net")
are of a very special kind, completely different from the other
inputs.

Neuron - The neuron model to be investigated displays certain well-
known characteristics of living neurons.9

(1) Any particular neuron (excluding sensory neurons)
receives inputs from many sources. These inputs are pulse trains
of variable repetition rate. The output is a pulse train similar
to those appearing as inputs.

(2) Some inputs tend to excite the neuron to emission
of output pulses, some tend to inhibit the production of output
pulses. In the model, we associate a parameter, wi,(-l_9wi- l),
with each input to the neuron. These parameters correspona
physically to quantification of the hyperpolarizing or depolarizing
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effects of the separate endbulbs. If wi-O, the ith input is
excitatory, and if wio 0, the ith input is inhibitory. (If
wi - 0, the ith input has no effect on output of the neuron.)

(3) A neuron takes the spatial and temporal sum of
its inputs and compares this weighted sum against a threshold.
The threshold can vary with time.

(4) Neurons usually produce outputs only when they
are receiving inputs whose net effect is excitatory. They
occasionally produce spontaneous activity (pacemakers).ll

Some devices which have been investigated have three
kinds of inputs: excitatory, inhibitory, and "adjustatory".12
No inputs of the third kind have been discovered in biology.
One cannot yet assign this adjustment role to metabolic factors,
at least in the detail the devices seem to require. Present
knowledge implies that the effect of an agent such as adrenalin
is to excite (or inhibit) growth or activity of same group of
neurons more or less diffusely, and pretty much temporarily.l0
It has not yet been shown that metabolic agents carry detailed
adjustment instructions from higher centers to lower centers.

For simplicity, it is assumed here that the neuron
displays only one threshold, and that only one temporal summa-
tion of weighted inputs is made. In actuality the living neuron
could produce an output when the instantaneous value of the
input "sun" at some point on the post-synaptic membrane exceeded
the instantaneous value of the threshold in that region. The
"su" (which is related to the post-synaptic potential) is more
or less "smeared" all over the entire dendritic structure and
soma of the neuron. The threshold also varies from point to
point on the neuron.9 Inclusion of an accurate description of
spatial summation would introduce unnecessary canplexity at
this time.

Small networks of elements like the model have been
simulated. Results show that the model may resemble closely a
physiological source of plasticity. If so, machines containing
larger networks could display phenomena of learning and intell-
igence which have so far eluded simulation.

MATHEKATICAL MODEL

Assume that the neuron is a network element which

receives pulse inputs from n sources, and which produces pulse
outputs. The element displays the characteristics listed above.
In addition, the element changes the parameters wi, that are
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associated with the inputs,according to a formal computation
rule. The computation rule is to be one that is non-trivial,
in the sense that it must allow the element to be used as the
building block of complicated network behavior.

Let the instantaneous output pulse rate of the neuron
be Ro, and let the instantaneous input rates be R., li-n.
A power function, P, can be defined formally as follows:

n

2 2
R0 +i Ri  (1)

We postulate that the neuron's computation rule is one that
under most conditions will cause the function P to be minimized.
This corresponds physically to postulating that organisms
generally act in such a way as to remove sensations with the
least possible action. The postulate is later related to
observed creature and nervous system behavior. It remains to
be shown that such a rule is indeed non-trivial.

The neuron is imbedded in a multi-loop feedback system,
as is shown on figure 3. Outputs from the neuron return, either
via other neurons or through the environment, to produce changes
in the inputs, Ri. Expressed generally,

Ri = fi (ot) (2)

which can be rewritten in the frm

Q ,- Ri  - fi(Ro.,t) (= ) (2a)

There are n equations of the form 2 or 2a, one for
each of the inputs to the neuron.

A minimum of equation 1, subject to the constraints
of equations 2a, can be found by the method of Lagrange multi-
pliers.

Differentiating with respect to R j, one obtains

- 2Rj A -,k (j=,2,...n)
RJ i- j



and differention with respect to Ro and t yields:

0

Ro RO

t t

These equations can be combined with equations 2a to yield two
conditions for minimization of P:

n

Si l R o hi  (3)

n 2

(Ri) w0 (4)

Condition II means physically that the input power
function is not changing with time; the inputs have reached a
steady-state power condition. Condition I (Equation 3) relates
R to the Ri for minimization of P.

The plasticity computation to be set forth causes the
model to approach - in same respects at least - the behavior
described by equation 3. The neuron surely does not instrument
equation 3 exactly. The computation of a few thousand partial
derivatives by a single cell would be a rather ambitious under-
taking, even if these derivatives were simply numerical values.
The problem is further complicated by the fact that a partial
derivative is a purely mathematical concept, often has little
physical significance, and sometimes is undefined in very
realistic situations. But physical systems which approximate
equation 3 can be readily obtained. The system presented in the
following paragraphs has been simulated, and seems to display
more similarity to living creatures than other systems that
have been investigated in this research. The system presented,
however, is merely illustrative of a general type of computation.

THE PLASTICITY COiFUTATION

If VO and Vi are, respectively, the output from, and
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the input to, an amplifier, the static gain of the amplifier,
A, is often defined as

A- VO ()
vi

A partial derivative in equation 3 can be interpreted
physically as the gain the neuron's output traverses in returning
to a particular input via the neuron's environment. The neuron's
environment contains everything outside the neuron. It includes
the remainder of the nervous system and the external environment.
The neuron can be looked on as an adjustable feedback element.

Lquation 3 requires that the total gain be negative
around each of the myriad loops which include a particular neuron.
Figure 4 demonstrates this point. If any loop is broken and a
fictitious signal is inserted at the break, while all other inputs
are held at zero, equation 3 requires that

P,a =L [.'1- ...j12 Rb wAloop*Rb (5)
Environment gain is not imaginary in this context;

thus, equation 5 shows that the loop gain is negative. Negative
static loop gain is a necessary (although not sufficient)
condition for stability of a loop.

The task that the plasticity computation must perform
can be defined as follows: The neuron receives pulse trains of
rates Ri, varying with time, and emits a pulse train of rate Ro,
also a function of time. From these time histories the neuron
computes approximations to the partial derivatives of equation 3.
If then adjusts weights associated with the inputs so as to
approximate equation 3.

A simple approximation is to make the sign of the gain
around each loop negative without initial regard to its
magnitude. We will postulate that the w, associated with the
Ri have the following physical significance. Let

be the instantaneous value obtained from a computation

o c
of I _M R i cdt

RO ,and let wi - 0 Icd
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The magnitude of a wi will reflect the consistency
with which the canputation has yielded the same sign, and the
sign will be the negative of the sign of the computed partial.
Constraints which limit the magnitudes of the loop gains will
be discussed later.

The neuron model will sense changes in its input
and output rates. It will use these changes as a basis for
computation. Changes in output rate can be caused by (a)
changes in input rates and (b) changes in threshold. Changes
in an input rate can be caused by (a) the effect of the neuron
output rate on the input and (b) other factors.

An input change which is caused by output activity

may be delayed in time while passing through the environment.
The model must tolerate some shifts in timing. Also, if an
input change is caused by factors other than output changes,
the pattern of the input changes with time should not show
any particular correlation with the pattern of output changes.
The camputation should average such effects to zero.

One can write approximately that

ARitr-*. li + -Ri AtIRo  -- t

or )R iLR A Ri " - t - 1Lt
R ~ (6)

bT o- Ro

To detect changes in the pulse rates and to stretch
these changes in time one can define a change function 6, such
that

Z [.()JZ[]es+l *rJ - s+lj

where s is the Laplace variable. One can then write that

~iAt

_________ (8)

c
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- i cannot be computed directly from equation 8, because

i is not known. The effect of 6 i on the computation
ata

cannot be ignored, for if one writes

i--t I r(i

c ' (9)

one finds that the right hand member of the equation 9 is
undefined for S (Ro) = 0. The computation cannot, in general,
be performed. The singularity can be removed by requiring that
S (Ho) exceed a threshold before any computation is made. But

even with that correction, small values of S(Ro.) will weight

excessively the errors introduced by ignoring, IR_.

Note, however, that

sgn ( sgn (xy) (10)

except where the signum function is undefined. Note also that
the wi take on only the signs of the respective partial deriva-
tives, not the exact values. If the relation

w= kS(Ri)'-sgn[ (S )J (11)

(k aO)

is examined, one sees that wi will ultimately take on a sign
which is opposite to that of the partial derivative in question.
The magnitude of a wi reflects the consistency with which a
particular result has been obtained. Further, the computation
weights large input changes more heavily than small ones.
Equation (11) is again undefined for ,to) =O ut is well
behaved in the region of that point. If sgn 0o is set equal to
zero by definition, the singularity is removed and equation (11)
is well-behaved for all finite values of the variables.

Equation 11 can be related to a technique for parameter
tracking, and to the linear correlation integral as it is
customarily defined. Study of these relations is planned for the
near future.
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Three practical objections to equation 11 appear when

systems instrumenting it are simulated. First, the wi tend to
diverge indefinitely if the results of the computation are
consistently the same. This objection can be removed by

limiting the w- at some value in excess of the usual neuron
threshold. Second, small d.c. offsets and system noise inter-

fere with the computation of sgn ES(Ro)when S(RO) is small.

This problem can be eliminated by requiring that 6(ho) exceed
a small threshold for sgn CS(Ro) to be non-zero. This

second correction tends to reduce the effects of R on the
computation.

The third objection arose in some early simulations.
When any particular weight reaches an excitatory value equal to
the threshold, S(Ri) often equals S(iio) due to the action of

the neuron itself. The weight is thus driven back in a negative
direction. During simulation, weights approach but cannot exceed

the threshold. This difficulty is obviated by modifying equation
(11) as follows

= - k sgn [ S(Lo) - al(')] (12)

where

a =O if wi.To

a - 1 if wilTo

To = rest threshold

Another modification of the model is needed, however.
it is a technique for "forcing' the computation to take place.
Inserting this modification appears to remove the requirement
for change of equation 11 to the form of equation 12.

Forcing the Uomputation

Uhanges in both input and output rates must occur for

a computation to be made. If one assumes that the wi are
initially zero, the model will never produce any outputs. 8("o)

will always be zero. No changes in the weights will occur.

---



We postulate that there are two mechanisms operating
simultaneously to control neural activity. The first mechanism
is due to the depolarizing or hyperpolarizing effects of afferent
activity arriving at the neuron. Ordinarily this mechanism
controls the neuron's responses. The second mechanism - which
controls the neuron threshold - operates in the absence of clear-
cut directions from the first source. It is overridden when the
excitatory or inhibitory effects of the afferents get strong
enough, i.e., when the wi get sufficiently large.

We postulate that this second mechanism tends to move
the threshold up or down in such a way as to cause the neuron's
average activity level to approach the average input activity
level. If all the wi are zero at the beginning of computation,
the neuron's average output activity will ultimately be equal
to the average of the inputs. (The threshold must go negative
to accomplish this.)

The mechanism under consideration contains some sort
of hysteresis characteristic, so that the neuron does not
smoothly assume the output rate dictated by the average input
level. Instead, it emits bursts of pulses followed by periods
of quiescence. The neuron will display this blocking oscillator
behavior unless (a) the inputs are sufficiently excitatory to
override the maximum value of the changing threshold, or (b) the
inputs are sufficiently inhibitory to override the minimum value
of the changing threshold.

The model now displays the following new characteristics.
(1) In the absence of clearcut directions from the afferents it
will produce 6's periodically, forcing the computation described
by equation 11. (2) The length of time it will delay before
producing 's is determined by the "confidence level" of the
inputs. If the weights are sufficiently large (either excitatory
or inhibitory) the model may never produce S' s.

A question remains as to how the magnitude of the gain
is controlled. We first consider factors which limit the upper
value of the magnitude of any particular gain. (a) A limited
number of neurons are connected to any muscle. One can presume
without much fear of contradiction that any activity of the nervous
system can involve only a limited number of neurons. (b) With
some E-ceptions, the maximum gain of a neuron is unity. (c) Any
particular afferent has a limited number of endbulbs.

Each of these listed factors operates to limit the
maximum gain through any particular loop. Computation can only
continue until every endbulb in a particular region has actively
synapsed on some neuron in that region. The magnitude of the
gain cannot increase indefinitely.
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There must be a sufficient number of endbulbs and
neurons to allow a gain to reach or exceed its optimum value.
These numbers are determined genetically. Lither of two methods
can be used to adjust the exact value of the gain. (a) Synapses
can continue to be made or strengthened until the gain reaches
the proper value, or (b) more (correct) connections can be made
than are necessary, so that the gain is somewhat high. An
additional "gain reducer" can then be used to regulate the gain.

System (a) would require that equation 11 be modified
slightly to put upper (and lower) limits on the total gain of an
aggregate of neurons. There is, however, reason to believe that
the nervous system instruments the second scheme in preference
to the first - at least to some degree.

The well-known phenomena of spinal and decorticate
rigidity in lower animals, the exaggerated postural and anti-
gravity reflexes of spinal preparations, the exaggerated with-
drawal reflexes that often appear shortly after spinal transection
in humans - all these indicate that gains in lower centers are
basically too large. They are ordinarily tempered by higher,
regulatory activity.l4 Mechanisms which perform such a regulatory
task are beyond the scope of the present discussion.

PHYSIOLOGICAL SUPPORT

The general contention set forth above is: The neuron
can adjust its synaptic connections autonomously. The adjustment
process instruments a method for reduction of system activity.

zven if living neurons do not follow such a rule, machines
which instrument the rule may display useful characteristics. The
next section presents results of simulation studies. The results
indicate that machines based on the ideas above can display non-
trivial behavior. Research is continuing in an effort toaccomplish
two ends: (1) analysis of elements which can operate as basic
building blocks of learning, and (2) investigation of the properties
of networks of self-adjusting elements.

The model as presented does, however, explain some pheno-
mena of the nervous system that are not explained by other engineering
models, and is supported by a body of physiological data.

First, we consider physiological justifications for the

"power" assumption, which is: Living creatures act so as to reduce
stimuli and activity simultaneously. Some apparent exceptions to
this idea exist. Creatures occasionally seem to seek stimuli
instead of avoiding them.
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We consider the following facts:

(1) No nerve endings which are normally accessible
to stimulation by the environment invariably sense "pleasure",
although many invariably sense pain.13

(2) The reticular formation acts as a *gain control"
- on the sensors, and on the associative portions of the cortex.l4

(3) Much creature activity stems frcm drives which are
generated internally. 15

(4) The psychological drives have neurological correlates.
15,16

Most of the apparent exceptions to the "power" rule result
from activity of higher centers. Yet (1) above shows that the basic
character of peripheral sensors is much as the power rule would
require. An organism will ultimately act to remove any stimulus,
if the stimulus is continued long enough. (2) provides a mechanism
which could alter, i.e., shape, the time history of afferent
pulses at the association centers so as to meet any desired
criterion. (3) & (4) provide a source of additional "stimuli" which
can obscure the results of tests if observations are limited to
external data. Some apparent discrepancies can arise from ignorance
of the exact organization of the nervous system. To illustrate the
sort of errors that can appear when attempting analysis of higher
activity, one can consider the simple stretch reflex. If an
organism is stimulated by a force w.hich stretches a muscle tendon,
it responds by contracting the associated muscle, thus increasing
the force on the tendon. It appears from these facts alone that
the rule may be violated. The origin of the stretch reflex shows
that the rule is actually satisfied. The signal entering the nervous
system is generated by stretched muscle spindles, not by the stretched
tendon. Contraction of the muscle tends to remove the signals by
restoring the spindles to their original length. The contraction
does tend to generate new signals due to increased tension in the
tendon, but these signals (from the Golgi organs) have a high threshold.
If these actual tendon stretch signals become large, they cause the
muscle to relax. The combination of these effects yields the well-
known Jackknife reflex.

An apparent discrepancy can arise in this simple case
if it is falsely assumed that the cause of stretch reflex activity
is stretch of the tendon. In most cases of higher level activity,
the neural correlates of stimuli are unknown. Such misinterpreta-
tions would be most likely when one attempts to analyze higher
activity since one has little detailed knowlede of the neural
organization involved. The power rule seems fairly consistent
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with present detailed physiological knowledge. Further
investigation will be required to prove or disprove the idea.

A second chaxacteristic of the model is that: The
time history of events is the mediator of learning. We note
the following facts:

(1) A reflex can be conditioned by presenting a
stimulus and forcing a response shortly afterwards (classical
conditioning). There need be no reinforcement, i.e., "reward"
or "punish", in the usual sense (instrumental conditioning).17

(2) An acquired reflex is often reinforced through
disuse .18

(3) When the activity of a creature's sensors is
restricted during early development, the creature often fails
to develop behavior that might casually be considered instinctive.
19,20

These facts imply that (1) nervous connections are
guided by nervous activity, (2) that they do not "dissolve"
because of inactivity, and that (3) a certain amount of nervous
activity is necessary for the development of connections even

on rudimentary levels. Inspection of equation 11 (or 125 shows
that it is consistent with these facts.

Equation 11 (or 12) would be effective only at the
time during the creature's ontogeny at which detailed nervous
connections were being made. At that time, the axon would test
to find the neurons in its vicinity that it should influence.
Such a scheme is intuitively appealing, since such a system

would be able to correct for minor variations in anatomy. If
a lesion were introduced in the system, new growth could reestablish
connections by seeking signals with the most nearly correct charac-
teristics. Such an attribute would certainly be useful in machines.
And just such growth is seen in the histology of, for example,

regenerated frog optic nerve.

Equation 11 allows synapses to remain plastic indefinitely.
Once connections have been established, equation 12 causes the
excitatory connections to tend to remain the way they are.
Sgn [(Ro) - ct(Ri)] is usually zero, and plasticity is reduced, when
this point is reached during simulation. Sperry's work shows that
an adult is apparently non-plastic in areas where the infant displays

some plasticity.7,8 Additional studies now being made by the writer

imply that certain observed sorts of biological non-plasticity can
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be duplicated by use of equation 12, together with consideration
of (a) Dale's principle and (b) the various possible organizations
of the spinal nervous system.21 This work will be reported later.

It was postulated that: Oscillatory behavior of a
neuron results when there is activity in its vicinity and it is
not receiving clearcut (synaptic) directions.

We consider the following facts:

(1) Becker has shown that peripheral nerves carry d.c.
current in addition to pulse activity, and that the currents vary
with nervous activity.22

(2) Currents in the cortex are associated with visual
stimuli and show a "high-pass" characteristic.23

(3) 1yelinated axons are most numerous in the plastic
portions of the nervous system. The autonomic system contains
mostly unmyelinated fibers. The myelin sheath is an insulator.24

(4) A d.c. current will excite a neuron to fire
repetitively. 11

(5) Glial cells charge and discharge as a result of
nearby activity.23

(6) Blocking oscillator behavior of neurons is observed,
and has been simulated at least once.25

These facts imply that axon bundles can carry two kinds
of information - detailed pulse information, and d.c. activity
level information. Such d.c. currents could be altered by the
glial cell characteristics to display the "high-pass" character
of the S(x) function which was postulated. A large collection of
neurons incorporating an average activity level mechanism could
display a rhythmical pattern of travelling discharge. This
travelling wave phenomenon would result if the afferent activity
did not contain specific instructions. The alpha rhythm of
electroencephalography may be the result of the generation of 6's
like those required in the model. A scanning role has been
postulated repeatedly for these rhythms.27

Although it has been assumed for ease of manipulation
that each neuron adjusts weights independently of all other neurons,
a practical consideration would cause desirable interaction within
a nucleus of neurons. Increase of the effect of sane particular
synapse would correspond physically to either (a) attracting an
endbulb from a distance to closer proximity or (b) causing the
endbulb to alter the quality, quantity or effect of its emitted
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transmitter agent. The model implies that endbulbs invading
a ganglion would be attracted this way and that way by the
separate neurons. Once a sufficient number of endbulbs from a
particular axon synapse on a particular neuron, the computation
of equation 11 (or 12) tends to reduce the *attractiveness" of
that particular neuron. That this is so can be easily seen by
considering these facts. (a) If the synapses are inhibitory,
a large number of them present at a particular neuron will tend
to prevent R from occuring. Thus Ro is usually zero, and
therefore 8(?) is usually zero. Sg[:S(RoB was defined to be
zero forSRo) = o. Thus *i = 0 in either equation 11 or 12.

(b) If the synapses are excitatory, a large number of them will
cause Ro to tend to follow Ri . S(Ro) =S(Ri). Thus wi is
negative (equation 11), or zero (equation 12). Under either of
these conditions remaining endbulbs would synapse on other neurons
which accomplished the same or similar tasks. The interactions
would thus cause the endbulbs to distribute themselves among many
of the neurons which affected the afferent activity.

The evidence above is all more or less indirect in its
support of the model. In view of the difficulty or isolating
one neuron and testing its input/output characteristic over a
protracted period, a lack of direct evidence is not too surprising.
The indirect nature of the data prevents, however, the drawing of
any firm conclusions as to whether nervous system plasticity is
really similar to the model.

SfULATICU

To test the model, a small net of neurons has been
simulated. The net approximated some of the characteristics
of two opposing muscles operating a limb (spring plus damper).
Muscle tension was assumed to I- directly proportional to neuron
pulse rate. The multi-loop nature of real muscle action was
ignored. The plastic neuron model "innervated" the fictitious
muscle directly. Additional neurons were simulated in some of
the various tests to approximate the roles of internuncials,
commands from higher centers, and a tension sensor in the tendons.

Provision was made in the simulation for any synaptic
weight to go positive or negative. The system was "trained"
initially for most tests by simply applying a force to move the
limb back and forth. (The signal came from a square- or
triangular-wave generator).
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The neural net did not initially oppose this action,
because synaptic weights were initially zero. Motion was
continued until synaptic weights neared their limit values.
During the tests, the model displayed (a) the stretch reflex
(with contralateral inhibition), the jackknife reflex, a nd the
ability to synapse properly with an afferent from a fictitious
higher center.

Figure 5 shows the basic network that was simulated.
The nonplastic part of the neuron models used was derived from
Harmon's Oneuromime", and is shown on figure 6.28 The magnitudes
of input pulses to the neuromimes were determined by the
instantaneous values of the respective synaptic weights, and
ranged between -20 and +20 volts. In addition to pulse inputs,
d.c. inputs were provided to the separate summing junctions
(marked "A" on figure 6) to control the thresholds of the
neuramimes.

Blocking oscillator behavior was obtained by adding
the circuit shown on figure 7 to each of the two plastic
neurons in the simulation.

The diagram instrument3 approximately the equation

AT - 1 |1. A - $(Ro) - 2: Rinh + Ro]

where Ais the change in threshold, A is the "average activity"
level, and wiRinh is the weighted sum of the input rates that
are inhibitory. Average input activity reduces the threshold.
Output activity increases it. Addition of the S(Ro) term serves
to lengthen the period of the blocking oscillation. The
inhibiting rates (EwiRinh) were added to the threshold computation
to assist the action of inhibiting pulses, whose effect at the
summing junction in the neuromime was sometimes not quite strong
enough.

Sensor output rates were roughly proportional to "limb"
position. One sensor sensed displacement in one direction; one
sensed displacement in the other direction. In some tests a
tendon tension sensor was simulated. A voltage was obtained by
smoothing R + Rb (from figure 5) through an 0.1 second time
constant . he voltage was applied to an auxiliary Harmon
neuramime adjusted to have a high threshold. The output pulses
from this neuron excited the auxiliary synaptic input lead of
figure 5. A "higher center" signal was simulated by comparing
limb position against a "desired* limb position. This d.c.
signal was converted to a pulse rate by a Harmon neuromime and
applied to the auxiliary input to the plastic neurons.
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The complete simulation used about 65 operational
amplifiers. (The numbem varied among different simulations.)

The model displayed no instabilities. The synaptic
weight computation yielded predicted polarities for the weights
in all cases tested, except when gains were reduced so much that
integrator drift andmultiplier zero-offset became significant.
Figures 8 through 12 show some preliminary results.

Figure 8 - the upper trace presents the external force
applied to the limb. The limb position would tend to follow
the force with a 1 second lag if the action of the neural net
did not interfere. As can be seen from the figure, the limb
position initially started to follow the force, but limb deflect-
ions became quickly smaller as the net acquired a "stretch
reflex".

Figure 9 - Upper and lower traces are the same as figure
8, but with increased sensor sensitivity. Weight computation was
faster, and final deflections were smaller, as would, of course,
be expected from the model.

Figure 10 - An additional neuron was inserted in this
test which sensed tendon tension. The figure shows the action
of the net after training. A "Jackknife reflex" is observed for
large signal inputs. It is absent for small inputs.

Figure 11, Figure 12 - The upper trace represents a
position camnand from a higher center. The lower trace is again
limb position. All synaptic weights were initially zero. It is
interesting to note that the synaptic weights that produce
contralateral inhibition became negative under this "internal"
stimulus, so that the model displayed a weak stretch reflex
(bilaterally) without that reflex having been trained by externally
induced movenent. The afterdischarges or "twitches* seen in the
latter part of figure 11 did not always appear, as is shown in
figure 12. In figure 11, the limb time constant was 0.2 seconds;
in figure 12 it was 1.1 seconds.

The differences between response of the network in the
two directions are attributable to differences in the neuromimes,
since reversal of the neuromimes reversed the network behavior.

Two characteristics of figures 8-12 are worthy of note.
As a particular response develops, one notes that (1) its latency,
i.e.,the time delay before it appears#decreases, and (2) the
length of time increases during which the response is supported
without the appearance of "testing" or blocking oscillation.
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CONCLUSIONS

A model of the neuron has been presented which
exhibits plasticity. Physiological data supports the contention
that plasticity of the nervous system results - at least in part -
from mechanisms similar to those incorporated in the model.
Results of limited computer simulations imply that larger networks
of plastic elements would display non-trivial properties. Machines
based on the concepts presented here do not use the "reward-punish"
circuitry required by other engineering models. It is possible
that such machines would, as a consequence, exhibit adaptive behavior
of a new and useful sort. The model may also aid understanding of
the nervous system.
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INTRODUCTION

Over the last few decades science and technology have been expanding
with increasing speed into new areas, such as aeronautics and astronautics,
and requirements for information processing and control in these areas
have become exceedingly demanding. Conventional approaches to problems of
information handling and computing seem to be inadequate. These in-
adequacies have led many investigators to examine data handling within
living systems in an effort to find more powerful and general approaches
to the processing of data.

Examination of neurological systems reveals an extensive array of data
handling capabilities. A partial list of neurological system information
and control functions includes pattern recognition, learning, making and
testing hypotheses, decision making, classifying, generalizing, abstracting,
symbol manipulating and ability to use a language, as well as general cap-
abilities for being programmed by or adapting to environmental changes, for
initiating information or control operations, and for goal directed activity.

Since most of these complex biological functions are the results of
assemblies of nerve cells, many investigators have constructed either
electronic or mathematical models of nerve cells and have either systemat-
ically or randomly interconnected these model nerve cells into networks in
order to experiment with and gain a deeper understanding of nerve networks
and their attendant capabilities. Melpar's LANNET developed for Electronic
Technology Laboratory of the Aeronautical System Division, Wright-Patterson
Air Force Base, Ohio, under Air Force Contract AF33(616)-7834 is a Self-
Organizing Binary Logical Net based on a learning system which uses the
reinforcement principle.

SELF-ORGANIZING SYSTEMS

For the purpose of this paper, a Self-Organizing System is a learning
system which, through the adjustment of its response on the basis of trial
and error information, attempts to fulfill a specific objective even in a
changing environment. In general, it comprises four subsystems as shown in
Figure 1: sensors, learning network, goal circuit, and effectors. The
sensors observe the local environment and provide descriptive data to the
learning network and the goal circuit. In general, the basic sensor is an
analog device. Since the systems described in this paper are digital, some
manner of effecting conversion must be provided before the descriptive data
can be utilized in the system. Typical sensors may measure light intensity,
temperature, position number in a sequence, etc. The learning network
comprises decision elements which are trained to operate on input data
(from the sensors) so as to provide a desirable ouput response, A desir-
able output response is defined as an output whicH will move the overall
system towards a specified goal. The output data is supplied to effectors
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which cause certain actions to occur, or adjustments to be made in the
local environment, so as to reinforce the desired objective. The ZoL
circuit directs the system organization toward a specific objective, and
provides information as to the degree of success attained by each trial
in terms of the specific objective. If, for a given input, a desirable
output results, the goal circuit generates a reward signal which is
applied to the learning network. On the other hand, if the output is not
a desirable one, then a punishment signal is generated. The reward signal,
in effect, reinforces the states of the network which move the overall
system towards a desirable goal while the punishment signal tends to reverse
the states of the elements which produced undesirable outputs.

The degree of organization of the learning network at any particular
instant is directly proportional to the amount of information that has been
provided by the goal circuit in the guise of reward or punishment signals.
That is, learning is proportional to the number of valid comparisons be-
tween actual and desired performance. In general, the goal circuit should
provide a maximum amount of information to the learning network concerning
the correctness or incorrectness of each specific action. It follows that
the design of the learning network should be such that a minimum amount of
information is necessary to organize it to any particular state.

Melpar's Advanced Computer Laboratory has developed basic digital
circuitry for the implementation of the learning network and goal circuit.
These networks utilize statistical switches. The term statistical switch
has been applied to a device that is, in essence, a binary random function
generator. The use of the term "switch" stems from its functional corres-
pondence to the "on-off" property of the binary logic Fqte. The proba-
bility state of the switch is governed by a memory (counter) device. A
given probability of finding the switch closed is associated with each
counter state. Thus, control of the statistical function is achieved by
setting the counter. A block diagram of one method of implementing the
statistical switch is given in Figure 2. The "and" gate provides the
controlled transfer of the logical input signal to the output.

The figure indicates that the statistical switch provides two memory
functions. First, it maintains a given open-close decision (state of the
flip flop) until it is given a command to make a new decision. This
feature provides a switch state memory which, while primarily of interest
to the logic designer in the simplification of circuit timing problems,
is often useful in certain other applications as well. The other memory
function is the counter-controlled statistical decision function. Clearly,
if the counter state remains unchanged the switch will continue to provide
decisions with a constant probability of closure. The application of
"reward" and "punish" signals directs the modification of the counter.

Figure 2 also shows the count-up/count-down logic required to direct
the change in counter state. The terminology "reward-punish" follows from
the use of the statistical switch in self-organizing systems.
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The relationship between the counter state and the statistical

properties of the binary decision can be established to provide a

variety of statistical functions. Figure 3 shows one which has been
found to be of general usefulness in self-organizing systems. Other

functions (such as linear, square law etc.) can be provided readily.

LANNET has a variable range of counter states and a maximum probabil-

ity of switcn closing (or opening) of 0.99.

A specific example of a learning network is shown in Figure 4.
It can be taught to perform any of the possible digital connectives

which can exist between three digital inputs and three digital outputs.

The network comprises AND gates which respond to the various possible

minterm inputs, statistical switches, and OR gates which connect groups

of eight statistical switches together to provide the three independent

outputs. In the untrained state, the statistical switches change state

in a random fashion so that there is an equal probability of finding

them open or closed at any trial. Training changes the statistics of

each switch until it is always open or closed, thereby forming fixed

logical connections. The statistics are changed by the reward or punish-

ment signals developed by the goal circuit.

IMPLEMENTATION OF LANNET

LANNET is the newest and larpest self-organizing system of the type

shown in Figure 4. In the design of LANNET an effort was made to produce
a network which would exhibit a maximum amount of flexibility and speed

of operation in the simulation of biological systems and study of machine
learning.

The scheme shown in Figure h was expanded to 102h decision elements
by using each input minterm as the address of a storage location in a

102h by 8 bit random access memory unit. Each cell of memory contains
the current probability state of the itch and whether it was in the

open or closed state after the last decision. During the operation of

the net, the appropriate switch is called up from storage and the prob-

ability state information is forced into the counter of a master decision

element. After a new decision is made, the bit showing the state of
the switch and the count information is returned to memory to await
evaluation of the decision by the goal circuit.

The block diagram of LANNET, Figure 5, shows the major logic allot-
ments with possible data and control paths. The data and control lines
are determined by the plugboard arrangements and control panel switching.
The possible inputs and outputs for each of the blocks are discussed
below on the individual block basis.

The primary function of the primary and auxiliary input logic is
to accept and store input data (from sensors) to the learning networks.
The input logic blocks consist of 18 AC flip-flops, 24 3-input NAND
gates, 18 2-input NAND gates, 12 expandable parallel NAND gates and
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12 3-input diode gates. All logic elements in this group have their
inputs and outputs available at the top one-half of the plugboard
(Figure 8). The input logic can be used as a flip-flop storage,
may be arranged to form a shift register of any length to a max-
imum of 18 bits, or an up-down counter of maximum length of 18 bits.
The primary and auxiliary inputs can be received from an external
source, manual push buttons on the console, or generated internally
with the uses of the available logic elements and the diode matrix.
The latter arrangement enables LANNET to modify or generate inputs
based on the outputs from the primary learning net. Outputs from
the primary input flip-flops are tied through the gating logic to
memory. The outputs of both primary and auxiliary inputs are avail-
able at the plugboard for use as needed as inputs to the diode
matrix, fixed goal logic and/or secondary learning nets. The inputs
are indicated on the control panel by 18 lamps.

The gating logic to the memory is used to generate the proper
memory address upon command from the timing and control block. The
gating logic to the memory is a matrix consisting of a combination of
2 input NAND gates and 2 input parallel NAND gates. The NAND gate
has a load circuit whereas the parallel NAND does not, which enables
the outputs of the two gates to be tied in parallel to form an "OR"
gate for each of the outputs to the memory, as shown in Figure 6.
Note that the Primary Learning Net (PLN) inputs are fixed-wired into
the first set of gates and that the other gates for the Subsidiary
Learning Nets (SLN), orginate in the plugboard. The control lines
enable one set of gates at a time to supply the proper address to
memory. These control lines are generated in the timing and control
block. The length of the address is dictated to the gating logic
by the control panel primary and subsidiary nets configuration switches.
These switches determine what portions of the 10-bit address word
comes from the gating logic and what portion is generated by the
memory counters. Table 1 is a list of the valid switch configura-
tions. For each of the memory allotments a number of different
input-output combinations are allowed. Memory address bits marked
by X are reserved for use by the memory internal counter to keep
track of output memory allotments and the remaining unmarked bits
are available for random input data. For example, in switch com-
bination 3, 512 of the 1024 memory locations are assigned to the
primary learning net and 512 to the subsidiary learning nets. Of
the PLN 512 locations, if four outputs are desired from the primary
net, each output is assigned 27 locations (128) where 7 is the
maximum number of inputs allowed.

The memory storage is an 8 by 1024 RBA general purpose random
access memory unit. It is used to store decisions made on the last
trial and the counts used in the Decision Circuit to establish the
bias for the statistical decision. The 6 bits of count information
is supplied to the counter in the decision logic block and restored
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in memory on command from the timing and control block.

The purpose for the decision logic block is to implement the bias-
able binary random function generator (or statistical switch). The
basic operation of the decision logic is the same as that given in Figure
2. However, the method of implementation is different. Each trial
sequence is divided into three parts. In part 1 the count information
is interrogated for each of the PLN output assignments and a decision is
made based on these counts, one decision per output. The resulting de-
cision is stored in memory with the count. The second part of the trial
sequence is the time alloted for the subsidiary nets to be processed.
The count information is gated in for each output, a decision is made and
the count is modified depending on the decision and the reward/punish
signal. The resulting counts are recycled to storage. The third and
final part of the sequence consists of rewarding or punishing the PLN
counts which determined the output decision. Each count is retrieved
from storage by the gating logic and the memory internal counter and modi-
fied according to its decision and the output of the goal logic. The up-
dated count is returned to storage for later use in other trial sequences.

Figure 7 is a diagram of the decision logic. A 6-bit up-down binary
counter plus a flip-flop is used to receive the data from memory. Upon
receiving a count, the digital-to-analog converter produces a voltage
level proportional to the count in the range of +2.4 volts for a count of
63, 0 volts for 32, or -2.4 volts for a count of 0. This voltage is
placed on one of the two signal inputs to the crossover detector. The
other input is random noise with maximum peak amplitudes in excess of
!2.4 volts. At any incidence of time the sum of the two input signals
determines the output of the crossover detector. If the sum of the two
input voltages is positive at the time the sample pulse occurs, the out-
put or decision will be zero and, if the sum is negative, the decision will
be one. I

The number of counts for reward or punish reinforcements is selected
at the control panel by the Reward and Punish Value switches. These
switches select the appropriate tap on the 5-bit binary counter to stop
the count input at 1, 2, 4, 8, 16, 32 or if none is selected the 6-bit
up/down counter will stop and hold at the 0 or 63rd count.

The goal logic directs the learning nets toward a specific objective
by generating reinforcement signals to the decision block. The reward
signal reinforces the state of the nets which contributes to an improve-
ment, while the punishment signal tends to reverse the state of the ele-
ments which produces an undesirable behavior.

The goal logic includes 8 subsidiary nets and the fixed goal logic.
The simplest way to generate a reward-punish Signal in the Goal Logic is
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by the use of the fixed goal arrangements. Of the three fixed goal arrange-

ments--external, manual, and internal--the manual is the easiest to set up.

To enable the manual reward and punish push buttons, the fixed goal configur-

ation switch is set to "Manual" position. To connect the fixed goal directly

to the decision block, the Goals configuration switch is set to "Fixed."

In this arrangement, the machine will make the Primary Learning Net deci-

sions (part 1 of the trial sequence) and stop. The operator may observe

the PLN outputs and determine what reinforcement signal to supply to the

decision logic. Once a valid reward or punish is supplied, the machine will

complete the trial sequence. By changing the Fixed Goal Configuration
switch to the "External" position, the Reward-Punish push buttons are dis-

abled, and the reinforcement signals must be supplied from an external

source. The operator may choose to generate the Fixed Goal reward-punish

signals internally. This may be accomplished by switching the Fixed Goal

Configuration switch to "Internal" and arranging the plugboard logic to

provide the reward-punish signals. In both "External" and "Internal" con-

figurations the machine operates as described under the "Manual" configur-
ation.

The fixed goal logic available at the plugboard consists of eight

"exclusive OR" logic elements plus NAND gates sufficient to enable the com-

parison of two 8 bit words. This comparison can be made on the word or

bit bases. If the comparison is on the word basis, the complete PLN out-

put is compared with the correct answer in order to generate a reward or
punish signal for the PLN outputs; whereas, on the bit basis the comparison

of the individual PLN outputs with the corresponding answer bits may be

arranged to generate a reward-punish for each PLN decision. The answer

used in both the comparisons may be stored in the input storage (auxiliary)

and generated externally, internally or manually.

The eight subsidiary nets may be arranged in a number of ways to gen-

erate the reinforcement signals to the decision logic. The inputs to these

nets originate in the plugboard. By the use of the gating logic and the

assigned memory storage, statistical decisions are made by the decision

logic and stored in the output storage by the output gating. The outputs

of these storage elements are available to the goal logic. The reinforce-

ment signals for the subsidiary learning net output decisions are generated

by the fixed goal arrangement. The configurations of the subsidiary learn-

ing nets (SLN) are determined by the Goals Configuration switch on the con-

trol panel. The switch positions "SLN 1" through "SIN 8" allow any one of

the eight subsidiary nets to be selected to supply the reinforcement signals

to the decision logic for training the primary learning net. A "Random"

Goals Configuration of subsidiary nets is provided to allow the valid SLN

outputs to set the bias on a cross-over-detector in the same manner that

is used in the decision logic by the counts from the memory storage. The

bias is obtained by using a 4 bit up-down counter. (Count up for valid SLN

reward outputs and count down for valid punish outputs.) At the end of the
subsidiary net processing in the trial sequence, the cross-over detection is
sampled and the output reward for one, or punish for zero, is the reinforce-
ment from the goal logic. The "Majority" Goals Configuration operates very
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similarly to the "Random" except the resulting reward punish signal is
f enerated by using the cross-over-detector only when the voting circuit
4 bit up-down counter) is equal to eight (the mid-point or the condition
for an equal number of valid rewards and punish SLN outputs). When the
voting circuit indicates more rewards than punish outputs, from the SLN's
the resulting goal logic output is reward, and if the voting at the end
of the SLN processing is more punish than reward outputs the goal logic
output is punish.

The "Priority" Goals Configuration assigns a descending order of
priority to the subsidiary learning nets I through 8. As the subsidiary
nets I to 8 are processed during a trial sequence the resulting pairs of
outputs are checked for a valid code. The first net to generate a valid
output code is used as the reinforcement signal from the goal logic. If
there are no valid codes generated, then the goal logic will not be able
to supply a reinforcement signal to the decision circuit.

The only Goals Configuration available in which more than one rein-
forcement signal is produced during any one trial sequence while using
the subsidiary nets, is the "Partition" Goals. In this arrangement each
PLN output is rewarded and punished by a subsidiary net assigned to it.

In all of the Goals Configuration switch positions using subsidiary
nets the fixed goal output may be substituted for any one or all of the
subsidiary net outputs. A set of eight Subsidiary Net Training Config-
uration switches allows the operator to choose either "Serial" or "Par-
allel" training for each of the eight subsidiary learning nets. If a
switch is in the "Parallel" position it indicates that the fixed goal is
used not only to train that particular subsidiary net but is also used
as a subsitute for its output in the goal logic. In the "Serial" position
the fixed goal is used only to train the subsidiary net and the output of
this net is used to train the primary net (as dictated by the Goals Con-
figuration selection switch).

An 816 pin universal patchcord programming system is located on the
control panel. Its purpose is to allow the self-organizing network to be
rearranged quickly and to maintain maximum versatility. The individual
patchcords may be modified to change a particular biological function
simulation by simply adding, deleting or changing the patchcord connections.
Figure 8 is a drawing of the plugboard which shows the general location
of the logic elements assigned to a particular usage.

A diode matrix is available at the plugboard to be used in a variety
of ways, such as a means to generate answer inputs to the auxiliary inputs
based on the primary inputs. The 8 x 8 matrix has as its output logic
element the parallel NAND gate which provides the operator an easy means
of obtaining "OR" gate outputs. Any number of minterms may be "ORed"
together to give a "zero" output for a correct six binary digital input
to the matrix. Both the inputs and outputs are available in the plugboard.
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A light matrix is associated with the diode matrix. The purpose for the
64 light array located in desk top is to enable the operator to follow
the progress of the network in operation (*Slo Mode of operation).
The diode matrix is extremely useful and the number of different actions
possible is limited only by the operators ingenuity in the use of the
available logic elements.

Outputs in the form of indicator lamps include the 8 primary net
outputs, the "Fixed" and "Comp." (Compiled reinforcement signal from goal
logic) Goal outputs, and the 16 indicators for the 8 subsidiary nets.

DEMONSTRATION OF OPERATION

A number of different complex biological functions are being studied
for the purpose of demonstrating and testing the capabilities of LANNET.
Among these are the maze problems, classical (Pavlovian) conditioning,
instrumental conditioning, and depth perception. The application of
LANNET to the solution of maze problems is discussed below.

The maze is represented by an 8 x 8 matrix of indicator lamps set
into the table top (Figure 9). The X and Y coordinates are coded into
three bit binary words. These are used as inputs to the net and serve
to keep the net informed of its location in the maze. On each trial
the net is required to make a decision to move north, south, east, or

west and the location of the net in the maze is altered accordingly.
If the decision of the net keeps it on one of the specified paths to

the goal, the decision is rewarded; otherwise it is punished. Reward-
punish decisions are made by the fixed goal circuit or subsidiary
learning nets. The fixed goal receives its information from a diode
matrix capable of specifying which of the four (or more) possible re-
sponses is correct for each of the 64 locations in the maze. In prac-

tice these functions are implemented as described in detail below.

The block diagram, Figure 10 is the ihterconnection of the logic

elements which enables LA.N1ET to solve maze problems. The primary input

logic consists of two up-down counters, one for the X coordinate and the
other for the Y coordinate corresponding to Figure 8. Figure Ui is a

schematic logic diagram of the X counter; a similar circuit is arranged
for the Y counter. The counters are programmed at the plugboard by using
AC FLIP-FLOP and NAND gates from the input storage logic. This combina-
tion of logic elements serves to keep track of the location of the run-

ner in the maze. Location information is presented to the learning net-
works and the primary learning net generates an output decision. At the

end of the trial sequence the location information is modified in response

to the action taken by the Primary Learning Net. The response for each
of the PLN outputs is listed below in Table 2.
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TABLE 2 PRIMARY INPUT LOGIC RESPONSE

PLK X Y MAZE
OUTPUTS COUNTER COUNTER DIRECTION

11 No Change Up One North
01 No Change Down One South
10 Up One No Change East
00 Down One No Change West

At the beginning of the next trial sequence the updated maze location is
available for the learning nets.

The diode matrix is used in this problem to generate the desired
response which is stored in the auxiliary input storage unit for use in
the goal logic. The inputs to the matrix originate at the output of theprimary input logic while the outputs of the matrix serve to control the
light matrix and the auxiliary input logic. The light matrix located
in the desk top is used to follow the progress of the maze run. The
diode matrix serves to indicate to the auxiliary input logic what thecorrect action is at each of the 6 4 decision points, if any, or the
action for any group of points tied together in parallel. (Note that theavailable outputs from the diode matrix at the plugboard are the parrallel
NAND gate type.) For the maze problem one simple way to arrange the diode
matrix is to tie all decision points together for which an eastern move-ment is correct, all western points together; likewise for south and north
decision points. The outputs from each of these groups of decision pointsare passed on to the auxiliary input logic. The auxiliary input logic
decodes the information from the matrix and supplies to the fixed goalcircuit a base for comparison with the PLN outputs to generate a fixed
goal reward or punish signals. The fixed goal logic may be arranged at theplugboard to make a bit for bit comparison or a word comparison between
the PLN outputs and the auxiliary storage outputs. Figure 12 illustrates
both arrangements. In a similar manner additional auxiliary logic ele-
ments may be used to generate inputs to the Secondary Learning Nets such
as a code that would indicate a color, temperature, smell and/or audio
stimuli. The dotted lines leading into the SLN block indicate the
choice of inputs to the Secondary Learning Nets.
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SENSING PARTIAL FAILURES - A STEP TOWARD SELF-HEALING

William F. Hall

Engineer, Systems Engineering
Electronic Systems and Equipment Department

Nortronics, A Division of Northrop Corporation
Palos Verdes Estates, California

ABSTRACT

The most difficult step in the establishment of a self-healing analog

is the ability to sense partial failures. In a complex electronic or

electromechanical system, many failures can occur which do not cause

the system to cease functioning but which do cause the functions of the

system to be carried out improperly. This improper functioning can be

detected by comparing system outputs to a standard established either

by observing the outputs under nominal conditions or by utilizing the

outputs of an auxiliary system. Identification of failing components

can be accomplished by a decision filter on the basis of such a com-

parison, and self-repair operations may then be initiated by the output
of the decision filter.

This paper establishes the criteria which such failure-sensing systems

must meet in general and illustrates their application in a few special

cases. Estimating the proper system outputs, which is an important

requirement in guidance and control, is discussed within the framework
of the examples. The analogy to the pain-sensing and self-healing
processes encountered in living organisms is pointed out.
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1. INTRODUCTION

In designing systems which can operate successfully without human moni-
toring and maintenance, engineers in the past have concentrated their
efforts on obtaining component parts of such reliability that the whole
system can be trusted not to fail during the time it must operate unat-
tended. The fruitfulness of this approach is well borne out in current
missile systems, in the transatlantic cable, and in a host of servo-
mechanisms connected with industrial automation. But as the time of
independent operation is stretched beyond all previous bounds, in un-
manned deep space probes, for example, or as the functions to be per-
formed independently grow more detailed and more complex, the task of
building sufficiently reliable components becomes so difficult and
expensive that alternative design philosophies must be sought.

One alternative approach to designing systems to operate independently
is to provide such systems with the capacity for self-healing or self-
repair. That is, when a part of a self-healing system fails, the
effect of the failure is automatically compensated for, either by
replacing the defective part or by making some more subtle adjustment.
In any case, implied in this activity are several distinct steps which
must be mechanized: the existence of a failure must be detected; its
nature must be determined; and, finally, healing or repair activity
must be initiated. While in a specific design these three steps may be
inextricably bound together, it is the primary purpose of this paper
to isolate the first two and examine them in detail.

2. CLASSIFICATION OF FAILURE DETECTION SCHEMES

There exist today three basically different techniques for sensing the
existence of a failure and determining its nature. The most commonly
employed scheme relies upon a fail-safing circuit built around each
component to be monitored; this circuit receives an unmistakable signal
when such a unit fails, and can process this signal according to any
preprogrammed logic. The utility of this method is decreased by the
need for extensive circuitry not involved in the normal operation of
the system and by the requirement that each failure have some clear
effect which can be used to produce the failure signal. At the other
extreme, failures may be detected by sensing abnormal behavior of the
system during operation. The abnormality may be self-evident, as in
the case of a missile guidance system which estimates its position to
be 3 miles underground; or it may appear only upon comparison with the
outputs of other systems, as in the case of majority logic systems,
where the minority may be judged failures. A central problem for this
type of failure detection is diagnosis -- that is, determination of
the identity of the component which has failed. Generally, repair
must be made on a trial-and-error basis, with removal of suspected
parts continuing until the output returns to normal.

-2-



A third approach to failure detection, applicable to systems whose out-

puts are obtained by operations on inputs measurable by the failure

sensor, is that of parameter estimation. In this method, both inputs

and outputs are examined and compared in order to obtain an estimate

of the operations being performed by the system at each instant; a

particular failure will appear as a noticeable change in one or more

of the parameters defining system operation, and hence can be detected

in the estimation process. Identification of the failing part may be

accomplished only on a probabilistic basis, since the parameter esti-

mates are not exact; nor may each failure be unique in its effects on

system operation. Usually, some cost may be assigned to the misiden-

tification of each failure, and decisions can be made in such a way

as to minimize the expected cost. This amounts to constructing a

decision filter and attaching it to the parameter estimator; the

estimate of system parameters is fed into the decision filter, and

its output is an identification of a failing component.

The description of the third approach to failure detection given above

can be used as the framework for a model which will include all three

approaches. In each case the system proper may be said to provide

inputs to a parameter-estimator/decision-filter combination. For the

first-mentioned approach, the parameter being estimated is a single

binary number in which each correctly operating component is represented

by a zero, and each failure by a one; the decision filter simply maps

the binary number onto a parts list elsewhere in the system. The

parameters being estimated in the second method of failure detection

will vary, depending upon the type of system output: for a many-element

system employing a voting or poll-taking scheme, the output of each

element is compared against the majority output, and this many-component

"vector" is the input to a decision filter; for other systems, the out-

put itself may be compared against the average or expected output to

provide a single number measuring the likelihood that a failure has

occurred.

3. A FORMULATION OF THE FAILURE IDENTIFICATION PROBLEM

Once our horizons have been widened to include approaches to failure

detection other than the yes-or-no fail-safing circuit design, the pos-

sibility for misidentification of a failing element arises, and with it

the problem of determining what really is required in the way of inputs

to the decision filter, if a given set of failures is to be identi-

fiable. The purpose of this section is to present a formulation of the

problem and explore some approaches to solving it.

Introducing a parameter estimator between the system proper and the

decision filter makes it possible to take the information about system

performance in whatever form it comes -- mechanical motion, light

intensity, time-varying electrical signals -- and map it onto a set

of numbers ZI, Z2, Z3
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representing the estimated "state" of the system. In normal operation

the system will have a known probability distribution over its possible

states, P (Z) (here Z stands for the set ZI, Z2  Z3 ... ), while in a

given failure mode, f,, the system will have a different distribution,

P(Zlfi). If the Zi are continuous variables, these probability distri-

butions will be regarded as density functions, with the probability of

the system being found in a state inside the set A being given by:

P(Z6A) = P(Z) dz

ZEA

From a well-known property of conditional probabilities:

N

P(.Z) = P(Zlfi) P(fi),
i=o

where P(f.i) is the a priori probability of the failure fi, P(Z fI0 is

identical with P (Z), and N is the total number of failure states of

the system.

The question to be answered now is: What characteristics of the distri-

butions P(zIfi) determine whether the failures fi are identifiable?

Even without taking a hard look at what is meant precisely by "iden-

tifiable," a few special cases can be discussed. Clearly, when the

existence of a failure does not change the probability distribution

over states, no useful information is provided by the vector

Z, and the failure cannot be identified. This situation corresponds

to the mathematical statement:

p( If,) = P(ZIfo), all Z.

Likewise, there will be no way of separating one failure from another

which gives rise to the same probability distribution:

P(l i, -- all Z.
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At the other extreme, if each failure gives rise to a possible set of

outputs disjoint from every other set, identification becomes infallible;

here the mathematical statement is

P(Z f) = 0, Z S.

and S. nS. = , i#j

(0is the symbol for set intersection and is the null set.)

When the various probability distributions do not fall at either of the

extremes considered, one must search for some criterion which, when sat-

isfied, will allow labling of a failure as "identifiable." One possible

criterion is to require each failure to have some range of Z for which it

is the most likely cause; in terms of our notation this requirement

becomes:

there exists for each i a set A. such that1

P(ZIfi) P(fi ) > P(Z f ) P(fJ), all Ie Ai
all j # i

However, such a criterion implies that the most probable cause be

identified as the failing component, regardless of the cost incurred
by making a wrong decision.

If the cost of each possible wrong decision can be assigned, one may
take as the criterion that each failure f. be the choice which minimizes

1

total expected cost for some set of Z having non-zero probability. If

the cost of deciding on f. when f' has occurred is denoted ci(J), the

expected cost of deciding on f. at the point I is:

C(Z) = P(Zlfi)P(fi) ci(J)
i=o

The requirement that there exist for each j a set Mi. where C(Z) < Ck(Z),

for all k # J, is then a mathematical restatement of the cost

criterion. In this form, however, the criterion is cumbersome to apply,

requiring that C.(Z) be computed for each j and a large enough set of Z

to verify the existence of the sets M.. Currently, effort is being

directed toward finding a set of conditions on the P(ZIfi) sufficient

to guarantee satisfaction of the criterion.
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Once a usable criterion has been found, it will become possible to
examine the various clues provided by the system to determine if they
are sufficient to identify the causes of failure; and when they are not,
the criterion will be valuable as a tool in designing additional
circuitry to provide the necessary information.

The extent of possible applications of failure detection systems is
suggested by a comparison with living systems, which sense -.amage and
initiate self-healing activity in a manner closely paralleling that
discussed in this paper. Throughout the whole lifespan of an organism,
which can encompass centuries, the self-healing process provides the
basic means for survival. In a similar fashion, automatic orbital
observatories, automated factories, telephone switchboard computers,
may operate unattended for decades without interruption of service
once they have been provided with the capability for self-repair.
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INTRODUCTION

A rather extensive theory has been previously devel Md for
correcting for random and burst type transmission errors . This
paper shows how the theory of group codes can be used to derive
correcting schemes for actual system failures such as in circuits,
switches etc. for: I. Organizable Logical Networks and II. Reor-
ganizable Computers.

In general, group codes for error correcting require some spe-
cial structure (except for the simplest cases) in order to make the
decoding equipment simple; however, this is not the case for failure
correcting codes. There is also a difference between the "distance"
that must be maintained for failure correcting codes and error cor-
recting codes.

The saving in the required "distance" is obtained essentially
by virtue of the experimental means -of failure detection for failure
correcting schemes.

31 Most of the results needed, including even the basic abstract
algebra.are developed in the book of W. W. Peterson, Error Correcting
Codes, M.I.T. press and John Wiley & Sons, Copyright 196i All
rs?e-nces will be made to the pages of this book instead of the
original papers which are scattered throughout the literature.
Other references are listed there.



1. Failure Correcting Codes for Trainable Logical Networks

Consider a network which takes on states determined by a set of
switches which are two-valued (one or zero). Assume that the total
number of distinct states (or connectives) the network can take on
is a power of two, 2n . This is surely the case for general trainable
logical networks. Then the total number of switches, m, must be
greater than or equal to log2 (the total number of distinct states),
m> n.

Suppose further that it is desired to be able to achieve any of
the distinct states in spite of any k or less switch failures where
the switches can fail in either position. Although stated in terms
of switch failures, this can correspond to circuit element failures
as is shown below. It is clear that redundant switches must be pro-
vided.

One solution to this problem can be obtained in the following
way:

Let all the switch positions which correspond to some "zero"
state be a group code, a group under * sum. (See ref. 1, pp 30-37,
Chapter 3). Let all other distinct states of the system correspond
to different cosets of the group. It is known that all the cosets
of a group are non-overlapping and completely exhaust the entire
space, of switch combinations in this case. (See ref. 1, pp 17).

To specify the code we need only write the generator matrix, the

rows of which span the group code (scalars are 0 & I).

We wish now to indicate the truth of the following statement:

Theorem 1

The necessary and sufficient conditions for the group code to
allow any k switches to fail and still be able to form arZ state is
that any k or fewer columns in the generator matrix shall be linearl
independent.

To see this, note first that if any k switches are allowed to
fail, it is necessary and sufficient to be able to preassign to any
k positions any binary combination corresponding to how the switches
actually have failed and still be able to find a code which contains
that binaiFcombination. This will be true in the group if and only
if all binary combinations occur in the rows of any k columns, which
will be true if and only if the k columns of the generator matrix are
linearly independent. Finally, all binary combinations will occur in
any k columns of all cosets if and only if they occur in the group.
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An example is in order. Consider the following generator matrix:

(1) 1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

- (H)
0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

No three or fewer columns add up to zero. Hence the group contains
all binary combinations in the rows of any three columns, and therefore
every coset contains all binary combinations in the rows of any three
columns. The group G is:

0 0 00 0 0 00
(2) G

1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

1 1 0 0 0 0 1 1

0 0 1 0 1 0 1 1

1 0 1 0 0 1 0 1

0 1 1 0 0 1 1 0

1 1 1 0 1 0 0 0

0 0 0 1 0 1 1 1

1 0 0 1 1 0 0 1

0 1 0 1 1 0 1 0

1 1 0 1 0 1 0 0

0 0 1 1 1 1 0 0

1 0 1 1 0 0 1 0

0 1 1 1 0 0 0 1

1 1 1 1 1 1 1 1

It contains 16 elements. There are also 16 cosets, the leaders being binary
numbers 0 through 15, e.g. 0 0 0 0 0 1 0 1 is a coset leader. The reader
who is familiar with coding theory will recall that the null space of a
group which maintains Hamming distance k + I is the row space of a matrix
which satisfies theorem 1. See ref. 1, pp 32-33.
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This is called the parity check matrix in codi.nq theory.
However, it is the code space for our failure correcting scheme.

'From the above remarks one can state the problem of finding the

fewest number of switches recuired to realize a 2
n state machine

7iven that it is desired to be able to organize to any state in

spite of any k preassigned switches (switch failures). It is

essentially the number of cnordinates m required in a LrouD to

maintain Hamming distance k + 1 and have at least 2n codes or the

smallest m such that B(m, k + 1)> 2n where B(m, d) (See ref. 1, p48)
is the largest number of code words possible in a linear code of

length m weight d. Compare this to the error detecting and correct-

ing codes where B(m, 2k + 1)> 2n to get n information symbols and

detect and correct for any k errors. Clearly m must be much larger

for the error detecting and correcting case than just merely for

the failure correcting case. Chapter h of ref. 1 discusses bounds
for m and a few.known formulae. It is clear that any system which

corrects for all k failures will correct for a majority of k + 1

failures and often many hi-her order failures.

In any system containing m switches, which corrects for all

k failures, we can set an upper bound to the fraction of k + 1

failures that the system does not correct. First, note that the

only way that k + 1 column vectors in such a system can be linearly

dependent is that they add to zero. (If they are linearly indepen-

dent they are correctible).

For each combination of k + 1 column vectors that do add to zero,

one can associate a large number of distinct combinations of k + 1

vectors that do not add to zero. These combinations will be referred

to as wi vectors.

To zet a weak lower bound, first recall the null-space forms

a rroup maintaining distance k + 1. Therefore, all combinations

of k + 1 vectors from the code space that add up to zero corres-

pond to some vector vi of (weight k + 1) in the null space. All

vectors, Ai, of weight k + 1 wnich are of distance less 
than k +1

from one vi are distinct from those wi vectors that are distancg

less than k + 1 from any other vj; these wi vectors of course

cannot be in ?he null space.

To form the wi vectors of weight k + 1 a distance less than

from the null vector, we pick any S ones of the k + 1 ones

of the null vector and any k + 1 - S ones from the rest of the

coordinates. Then the distance between these wi vectors and the

null vector is 2(k + 1 - S) which must be less than (k + 1)/2 or

S >3/4(k + I).
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This gives at least S-k

k+l m-.k- I

S k+l-S

S > 3(k+l)
4-

different linearly independent combinations for every dependent one.
For the case when k + 1 is divisible by 4, one may strengthen the
above bound by including some of the vectors which are exactly of
distance k+l fro the null vectors. However, these vectors may2- k+l
be of distance - - from many null vectors. A bound on the numberk+l
of distinct null vectors of weight k + 1 mutually a distance k+-

from the same center vector, C, can be set in the following way:

First the vectors v must be exactly distance k + 1 apart and
must have exactly 3/4 of their ones in common with C (to maintain
weight k + 1). Any two vectors v in the null space cannot have more
than k + I ones in common (to maintain distance k + 1). It is clear

2
then that the common ones of two vectors vi must be in common with C.
An upper bound can be set immediately since no two zeros of the vec-
tor v can overlap where C has a one or else the above conditions
could not be fulfilled. Since each vector has exactly k + 1 zeros

in common with the ones of C, there are at most 4 vectors of weight
k + 1 mutually distant k + 1 from C if C has weight k + 1.

This gives in addition to (3) if 4 divides k + 1

k+l m-k-l
C )

1i 3(k+l) l(k+l)/()

linearly independent combinations for every linearly dependent
combination of k + 1 vectors.

In the previous example the matrix (H) from (1) has exactly
14 linearly dependent combinations of 4 vectors out of a total of
70 combinations of 4 vectors. In this case our bound is met exactly.
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2. Encoding Procedure for Single Output Logical Networks

For the case where the states of the output can be written
as EXCLUSIVE-OR sum of any combination of the set of logical fun-
ctions X, through Xn the encoding procedure for the error cor-
recting is quite siMle.

The realization of the switch code will be like that shown
in Figure 1. Each of the logical functions X1 through Xn will
be connected (or not connected) through its switch to a multiple
input EXCLUSIVE-OR circuit (Mod 2 Adder). Additional logical
functions Y- " Ym - n will be connected through the "redundant"
switches to the same Mod 2 Adder.

The logical functions Y - Y are chosen such that the

switch codes of the matrix all give logical zero. This will guar-
antee:

1. All members of the group give logical zero.
2. All members of the same coset give the same logical fun-

ction.

This is clear since the star sum of two switch codes corre-
sponds to taking EXCLUSIVE-ORs of their associated logical fun-
ctions.

In order to be able to solve for Y , m - n, one must assign
these functions to linearly independent columns - the identity sub-
matrix would serve this purpose.

To tie these ideas together, consider an implementation of
matrix (H) for the case of a general trainable logical function
of two variables, a, b.

Any function can be expressed as an EXCLUSIVE-OR combination
of minterms. (In this case since the minterms are non-intersect-
ing, one may replace EXCLUSIVE-OR by OR). These X's are assigned
arbitrarily to the columns except that the Y's must be assigned
to linearly independent columns.

YI Y2 Y3 Y4 a b ab ab ab

1 0 0 0 1 1 1 0

0 1 0 O 1 1 0 1

0 0 1 0 1 0 1 1

0 0 01 0 1 1 1
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In order to make the group logical zero, the Y's are

Y 1 - a btI b tabF a U b

S2 -3Ub

y3 -aUS

or just the max terms. Its realization is shown in Figure ( 1 ).

a

b
a

ay j

b0

b 0

::> AND)

::D OR

Exclusive OR
(Mod 2 adder)

Figure 1

Trainable logical network which allows any three switches to
fail in any position and most combinations of four switches
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The above method can be extended in an obvious manner tomultiple outputs except that cosets correspond to function pairs
or function sets, and the redundant switches may be many-pole,
many-throw, since the group has to guarantee different logical
functions being zero.

It is clear also that circuit failures can be made to corre-
spond to an open switch, if, for example, either a leg of the
output OR fails (diodes maybe) or any of the minterms or maxterms
fail, one may open the appropriate switches.
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3. Failure Correcting Schemes for Adders

3.1 AN-Codes

In Chapter 13, Ref. 1, pp 236-243, there is developed a codingsystem to protect a computer from circuit failures. The definition
of distance is no longer Hamming but is modified so as to account
for the effects of carry propagation. All numbers are assumed to be
represented as a polynomial in a radix r,

N= n-I n-2
N Nn r +N 2 r + N

where 0< Nj < r

The weight of a number N is defined as the minimum number of
terms in the expression

NJl J2+N =a I r +a 2 r + ...

where a can be positive or negative but in magnitude less than r.

The distance between two numbers N1 and N2 is defined to be
the weight of their difference (Nl - N2 .

To detect and correct for k errors in the number system the
numbers themselves must maintain distance 2k + 1. A code can be
constructed by multiplying the ordinary binary numbers by some
prime number A (See ref. 1, pp 236-243). If, however, one is allowedto make experiments to determine which positions have failed, the
codes need only maintain distance k + 1.

This can be seen in the following way. In order for some
observed number N to be ambiguous, it would be necessary that twodifferent numbers in the code N, and N2 have errors E1 and E2 added
to them such that

N1 + E - N2 + E2 - N

Since the k (or less) error positions are known, one has El
and FE in the form:

Sa r + a2r + ... +a. r

-E2 a b r + b2 r + ... + bk r
Jk

where lal <r
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but the difference between N 1and N 2is

E- E 2 -(a 1 + b I) r +(a 2 + b 2 ) r 2+ ... (ak +b k) rk

This distance is less than k + 1 since each termi (a. + b )r Jican
be replaced by either

ci r jior c i r +

where c i < r.

Once again experimentation has allowed the distance requirement
of 2k + 1 to be relaxed to k + 1.



4* Filure Correcting Schemes for Reorganizable CoWtr

The AN code error correcting schemes require comptation to
correct for the circuit failures. The failure correcting schemr
for the organizable logical network required a few reliable Exclu-
sive-OR circuits. In fact any system which has a single output
requires some reliable circuits. If, however, one could provide
redundant outputs and redundant inputs for a computer and one
could arrange the computer such that it could simply ignore bit
positions, then the computer is not only protected from adder
cell failures but also input and output chonnel failures, memory
bank failures, etc. The computer could be repaired without having
to be shut down.

In order to still be able to distinguish between binary numbers
or words in spite of any k chantfel failures or bit position failures,
it is necessary and sufficient for the words to maintain the Hamming
distance k + 1.

It will again be convenient to make use of group properties of
star sum. (We do not and cannot demand that the algebraic sum of
aW two numbers correspond to the star sum of the same two.)

It will be useful to note that in binary addition parity is
preserved if the carries are included, That is, if one considers
avy set of bit positions in the parity of the sum of two numbers
is e Ial to the lo cal sum (mod 2) of the parities of the i nutstthe correqppnding adder nells including the carry, inputs,

Consider the following typical matrix generator for the group
for an 11 bit adder. All numbers maintain distance 4.
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1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 20

1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 21

1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 22

1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 23

1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 24

1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 25

0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 26

0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 27

0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 28

0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 29

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 210

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1

Parity 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1
Check

0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1

0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0

0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 0

Hence one should be able to correct for all combinations of triple
failures and most of quadruple and quintuple failures.

We would implement each of the basic parity check rules in
an example:

16 * 11 5* * * 4* -3 * 2 * 1 - 0

15 * 11 * 9 * 8 * 7 * '3 * 2 * l - 0

14 * l* lO*o 8* c7* 5* 4 1 - 0

13 * ll * 10 9 7 * 6- * 2 - 0

12 * 11 9*10 9 x8* 6* 5* 3 = 0
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Other parity check rules can be made by combinations of the above 5;
there are 31 of these non-trivial parity check rules. It is clear,
however, that the most errors we correct for would be five, the
number of independent parity check rules. We can construct five carry
cells which have as inputs the star sum of any combination of the
above parity check rules (with appropriate a 's) and thus we can
reconstruct the proper carry inputs to any cell; i.e. we essentially
reconstruct the unknown a's by solving the parity check eauations.
A typical cell may be constructed like that shown below:

al 
ae

a2 where ae is an errin.- aa3 and M is any linear com-

0t6 bination of the parities
that includes a and no

e
other errors; a is thea2 correct a

a3

a7~~

a?
II

12- 
)

If a * b * c * d *e O then a b *c *d *e and if a is
in error and the others are not:

ae * (ae * b * c * d * e) = atr,le.

Thus starring the erring a with a parity check rule that con-
tains that and no other error gives the true a . Thus by employing
parity checks we can reconstruct erroneous literals independent of
mistakes in other literals.
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Having carefully reconstructed the missing input literals in
any of a variety of ways, we can reconstruct the proper carrys in
different cells in many ways. These cells require both the proper
literals and the proper previous carry as inputs.

Cn + 1 = An Bn U An Cn  U Bn Cn

This correcting aparatus would be incorporated into service
cells shown below in their schematic relationship to the oripinal
adder cells. Fach service cell would be able to service several
of the adder cells.

Service cells
}Aic

S• Bic
Ci

Aic is the
correct A
input to

0-1:1-= the cell

An Bn Aj BJ Al Bl

j Adder
Yn b Cj cells

The carry input to any cell can connect to any service cell.
Similarly, the ci inputs to the service cells can come from

any previous carry.

The parity check rules are cornplicated circuits (multiple
, xclusive-OXs). iowever, since t.ne star sum of any parity check
rule is also a parity check rule it is natural to form narity checks
on the parity check rules; i.e., instead of only fcrming combinqtions
of lineari- 'nderendent )arity rules we may -id a few extra rules so
that many combinations of the implemented parity check niles are also
line3rly independent and span the parity check space; i.e. anv parity
cneck can be nade from a combination of working implemented parity check
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rules. Thus we can correct for errors in the parity check circuits
themselves by implementing linearly dependent parity check circuits.
For example: if we have S linearly independent parity check rules
we may form a S + lth parity check rule which is the star sum of the
other S. Now any combination of S of the S + 1 parity checks would
be linearly independent and span the parity check space. This allows
any simple parity check failure. In an example from above the 6 th
rle we could imnlement would be the star sum of every other 5 which
is the Exclusive-OR sum of every bit. There are many logical equi-
valents of the above system - hopefully some of them simpler.
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I. INTRODUCTION

A functional electronic model of the frog retina has been constructed
which simulates many qualitative and quantitative properties of the visual
system of the frog. The model will be used as a research tool for pattern
recognition studies employing feature -abstraction and parallel processing.

The retina model is based on the physiological work of Lettvin and
others, 1,2,3 who were able to measure the electrical signals that the frog
retina was sending to the colliculus (brain "mapping" center). These in-
vestigators distinguished four classes of optic-nerve fibers; each of these
classes carries different information regarding a specific feature of the
image on the retina. These studies revealed that the frog retina performs
a sorting operation in which four classes of properties are abstracted:
1) edges, 2) moving convexities, 3) contrast changes and 4) dimming.

The diagrams in Figure 1 show schematically some of the qualitative
properties of the feature-abstraction processes performed by the frog retina.
The circle at the left (labeled "input") contains four small figures repre-
senting images which might be presented to the retina; the arrow indicates
the direction in which the images are assumed to be moving. Circles I
through IV illustrate how these images are "mapped" into the colliculus.
Circle I shows that the edge detectors abstract both stationary and moving
edges. Circle II shows the features abstracted by the moving-convexity
detectors; since only dark convexities moving toward the center of the
field of view are detected, only the trailing edge of Image 1 and the entire
outline of Image 2 are abstracted. In abstracting changes of contrast, the
leading and trailing edges of all moving dark images are abstracted as
shown in Circle III. Circle IV shows that the dimming detector. abstracts
only the leading edges of moving dark images.

In biological systems, the size of the responsive-receptive field (RRF)
associated with the visual-image information-reduction process is an im-
portant consideration. The relative size of the RRF is proportional to the
number of receptors projected onto one of the ganglion cells in any class.
This projection is a result of a many-to-one transformation which occurs in
the retina system. In the visual system of the frog there is a specific size
for the RRF which is associated with each of the four classes of feature-
abstracting ganglion cells. The size of each receptive field increases as the
ganglion class increases from 1 to 4.



The frog retina model which has been constructed possesses many of the
specific feature-abstraction properties found in the frog. In addition, the model
simulates other physiological properties such as the incorporation of overlap-
ping receptive fields for each class of ganglion cell, and the preservation of the
relative RRF size for each class of ganglion. The model also has a general
physical correspondence to the anatomy of the frog retina; i.e., processing
takes place in various neural layers. Since the ganglion cells of the frog are
sensitive to both the speed and the size of the image presented to the retina,
this sensitivity also is incorporated in the functional model.

II. GENERAL DESCRIPTION OF RETINA MODEL

This functional model employs seven processing layers which are mounted
vertically as illustrated in Figure 2. Figure 2(a) shows where each logic function
is located, while Figure 2(b) is a photograph of the actual retina model. The
first six layers perform parallel processing on the information presented to the
retina. The seventh layer contains the output indicators and power distribution
system for the model. Each of the six active processing planes may be removed
from the main frame for testing or servicing. (Figure 2 shows layer 6 in this
position.) The interconnections for the first four processing layers are made
by light transmission from neon lamps in the back of one layer to photoconduc-
tors in the front of the following layer. In this manner, light provides the
majority of the synaptic connections of the model. The neon lamps and photo-
conductors serve also as the principal circuit components for the threshold
logic.

The outputs of the ganglion cells are available in two forms: 1) relay
contact closures which provide binary electrical outputs, and 2) incandescent
lamps which provide a two-dimensional display of the four features abstracted.
The Class 1 and Class 2 indicator lamps provide binary visual outputs, while
the Class 3 and Class 4 lamps provide analog outputs.

The following guidelines were used in the design and fabrication of the
model:

1. A construction technique was selected which would permit individual
logic functions to be fabricated on individual layers. This technique
greatly simplifies the wiring and interconnection of components.

2. All components in each layer were made readily accessible, thereby
permitting easy repair.

3. The logic for the various feature-abstraction functions was isolated to
simplify the testing procedures.

4. Neon-lamp photoconductor interconnections were used between the first
four processing layers to permit all circuits on each layer to be indi-
Vidually tested by observing the visual outputs.

5. The model was designed so that individual layers of logic may be modi-
fied, and/or replaced. In addition, logic changes can be made in some
of the present layers by simple changes of wiring.

2



6. The model was designed to simulate the anatomy of the frog by using
logic processing layers and by preserving the reiative location of each
ganglion class within these layers.

III. SYSTEM LOGIC

The system logic required to accomplish the feature-abstraction operations
performed by the four classes of ganglia of the frog retina model is presented
in this section. This logic is a modification of the logic originally described
by E.E. Loebner 4 .

A. Edge-Detection Neuron (Class 1)

The edge-detection neuron abstracts edges from the input image. In
order to detect an edge, the existence and position of horizontal and vertical
contrasts on the receptor matrix are detected by the bipolar neurons. Then,
if a sufficient number of bipolar neurons of the same directionality are acti-
vated, an edge is presumed to exist in the receptive field of the Class 1 gang-
lion cell.

The basic contrast decisions are made by the bipolar neurons. These
neurons are located in the first layer of the retina model, and consist of two
photoconductive receptors connected to two neon lamps in a balanced-bridge
circuit. When contrast exists between the paired-input receptors, an appro-
priate neon lamp (bipolar output) is activated, thereby identifying the location
and direction of contrast. Each bipolar neuron, then, provides two direc-

tional outputs per pair of input receptors. Since 1296 input receptors are
employed, there are 648 bipolar neurons which provide 1296 outputs.

The activation of particular combinations of directional bipolar outputs
results in the detection of an edge of minimum length. This detection is ac-
complished by summing four adjacent bipolar outputs which possess the same
contrast directionality into a majority-of-four decision-maker as shown in
Figure 3. This majority logic is located in the edge-detection layer, where
additional photoconductive cells receive the directional contrast information
from the neon-lamp outputs of the receptor/bipolar layer. Thus, an edge will
be detected when an edge focused on the receptor plane is long enough to cause
an output from at least three of four adjacent bipolars.

As stated above, the bipolar neurons determine the existence of horizontal
and vertical contrasts only. It might seem that this restriction limits the
detection of edges to only horizontal and vertical types. * It is not necessary,
however, to confine the bipolar neuron summation to adjacent horizontal or
vertical bipolars. By summing several nonadjacent bipolar neurons of similar
directionality, it is possible also to abstract diagonal edges. This additional
summation permits the detection of all the possible orientations of edges
appearing on the receptor matrix. Figure 4 shows diagrammatically how

*Actually there is a range about the major axes of approximately +35 degrees

in which the presence of edges may be detected.

3



eight connections of the four types of bipolar neuron outputs (two horizontal
and two vertical types) are summed in an OR gate to provide an output for the
Class 1 ganglion cell. Thus a Class 1 ganglion output indicates the presence
of an edge in a given location, irrespective of its orientation. The directional
summations which make up the inputs for a Class 1 ganglion cell are shown in
Figure 5. This spatial arrangement leads to a Class 1 RRF consisting of
4 x 4 receptor-pairs.

An important feature of the model is the incorporation of overlap at
various processing levels. For the Class 1 ganglia, overlap is present in
the pairing of receptors and in the summation of bipolar neurons for the major-
ity-of-four detectors. Each majority detector overlaps its neighbor by two
bipolars. This feature, together with the requirement that only three of four
inputs are necessary to activate the majority detector: ensures that there are
no insensitive spaces between neighboring majority detectors. In addition.
this overlap also provides a form of spatial redundancy which reduces the
possibility that a single malfunction will cause an error in the output. The
ganglion cell overlap, as well as the receptor-pair overlap, is shown in
Figure 6. The overlap of ganglia results in a total of 180 Class 1 outputs
for the retina model.

B. Moving-Convexity Neuron (Class 2)

The moving-convexity neuron abstracts dark convexities moving in
a given direction. Inputs to the Class 2 ganglia are derived from the majority-
of-four detectors of the Class 1 ganglia, as shown in Figure 7. These inputs
are obtained by sensing the neon-lamp outputs in the second layer with photo-
conductive cells located in the third layer. Two overlapping majority-of-four
detectors (which have the same directional contrast) feed an OR gate.

A similar operation is performed on the output of six other bipolar neurons
which are sensitive to contrast in a direction perpendicular to the first group
of bipolar neurons. The second group of neurons also must have the proper
spatial location with reference to the first group in order to be combined in an
AND gate, and thereby indicate the presence of a dark convexity. The output
signals of the four possible combinations of convexities then are combined in
an OR gate to denote the detection of any convexity within the field of view of
a particular Class 2 ganglion.

Figure 8 shows the logic connections for a Class 2 ganglion cell, together
with the relative spatial locations of the receptors. The RRF of a Class 2
ganglion cell for a frog is approximately 50 per cent larger than that of the
Class 1 ganglion cell. Therefore, on a relative basis, the RRF for the Class 2
ganglia of the model has six receptor-pairs on a side, as shown in Figure 8.

In order to obtain an output from a Class 2 ganglion cell, it is necessary
that a dark convex object move across the input-receptor matrix in a given
direction. The neural mechanism which provides tracking of lateral motion
in the model is the amacrine cell.

Figure 7 shows the location of the anmacrine cells in the Class 2 ganglia
logic. It is the function of the amacrine cells to provide a short-term memory
of the presence of a convexity within the RRF of a convexity detector. The
outputs (neon lamps) from the convexity detectors located in the third layer
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activate the inputs (photoconductive cells) to the amacrine circuits which are
located in the fourth layer. The output of an activated amacrine is fed to speci-
fic adjacent Class 2 ganglion cells, enabling the AND gate of these neurons to
pass an output when a convexity is present in their receptive fields. Thus, a
convexity will be tracked if it moves from one receptive field to another within
a certain velocity range. For the Class 2 ganglia, a large amount of overlap
is provided between the receptive fields of adjacent neurons. The model provides
90 output signals for the Class 2 ganglion cells.

C. Changing-Contrast Neuron (Class 3)

The changing-contrast neuron abstracts changes of contrast of rela-
tively large dark objects appearing in its receptive field. As shown in Figure
9, the Class 3 neuron of the model obtains its inputs from the Class 1 ganglia
outputs derived previously. Many of these Class 1 outputs are summed in
overlapping areas, then differentiated and fed through an OR gate. Through the
summation process, a large RRF for each Class 3 ganglion cell is obtained.
Figure 10 shows the arrangement of Class 1 outputs, represented by triangles.
The 16 Class 3 ganglion cells are represented by large squares. This partic-
ular type of summation was chosen in order to obtain the proper receptive-
field size for the Class 3 ganglia.

Since it is desirable to obtain analog information from the Class 3 ganglion
cell, the OR function is obtained by the linear addition of the transient voltages.
The analog output therefore is a measure of the size and speed of the input
image. Sixteen output signals from Class 3 ganglia are provided in the model.

D. Dimming Neuron (Class 4)

The dimming neuron abstracts changes in dimming appearing in its
receptive field. The information for this neuron is most readily obtained by
using separate receptors located on the input (receptor/bipolar) layer. These
receptors take the central position in the basic block of receptors as shown in
Figure 11. Since the RRF of the dimming neuron is very large, many Class 4
receptors are summed before additional logic operations are performed. This
summation is shown schematically in Figure 12. Dimming is obtained by dif-
ferentiating the summed receptor potentials (in order to detect motion of the in-
put image) and then generating an "off" response to denote that dimming occurs.
The "off' response is an analog output which simulates the envelope of the integrated
physiological "off" response. The large overlapping receptive fields shown in
Figure 13 yield five independent output indications for the Class 4 ganglia.

IV. SUMMARY

The functional model of the frog retina which has been constructed incor-
porates the four basic feature-abstraction functions found in the visual system
of the frog.

The 4580 logic operations contained in the model require the use of over
32, 000 individual circuit components, including 3793 photoconductive cells and
2652 neon lamps. More than 2000 neon-lamp/photoconductor pairs provide
"light connections" between processing layers.

5



Because of the unique construction techniques employed, intermediate logic
outputs may be visually observed. The model abstracts visual features by using
deterministic parallel processing and overlapping responsive-receptive fields.
The inclusion of these two features are novel in the field of visual-pattern recog-
nition. This equipment therefore should provide a useful research tool for
further studies in pattern recognition, feature abstraction and parallel processing.
The model, while itself capable of only limited performance, may well be a
significant first step toward the design of complex equipment for surveillance,
reconnaissance and vehicular guidance.
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Figure 3. Portion of Receptor Matrix.

This shows the Bipolar Pairing of Receptors (Class 4 Receptors are

Omitted in this Figure)
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Figure 6. Portion of Receptor Matrix

This shows the Bipolar Pairing of Receptors and
Summations of Bipolars into Majority-of-Four
Detectors for Vertical Edge Detection (Other
Summations Omitted for Clarity).
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This shows the overlap of Class 3 Ganglia (Squares), as well as the
particular Class 1 Ganglia (Triangles) combined to form a Class 3
Ganglion cell.
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SERVOA ZAYSIS OF THE LEG IKJSCLES OF THE CAT

Lothar 0. Hoeft, Capt, USAF, PhD
Joseph R. 1vndie, M.D.

Bionics & Neurophysiology Section, Bioacoustics Branch, Biomedical Laboratory

6570th Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio

One interest of Bionics is the investigation of biological control
systems to determine the principles under which they operate, so that these
principles can be used by the engineer in the design of future control
systems. At first glance, biological control systems seem to be inferior
to the control systems that man has designed. Biological control systems
tend to be more non-linear and possess considerable mechanical resistance.
However, they possess one vital and intriguing characteristic--they work and
work well, as demonstrated for example by the dexterity of man. An especially
useful and attractive property of the biological control system is its
ability to control under varying load.

We decided to study the control system of the hind leg of the cat
because: (1) Its function is diverse enough to qualify it as a control
system which must work into a large range of loads; (2) The system was large
enough so that the measurements were relatively easy yet small enough so
that the experiments could be conveniently done in the laboratory; (3) The
muscles were located so that the performance could be measured easily.

The control system of the hind leg of the cat has two modes of operation,
a transient reflex mode and a continuous mode, which are analogous ,to the
saccadic and pursuit modes of operation of the eye muscles studied by Stark.
This dual type of control appears to be common in biological systems. We
chose to study the transient reflex response to mechanical inputs as the
first step in our investigation. The response to transients seems to be

fast gross ovements and, at least in the case of the cat's hind leg,
involves primarily only lower centers of the NS, i.e., the spinal cord,
in the neural control loop.

The mechanical properties of the hind leg of the cat were measured
by means of a variable mechanical impedance muscle stimulator. This device
is essentially an electromechanical control system with a very versatile
feedback arrangement. Figure 1 shows a block diagram of this apparatus.
The actuator is a Calidyne ',odel 6 shaker. The leg is attached at the
muscle origin to a stationary, adjustable yoke and the muscle insertion is
fastened to the shaker armature via a tension transducer. A position trans-
ducer measures the displacement of the armature. These two transducers
provide voltaces to the analog computer (ten operational amplifiers) where
they are copared to a reference signal and error is calculated and applied
as feedback irn adjustable quantities. The signal is amplified by the

transistorized output power amplifier and fed to the shaker. 3y changing



the program of the analog computer or changing parameters within the program,
a large range of mechanical output impedances can be achieved.

The data recording and analysis system, shown in Figure 2, has been
used in the muscle reflex studies. The signal from the tension transducer
was fed through the remote console to the PDP-1 digital computer. The
digital computer acting as a data editor measured the stimulus tension, the
response tension, the resting tension and the latency then removed that
part of the signal that corresponded to the stimulus and recorded the rest
of the signal on digital magnetic tape. The magnetic tape was taken to
an IBM 7090 which computed the Fourier transform of the response. The
transform was available in print out form from the 7090 or could be plotted
on a log-log plot on the PDP-1's oscilloscope.

Cats that weighed about 2 kilograms w9re anesthetized with sodium
pentobarbital (50 mgm/kg). A 2 mm Kirschner wire was drilled through the
femur just proximal to the knee joint, and fastened to the stationary yoke.
A small drill through the calcaneus process served as a point of attachment
to connect the tendon to the tension transducer on the armature by means of
a piano wire loop.

The usual experimental procedure was to measure the response tension
as a function of stimulus tension with static or resting tension ranging
from 100 to 1200 grams force. The stimulus used in experiments was a triangle
shaped pulse, 10 milliseconds long and variable in height.

Figure 3 shows a typical muscle reflex response. As seen from this
figure, the stimulus is short (about 10 milliseconds for most experiments)
and is followed by the muscle response which may vary in height depending
on the stimulus and resting tensions.

Figure 4 shows the results of a typical experiment in which maximum
response tension (TR) is plotted as a function of maximum stimulus tension
(Ti). This figure shows that for low stimulus tension, the muscle did
not respond. As the stimulus was increased, the muscle reflex response
appeared, increased in magnitude, and then the magnitude became independent
of the stimulus amplitude. This figure also shows that the value of maxi-
mum response tension (TR), when it becomes independent of the stimulus,
increases with the stated tension (Ts) until the latter becomes greater
than 300 or 400 grams force. At this value the maximum response tension no
longer increases and, as is shown, decreases with increasing static tension.

Figure 5 shows a typical Fourier transform of a muscle response. The
Fourier transform is complex, therefore can be written

T(w) = R(w) + j X (w)

2



where T(w) is the Fourier transform of the muscle response, R(w) is the

result of the cosine integration and X(w) is the result of the sine inte-

gration.

The response shown in Figure 5 is very similiar to the Fourier transform

of

T(t) = Ae-Bt (I-e-ct)

a sum of two exponentials. We have found it useful to characterize the
Fourier transforms by several points such as the value of R(o) and the

frequency at which R(w) = o which we shall designate w/o.

Figure 6 shows il(o) plotted against stimulus tension. The shape of
the curves are similiar to the plot of maximum response tension. Figure 7,

a nlot of w/o versus stimulus tension shows that w/o increases with stimulus
tension.

In the course of doing the type of experiment described above, it was
noticed that some of the cats gave responses that had oscillations super-

imposed on them, particularly at high stimulus tensions. At first it was

thought that these oscillations were due to a poor preparation. However,

we found that the hind leg of a rabbit had larger oscillations. These are

shown in Figure 8. For low stimulus tensions, the normal response was
obtained. As the stimulus tension was increased, the oscillation appeared.

After some reflection, an explanation for these oscillations was proposed.

In the experiments described so far, the calcaneus process was left attached

to the foot, therefore, two muscle systems were being measured, the gastroc-

nemius muscle, and its antagonist. For small stimulus tension, only the

gastrocnemius -iuscle would respond. For large stimulus tensions, however,

both the gastrocnemius muscle and its antagonist would respond. The overall

effect of this is to give a very short response to the stimulus. As can be

seen in Figure 7, w/o increases with stimulus tension and since it is a

measure of the frequency response of the system, the frequency response is

increasing with stimulus tension.

In order to check the above hypothesis, the calcaneus process was cut,

thus removing the antagonist muscle from the response. Figure 9 shows the

results from this measurement. w/o does not change appreciably as would be
expected for a single muscle.

Experiments have been performed with spinal cord transactions which

indicate that the transient reflex response is primarily mediated at a

spinal cord level.

DISCUSSION

Probably the most useful information from the investigation of the

muscle reflex so far is the realization that the properties of the control

system are the result of having poised antagonistic muscle groups. Of

3



course, the fact that muscle group occur in antagonistic pairs is elementary
physiology. However, the consequences of this arrangement do not seem as
obvious. For example, the response to short transients (impulses) does not
become longer when the magnitude of the transient increases as is the case
of a linear system, but rather stays fairly short. In addition, by increasing
the static tension of both muscle groups, the limb can remain stationary
but have an entirely different output impedance, and therefore capable of
operating into different loads. Notice that this is possible without the
usual multiplier or gain changing potentiometer that is needed in the more
conventional systems.

The principle of antagonistic action described here is not an isolated
example. Examples of antagonistic action can be found throughout the
muscular system, in the endocrine system, the enzyme systems, and in the
other biochemical systems of the body. Evidently, living systems have
found the use of two unidirectional systems better than the use of a single
bidirectional system.

The experiments reported herein were conducted according to the
"Principles of Laboratory Animal Care" established by the National Society
for Medical Research.
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PROPERTY FILTERS FOR IMAGE ANALYSIS

W. L. Holford

U

SCOPE Incorporated
Falls Church, Virginia

INTRODUCTION

One of the more challenging problems facing researchers today
is.the mechanization of tasks which currently require the hu-
man visual capability. While sufficient progress has permit-
ted useful systems to be constructed for simple character
recognition, satisfactory systems have not been provided for
analyzing the more complex images such as one finds in an
aerial photograph. Because a detailed explanation of the
human visual mechanism has not been uncovered, it is left to
the researcher to select the structural or response mechanisms
which appear important in leading to a solution of the problem.
In the discussion to follow, the chosen characteristics of the
human visual mechanism will be enumerated and used as a foun-
dation for the development of an image processing system.
Further considerations of the constraints imposed upon typi-
cal optical images lead to a data reduction system which is
based upon contour integrals. The implementation of the
contour integrals is found in the general class of conical
transforms, some of which can be used to process image data
into a form which minimizes the effects of the usual dimen-
sional uncertainties associated with optical images. Rigorous
treatments will be avoided in order that many significant
aspects of the study can be discussed.

THE HUMAN VISUAL MODEL

While a survey of the literature reveals a wealth of detailed
data covering the structural and behavioral characteristics
of the human visual process, only those points relevant to
the discussion will be cited here. The examination of the
human visual model has led to the selection of four structural
characteristics which appear most important in the visual
mechanism. These are (1) the "on-off" class of nerve fibres,



(2) the distribution of photoreceptors on the retina, (3) the
evidence of local mapping in the visual cortex, and (4) the
multitude of cortical neurons. (1,2)*

The so-called "on-off" class of nerve fibres are associated
with the edge-detection or contour enhancement process. The
minute oscillations of the retinal image caused by ocular
tremor generate relatively large light fluctuations at
boundaries of high contrast. These fluctuations constantly
regenerate the photoreceptor response and produce the fa-
miliar effect of contour enhancement.

The distribution of photoreceptors on the retina is responsi-
ble for the attention center known as the center-of-vision.
The dense concentration of receptors in the fovea centralis
provides the point of reference from which retinal activity
is coordinated in the visual process. The density of photo-
receptors decreases at increasing distances from the fovea
where the effects of poor resolution and loss in a facility
for recognition become more prominent.

Progressing from the retina to the visual cortex, there is
strong evidence of local retinal mapping such that the physi-
cal location of cortical responses corresponds to the
geometry of the image at the initial level of processing.
It is reasonable to assume that the neurons associated with
successive levels of processing are receiving nerve impulses
primarily from restricted contiguous areas on the retina.
The effect of such a connection scheme is the favoring of
neural activity for images prossessing physical continuity.
Sender's experiments with naive adults (mature persons who,
blind from birth, have had their sight restored) indicated
that the wholeness or continuity of an image is immediately
sensed.(2) The local retinal mapping is, then, assumed
responsible for an innate capacity to deal with the contig-
uous images encountered in everyday life.

*Numerical superscripts refer to the works cited at the end
of this paper.
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Finally, the great number of possible logical decisions re-
quired for handling complex optical stimuli is permitted by
the existence of millions of nerve processing elements, the
neurons. Since image recognition requires the combined in-
formation of thousands of retinal photoreceptors, there is
an obvious need for orders of magnitude more decision ele-
ments to coordinate the information, especially when the
system must be capable of making sense from countless com-
binations of retinal activity.

The four selected aspects of human vision do not by any
means exhaust the characteristics which could be cited.
The particular importance of those chosen will be made
clear in the subsequent discussion.

DISCUSSION OF THE PROBLEM

There is little question but that a human observer has a
remarkable prowess for interpreting visual stimuli even
though the probability is virtually nonexistent that he has
ever encountered the identical stimulus in terms of its
description on the retinal field. The popular theory, sub-
stantiated by experiments on a number of animals, is that
essential properties are extracted from the retinal field so
that variables of size, shape, registration, rotation,
absolute intensity, and context do not destroy our interpre-
tation capability. It is true that the variables mentioned
are recognizable and often lead to confusion in the recogni-
tion process, but the power of generalization is certainly
present.

Of vital importance to the development of an image processing
system are the constraints which can be imposed upon the
stimuli to be encountered. In the previous paragraph, it
has been suggested that the human possesses a natural ability
for interpreting physically continuous images, a property
which is significantly attached to typical stimuli. An ex-
ample may be offered in the difficulty with which random
arrays of checkers on a checkerboard are recognized as com-
pared with simple row or column configurations.

Not only are typical stimuli continuous, but they are very
often recognizable strictly on the basis of their outline.
The contour enhancement process gives weight to the intensity

-3-



gradients or edges which can be associated with the outline
of the image. In many problems, it is possible to state a
priori that edges are all that are necessary to permit identi-
fication of the stimuli in question. This assumption will be
made for purposes of subsequent discussion.

SYSTEM DEVELOPMENT

If we now proceed to the classical logical process of summa-
tion and threshold as a means for recognition, we have the
problem of asserting what form the summations must take to
efficiently process the sensory data. From the discussion
above, it is evident that a large part of the decision pro-
cess can concern itself with the summation of activity over
various lines or contours. Assuming for the moment that we
have a contour enhanced version of the scene being processed,
then the decision elements whose contour integrals coincide
with those of the images in the scene will receive an unu-
sually large amount of activity. These decision elements can
be considered property filters which are capable of sensing
the presence of the particular contour sample which they
implement. A threshold must be placed on the decision to
reject the lower level of activity generated by the inter-
sections of other image contours with the sample in question.

While space does not permit a full discussion of statistical
decision theory, let it be sufficient to say that the more
decisions that are used in the processing, the more reliable
the result obtained from the process. Eqdivalently, the
greater the number of properties which are systematically
sampled over the entire retinal area, then the more accurate
will be the recognition system. If a small number of very
general properties are chosen to characterize images, there
is a high probability that too many of them will be present
in a complex scene to permit isolation and identification of
individual images. In opposition to this, it is clear that
the choice of very complex properties can result in a very
low detection efficiency which can also degrade performance
of a detection system. In any case, the final recognition
process will be carried out as a correlation of the proper-
ties in the scene with the store of property groups selected
as the basis for comparison. The goal to be sought in the
property space is, then, the ability to generate signatures
of particular images which will be superpositioned in a
complex scene but individually detectable through the

-4-



correlation process. An additional goal is the minimization
of the effects of size, translation, and rotation of the
images as they may appear to the system. One means by which
the contour integrals can be easily implemented is through
the use of the conical transform, a particular implementation
of which permits the desired minimization of effects due to
the dimensional uncertainties of images.

5.0 THE CONICAL TRANSFORM

In order to carry out the large number of contour integrals
necessary for effective processing of image data, it is
possible to turn to an optical transformation yielding a
specific class of contour integrals. Since optical elements
with refractive power in two dimensions afford a means of
integration over two dimensions (as in applicatiohs of the
defocused image), it is natural to examine the properties of
elements with refractive power in one dimension. Because of
its symmetric properties, the chosen optical element is the
cone.

The qualitative aspects of the conical transform are most
easily seen from the example shown in Fig. 1. In Fig. la
light rays converging to the line image A'O'B' from the lens
are reflected from a conical mirror with a total apex angle
of 900 centered on the optic axis. Rays intercepted by the
conical surface in the plane of the drawing continue to form
real images at A''O''B'' and A1bOh''B19h. Because of the

prevailing circular symmetry, the final images of A, 0, and
B become circles in the cylindrical transform space as shown
in Fig. lb. The image inversion which takes place at 1800
intervals around the cylinder results in intersection points
p and P' for the transforms of A and 0 as shown.

To a first approximation, the transform of point B (now shown
in the figure) can be assumed to intersect points P and P'
also. Where the field angle of the lens used is relatively
small, image activity on lines such as AOB are integrated
at particular points in the transform space. An inspection
of Fig. 1 will reveal that points in transform space on a
line parallel to the primary optic axis (the Z axis) cor-
respond to the integrals of parallel lines on the image field.
The direction of the contour integral is a function of the
angular coordination (0) in transform space. Thus the points
of transform space represent every straight line integral
which can be associated with the image field.

-5-
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(1) Analytic Description of the Transforms. A precise
description of the conical transforms can be most easily
carried out in terms of a rotating plane mirror implementa-
tion of the conical reflector. This model is illustrated in
Fig. 2. The plane mirror M is rotated about the primary
optic axis with which the mirror normal is maintained at an
angle a. The resulting transform space is a cone with half-
apex angle =11 = 2a. For c in a range close to 450 the

image field is simultaneously rotated about the primary axis
and revolved in a circle on the conical transform surface.
If we sever the conical space along a line passing through
its apex, it is possible to lay the transform space out in a
plane as shown in Fig. 3. The resulting surface is a seg-
ment of a circle having a total angle of 2r sin f.

The motion of the image field, illustrated in Fig. 4, is just
that obtained when a circle of radius ro is rolled with per-
fect friction inside the circle of larger radius RO where ro =

sin . Points such as A and B of Fig. 3 generate hypo- Ro
trochoidal curves which intersect the circular image of 0
on the optic axis at two points. The particular contour
integrals implemented by the transform for the angle a =

and a = 'T are members of the cycloid family and 
are

shown in12Figs. 5 and 6. Several points in transform space
and their associated contour integrals are given. The field
angle of the optic system for both examples is approximately
one radian. It can be seen from Fig. 5 (a = 7) that the con-
tour integrals become better approximations to straight lines
if the field angle is reduced to a value considerably less
than one radian. As a is made very small, the image field
motion is simply a circular oscillation of the image around
the apex of conical transform space yielding very nearly
circular contour integrals. In the limit, these reduce to
points which reproduce the original image. Thus the general
class of conical transfori offer a means for executing a
large set of contour integrals which can be useful in image
analysis.

(2) Image Processing With The Conical Transform. A
great many variations of the conical transform can be des-
cribed rendering a suitable system for image analysis. Pro-
jective transformations of the transform space can be used
to gather the data in one plane amenable to simple scanning
techniques. The dynamic properties of the rotating mirror

-7-



IIL

IL

!

I_

\~ Ul

\J

Figure 2 The Rotating Mirror Implementation of the

General Transform

-8-



occ

A PE

Figure 3 - Plane Construction of the General Conical Transform

-9-



SURFACE

Figure 4 - Analytic Description of the General Conical Transform

-10-



L L 
SPACE

IMAGE FIELD (ONE RADIAN) O

Figure 5 - Contour integrals for the Orthogonal Conical Transform

-11-



I

I TRANSFORM
tI SPACE

IMAGE FIELD-(ONE RADIAN)I

K

On V/12 # /

Figure 6 - Contour Integrals for the Conical Transform (0 rr/3)

-12-



implementation can be used to sweep the image in all orien-
tations across templates designed to extract specific pro-
perties.

In order to carry out the idea of minimizing the dimensional

uncertainties associated with typical images, a specific im-

plementation is illustrated in Fig. 7. By using a second

conical mirror of the internal reflecting type, the transform

space for the case a = 11 is projected into a plane as shown.

The Z axis of transform space now becomes a radius of the

projected annulus. Assuming a small field angle in the opti-

cal system, then points along a radial line are the contour

integrals of parallel lines. If we now consider images to be

constructed of a number of straight line segments joined to-

gether, the transform space will have a number of local maxima
on radial lines which define the relative orientation of these

line segments. Therefore, if we use a rossette scan to cycle

around the transformed image, we shall develop a periodic

video waveform with peaking values spaced at time intervals

very closely determined by the relative orientation of the

line segments composing the image. The aspects of this wave-

form are quite insensitive to size and translation of the
image and merely exhibit a phase change with image rotation.

The important edge extraction process can be implemented by

suitable filtering of the video data.

In dealing with the complex image, the waveforms associated

with several images will superimpose and it is here that a

requirement for a center-of-vision arises. If it is de-

sired to process small and large images with equal facility,

then one can employ image field weighting similar to that

found in the human. Small images centered on the heavily

weighted region of the field can be made to produce effects

equivalent to large images whose edges will fall out in less

sensitive portions of the field. Their larger size offsets

the reduced weighting which they receive in processing.

While space has permitted only a single example of the basic

image processing technique, others are being investigated to

process simple and complex image data. The remaining task,

that of processing the waveform by means of threshold and

harmonic analysis or cross-correlation techniques, will

not be discussed here. The complexity of the system will,

however, be strongly dependent upon the complexity of the

optical images to be processed.
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SUMMARY

Utilizing a limited choice of human visual characteristics
coupled with known properties of typical images has permit-
ted a scheme for image analysis to be developed. Using the
conical transform, a great number of contour integrals have
been implemented which efficiently process typical image
data. Each point in transform space implements a simple
property filter in the form of a contour integral. Judi-
cious sampling and processing methods, as described in the
last section, permit varying degrees of normalization to be
established for the system. No attempt has been made to
model the human nor to imply that a complete solution to
complex image analysis has been found. In the near future,
experimental data will be available which shall provide a
measure of the usefulness of the propounded ideas.
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MECHANISM OF A CORRELATION THEORY OF HEARING

Henry B. Karplus

Armour Research Foundation Chicago 16, Illinois

I INTRODUCTION

To explain the excellent frequency analysis capabil-
ities of the ear in the light of the known broad mechanical response of
the basilar membrane it has been hitherto assumed that some form of
neural interaction is capable of locating the point of maximum response
with great precision. This hypothesis, however, fails completely
when several tones are heard at the same time. The maximum dis-
placement amplitude of the membrane may be exactly the same for
different combinations of tones which are subjectively very easily dis-
tinguished. We talk of major chords, minor chords, discords, band
limited noise all of which can be adjusted to produce identical maximum
membrane excursions and yet sound subjectively quite different. How-
ever, although the maximum or the mean motion of the membrane is
identical for all these different sounds the instantaneous displacement
must still be different. This difference in phase of the motion at adja-
cent regions of the basilar membrane must carry the evident information

II OUTLINE OF THE MODEL

I t

The basic clue to our hypothesis is Bekesy's observa-
tion that a travelling wave displacement exists along the basilar mem-
brane. The propagation velocity of this travpl;ing yave varies with
frequency at any point on the membrane. Bekesy's phase observa-
tions may be transformed to velocity by measuring the slope of the
phase displacement as a function of position as shown in Fig. 1 where
the reciprocal of the phase velocity (1/c) is plotted against position
on the membrane. It is apparent from these curves that the propaga-
tion velocity of the travelling wave is a function of the position on the
membrane at any one frequency, conversely at any given point on the
membrane, this velocity is a function of the exciting frequency.

We now postulate that several hair cell receptors
Rl--Ri--Rn (Fig. 2) are connected via delay lines Ll--Li--Ln to a
junction S, where their output is added. The delays of the lines
L 1 -- Li--Ln are an exact replica of the time retardation x/c for one

particular frequency of the travelling wave along the membrane. Other
groups of receptors Rl'--Ri'--Rn' with different delays L'l--L'i--L'n
interspersed with the first set are shown in Fig. 3.



The disturbance due to a signal of frequency f, will
excite all the receptors R, R' in this region, however, the delays
L 1 -- Ln correspond exactly to the delays of the wave along the mem-
brane, whereas the delays L'i--L'n do not. Consequently, all the

signals from Rl--Rn arrive simultaneously at, S, and this junction
or synapse fires the nerve coming from it. The delays L'l--L'n do
not correspond so that signals arrive at S' at different times so that
the signal does not go beyond S1. A signal with frequency fZ close to,
but slightly different from f1, will excite all the same receptors R,
R' but the corresponding membrane displacement wave will have a
slightly different velocity so that now signals arrive simultaneously at
S' but not at S. A further possibility suggests itself. The same re-
ceptors Rl--Rn may be connected through several sets of delay lines
Ll--Ln, L1l--L'n, L"1--L"n etc. to different synapses S, S', S"---

etc. so that each group of receptors may be used for several frequency
components, (Fig. 4). Branching is shown only at the output for clarity.
Connection of several receptors to the same delay line is equally
plausible.

III DE LAY LINES

The veocity of propagation of the travelling wave on
the basilar membrane shown in Fig. 1 as calculated from B6k6sy's
data is of the order of 2 m/s at the point of maximum motion. This
is of the same order as the velocity of signal propagation in unmyelinated
nerve fibers (e. g. GrundfestZ) so that nerve fibers running parallel
to the basilar membrane could act as delay lines exactly in the manner
described without an excessive amount of kinking or coiling. Such
nerve fibers running in the rSquired direction have been observed and
described by Lorente de N6.'

The needed difference in delay between adjacent lines
may utilize several possible mechanisms connected with the length of
the line, velocity on the line, and latency at synaptic junctions them-
selves.

Delay line lengths could differ by virtue of changes in
the relative distances between receptors and synapses or by nerve
fibers varying by different amounts from the shortest possible connec-
tion. The existance of several rows of hair cells might conceivably
play a part here. Also, slight bends and twists in nerve fibers are
known to exist.

Signal velocity along nerve fibers is a function of the
myelin sheath. Slight variations of sheath thickness from fiber to fiber
in the eighth nerve are possible, moreover the exact length of sheath
is a function of the exact location of the cell body in the ganglion of
Corti, there being no sheath or a much thinner one around the nerve
fiber between the receptor on the membrane and the cell body in the



ganglion. The existance of cell bodies without synaptic junctions has
been a puzzle. A possible function for these is thus indicated.

Time delays across synaptic junctions have been ob-
served in studies of lower animals with large, more accessible cell
bodies. Variations of such latencies from junction to junction might
also contribute to the exact "tuning" of the line delay.

The summation of the signals in the cochlear nucleus
or higher centers rather than in the ear itself is not an essential
feature of the theory. Evidence to support this view is found in the
absence of synaptic junctions in the ganglion of Corti and the close
resemblance of the activity of individual fibers of the eighth nerve to
the amplitude function at any specific point on the basilar membrane
when excited by different frequencies. 4

Alternately it would be within the frame of this theory
to postulate that several hair cells are innervated by the same nerve
fiber and that a signal is conveyed only by correctly spaced triggers at
the separate hair cells. As far as the basic theory is concerned, this
possibility would be equally valid. For reasons stated in the preceding
paragraph it is co*sidered less likely.

IV DISCUSSION

The theory developed above will qualitatively explain
the fine frequency resolving power of the ear and at the same time ex-
plain the ear's sensitivity to random noise and its ability to distinguish
between different combinations of tones.

Furthermore, several hitherto incompletely explained
observations are utilized and their function indicated. These include
1) the travelling wave nature of the membrane vibration, 2) the place-
ment of nerve fibers parallel to the membrane with their cell bodies
further from the windows than their receptors, 3) the existence of
junctions without synapses in the ganglion of Corti.

Quantitative estimates of resolution of the ear based
on the operation outlined have not yet been undertaken. The task would
be somewhat easier if the curves in Fig. Z were more uniform. These
curves were rather crudely obtained using a protractor to measure the
slope of the phase distance curve of a small picture in a journal. There
also exists the possibility that these curves were slightly influenced by
the hole which had to be cut into the wall of the cochlea to make the
observations. B&k6sy was careful to minimize the effect of the obser-
vation hole on the displacement distance function by making measure-
ments for different size observation holes. It is not quite clear whether
the effect on the velocity dispersion of the travelling wave is equally
unaffected. The theory does not require uniform dispersion so long as



the phase velocity of the travelling wave changes with frequency at
any point on the membrane. This is undoubtedly the case.

To obtain quantitative estimates of the performance
of the model we need to know the exact displacement-phase-frequency
function of the membrane motion at every point. Furthermore, we
need more data on the number of interconnections at synapses and
their tolerance to slight departures from precise simultaneity. Con-
versely if some of these factors are known some conclusion may be
obtained concerning the others by comparing results of different
assumptions with subjective information on resolving power, critical
bands, beats, beat tones, missing fundamentals, etc.

It is quite likely that some of these subjective pheno-
mena may now be explained without resorting to an assumption of a
non-linearity in the aural mechanism. This would be very desirable.
More work is required in all these directions.

Several theories on the motion of the basilar membrane
have been put forward ever since B&k6sy described the motion. The
most prominent of these theoretical investigators are J. Zwislocki;
Peterson and Bogert; H. Fletcher; and Caldwell, Glaesser and Stewart.

1) The theory of Zwislocki 5 starts off with the
measured compliance function of the cochlear duct (due to the stiffness
of the basilar membrane) its mass, and the resistance and mass re-
actance of the perilymph in the scalae on each side of the duct. The
mass of the cochlear duct is not a very important factor. It is assumed
to be constant per unit length according to the observations that the
area is approximately constant.

The theory yields a displacement function close to the
observed one. The velocity of the wave propagating along the membrane
is however entirely different. Apparent gross agreement cited by
Zwislocki on closer examination is poorer than claimed; for Zwislocki
compares the velocity of propagation predicted for a 1000 cps tone with
the observed propagation of a pulse. He thus compares group velocity
with phase veloctiy. Zwislocki's theory does not predict the very sharp
change in velocity near the point of maximum displacement observed
(and required by our new hypothesis for fine frequency discrimination).
His formula could be adapted by changing some of the parameters in
particular the resistance factor of the perilymph. If this is increased
by an order of magnitude, velocity behavior can be made to conform
qualitatively with observation.

Z) The theory of Peterson and Bogert 6 also uses
the observed stiffness function of the membrane and a cochlear duct of
uniform mass per unit length in a cochlea with scalae of uniformly de-
creasing cross-section. The velocity of propagation of the membrane
motion is predicted in this case to decrease precipitously near the
resonant point in conformity with observation.



3) Fletcher 7 on the other hand assumes the
mass per unit length of du*t to be proportional to the square of its
width. The stiffness function is fitted to db served data. The final
results are obtained by a numerical iterative process and show fair
agreement with observation.

4) The theoretical development by Caldwell, 8

Glaesser, and Stewart attempts a more precise estimate of the mass
per unit length of cochlear duct. The loading effect of the fluid in the
scalae is estimated from a measurement by Bhk6sy. The membrane
stiffness function is then adjusted so that the final model has the correct
.amplitude frequency-position function.

6 5) A totally different approach is due to
Flannagan who tries to match the observed amplitude-velocity-
frequency-position functions with mathematical expressions. This very
attractive approach must also be used with caution. Both Fletcher
and Zwislocki find the frequency-displacement function to depart from
a uniform logarithmic function near the low frequencies (in the vicinity
of the helicotrema). Unfortunately it is only in this region, below 300
cps for which measurements have been possible.

The possibility of a correlation type of Aalysis by the
ear has been suggested before by de Rosa and Vallese. 't However,
the mechanical motion of the fluid within the cochlea assumed by them
is at variance with the actual observation of von Bk&sy.

V APPLICATION

All laboratory analyzers depend on the amplitude
frequency function of some form of resonator. Resonators are either
broad band (low Q) and have poor frequency resolution or they are
sharply tuned and have a poor time resolution, ringing for an appreci-
able time after excitation. The ear achieves both good time resolution
and sharp frequency resolution evidently with a highly damped mechan-
ism. It seems very plausible that phase information discarded by
laboratory equipment may be used by the ear to achieve the superior
performance. It thus becomes possible in principle to design
analyzers with an entirely different method of operation having desir-
able characteristics impossible to achieve with any technique now in
use. Such a piece of hardware would consist of a dispersive element,
delay lines and adding circuits. Conversion to a pulse code modulation
as is known to exist in nerves may also be necessary for such devices.
In practice such a system would be very elaborate.



VI CONCLUSION

The hypothesis of summation of delayed signals from
several closely spaced points on the basilar membrane has been shown
to elucidate some puzzling phenomena regarding the hearing mechan-
ism. The concepts indicate entirely new avenues of approach for
devices. The support of the Electromagnetic Warfare and Communi-
cations Laboratory is greatfully acknowledged.
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Peripheral Neural Mechanism of Hearing in the Monkey.

Yasuji Katsuki, Nobuo Suga and Masahiro Nomoto

Department of Physiaiogy, Tokyo Medical and Dental University
Tokyo, Japan

Among the neurons at various levels in the brain along the auditory
tract, the nature of the primary neurons has not been studied well due
to the difficulty of their approach. When we were recording responses
of a single neuron from the cochlear nerve of the monkey, Macaca iris
and It. cyclopis, an unexpectedly short latency was noticed in the high
frequency neurons, ranging between 1 and 2 msec. By the histological
studies, it was confirmed that the cochlear nerve of the monkey is
aImost exclusively composed of the axons of the primary auditory neurons
in contrast with those of cats and guinea pigs ' It is, therefore, rela-
tively easy to obtain a great number of responses of individual primary
neuron from the monkey.

Each primary auditory neuron of the monkey has a response area
which covers a very wide frequency range of sounds just like in case of
cats and guinea pigs. The shape of this response area in reference to
the intensity and frequency of sound is reasonably thought to be de-
cided, primarily by a vibration mode of the basilar membrane, which was
revealed by von Bekesy (1943) and secondarily by an innervation mode of
the primary auditory neurons to the hair cells, which was disclosed by
Lorente de No (1953) and others. Each of these areas has a peak value
called the characteristic frequency (CF).

Functional organization of the cochlear nerve fibers. When a super-
fine g ass-pipette electrode was inserted into the cochlear nerve from
the dorsoposterior side at the region where the nerve just comes out
from the internal meatus, the nerve fibers with the CF of hundreds
cycles were encountered at first. Then, the OF of the fibers gradually
changed from a low frequency up to about 20 kcps, when the microelectro-
de advanced across the nerve bundle. The fibers coming from the apex
and those from the basal turn were clearly lined up along the axis of
the advanced electrode, the former at the dorsoposterior side and the
latter at the ventroanterior side of the cochlear nerve. As might have
been expected, a clear tonotopic localization was proved to exist in
the cochlear nerve. Thus, the cochlear nerve sends the information on
sound to higher levels of the brain without destructing the fixed
space-relationship among the neurons.' In accordance with our expansive
investigation in the discharge pattern, it was found that the nature of
a neuron shows a strong resemblance to those of some.neurons nearby it-
self. For example, a group of neurons in which the similar shape of
the response area was obtained, was located in restricted regions. The
same event could be also observed in the inhibitory phenomena which
will be described later. It is, therefore, thought that the cochlear
nerve bundle is constructed in mosaic work and each small group of the
neurons shares a different function, though the function overlaps more
or less.

Relation between the anatomical structure and the discharge pattern
in the primary auditory neuron. The distribution of the thresholds of
neurons at tneir aF s was treated statistically in the neurons collected.
As shown in Fig. 1, in the case of neurons provided with the CF's in
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lower and intermediate range of sound frequency, the histogram in re-
lation to the thresholds shows two peaks; the neurons are separated
into two groups with low and high thresholds, the calculated curve of
the normal distribution being represented in full lines. It is common-
ly accepted that the inner hair cell in the cochlea has a higher thresh-
old than the outer one, because the former is located at the edge of the
basilar membrane while the latter at its middle part where the aplitude
of the vibration is larger. Accordingly it is proposed that two groups
of lower and higher threshold in our experiments originate from the
primary fibers innervating the outer and the inner hair cells, respective-
ly. But the neurons with high CF's could not be divided by the same
treatment. It seems that there is little difference of the movement
between the outer and the inner hair cells in the higher frequency range,
because the width of the basilar membrane become mach narrower at the
region near to the window than at the apex. For this reason, the group
with high CF's may be assumed inseparable!,l

At the next stage, the change in the number of impulse discharges
was investigated in reference to the change of sound intensity. After
the measurement of the response area of a neuron, frequency of sound
was fixed at the CF of the neuron. Then, the records of the responses
in that neuron were taken to each sound with a different intensity, and
the number of impulses were counted to find the relation between the
sound intensity and the impulse frequency. As the intensity of the
stimulus became stronger, the impulse frequency increased rapidly in the
case of the high threshold group. On the other hand, there was, in
general, a tendency that the rate of the change of impulse frequency
became smaller in the case of the neurons with low thresholds. But this
rate of increase of the impulses showed much variation among the neurons
belonging to the low threshold group, so that we could not find out any
remarkable functional difference corresponding with the changes of the
rate. Then, the relationship between the sound intensity and the impulse
frequency was measured at various frequencies of sound in about sixty
neurons. As shown in Figure 2, two types of the neurons were differ-
entiated in the low threshold group; one type has the same trend of the
increment of the impulses at any frequencies according as the intensity
of sound is increased and the curves of this type are parallel, whereas
the other has the different inclinations at varied frequencies and,
especially, show a gentle slope in the neighborhood of the CF. Both
types are tentatively named "parallel ramp type" and "crossed ramp type",
respectively.

Recently van Bergeijk at the Bell Telephone Laboratories performed
the eitperiments by means of the electronic nerve-model called a nepro-

LMe (Harmon)! 1 In his experiment, the external spiral fiber innervalng
many outer hair cells in the cochlea was simulated by the use of the
neuromime and the electrical analog of the basilar membrane built by
Bogert.

The following was predicted by him; when all arbors of the single
external spiral fiber fall into the maximum excitation by the sound
stimulus at the CF, the fiber presents a more gentle slope in the rate
of increase of the impulse frequency related to the sound intensity than
that in the case of the sound with other frequencies. This fact is ex-
plained by the following reason; in the fiber with convergent arbors
such as an external spiral fiber, if each arbor fires at a high rate,
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the impulses coming fron every aroor multiply the probability to collide
with each other at the converqent junctions of the arbors, so that the
final output of the fiber does not become a simple sum of the output of

each single arbor. Of course, if the impulses through the arbors are
conducted at a very low rate, the probability of interference is so,all.
Thus, the output of this fiber, the iVmulse frequency, does not increase
so rapidly as compared with the increase of the input, the intensity of
sound.

It is reasonable that the fiber with many convergent juncticris
where the collision of the iMulses occurs, exhibits a gentle slope in
the stimulus intensity-impulse frequency relation, when each arbor is
excited by the sound at CF. T,hen a part of arbors is, however, excited
by means of sounds wth other frequencies different fro-q the OY, the
slope becomes more steeper than that at the GF, because of the decreiient
of collision sites. It is, therefore, accentable that the subFroup of
the neurons called the crossed ramp type in the low threshold group
consists of the external spiral fibers whereas the subgroup called the
parallel ramp type in the low threshold group consists of the ext!rnal
radial fibers. It is needless to say that the high threshold group ccrre-
sponds to the inte rnal ra-Jial fibers.

It may be perjeived that those groups have different roles to send
the information on sound, even thouji those roles are not strictly inue-
pendent of each other. At the present time nobody knows exactly what
kind of information is carried by each group of the fibers, respectively,
except that a functional uifference called a pitch-loudness coordi.ate
system in the basilar membrane have been advocated Uy von ukesy. The
spiral fiber might be mainly respc:nsible for the information concerling
the intensit r of sound and the radial one for the discerLible infcriration
on pitch sensation.
Inhibition: Until now, it has been thouavt that the inhiicitio., among
the primary auditory neurons never exists. Recently wre report-d the on-
off response of the neuron and even the suppression of spontaneous dis-
charges during sti.ulation in the monkey,a * Furthermore the iribition of
impulses was clearly ooserved in a part of the primary fibers.

The impulse discharges of the primary neuron elicited by a continu-
ous pure tone with a frequency near the GF, could be teporarily suppress-
ed by the second tone burst stimulus, if its frequency and intensity were
properly chosen. In many cases, the strong second tone burst with a low-
er and rarely hipier frequency than the OF was effective for the oc-
curence of the suppression as shown in Fig. 3. The effective range of
the second stimulus related to the intensity and frequency was restiricted
in a small region of the response area. The latency of this phenomenon
ranged within a few msec. Hence, it is very difficult to think that this
inhibition is due to the effect of Ras.mussen's efferent fioers, which was

nr,cently disclosed by Fex.C4)

Two possibilities can therefore be considered to e)qlaix, this kind
of inhibition; one is a modification of the vibration mode of the basilar
membrane by two pure tone stimuli, and the other is so.-e neural mechanism
in the auditory tract. But this inhibition became unclear proviaed that
the second tone lasted as long as hundreds msec. 'When the order of de-
livery of two sounds was changed, the inhibition could not be observed.
Accordingly the forrer probability seems to C6 io,urobable. Since s1Lt,
Sj6strand, and others suggested that there is so-me possibility of iutual
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connections of neural elements at the level directly beneath the hair
cells, we incline to think that the inhibition originates fro.r a inter-
action among the dendrites of primary neurons, although it is necessary
to investigate this phenomenon more precisely. Generally s2eaking, the
term 'inhibition' means nowadays the chemical or electrical synaptic
inhibition. The nature of the phenomenon described here is still dim.
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Legends

Fig. 1. Distribution of the thresholos of primary auditory neurons at
their tF's. lie abscissa and ordinate indicate the threshold (relative
intensity) and the number of neurons respectively. Solid curves show
calculated ones of normal distribution.

Fi-. 2. Crossed r,Ira type (left). and parallel rarvp type (right)
absc1ssa and ordinate show the intensity of sound and the number of
impulses per sec. resnectively. Note a gentle ramp at F,(1.3 kcps) in

left dia'7ram.

FiF. 3. Lrwer column at left side represents a unitary discharge of a
pri:,iary netirrn by a continuous tone- with 1!.3 kcps and 77 db. Upper
column at left side shows inhibition obtained by addition of a tone
burst With R0 cps for about 100 msec. ight column shows the responses
tc only a tone burst$ of 800 cos in 80, 75, 70, 65, 60 and 55 db, re-
snectively. (in th'.s figure, U db is 0.C002 dyne/cm).
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The Relations Between Excitatory and Inhibitory Retinal Response as Determined

by Induced Negative After-Image Phenomena

by

Martin H. Keeler, M.D.

Human vision can detect stimuli above 10- 6 millilamberts in bright-

ness and can respond to and tolerate stimuli slightly of above 10
4 milli-

lamberts; a ten billionfold range. This is accomplished in part by what

GranitI referred to as the "duplex function of the retina". In the sco-

topic, or dark adapted state, effective at levels of brightness below
10-2 millilamberts, retinal mechanisms based on rod receptors mediate

response; their function is one of integrating the effects of low level

stimuli. These systems can distinguish neither color nor fine detail.

In the photopic, or light adapted state, effective at brightness ranges

over 40-2 millilamberts, retinal mechanisms based on cone receptors medi-

ate response; these distinguish color and detail. There is considerable
inhibitory function involved in photopic vision; if this were not so,

response at any moment would be confounded by that of the previous instant.
This difference in scotopic and photopic vision can be appreciated by ima-

gining a man swinging a light, 100 times brighter than the prevailing illu-

mination on a moonless night and at noon. In darkness, but not in daylight,
a continuous loop of light would be perceived.

The anatomical substrate for summation and inhibition consists of

several layers of neurons and their synoptic ramifications interposed

between the rods and cones and the ganglion cells of the retina, the axons

of which are optic nerve fibers. Differences have been demonstrated be-
tween the intermediate layers subserving cone and rod receptors.

2

Induced negative after-images which depend on inhibitory retinal
function are perceived, when after sufficiently lenghty fixation of a sti-

mulus of suitable brightness, one looks at a suitably illuminated white
field. In this situation, the color complementary to the original stimu-

lus is perceived. There are circumstances in which the inhibitory effect
of a visual stimulus is greater than its excitatory effect. Davson3 des-

cribes how if presentation of a small white stimulus is followed in 50
milliseconds by presentation of a larger white stimulus, a dark spot on
a bright field is perceived. This may be explained on the basis that the

inhibitory response to the first stimulus partially blocks response to

the second and that the inhibitory response to the second stimulus par-

tially blocks response to the first; as the ratio of inhibition to exci-

tation is greater for the two stimuli than it is for the second alone, a

darker spot is perceived.

In 1897 Bidwell4 reported that when a colored, a white, and a black

stimulus are repeatedly presented in that order for .017, .10 and .083

seconds respectively there are brightness values of the stimuli at which

only the complement of the colored stimulus is perceived. This finding
is of experimental interest as decisions as to color perceived are more

readily made as well as accurate and reliable than are decisions as to

intensity or duration of after-images. As it is beyond the scope of this
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presentation to exhaustively consider the factors and the possible ex-
planations involved, a tentative explanation that has the advantages of
parsimony, simplicity, and consistance with the data will be presented.
The effect may depend on the inhibitory response to a colored, for ex-
ample red, stimulus blocking response to the red components of the white
stimulus. If this inhibition of response to red is greater than the ex-
citatory response to the original red stimulus, the complement of red,
green is perceived.

In 1950 Lehmann5 reported, using apparatus similar to that of Bid-
well, that if the colored stimulus were maintained at a lower but fixed
fraction of the brightness of the white stimulus as the brightness of
both are simultaneously varied there is a threshold below which only
the colored stimulus and above which only its complement is perceived.

As this technique might provide information pertaining to the re-
lation between excitatory and inhibitory retinal function it seemed in-
dicated to determine the curve of brightness of colored vs brightness of
white stimuli where perception reverses rather than, as accomplished by
Lehmann, determine one point on the curve. A perameter sensitive to
change in the relation between excitatory and inhibitory function would
be useful in neuropharmacological and psychopharmacological studies; as
the retina is by phylogeny and ontogeny part of the central nervous sys-
tem findings pertinent to other nervous tissue.

Apparatus was constructed that permitted the repeated presentation
of colored, white, and relative absence of stimuli for .016, .010 and
.083 seconds respectively and independent variation of the brightness
of the two stimuli.6 The system is viewed through an artificial pupil
smaller than the myotic human pupil so that changes in the observers
pupillary diameter cannot alter retinal illumination. A colored spot
intercepting the central 1 1/20 of a 100 field is observed.

Figure one indicates, for two observers, typical of eight, the
brightness values of a red and of a white stimulus at which green rather
than red is first perceived when the brightness of the red stimulus is
held constant and that of the white stimulus increased. Immediately
successive determinations of points on the curve are reliable; values
vary, however, from hour to hour. Inspection of these curves reveals
that a change in the brightness of the red stimulus requires a much
smaller change in the brightness of the white stimulus for reversal and
that the curve has descending and ascending limbs. In considering these
characteristics an assumption will be made, to be examined later, that
an increase in the ratio of the inhibitory response to the colored sti-
mulus will cause the complement to be seen at a lower brightness level
of the white stimulus.

That a given change in the brightness of the red stimulus requires
a lesser change in the brightness of the white stimulus for perceptual
reversal indicates that, in this range of vision, a given alteration in
brightness produces a lesser change in magnitude of inhibitory response.
That the curve has a descending limb indicates that in this range an
increase in brightness increases inhibitory more than excitatory response.
That the curve has an ascending limb indicates that, in this range, an
increase in brightness increases excitatory more than inhibitory response.



-3-

These explanations although consistent with the data, are tentative.

Similar curves are reported when colors other than red are utilized
but reversal is most clear-cut with long wave-length stimuli. If the
brightness of the colored stimulus is held constant and that of the
white stimulus decreased till proper color rather than complement is
perceived a curve of similar shape but occurring at lower brightness
levels of the white stimulus is reported; light adaptation is probably
responsible for this difference.

Reversal also occurs when the brightness of the white stimulus is
held constant at that of the colored stimulus varied but, as a relatively
great change in the brightness of the colored stimulus is required for
reversal, end-points are indistinct. The lower limit of the curve varies
among individuals and occurs when perception of the transitional colors
and white obscures perception of reversal. The upper limit also varies
among individuals and occurs when the color of the stimulus and its con-
plement are alternately appreciated. The limits might be changed by al-
tering the duration of the exposure of the stimuli.

The assumption was made that as the ratio of inhibitory to excita-
tory response increases the complement is perceived at lower brightness
levels of white. The opposite assumption that an increased ratio of
inhibitory to excitatory response would result in the complement being
perceived at higher brightness levels of white would imply retinal inhi-
bition as less effective in the mid-range of the curve and most effective
at low and high levels of illumination. This is a non-functional arrange-
ment for low intensity stimuli and contrary to experiences that positive
after-images do interfere with perception at high levels of illumination.

Psilocybin, a hallucinogenic drug, also causes the accentuation
and prolongation of after-images. Table one indicates the effects of
.2 milligram per kilogram of body weight, the usual experimental dosage,
on the brightness of the white stimulus at which green is first per-
ceived when a red (620mu) stimulus 8.5 millilamberts in brightness was
utilized. The increases produced by the drug itself and by the drug as
compared to a control situation would occur on less than one in two
hundred occasions (the one-tailed Wilcoxin Signed Rank Test was used to
test significance.) Neither subjects nor the investigator were aware of
the signigicance of this after-image phenomenon. A doubleoblind experi-
ment was not possible, as in our laboratory the presence of this drug in
this dosage level is almost unfailingly known to subjects and investiga-
tors. That Psilocybin so profoundly diminishes inhibitory effect, is
determined by this method and this interpretation of the results of this
method, is of interest as the administration of the drug often results
in the hallucination of colors and pattern which might be explained on
the basis of the release of cone-based mechanisms.

These studies were accomplished with the assistance of United States
Public Health Service National Institutes of Mental Health Grants
MH-K-3-18609 and MY-6362.
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Subject Control Psilocybin (D-C)

a -5.3 +4.0 +9.3
b +3.3 +32.0 +28.7
c +2.0 +12.0 +10.0
d +2.0 -5.8 -7.8
e +3.3 +3.0 +6.3
f -7.3 +26.3 -19.0
g -14.2 +36.0 +21.8
h -.7 +25.3 +24.6
i -10.0 +37,3 +47.3
j +2.0 +3.3 +1.3
k -.7 +12.0 +11.3

Avg. -2.0 +8.4* +8.7*

* P < .005

Table 1. Changes in brightness (millilamberts) of a white (28600K)

stimulus at which green rather than red is first perceived

when a red (620 MU) stimulus 8.5 millilamberts in bright-

ness, a white stimulus, and relative absence of stimulus are

repeatedly presented for .017, .10, and .083 seconds res-

pectively. "Psilocybin" refers to differences between

readings taken immediately and 90 minutes after the admin-

istration of a .2 milligrams per kilogram of body weight

of Psilocybin. "Control" refers to differency between

readings 90 minutes apart in a non-drug situation. "D,C"

refers to the differency between the drug and control sit-

uations.
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A DECISION PROCEDURE FOR THE LINEAR
SEPARABILITY OF AN N-ADIC

BOOLEAN FUNCTION

A. Definition of Threshold functions:

Let a boolean function f be specified by a truth table of the

form:

x1 x2  ... Xn f

0 0 ... ... 0 $

1 .. ... 1 $'
n
2 -1

Let 0 be a real number. With the above truth table and the number 0

we associate a system of linear inequalities
f

which consists of the expressions:

F- .. ZI0, i = 0 o. 2n -1
n- ijwjF- i 0

j=l

whereC:J. is the relation < if 1. = 1 and > if 4' = 0. The n-tuple

(Qil- .in) is the value (xl. .. x) takes on the i-th row of the

table. We say f is realizable by a threshold device with threshold 0
if and only if the system

f

possesses solution vector (ws...'w n  where w. is a real number for

j = 1.. .n. A solution to the system
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f

Ye

is a set of weights for the input lines to a threshold device that reali-
zes the function f. Note, if f is realizable by a device with threshold
0 # 0 then and only then is f realizable by a device with threshold
sgn (0).l. To see this, consider a typical expression from

f

n

n ijwj Ci= ..
j=l

n

This expression holds if and only if .w 01 holds. But

j=l

0 el = sgn (0).l.

Thus f

0

has a solution if and only if

f

does. We shall deal with the case where 0 0 shortly.

Observe, if f(o, ..., o) = o, then

f

Y0
n

has no solution when 0 < 0. This is true because O 0.w.<O<O is never

j=l

-2-



satisfied. When 0 > 0, we may delete the expression

n
nY 0.w <0,

j=l

for it is satisfied by any real number n-tuple. On the other hand, if

f(o, .. ,o) = 1,

f

0

does not have a solution if 0 > 0. If

o< 0, O.w >0

is always satisfied. Therefore we may delete from

fI,
0

the inequality, n

X, , oj w [--Mo0,

j=1
f

provided the value of f(O,...,O) vis-a-vis 0 does not render 7 un-

solvable. We obtain a system of linear inequalities sf  from 0

f

0
n

by replacing all inequalities of the form j.w by inequalities

of the form j=j =1

ijw > 0.

j=l

- 3-



f

The relation between and S is established by the following lemma.

Lemma 1. e

Let Xi - k be linear functions which map a vector space into the
real numbers. Then the three systems of linear inequalities

S1: S2: S3

x I (w)>e x1 (w)>e xI (w)>6

Xk' (w)>0 xkv (w)>G Xki (w)>e

xk'+ 1 (w)<0 xk'+ 1 i(w)<- e  xk'+ 1 (w)<

x (w)< Xk(w)<O xk (wX<

are all solvable or are all unsolvable, provided 0 # 0.

Proof: If S has a solution wo, wo  is a solution to S 1 and S2
Now suppose has a solution w . Let c = Min (X.(w )-e. Note
that o >0 .  0 i=K'+l..2.K o

Let c be a number such that O<c<c and for which O-c ha the0
same sign as 0. Let 0' = 8-E and observe

xI (wo )>0'

XK, (w)>O'

xK'+l (Wo)<0'

Xk (w )<0 '

- 4 -



Since 0 A 0 we can choose E so that e' A 0. Divide all inequali-
ties by l'l and multiply by lel. We get

x l001/of I' Wo0)> lei I,' I"e' :o

XK' (101/le,-i-wo)>0ll l, i.0'=O

'K+ l(0l/01e,l.wo)<ll le,1.e'=e

x K(10/1 I/ , .wo)<lejl1ol-e,=

This result follows from the linearity of X,... Xk and the fact that e
and e' have the same sign. Thus if S has a solution wo, S3 has
a solution

Ie I/ ,* "wo.

By a similar proof, one can show that if S2 has a solution then S3
has a solution. The lemma is proved.

Corollary. f

If is solvable then and only then is S solvable, pro-
vided O. Y 0

0

Lemma 2. f

If > is solvable then is solvable but not conversely.

o -I

f

Proof. Write in the form:

0

'K (w)>e

-5



XK,+1 (wX<0

x K(wX<O

f

Suppose w is a solution to .We can surely find negative 0 such
that: 0 X

0

x I (wO)>e

x K'+ (w)>e

XK(wo)<O

Divide all the inequalities by 101, and -1 will appear on the right,
and

f WO//j01

is a solution of '7. Let g (x,y) -x.-y. The truth table of g is:

0 o 1

o 1 1

1 0 1

1 1 0

Sconsists of the inequalities

0
o.W +1.?-
l.W +0.?-

1 .w1+1 - <*20

V has no solution since the first two inequalities imply w +w2j' which

0
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g

contradicts the third inequality. On the other hand has a solution,

w = 3/4, w2 = 3/4. This proves the lemma .- l

Lemma 2 tells us that it is not necessary to consider thresholds
equal to zero. For if a function is realizable with threshold zero, it
is realizable with threshold -1.

THEOREM 1. If a boolean function f is realizable with positive thresh-

old then -f is realizable with negative threshold, and conversely.

f
Proof. Consider an inequality of f,

n
tij" 1.

j=l n
_fiw<

The corresponding inequality of S_1 is tijw? -1. Let w* be a solu-
tion to S Then xl' j=l

n
t ijwj

J=1j=l

if and only if

Yn tij (-wj*)>< -1.

j=l

Thus -w* is a solution to S 1 and conversely. This proves the lemma.

Collary. A boolean function f *s realizable by threshold device if
and only if one of the systems Sl s f  f byS is solvable.

1 1 Solvable

B. Necessary and Sufficient Conditions for S To Be Solvablee
Consider the system Sf  for some boolean function f and e=l or -1.

The solution space of Sf qs the intersection of a finite number of open0
half spaces, therefore open itself. Let w be a solution vector of

s . We can put an n-sphere about w which is contained entirely within

tKe solution space of Sf . Within this sphere we can find a vector w*

all of whose components are rational. Thus we may state

Lemma 3. Sf is solvable if and only if it has a solution vector all of
0whose components are rational.

Now set w* = P..o where pj,q. are integers and j=l,..., n. Let
j fq i i

-7-



A be the set of integers i, such that f has value 1 for the ith

row vector of its truth table. Let A' be the set of i's for which
0<i< 2n-i and i E A. Consider the expressions of Sf  for which i E A,
namely

n
n1- t ijwj >0

j=l

For wj = w .* we have

n n

ij 7 ijpj qj 
j=l j=l

Let q be the l.c.m of Iqll .... Iql. By multiplying both sides by q
we get,

n

7, t,jP*j -eq>o,
j=l

where p* is the integer pj.q . For i E A', we can derive the in-
equalityj qj

n
t,j* ij P-eq<0"

j=l

On the other hand, consider the system of inequalities T consisting
of expressions

n+l

7i >0 r i c A

j=1

n+l

7i for i c A'

j=l

where yij = tij for all i and for j=l,...,n, and i,n+1 = -e for
all i.

-8-



Lemma 4. Tf has a solution w w...,w* I where w* is an integer,
0 1' ' n+1'if and only0 if Sf has a solution.e

Proof: We have already shown the solvability of Sf implies that Tf

has an integral solution. Now suppose Tf has an integral solution
w*,...,W*n Two cases arise:
1'" n+l*

Case 1: 0 E A: that is to say 0 > 0. But by definition of Tf

we require

n

n7ojW*j - en+1> 0

j=1

or what is equivalent,

0 > 0eWn+1

Since 0 = 1 or -1, the condition 0 > 0 implies 0 = -1 and w*n+l is

positive. Dividing all the inequalities of Tx by wn+ I yields
a solution to Sf, namely w*

/W*n+ I as j = 1..., n.

Case 2: 0 c A, that is 0 < e. This means e = 1. But we require
o * = W*n+' Once again we obtain a solution for Sf.

0< Wn+1I  +Ie

The system T- is a particular instance of a homogenous system of inequali-
ties. A homogenous system H is one of the form:

X1 (w) > 0

XN(w) > 0

where

n

Xi(w) =Z.ijwj, i = 1 ... N

j=l

and 'X are integers. We shall give a necessary and sufficient condition
for a homogenous system to have a solution vector with integral compo-
nents.

Suppose we augment a first order predicate calculus with enough formal
axioms to describe the domain of integers (positive and non-positive) and
axioms to formalize the relations of inequality. Let P be such an aug-
mented predicate calculus. Then there are well formed formulas in P
which correspond to inequalities X(w)>O, where X is a linear function

- 9 -



with integral co-efficients. Consider now the homogenous system H de-

fined above. The solvability of H can be expressed by the formalism

3w .kl(w)>0 A. X 2 (w)>O A. ..... A. XN(w)>O I

therefore the non-solvability of H can be expressed by the formalism
(in P)

I l(w>O -A. . ...... A. X n(w)>O

Since P contains a first order predicate calculus, this last formula is
equivalent to

(w)[Xl(w)>O .A. .... A.X,_ (w)>O . XN(w)<]

and

(w)[Xl(w)>O .A. ..... A. XN(w)>O. D :XN (w)>O.A. XN (w)<.O

Among the theorems of P are the following:

T1  X (w)>O .A4L(w)>O D .X(w)+4(w)>O

T2  X(w)>O .,.k>O ) .k. X (w) > 0

T3 Fk . X(w) > 0 .A. k>OD. X(w)>0

T4  X (w) > O. -X (w) < 0

These formal theorems may be used as derived rules of inference in other
formed theorems of P. Now the unsolvability of H is equivalent to show-
ing either

Xl(w) > 0, .... XN_l(w) > 0 H %N(W)< 0 .XN(W)>O
P

is true, or

XI(w) > 0, ...,XN(w)>OHPXN(w)<..XM(w)>O

is true, where [ means "formally proves". In the course of such proofs,
the variable w must not be quantified.

- 10 -



Theorem 2: X1 (w) > 0, ... , XN(w) > 0 X(w) > 0 is true, using TI,. . T
as inference rules if and only if there exist non-negative integers
M, M1 . . .M N  such that

N
M.X\(w) = Mi,

i=l

and furthermore not all of MI...mN shall be 0, and M > 0.

Proof: Suppose the required integers exist. Rearrange the subscripts
on the integers such that M. > 0 for i = 1 ... N'< N, all other M!s
(if any) being 0. Then I I

N'

M.X M.%..
i=1

We can now construct the proof of the formal theorem as follows:

X1 (w) > 0, MI > 0 1VMX 1(w) > 0

XN' (w)> 0, MN, > 0 F MN" XN (w) > 0

Ml.l(W) > 0 . M2 X2 (w) > 0 F Ml.X 1 (w)+M2 X2 (w)>0

M 1 XI(w)+ -+ MN,  l'N, _l(w)>O, V N ', (w)>0

N'

i XMii w > 0

i=l

X1 (w) > 0 .... XN' (w) > 0 F X (w) > 0

Xl(w) > 0 ... XN'(w) > 0 .... XN(w) > 0 F X (w) > 0

- 11 -



Now suppose Xl(w)>0, ..., XN(w)>0. If the formal proof is one step
long, X(w)>0 is Xi (w)>O for some i, therefore Xi (w) is X(w).
In such a case take M = I and all other M's to be 0. Now suppose the
proof of X(w)>O from XI(w)>),... XN(w)>0 requires k>l steps. AssuTe
for all intermediate formulas X*(w)>0 in the proof, there exist M*Ml
... ,M*N which fulfill the theorem. The following cases must be considered:

Case 1) X(w)>O is derived from X*(w)>O and X**(w)>O by T1 and modus
ponens. Then, X(w)=X*(w)+X**(w). By the induction assumption, there
exist M*>O, M*i ... I all > 0 but not all 0, and M**.
all >0 but not all 0, such that

N

M*X*(w) =\ M* X (w) and
i=l1

N

M**X**(W) E X (w)

i=l1

From this it follows

M** M*(%*(w) + >**(w)) = M** M* X*(w) + M*M**%*(w)

and 
N

M** M* X (w) (M** M* + M*Mt*) X(w)

i=l

Let M=M*M** and M.=M** M* + M* M**
1 1 3

for i = I ... N. Clearly these integers fulfill Theorem 2.

Case 2) Suppose X(w)>0 is concluded from X*(w)>0 by T2 and modus po-
nens. Then X(w)=k,%*(w) for some k>0.

n

But M*)X*(w) -=M*X.(w), hence
i

N
M*kk*(w)= k.MXi(w). Therefore, set M = k.M* and M. = k M*.1

i=l1

These integers satisfy Theorem 2.

T4 is not used unless one of the hypotheses were X.(w)<0. In this
case cnclude -Xi(w)>O by and modus ponens and thereafter use TVT2$
T3 *

- 12 -



We note the following:

if Xl(w)>O ... (w> F-X1 ,N< A.X(W)>O, then O(w)>0 follows from the
same hypothesis y; using T, and modus ponens. The function 0(w) is the
identically 0 function. This means there exists integers M 1 ... MN all
> 0 but not all 0 such that

N

O(W)=-ZM iX (w).

i= 1
N

On the other hand, suppose 0(w) Y7M,?,(w) and furthermore no X. is
identically 0. i

Then for some i, j, M i>O,M,>a.. In this case,

N

N.i (w) m)SZM iX i(W).

jAi

By re-arrangement we can make i = N, hence by Theorem 2

X l(w)>O . ... XN~(V)>oO (w)>0

if and only if

X l(w)>0 .... XN(w)>O F YNw)>0o

if and only if

X I(W)>O ... XN(W)>0 >.N1 (W)<0 *A. XN(W)>0O

We now state

Theorem 3. The homogenous system X (w)>O ... X(w)>0 has no solution if
and only if A.1(w)>0 ... XN(w)>O [- Ot;)>0. And Mhis holds exactly when
there are non-negative integers M, ... MN not all 0 such that

N

O (W)= Mixi (w).

i=l

When Theorem 3 is applied directly to the homogenous system '!we have
the corollary:e
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Tf has no solution in integers if and only if there exist non-negative0
integers M ...12n not all 0 such that

2n

i=l

where n+l

i (W) = X7ijwj for i EA

j=l

and

n+l

Yi(w)= "XYijwj for i c A'

j=l
f

Let f c B and consider the system T that is associated with the
system Sf. Thn system T consists of the inequalities

n+l

..ij*w >0, for i c A

j=l

and

n+l

Y ijwj < 0, for i t A 
(2)

j=l

The corollary to Theorem 3, Section B tells us T has no solution pre-
cisely when there exist non-negative integers M I n, not all of which
are zero, for which 1' 2

2 
n

a. M.Y 0, j = 1 ... n+l, (3)
i=l

where a. = 1 if i E A and a. = -1 if i t A
1 1

We recall that the vector (y. ... y. in) is the array of arguments of f found
in the i-th row of the truthltable of f. Thus a = 1 exactly when f
takes the value 1 on the i-th row.
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For j = n + I we obtain the expression

2n

=iMi(-G)=O, or equivalently,

2 
n

7.M. = 0
i=l

2 n

This means a iM, = UlMl. Recall that the 1
-st row has the entry (0,...,0).

i=2 
2n

If 0 > 0 then ce. = -1, hence -CM > 0. Therefore _aM> 0. If, on the

other hand, 0<0, Ithen a1 = 1 and i L-- -' 
i=lth

2 
n

X a.M.< 
0

i=2

From formula (3) above we can conclude

2 n

q.M.Y =0, j 1... n
i=l

But 7 1j = 0, hence we may assert

2 
n

cf Mi7 0, j 1 ... n.

I _ i j
i=2

We may now state a second corollary to Theorem 3.

Sf has no solution if there exist integers NI .... N2n such that
Ni>0 but1 2-1

2nl

i=l

and for which the following conditions D hold
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2 
n

(1) aiaNi_l Yij = 0, j = ... n
i=2

2 
n

(2) ai N i_l0 if e>0
i=2

2 n

(3) ceN <0 if 0<0

i=2

Let Jn+l be the set of n+l tuples of integers (positive, negative,
zero) and let j2n -l be the set of 2n-l tuples whose components are non-
negative integers. Both Jn+l, j2n_l can be effectively well ordered. f
Let T be the solution space of Tf and D be the solution space of D0.
Exactly one of T, D is non-empty. If T is non-empty, then f is a threshold
function. If D is non-empty, then f is not a threshold function. We
establish the following procedure:

(a) Check to see if the ith element of jn+l is in T

If yes, then T is non-empty.

If no, then
.th j2 l

(b) Check to see if the it element of J is in D

If yes, then D is non-empty.

If no, then set i to equal i+l and go back to (a).

Eventually, the procedure terminates for either J n+nT has a first element
or j2n-i has a first element. We can now state

Theorem 4. The problem of deciding whether a boolean function f is linearly
separable, is recursively decidable.
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Section C: An Application of the Main Results

We shall now state a sufficient condition for a function fcB to be
a threshold function. Let fEB and consider the truth table foro f:

n

x ... Xn f

0 ... ... 0 fI
0 ..... 1 0 f 2

1..... 1 f2n

th We refer to the l's and O's appearing under the variable x. as the
. column of the truth table. Let j be the smallest number j j for
which the following condition holds:

th

Condition A: Let i1 ... ik be the row numbers such that the j com-
ponent in each of the rows is 1. Condition A holds for j iff f. = f ...
=fik.

If no such j = exists, then Condition A is not satisfied by the function f.
If such j exists, strike out the rows i1 ... i to obtain a deleted truth
table. Let j be the smallest column nOmber A the deleted table for which
Condition A holds. If no such j exists, then f does not satisfy Condition2

A. If such exists, strike out the rows for which there is (in the
j2 thdeleted table) a 1 in the j column. We proceed to make deletions in

this manner as often as possible. If n deletions can be made, we say Con-
dition A is satisfied by f, otherwise not.

Theorem 5: If Condition A is satisfied by f, then f is a threshold func-
tion.

Proof: Let f E B and suppose f satisfies Condition A. However, assume
f is not a threshold function. Then by the second corollary to Theorem 3,
there exist non-negative integers N2 ... N2n such that

2 
n

Z N.>0

i=2

and

2 
n

a.N.k.. = 0, j =1 ... n

i=2
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-th .-th
where X D is the j entry of the i row in the truth table of f,and Ot1- 1 when fi = 1; a. = -1 when fi = 0. Let j = jl" Then

2 
n

ZI,N,X = a. N.= + N. = 0
i=2 i3.X.. = I iD.X.. = I

But this implies /. = 0, hence N. = 0 for all i such that X.. = 0.
i3.X.. = 1

A repetition of this argument for the remaining n-I deleted truth tables
shows

2 n

-N= 0/, =
i=2

which is a contradiction.

Example: Consider f E B3 defined by the truth table:

x 1  x3  f

(1) 0 0 0 0
(2) 0 0 1 1

(3) 0 1 0 1
(4) 0 1 1 1

(5) 1 0 0 0

(6) 1 0 1 0

(7) 1 1 0 1

(8) 1 1 1 1

Condition A holds for column 2, so we delete rows 3,4,7,8. The de-
leted table is:

x1 x2  x3  f

(1) 0 0 0 0

(2) 0 0 1 1

(5) 1 0 0 0

(6) 1 0 1 0

- 18 -



Condition A holds for column 1 of this deleted table so we strike out rows
5 and 6. The final table is

x1  x2  x3  f

0 o 0 0

0 0 0 0

It is clear Condition A holds for column 3, hence f satisfies Condition
A.

While Condition A is sufficient, it is not necessary. Let f c B3 be
the function xI x2 + x2 x + x3 x . This function is the well-known majority
function in 3 variables and it is certainly realizable by a single threshold
element. When we examine the truth table of f:

x I  x2  x3  f

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

We see that Condition A holds for none of the columns.

Condition A is not invariant under the group of inversions on the vari-
ables of a function. Consider, for instance, f(x,y), = x y. Let y be
transformed into y and define f*(x y) to be f(x,y).

The tables may be written:

x y f f*

0 0 0 0
0 1 0 0

1 0 0 1

1 1 1 0

It is well known that f is a threshold function iff f* is. Condition A
is not satisfied by f, but is satisfied by f*.

- 19 -
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TACTILE PRESENTATION OF VISUAL INFORMATION

I INTROICTION

Instead of dispensing with the human operator in many areas tech-

nological developments have placed new and more exacting demands on his

ability to discriminate and recognize complex patterns of information.

While vision and hearing have in the past been sufficient information

inputs to operators of control and communications equipment, in the

future there will be greater need for additional inputs such as the

tactile sense.

The aim of the research described here is to develop means of

presenting spatial images, normally perceived visually, to the tactual

sense. This paper describes the first step toward this aim: some

psychophysical experiments using small jets of air as tactile stimulators.

These stimulators appear promising because they may combine the fine

localization property of poke probe stimulation with the slight adaptation

of vibratory sensation.

Some of the dimensions along which tactile stimulators may noticeably

vary are frequency, locus on the body, intensity, and spatial and temporal

relationships with other stimulators. Two important phenomena in the

latter category are called apparent location and apparent motion. Apparent

location occurs when two airjets of different pressure are sensed as one

airjet located on the line connecting the two jets. Apparent motion

occurs when two airjets with different onset times are sensed as one air-

jet moving between two locations.

Similar effects have been noted by investigators using vibration

touch, and electrical stimulation. Bekesyl reports using two vibrators

on the forearm to obtain apparent stimulation of any point between

(apparent location), by producing a sharp impulse in each vibrator with

a short delay time between them. Bekesy2 also reports obtaining con-

tinuous apparent motion back and forth between two vibrators by vibrating

one at 50 cps and the other at 50.3 cps.

1



Geldard3 reports that one of his students (Sumby) used two vibrators

to obtain apparent motion of the stimulus from one vibrator to the other

when the two bursts had a 100-msec delay time between their onsets.

Gibson,4 using dc electrical pulse stimulation on the arm, reports ob-

taining apparent motion of his "apparent touch" sensation by varying

the current passing through one electrode with respect to the other.

Experiments have been performed to investigate the conditions under

which apparent motion and apparent location arise, and to determine some

of the temporal and spatial characteristics of airjet stimulation. These

results have served as a basis for the design of a system of 96 tactile

stimulators for the presentation of complex spatial-temporal patterns.

II APPARENT LOCATION

Using two air nAzzles spaced two to five inches apart on the dorsal

forearm, an experiment analogous to B ksy's on apparent location (two

short pulses with different onset times) did not give positive results.

Delay times of 0.05 to 0.50 second and pulse lengths of 0.05 to 0.45

second were used. However, the approach corresponding to that used by

Gibson with electrical stimuli (the simultaneous stimulation of two

spots) did result in reports of apparent location by all three of our

subjects. An experiment that was designed to calibrate this phenomenon

against the stimuli was performed.

Six ratios of left nozzle/right nozzle pressure were used. In the

average-error experiments, a grid was stamped on the subjectt s arm, and

the subject instructed to first attend to the stimulus and then to place

the pen on his arm and move it until satisfied that it touched the spot

that had been stimulated. Three subjects were used in the average-error

experiments.

The results are shown in Fig. 1, where the mean indicated location,

and one standard error of the mean to each side of the mean, are plotted

against the pressure differences of the two airjets. From Fig. 1 it is

apparent that results similar to Gibson's are obtained with airjet

stimuli. As the pressure in Nozzle A relative to Nozzle B was increased,
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the indicated location moved from B toward A. The spread of responses

about the mean was large for each setting. The experiment shows that the

phenomenon of consistent apparent location can be obtained by the simul-

taneous stimulation of theotwo locations on the arm.

Subject one (S 1) was also given a magnitude-estimation task in an

apparent-location experiment. He was stimulated under the same conditions

as in the average-error experiment, but was asked to indicate the location

of the sensation resulting from each stimulation by assigning a number

to it. The results of this experiment are also plotted in Fig. 1, using

the right ordinate, and are very similar to those obtained by the average-

error method.

The strength of the illusion of a single apparent stimulus in this
experiment is illustrated by the fact that, of the three subjects, S2

felt a single, blunt stimulus most of the time; S3 felt single, double,

and triple sensations, all apparent; and S through the entire series

of experiments lasting over six hours on different days, reported only

single-stimulus sensations.

Even after learning that the stimulus was produced by two jets of

air, S 1 and S3 continued to perceive the apparently single stimulus on

the arm, and S2 continued feeling sometimes one and sometimes two stimuli

on the arm. Further explorations with S 1 revealed that the only locations

of those tried (vertical and horizontal placement on the chest, diaphragm,

and stomach, and horizontal placement on the arm and leg) yielding any

apparent location phenomena, were the arms and legs, with the stimulators

placed along the longitudinal axes. S3 was able to experience apparent

location with horizontal and vertical placement on the chest and hori-

zontal placement on the diaphragm, as well as the longitudinal placement

on the arm. Also, the vertical placement on S 3s chest, at 50 cps,

produced a sharp apparent locus of sensation, which at small stimulator

separations (1 cm) lay below the bottom stimulator. At larger separations,

the locus of apparent sensation lay between the stimulators.

In further explorations, S3 evinced some evidence of two-dimensional

apparent location. The presentation of a third jet, on the arm, a short
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distance from the line of the original two nozzles, pulled the apparent,

stillsingle location of stimulation towards itself, and hence off of

the two-nozzle line.

III SPATIAL ACUITY

Two measures of spatial acuity were used to find the skin's acuity

with airjets: the error of localization, and the two-point limen.

A. Error of Localization

A "method of average errors measurement, using a single nozzle

stimulator was used at each of four locations on the dorsal forearm.

The arm was marked with a grid, and the subject told to touch a pen to

his arm and move it until it rested on the spot stimulated. The subjects

were not told, and in most cases did not guess, that the stimulus was

stationary over the trials.

As shown in Table I, the mean of the average errors for the four

locations on the arm of the two subjects was 0.56 inch. This compares

to an average error of 0.7 inch, reported by Franz5 for two subjects,

using touch stimuli on the dorsal and volar right arm, and an average

error of 0.3 inch reported by Cole6 for four subjects on the dorsal

right forearm using touch stimuli. The mean constant error for the

four locations was 0.48 inch for our two subjects. This compares with

0.22 inch for Franz's subjects, and 0.10 inch for Cole's. Thus, the

error of localization is higher for airjets than for small touch stimuli.

It is evident, therefore, that larger stimulator spacing (several times

the standard deviation of 0.38 inch) may be necessary if accurate

absolute identification is desired.

B. Two-Point Limen

In order to obtain information about the effects of frequency,

phase, and bodily locus on the spatial discriminability of airjet stimuli,

a series of two-point limen measurements was made. The method used was

that of constant stimuli (using the 75-percent point), of Woodworth and

Scholsberg.7  The stimuli presented were of two types, "ones' and "twos."

A "one" consisted of activating two adjacent nozzles simultaneously, and
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Table I

ERROR OF LOCALIZATION

(All are in inches. Arrows refer to direction on arms.)

STIMULUS SETTING

Mean of 4
Locations

Subject 1 Average N JXi - X stim.0
Error = E N 0.28 1.10 0.83 0.28 0.62

Constantf
Error = (Xi - X stim.) 0.18t 1.104 0.834 0.154 0.57N

Std. deviation around
mean location 0.25 0.38 0.38 0.35 0.34

Std. de*iation around
stimulus 0.38 1.18 0.93 0.40 0.72

Subject 2 Average Error 0.68 0.50 0.43 0.38 0.50

Constant Error 0.63t 0.484 0.35t 0.044 0.38

Std. deviation around
mean location 0.45 0.43 0.45 0.33 0.42

Std. deviation around
stimulus 0.73 0.52 0.55 0.50 0.59

a "two consisted of the simultaneous activation of one jet from each

of the two pairs of adjacent nozzles. The subjects were presented with

a random sequence of "ones" and "twos." The method used here differs

from classical methods in that the subject did not have to respond that

he "felt" two points, he merely had to sort "ones" from "twos."

The results of the two-point determinations are listed in Table II.

One point worth noting is the effect of learning. The results listed

for S under S and S were obtained under identical conditions with3 3 3
the exception tAat the 13 experiment was performed after the subject

was well practiced in discriminating "twos" from "ones." The difference
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limens (d.l.'s) for these experiments differ significantly (p < 0.001);

the later experiment yields a smaller d.l. This indication of a learning

effect is supported by Mukherjee's7 findings that the d.l. could be re-

duced by 75 percent with extensive training.

Table II

TWO-POINT LIMENS

TWO-POINT STANDARD
BODILY AREA AVERAGE NO. LIMEN ERROR OF

OF FREQUENCY OF TRIALS/ (d.l.) THE d.l.
SUBJECT STIMULATION (1/sec) PHASE SETTING IN INCHES IN INCHES

S1  Chest--mid 50 180 300 0.31 0.024
sternum

S2  Chest--mid 50 0 233 0.62 0.07
sternum

S 3 Chest--mid 50 180 300 0.53 0.035
1 sternum

S 3 Chest--mid 50 180 300 0.40 0.024
sternum

S3 Chest--mid 50 0 300 0.43 0.020
33 sternum

S 3 Chest--mid 15 0 300 0.44 0.028
34 sternum

S 3 Chest--mid 85 0 317 0.24 0.035
35 sternum

S 3 Chest-- 50 180 300 0.77 0.051
lower
sternum

S 3 Chest-- 50 180 350 0.91 0.047
37 above

left
breast

The effect of phase difference (180* vs. 00) can be observed by

comparing the results of experiment S 3 with those of S 33. No significant

difference was noted.
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Comparison of the results of S1, S2' and S3 , shows that variation

from individual to individual is high: S1 yielded a significantly lower

(p < 0.001) d.l. than either S2 or S3 under essentially the same conditions.

The effects of bodily area were noted for S on three areas of the
sp 3

chest. A comparison of the results for S3 , S3 , and S3  reveals sig-

nificant differences (p < 0.05) between al, three of the 7bodily areas

tested.

The last dimension investigated, frequency, also yielded significant

results. The results of S3, S3 , and S3  show that 85 cps yielded a

significantly lower d.l. than either 15 or 50 cps. The latter two fre-

quencies did not differ appreciably. The value found for 85 cps was

the lowest value of the d.l. obtained in any experiment on the chest.

Weber (Ruch and Fulton,8 p. 319) found a d.l. of 1.8 inches for the

center of the chest using touch stimuli. This compares with the value

of 0.77 inch for the airjet stimuli of the present experiment at the same

body locus. While these results are clouded by the fact that the ex-

perimental procedure was somewhat different in the two cases, the magnitude

of the difference in d.l's strongly suggests that sharp airjets can more

easily be localized than touch stimuli.

IV TEMPORAL ACUITY AND APPARENT MOTION

An investigation of some of the factors affecting the temporal

acuity of the skin has attempted to isolate the effects of pulse onset,

offset, and overlap, on the ability of the skin to discriminate small

time differences, and on the occurrence of apparent motion.

Bekesyl obtained apparent motion on the skin by stimulating it with

vibrators of slightly different frequencies. A direct attempt to re-

produce B4k4sy's results was made with two airjets. The illusion (back

and forth motion between jets) was only intermittantly reported, and was

not as clear as that reported by BLkLsy.

Gibson4 and Sumby9 used different onset times to obtain apparent

motion with electrical and vibratory stimuli, respectively. In our

experiment, performed on the bare skin over the diaphragm, pulses of
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different onset delays, overlaps, and offset delays were presented to

S3 . The subject responded by indicating which (right or left) airjet

came on first; or, where the jets came on together, which airjet went

off first. After the trials at each setting, the subject was asked to

rate (good/fair/very little/none) the apparent motion he had felt.

The results of this experiment are shown in Fig. 2, which contains

plots of accuracy in making time order judgments vs. pulse overlap, for

different onset and termination differences.

For all combinations of onset and termination differences, increasing

the overlapping time of the pulses beyond 0.2 second caused loss of

accuracy. The results support the subject's assertion that the direction

of apparent motion, when it occurred, as well as onset and termination

cues, was useful as a cue for deciding which jet came on or went off

first. Another result is that a time delay of a given length was gen-

erally more effective in the onset than in the termination. The ex-

planation for this probably lies in the fact that where the information

occurs in the delayed onset of one jet, the overlap must act retro-

actively to interfere with it. In addition, the onset of the air, which

rapidly depresses the skin, probably results in a more intense sensation

than the cessation which relies on the skin's elasticity to produce a

sensation. Thus, the prior, larger sensation could serve to mask the

subsequent, smaller, information-carrying sensation.

The conditions for good apparent motion are seen to be either a

"#slow" (0.1 or 0.15 second) A onset with little or no overlap, or a A

onset and A termination of 0.05 to 0.15 second with little or no overlap.

The spontaneous comments the subject made during the experiment

about apparent motion are illuminating. At fairly small overlap times,

when onset and termination differences were 0.10 or 0.15 second, the

sensation was reported to be a rapid but usually discrete series of

stimulations at first one jet (the first to come on), then in the middle

(apparent) location as both were on, then at the second jet (as the first

went off). As the overlap decreased, the discrete series fused into

apparent motion.
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V FREQUENCY EFFECTS

In addition to the measurement of the effects of frequency on the

two-point limen, an additional series of experiments was performed to

obtain qualitative information about the sensations associated with

different stimulus frequencies. The stimulator consisted of two jets

of variable frequency separated by 1.1 inches.

While more detailed information is reported in Bliss and Kotovsky,l

two main generalizations emerge from the verbal reports of S3. A pulsating

sensation was reported when either of the jets was driven at a frequency

below 20 cps. Above this "critical frequency," the sensation fused into

a "tone," much as happens for the ear at low frequencies. At even lower

frequencies, reports of distinct pulsating points were obtained. Thus,

very low frequencies tend to obscure or destroy the apparent location

phenomenon.

VI THE NEURAL UNIT

The area of the body used in this experiment was the chest, in the

middle of the sternum. The stimuli were a "two" stimulus, consisting of

two airjets separated by 1.1 inches, and a "one" stimulus, consisting

of two adjacent airjets. The duration of the pulses was several seconds.

The subject reported whether the sensation was of high or low intensity.

The results are contained in Table III where it is seen that when

the jets were in phase (0 degrees) two adjacent pulses of air on the

skin were felt to be more intense than two pulses separated by 1.1

inches. These results can be explained by use of the neural unit (Bkesy2)

if a temporal inhibition is assumed. For 0 degree phase difference, a

41one" stimulus feels more intense than a $'two" stimulus because the

airjets of the "two" stimulus mutually inhibit one another. For 180

degree phase difference, a "two" stimulus feels more intense because

temporal inhibition reduces the "one" stimulus intensity due to the

proximity of its airjets.

No reports of any type of pain were obtained under any of the con-

ditions of stimulation of this study.
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Table III

EFFECT OF PHASE ON INTENSITY JUDGMENTS

(1600 trials, 400 under each condition;
standard error about each point ±10%)

PERCENTAGE OF THE

TIME THE "TWO"
STIMULUS WAS JUDGED

FREQUENCY PHASE MORE INTENSE THAN

(cps) (Degrees) THE "ONE" STIMULUS

0 30180 70

0 29180 71

VII PRESENTATION OF COMPLEX TACTILE PATTERNS

Using the results of psychophysical experiments on tactile sensations,

a tactile display system has been designed with 96 stimulators arranged in

a 12 by 8 array. In this system considerable flexibility was desired in

ways in which the tactile array could be programmed because it was felt

that the key to success may lie in the temporal manner in which the

pattern is presented, as well as in the spatial design of the stimulators.

Figure 3 shows a block diagram of the system for tactile experi-

mentation. A feature of this system is the use of the CDC 160-A computer

in real time. The computer allows great flexibility in the experimental

design, saves construction time, and makes the purchase of special equip-

ment, which may be useful only in a small number of experiments, un-

necessary.

A typical experiment may be performed as follows: A program that

stores particular patterns in memory and controls the sequence and method

in which the patterns are read out is fed into the computer. After a

ready signal is received by the computer, the first 12-bit line of the

pattern is presented to the 12 by 8 Silicon Controlled Rectifier storage

matrix. A shift register gates these 12 bits into the first line of the

12
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matrix, where they are stored and where they actuate the corresponding

12 tactile stimulators and 12 neon lights. Any time greater than 20 .sec

later, the next 12-bit pattern line can be read into the SCR matrix.

The SCR matrix control steps each computer word into the proper row of

the matrix and signals the computer to output the next word. Thus, the

computer can fill the SCR matrix in less than 200 sec. This would appear

simultaneous to the subject. The computer program can control the scan

sequence so that, for example, Lines 1, 2, and 3 are presented in the

first scan, Lines 2. 3, and 4 are presented in the second scan, etc.

The subject's response can directly key the computer to present a

different pattern and automatically record the result. Many more

sophisticated uses of the computer are immediately obvious.
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PATTERNS REVEALED BY SIMPLIFICATION

OF SPEECH SIGNALS*

James K. Lang, Albert.C. Abnett, and Claude Lambert

The Phonetics Laboratories

of

The Ohio State University

Introduction

At the 1962 meeting in New York of the Acoustical
Society of America there was a discussion of the develop-
ment of a field of research related to the handling of
speech information. This is referred to as Speech
Processing Systems [5]° It involves methods for analyzing
speech information, the conversion to a code, and the
synthesis of speech from a code. Some applications are:
(1) facilities for the reproduction of speech, (2) produc-
tion of speech from a code, (3) conversion of speech to
printing and vice versa, and (4) the translation of speech
from one language to another. This report discusses
research which is within the field of Speech Processing
Systems.

The Problem

A guiding assumption was that a new datum of science
takes essentially one or the other of two forms: (1) a
r4e for programming or controlling those phenomena which
are amenable to manipulation, or (2) a prediction relative
to those phenomena which are not manipulable. Acoustic
events are manipulable. Therefore, the problem for this
research was to attempt the establishment of a system which,
if it could be achieved, would be a set of symbolically
expressed programs for the production of acoustic events
which would have the operational properties of speech.
This system of programs will be referred to in what follows
simply as a system of generative phonetics.

This research has been supported by a National
Institutes Of Health (NINDB) grant No. B-3388 to The
Ohio State University Research Foundation. The research
is conducted within The Division of Speech and Hearing
Science of The Department of Speech.



Procedures

Miller [41 reports that intelligible speech may be
produced by means of a switch or telegrapher's key. This
statement is in accord with the following quotation from
Licklider [2]: "Everyone who has heard it agrees that
square speech is immediately intelligible; that neither
great concentration nor practice is necessary for under-
standing--but both help" Assuming a hypothetical teleg-
rapher whose rate is fast enough, what code or program
should he be instructed to transmit in order to produce
speech? To answer this question, we removed the amplitude
variable in speech by the technique of infinite peak
clipping. This clipping was accomplished by using speech
to trigger a Schmitt circuit. This circuit produced a
constant amplitude, rectilinear output, and, by proper
adjustment of the triggering level, the output was the
same as would be obtained by conventional diode clipping.

To obtain a plot of the clipped signal, it was
necessary to slow it down considerably. However, in the
process of this rate reduction, the low frequency compo-
nents of the signal would be lowered below a level which
existing recording equipment can reproduce. To avoid this
difficulty, the clipped speech was used to gate a high
frequency pure tone. This gated tone was then stretched
in time by successive tape recordings, being detected and
regenerated at each recording to minimize the chances of
cumulative distortion. After the signal had been stretched
by a factor of 512, it was detected and the resulting
rectilinear wave was plotted on a paper tape (see Figure
IIIa). This method of producing rectilinear speech traces
is represented by Figure I.

The equipment represented by Figure I provided
plots used in our analysis of speech. Synthesis was also
required. Figure II depicts the instrumentation we have
used to generate acoustic events by opening and closing a
switch0  In this case the switch is a multivibrator. We
start with a specialized drawing of the word to be synthe-
sized. Figure IIId is a sample of this type of drawing.
The lines represent axis crossings of the rectilinear
signal. As these lines pass over a slit in front of a
photo-cell, electric pulses are created which have a time
correspondance with the lines. These pulses are shaped
by a Schnitt trigger whose output feeds a symmetrically
triggered binary. The output of the binary is used to
gate a pure tone which is successively re-recorded as
before. The speeded up signal is sent to a loud-speaker
for listener evaluation.

A sample oscillogram of rectilinear speech is shown
in Figure IIIa. A rectilinear representation of speech is
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a simplification in that the amplitude variable has been
dichotomized. Rectilinear speech traces do reveal charac-
teristic patterns. However, we had reason to believe that
we were not perceiving the more subtle aspects of patterns
which might exist in these rectilinear plots. Therefore,
we constructed derived plots such as those shown in Figure
IIIb. These derived plots served as the raw data of this
research. In our attempts to discover characteristic
patterns of events, we compared derived plots of the same
word, and similar words, spoken by several speakers.
Several derived plots are shown in their entirety in Figure
IV. In a derived plot, pulse width (to the nearest 1/32
inch) was plotted as ordinate against a numbered sequence
of pulses along the abscissa.

Words for study were those which would be difficult
to discriminate in that, by a phonetic analysis, they
differed by only one phoneme. Limitations of space dictate
reporting here only on a selected sampling of the words and
speakers thus far studied. Figure IV shows derived plots
for three speakers' productions of the word peak. Figure
IV also shows derived plots for the words beak, teak, and
"deek" [dik] * as spoken by one of the three-spe aR-r of
peak.

The method of analysis--and synthesis--described
above, and illustrated in Figure III, has been only one
aspect of our research. The rectilinear speech plot has
been reduced in information content by a method of
quantization of the time variable. This was done by
allowing the rectilinear pulses to assume only one of
several discrete widths. Subjective observation during
these preliminary studies indicates that speech can be
synthesized from only eight different quanta or pulse
widths. This would be equivalent to saying that speech
may be transmitted with a three bit binary code. The
quanta we used ranged in value from 0.2 to 2.0 milliseconds.
The corresponding frequency band was about 250 to 2500 cps.
This method of time quantization differs from that of
previous studies [3] in that reduction in the number of
quanta is not at the expense of the narrower pulses.

Results and Discussion

One form of completed data of this research will be
programs for the operation of a switch which will give rise
to acoustic events which may be accepted as speech. The
following is a program typical of those we have derived.

Phonetic symbols used in this report are those of
Kenyon and Knott [1].

-6-
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The reader should realize that we hope to refine the
statement of such programs in two ways. First, further
study will result in improved validity of programs.
Secondly, we hope for a more abstract (more nearly math-
ematical) and generalizable means of expression. The
program selected as an example is for the word eak and is
based on our analysis of derived plots of that word as
spoken by several speakers. For convenience, the program
has been divided into three segments which suggest a
phonetic division of the word into three phonemes: [pik].

1. Two hundred fifty CAR (constant amplitude rectan-
gular) pulses will be required to reach the point
arbitrarily chosen as the division between [p] and
[il. Of these 250 pulses, the first 50 and the
final 100 are to be formed by varying widths
randomly in a range of two to six units. Form the
central 100 pulses by making consecutive pulses in
groups of three to six, each pulse being five to ten
units wide and separate these groups with one to
three pulses two to three units wide. Follow with:

2. For [i] there will be 300 CAR pulses. These are to
be formed by periodically spacing pulses which are
ten units wide. The length of the period will be
25 to 30 pulses for a male voice (or 15 to 20 for a
female voice). Between the periodic pulses, alter-
nate pulse widths between three and five units for a
male voice (or one to three units for a female
voice). The above tends to produce [il in a mono-
pitch. For more natural inflection, gradually
increase the length of the period toward the end of
the series. (Plots in Figure IIIc and d are repre-
sentations of this segment of the program.) Follow
with:

3. A final series of 200 CAR pulses. For the first 20
pulses, alternate long pulses (200 units wide) and
short pulses (one to three units wide). These first
20 pulses form the pause shown in Figure IV. For
the next 160 pulses, randomly select values of two
to six units. For the final 20, create long pulses
(seven to fifteen units wide) occurring singly and
randomly spaced among short pulses (one to three
units wide).

As has been suggested in the context of the above
program, it is difficult to say where [p] stops and [i]
begins. It is even more difficult to make divisions
between vowels and voiced consonants such as [b] and Ed].
Note, however, that the difficulty of making arbitrary
divisions in the continuous plot of a word in no way
hinders the writing of a set of instructions for the
synthesis of that word. On the other hand, use of the
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phonetic system facilitates discussions, such as the
following, of the generality of programs with respect to
similar words and different speakers.

Though plots of [p] are not identical for all
speakers, the similarities seem more evident than the
differences. Unfortunately the photographic reduction
necessary to produce Figure IV has obscured some of the
less evident features of similarity without having an
equal effect on the features which show differences.
Similarities across speakers and across words (which
provide a different acoustic environment) seem even more
evident for the El soun. Similar statements apply to the
final segments (consonants) of our plots. Space does not
permit extension of this discussion but similar statements
apply to other words and speakers we have studied.

Stating a program such as the one above is only the
first step toward developing a system of generative
phonetics. The variables which relate to discrimination of
similar words must be isolated by comparing programs for
their synthesis0 Such comparisons make it possible to
formulate testable hypotheses relating to word discrimina-
tion. For example, "voiced and voiceless cognates (such as
[p] and [b]) differ only in the relative numbers of pulses
in the contrasting segments (see Figure IV)." This
hypothesis can be tested by writing programs for words
which differ only in the Ep] versus (b] comparison.
These programs may then be checked by synthesizing speech
from them and testing the products with listeners or with
automatic speech recognition devices.

Conclusions and Applications

Appropriate visual displays reveal characteristic
patterns in rectilinear speech. The identifying features
of these patterns appear to be effectively retained for
different speakers' utterances of the same word--for all
words we have studied. Also, even though it is difficult
to draw dividing lines on continuous plots which will
correspond to the discrete events of the phonetic system,
nevertheless it is possible to observe pattern similarities
in plots of the same phoneme occurring in different
acoustic environments. In short, differences due to: (1)
individuality of speakers, and (2) variations of acoustic
environment of a given phoneme; seem less evident than the
similarities--in those instances we have studied.

As a result of the foregoing, we believe it is
possible to write programs for the operation of a switch
which will give rise to acoustic events acceptable as
speech0 Subjective observation during preliminary

-9-



studies indicates that such a switch need represent no
more than eight discrete values of the time variable. This
would be equivalent to saying that speech may be transmit-
ted with a three bit binary code.

These findings serve to place the procedures of this
research within the field of Speech Processing Systems
described in the introductory paragraph. Research of this
kind will be of especial interest to bionicists if it
serves to suggest pattern recognition variables for use in
the study of hearing.
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A MECHANISM FOR CONCEPT FOMTION BY
WEIGHTED INFOMTION PROCESSING

K. N. Leibovic
WESTINGHOUSE RESEARCH IABORATRIES

Pittsburgh 35, Pennsylvania

Introduction

Bionics provides a meeting ground for two groups of people:

those who are interested in biological systems, in order to build
artificial systems and extend man's capabilities,

and those who are interested in making artificial models of biological
systems, in order to understand them better.

The motivation for this paper springs from the interests found
mainly in the first of the above groups. In particular, the concern will
be with some mathematical aspects of information processing, which may have
analogies in higher nervous system functions. Applications may be found in
pattern recognition, learning and self-organisation. In such applications,
involving what may be called "intelligence operations", sets of input data
from one or more channels are combined and transformed in various ways.
Biologists and psychologists have been actively investigating the possible
kinds of combination and transformation in biological systems, e.g. (l)-(4).
It is clear, that for higher information processing functions, some genera-
lised language and sets of concepts are required. This is true of
biological as well as artificial systems, and for the latter a ready-made
generalised language is available in mathematics. The fact that the
language of the brain is probably different from the language of
mathematics (5), need not inhibit the development of machines with "artificial
intelligence," analogous to biological systems but based on mathematical
principles.

Some Aspects of Information Processing in Bionic Systems

As is well known, sensory impressions from the outside world are
transmitted by impulses in the nervous system. These impulses are analogous
to numbers in mathematics. The prevailing view is that different qualities
of sensation are produced by variations in the spatial and temporal patterms
of nerve impulses (4), (6). In mathematical terminology, they are functions
of space and time coordinates. Successive layers in the nervous system
extract their various functions from their input sets, such as sums,
differences and weighted combinations of the inputs. (i)-(4) These operations,
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which are linear, can be represented as products of vectors and matrices,
corresponding to input stimulations and operations of layers in the )rve
aet.(7) There is evidence also for other, ROn-linear operations (8). But
a good deal of attention is given to the weighting of inforation, because
this is ome of the samplest operations with the simplest mathematics and
because it seem a natural thin to do when evaluating information with
regard to objectives.

The abstraction of information in successive layers of the nervous
system leads naturally to the consideration of "concepts". A concept is of
general application to differentiable objects and as such ray be considered
mathemtically as an equivalence relation (9) between sets of points in a
geaeralised space.

Concepts

As is well kaon an equivalence relation among the points of a
space divides the latter into disjoint equivalence classes. Thus, for
Instance, a color equivalence relation divides objects into disjoint classes
of red, blue, etc. Bat the same object ca1 belong to differe-4 -asses
defined by different equivalence relations; e.g. a red book belongs to
both the classes "red" and "book". There are sm interesting aspects
of a "concept" viewed as an equivalence relation:

(i) The mathematical equivalence is related to establishing associa-
tions. These associations my be, e.g. between different objects of
sensory eqperience or between sensory input and motor output sets.

(ii) With the aid of concepts one may overcome sm limitations of a
finite memory: For lstance, it has been suggested (10), that to reduce
the amount of stored data, a successful speech recognition machine will
require a means for regenerating speech patterns, which will be caqred with
input patterns for a best fit. The rules for regeneration would embody the"concepts', in this case, generalisations of units of speech and their
connections. There would be many equivalent speech units, e.g. as spoken
by different speakers, but only one representative from the equivalence
classes would need to be mnmorised.

(iii) Another use of concepts is to transform one set of points into
another set, where the second set my be more convenient for deducing
valid relationships between the points. For in teace, the first set of
points my represent sensory inputs and the second set some motor actions,
which are initiated by the first set through transformatios containing
the 'concepts. '
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A Model of Equivalent Point Sets

Following the above discussions, consider a system with a number
of inputs, which my be divided into sub-sets of the whole set of inputs.
For instance, one may think of a biological system with a set of sensory
inputs, consisting of visual, auditory and other subsets. Each input can
have a range of values, so that the various input sets can be represented
by sets of points in a space. whose coordinates correspond to the
individual inputs.

It is well known., that the same object can appear different at
different times, and that equivalent objects can have individual differences,
as well as different representations in different information channels.
Thus, there is a problem how to establish equivalences between sets of
points. In this paper it will be attempted to do this by weighting the
coordinates of the points.

Suppose then, there are two arbitrary points in a space of
sensory input variables, and they are to be identified as equivalent in
the presence of many other points in the space. The notion of distance
between the points is a natural one for this purpose, and to identify two
points they will be required to be at a minim distance apart, when a
suitable measure of distance is defined. As a rule, the distance between
the two arbitrary points will not be a minimum. One may then try to weight
the distance components in some manner, so that the weighted function of
these components is a minirm m.

Attention will now be directed to the details of weighting and
the circumstances when identification by such weighting is possible. The
results will be of the nature of existence theorems. Hardware implementations
will not be considered, but it should be possible to realise these for the
mathematical and logical operations contained in this paper.

Some Mathematical Results

Consider two sets -- S and S-- of points -- Pi and

respectively. The points may represent objects of experience, or some
mapping of the same in a nerve net and they are distinguished by, say, n
characteristics, which are the coordinates of a n-dimensional space. It will
be assumed that a me sure of distance is available in the -dimensional
space. A point in S will be associated with a point in S if the distance
between them is the smallest. This could correspond to innate or built-in
associations in some bionic systems. To form willed associations and
concepts by learning -- usually as a result of feedback -- a mechanism is
required to make the distance between two selected points a minimum. A
simple way to do this, is to attach suitable weights to the components of the
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distance.

Hence, the following questions should be considered:

1. For a given gistacemeasure, is it always possible to identify
any arbitrary point P" from S with one l from S by weighting the distance
cCWpoReats?

o 2. When two points have bVea identified as above, what neighborhood
of p2 will be identified with P-?a

3. Having identified oae point from S2 with one from SI , what can be
said about identifying the other points in the two sets?

Let the points of S' be Pl, a = 1,2,..., and their coordinates be

where in general,

i = 1,2,...n.

Let P.2 be a given point of S2 Pith cooriates 2

Consider the Euclidean measure of distance:

(1/2
p(P, P-1) (X {Z 2xi - )2}1 M

i

Suppose it is required to minimise the distance between p1 and p2

Let 2 i i (11)
L@ i)bi x 1 , - 2 (ii

and let w. be a set of weights. Then the weighted distance function fromi

p1 to p. is & minimum, if:1 b

14Z )-abi vi =- Z'lbi wi(i)
i i

or alternatively,

Z ("abi - XIbi)Wi > 0, for ali a. (iv)
i

Ut Salbi '-bi - '7bi (v)
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Then (iv) reads

5b w > O, for all a, (vi)-alb - -

where 5  is the row vector with components 8 albi , and w is the column

vector with components wi

But (vi) simply expresses the fact that the two vectors 8 and
zalb

w are in the same half-space. Thus, if there exists a vector w so that (vi)
is satisfied for all a, then 8 must also be in the same half-space for
all a.

This can be formulated as a

Theorem: In order that it should be possible to identify an arbitrsry point

Pb with a specified point P- from a set of points lP a =it in

necessary and sufficient that the vectors 8lb' as defined by (ii) and (v),

should all be in the same half-space.

This answers the first of the above questions.

Now, suppose that Pb- has been associated with P1 as above. It is
b 1

then aecessary to consider what neighborhood of P2 will be associated with

P' by means of the same weights wi .

Let the coordinates of ?. be varied by annts k. nThen, it isb%

required to find those values of t, for which, accordiag to (iv),

i

given that:

x1 2)2 - 1 2 2 i 10(vZ ( i~ - Xbi 'li 'i)2  i(v

It is easily shown that (vii) reduces to:

i i
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his Inequality can be taken to define the neighborhood of the given point

P2, which i identified with P-, and answers the second of the above questions.b' 1
Next, let P2 vary over the set 82 and let a point Pl from S1 be

assined for each .b. Then, if one weighting vector v is to serve for all

these assigmmts, according to the mininan weighted distance as before, an
argument sJudlar to the ce leading to (v1) shows that

v_>0 (ix)

a, b range over the sets Si, S a2k ranges over the set of points
signed to the respective points It follows that:

Theem : The vectors 5_ , as defined in (ix), mist be in the same half-
space. This is the neewsary and sufficient condition that the specified
identification can be performed by ce weighting vector v.

This answers the third of the above questions.

It can nmw be seen how the weighting vector v itself is to be chosen.
For, frem (ix), v ust also be in the same half-space as 8ekb Hence, the

Theorem: The weighting vector ! ca be chosen as the unit normal to the
S G of and in the sam hal-space as the vectors P , for all a, k, b.

Other measures of distance can be considered in a similar manner,(l)
for instance. when

and analogous theorems to the above can then be deduced. [Ia reference (1),
which deal with the distance measure (x), the mtheatical content is
also treated more extensively.]

Som Obsermtions:

The inm distance criterion sets up an equivalence relation:
lus, all the points in the neighborhood specified by (viii) are closest to
1-- and are equivalent in this sense. It follows that the points of the
siftce cemsidered are divided into disjoint classes. It I9 clear from
(vill), that the shape of the neighborhoods, as given by k, depends on
the weights Vi. The latter, in turn, a qaa ne shown from (ix), depend
ca the relative positions of the points le- lb and the desired- identifications.
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It should be noted that the requirement for 5 to be all in the

same half-space imposes restrictions on the sets S and S and the points
which it is possible to identify with each other.

If the vectors 5. do not fill a complete half-space, there is
some latitude in the choic f v. Then, different vectors v give different,
partly overlapping equivalence classes or neighborhoods.

The components of w have not been restricted to be positive.
Thus, positive aad negative components will mirror facilitation and
inhibition respectively in a nerve net.

There may be various ways to establish associations by weighted
distances in a network. Some possible representations of the mathematical
model are suggested in outline below.

Possible Applications

Consider two sensory channels, e.g. a visual and an auditory
channel, each consisting of a number of input cells. Let the cells in
each c annel e enumerated and their excitations Vritten as column vectirs,(7)
e.g. x and X. These correspond to the points P and P of the sets S and
S 2  considered earlier.

2
Suppose x reprepents the sound of a bird and a visual search is

made over different objects within view to locate the source of the sound.
en corresponds to the previously labeled point in

of the objects within view, represented by lor X. Suppose the source
a -a

of the sound is located -- for instance by position coincidence of sound and sigb
inputs -- and let the visual image be 27 with vector x. Then the

1
ccmponents 'abi are formed, a = 1,2,... and the components 8 albi as in (v).

The scalar products of 5_b, for a = 1, 2, ... , can be used to determine

for which values of suffix a, 5lb are in the same half-space. Those which

are not, can be rejected and for the remainder w is obtained so that:

s w > 0 for al a. (vi)
ziab --

This process may be thought of as a learning process to find v in the
presence of a permissible set of objects in view.

The point F? (or P1-) my be stored in memory as a class

representative. The next time Pl. (or P) or soe member of its class

appears in the input, it will be compared, using the weighting vector w,
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with the class representatives stored in the memory and be identified.
It should be noted that the restriction of 5 to a half-space imposes

design restrictions on the stimulus values in the two channels, which
can be identified. This must be considered carefully in an actual design.
For, if only two points are present, they can always be identified. But
the presence of other points determines the half-space and weighting
vector. Moreover, the neighborhoods, which are identified with the class
representatives, are also determined. Thus, the possibility arises that
one desired identification of some points, will also identify other
points contrary to what is desired. One way round such a difficulty
could be to exclude the latter set of points from the desired identification,
by restricting the range of coordinates admitted in it.

Considerations, such as the above, illustrate the kind of
restrictions inherent in weighting the distance components in order to
establish equivalences.

These remarks apply also to the following interpretations of
the mathematical model.

Iet the points Pl belong to a stimulus set S1 and the points

P to an action set Some stimuli may give rise to reflex actions.b
These will be at minimum distances in an established metric space. Other
stimuli may be associated with appropriate actions by weighting the
distance components. The appropriate stimulus-action pairs may be selected
on the basis of information from a feedback loop or by some other means.

Consider now a set of stimuli and a set of actions. The effect
of the actions on the environment produces new stimuli, so that there is
a closed feed-back loop. As described above there will be equivalence
classes between stimuli., between actions and between stimli and actions,
which are set up by weighted distance components.

Within the system let there be two-way communication between
stimuli, between actions and between stimuli and actions, which are
based on the associations set up above. Then the ingredients are present
for forming semi-autonomous subsystems, which will interact in a flexible
manner.

Among the sub-systems new equivalence classes may be formed and
the weights can be used to establish dominant stimuli, which will initiate
appropriate responses.

Such a system may continue to operate even after the partial
destruction of some of its functions. For example, suppose there is a loss
of accuracy in the perception of input information. This would mean that
points near the neighborhood boundaries associated with the class
representatives will be affected and might become uncertain, while the
remainder of the neighborhood will function as before.

Again, suppose some input stimuli are impaired or destroyed.
This handicap may be overcome, at least partially, by forming new sets
of veights for the sub-systems mentioned above to establish dominant stimuli.



9.

Conclusion

It has been shown that it in possible to establish equivalence
classes aong sets of points by weighting the ccxments of a distance
measure between the points. The conditions have been stated whea this
is possible, and it has been shown that there are restrictions a the
relative positions of the points.

In a bionic system, the points may represent objects of perception
in the same or different sensory channels or they my represent some
meaningful entities, coded maybe in the form of pulses, in channels in
series, such as a sensory and a motor channel.

Thus, sensory objects or sensory isputs and motor outputs nay
be associated with each other, using the weighted ccompents of the
distance between them. This sets up equivalence classes, each of which
may be represented by one class representative in memory.

In a system in which the comunication channel is divided into
a number of layers or sections, each section extracting some function of
the input from its predecessor, the weighting of successive layers of
inforation leads to a hierarchy of concepts. Flexibility can be built
ints such a system, by allowing it to alter the weights -- possibly based
on som feedback criterion. In this way it should be possible for the
system to continue learning to function, even when sGm of its elemts
are inoperative. For, the concepts which have been evolved by the system
each represent an equivalence class of information, which is -- by nature --

redundant in the environment. Tius, each cm of the concepts can be
activated by only part of the information frrm the eXaVr1ment. For
example, impaired sight of an object can be aided by sound, tbaagb the
equivelaace set up previously, to initiate appropriate actLon.

It will be noted that the equivalamee relations are set up by the
veights, which physically may be threshold juactiONS or Vplifiers in
son nerve net. There is, therefore, no need for a separate, physical
store for the points representing the cmncepts. hy can be distributed
trugheut the nerve net, together with the meMory of the welts.
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THE APPLICATION OF ELECTRICAL ANALOGS TO AN ANATOMICAL

DISCOVERY IN THE ARTERIAL SYSTEM

Harry Lobel, D.Sc.

Brownell Hall-Talbot School
Omaha, Nebraska

This paper deals with Womersley's application of
electrical analogs to arterial pulsations, and his anticipation
of an anatomical discovery in the arterial system, by mathemati-
cal reasoning (WADC TR 56-614).

It has been known for centuries that the stresses
in hydraulic systems seem erratic. For no known reason, pressures
become hypertensive in relation to flow; hydraulic failure is un-
predictable. Modern theory offers no solution to these problems.

As a result of some elusive stress factor, which
is characteristic of hydraulic systems, almost ten million people
in the United States suffer from high blood pressure; the cause
is unknown. By means of hydraulic failure, this stress factor
has contributed to major aeronautical disasters. Hydraulic
failure in our missiles has crippled our program in the race for
space. Audible turbulence in the hydraulic systems of our sub-
marines has made them natural targets for sonor controlled tor-
pedoes.

The need for electrical analogs to uncover the
nature of this hydraulic stress factor is more than academic;
this problem is a major stumbling block to technological progress.

There have been constant attempts to solve this
problem. In ancient Greece, in their attempts to obtain isochron-
icity in their water clocks, they employed very ingenious devices.
They even used precious stones for the orifices. It was recog-
nized that the known physical laws were inadequate to properly
describe flow through simple nozzles.

In Rome, a system of aqueducts and cisterns were
developed to supply water to the people. The law required that
a bronze tube with a standardized bore be inserted in the dis-
tributing conduits between the cisterns and the homes. The ob-
ject was to establish a legal basis for the taxation of water
consumption. Their efforts were unsatisfactory due to the lack
of mathematical formulae to properly describe flow in conduits (3).



Torricelli attempted to explain the flow of fluids
in terms of Galileo's law of free-falling bodies. Hagen and
Poiseuille attempted to apply the equivalent of Ohm's law to
the resistance or flow in capillaries and tubes. Reynolds de-
veloped a concept that laminar flow becomes turbulent at some
definable critical value.

All these attempts aimed at establishing a theo-
retical basis for the measurement of hydraulic response. They
are of limited value in the design of efficient hydraulic sys-
tems. We have no reliable means of predicting hydraulic per-
formance.

The same condition exists in regard to the circu-
latory system. Every year 1,500,000 persons in the United
States die. More than half of these deaths are caused by
diseases of the heart and blood vessels. Too often these
deaths are thought of as being associated with old age; con-
sidering deaths occuring only under the age of sixty-five,
one in three is due to cardiac and circulatory failure.

A very common disorder of the circulation is hy-
pertension or high blood pressure. About ten million people in
the United States are effected. In this condition, the pressure
of the blood is high at all times; the cause is unknown. The
increase in pressure is functionless and useless. It is not
accompanied by an increase in flow-volume, pulse rate, or blood
velocity.

Ten or fifteen years after the onset of hyperten-
sion, the arteries begin to show sign of degeneration. This is
especially true of the arteries of the brain, the kidneys, and
the heart itself. Death results from heart fatigue in half
the cases, from coronary failure in fifteen or twenty per cent,
and from renal failure in five per cent of the cases.

Sometimes, for no known reason, the condition
suddenly becomes malignant --- the disease goes on a rampage.
The degenerative process takes place over a period of months
instead of years.

No explanation adequately describes the cause of
hypertension. Its ravages cannot be predicted. No reliable
treatment exists.

Normally, the circulatory system is free from tur-
bulence. With a change in bodily activity, however, there are
changes in the rate of flow as high as 500 per cent. For ex-
ample, in rising from a sitting position or running from a
standing position, there is a sudden increase in blood flow.
This increase is accompanied by audible turbulence, which is
especially marked at the points of arterial bifurcation. In



healthy persons, turbulence is eliminated from the arteries in
the course of a single heart beat (10). The means of turbu-
lence control in the arteries has never been thoroughly in-
vestigated; its relation to degeneration has never been studied.

"Conventional" cardiovascular research is based on
a belief that dietary fat and blood cholesterol are in some way
implicated in the cause of arterial degeneration. Arterioscler-
osis is not a modern development, neither are the prevailing
theories. Studies of Fption mAies show an incidence of arteri-
osclerosis the same as Noday (6). The Pharaoh of Exodus suffered
from this condition (7). The dietary laws of Moses, restricting
combinations of dairy products and meats, were probably aimed at
protecting the Biblical people from coronary occlusion by lower-
ing fat ingestion.

In 1956, after a study of 5000 cases, the Cleveland
Clinic Foundation, Harvard University, and the University of
Pittsburgh published a Joint report discrediting the claims
that high blood cholesterol levels can be used to diagnose impend-
ing heart failure (2).

Normally, the blood vessels manufacture cholesterol,
probably as a lubricant for the arterial walls. Irritants, such
as virus infections and eddy currents in the blood, overstimulate
this protective mechanism, eventually leading to an overaccumu-
lation of fat. This condition becomes pathological only when
it becomes irreversable.

For decades, physiologists have speculated on the
similarity between arterial pulse waves and the sine waves of
alternating electricity. The increasing employmant of modern
electronic computors has stimulated an interest in the possible
mathematical relationship between electromagnetic and hydro-
dynamic stresses. This is an example of the science of analog
computation.

The theory of analog computation is based on the
discovery of dynamical and mathematical similitude between vari-
ous types of systems. This permits complex systems to be ana-
lyzed in terms of simple systems. The growth of the science of
analogs is the culmination of an evolutionary process that
traces its steps from the dawn of history.

For example, over two thousand years ago in ancient
Greece, Aristotle gave a resume of the theory of dynamic simili-
tude when he said that to understand mechanics requires an under-
standing of the balance, which in turn requires an understanding
of the lever. Strato said "... the propagation of sound... is
due to air ... being an elastic medium which contracts and ex-
pands in accordance to the impulse imparted to it". This followed
Pythagoras' discovery of the laws of vibrating strings. Theoph-
rastus concluded "... light requires air or water as a medium,
thus anticipating the ill-fated Ether theory (1).



Modern dynamics dates from the discovery by Galileo,
of the similitude between the pendulum and free-fall.

Galileo's discoveries and the work of Kepler and
other contemporaries, led to the laws of Newton. Because of
their accuracy in predicting planetary motion, Newton's laws had
a dramatic impact on the imagination, particularly in regard
to the so-called exact sciences. It was assumed that the "ac-
tion and reaction" of all physical systems could be described
in terms of linear, logarithmic, or periodic functions. For
the next few centuries, scientific progress consisted in finding
new applications and now principles, which were based on these
laws.

The confidence in dynamic similitude, based on
principles of mechanics, led to the development of the modern
electronic computor.

Faraday, a pioneer in electrical research, "deliber-
ately set out to find connections between chemical, electrical,
magnetic, mechanical, and optical phenomena ..." (5).

Maxwell, who wrote the basic electrical mathematics,
stated "...by careful study of elastic solids and of the motions
of viscous fluids, I hope to discover a method of forming a
mechanical conception of this electrotonic state ... " (8).

Hertz, who was the first to produce radio waves,
anteceded Pavlov in comparing the brain with a computor: "This
agreement between mind and matter may therefore be likened to
the agreement between two systems which are models of one
another, and we can even account for this agreement by assuming
that the mind is capable of making actual dynamical models of
things, and of working with them."

Many of these basic ideas, on which the science
of analogs was founded, are today considered inadequate and
even faulty. The brain is more than a computor, electro-magnetic
waves are not mechanical, light does not require air or water as
a medium, and dissatisfaction with Newton's laws led to the
Theory of Relativity. Nevertheless, they represent necessary
steps, without which, the science of analogs would have been
crippled -- a case of progress by error.

In 1955, the late J. R. Womeraley, a mathematician
at Wright-Patterson Air Force Base, undertook the development
of electrical analogs to describe the circulation. His analogs
treat pulsations as electrical alternations, arteries as wave
guides, rate of flow as electrical current, and frequencies re-
lated to capacitance (arterial elastance) (10-b). These ana-
logs built a bridge between the fields of electrical engineer-
ing and hydrodynamics.



Womersley's studies of puse velocities in the dog
showed wave celerities of eight feet per second in the aorta,
and fifteen feet per second in the renal artery. This indicates
an increase of rigidity in the renal artery wall. The rela-
tively rigid renal artery should act as a "high pass filter",
rejecting much of the wave epergy in the form of reflected
waves (10-a).

The high pass filter or wave-trap analog, is a very
common, but little appreciated, syndrome in hydraulic systems.
A sudden change in conduit rigidity causes wave energy to be re-
jected; this is accompanied by hypertensive pressure, reflected
waves, and eddy currents. From the viewpoint of the high pass
filter, the efficiency of wave transmission in the arteries is
too high. The arterial system is protected from stresses which
would ordinarily be found in engineering systems in analogous
situations.

Womersley appreciated the significance of this
discovery. If the mechanism which protects the arteries from
hydraulic stress could be discovered, then this might be the
clue to the dread hypertension. This might also be the clue to
the elusive stress which contributes to the failure of the aero-
nautical hydraulic systems.

To reconcile the discrepency between physiological
and theoretical performance, he developed a mathematical correc-
tion formula (10-c). This is significant, arterial function
was reconciled to the wave theory and not the sonverse. Unfor-
tunately, Womersley died before discovering the characteris-
tics which protect the arteries from hydraulic stress.

Since the human arterial system has been studied
for thousands of years, search for new anatomical structures
seems futile. Nevertheless, healthy arteries were studied and
several features for the prevention of hydraulic stress were
discovered (4-a).

The most obvious of these features is the structure
and design of the points of arterial bifurcation. At the mouths
of arteries branching from the aorta, are funnel-shaped nozzles.
These face upstream like Pitot tubes. On stimulation, the renal
artery for example, is seen to adjust its contour in a manner
to streamline varying flows of blood. Malfunction, such as due
to dystrophy of the muscle fibers, results in eddy currents and
hypertensive pressures (4-b).

The mathematical correction formula of Womersley,
seems to describe the function of these funnel-shaped nozzles.



They act as "impedance couplings" or "impedance matches" between
the aorta and its relatively rigid branches. They serve to im-
prove the efficiency of wave transmission.

Dynamic models show that when the contour of the
nozzles correspond with the rate of acceleration of the fluid,
pressure is minimum for a given flow. But when the contour is
distorted, pressure is hypertensive for the same flow due to
mismatching of the impedance.

This is the only clue to hypertension, based on mal-
function of an anatomical discovery.

To develop a dynamical analog of the high pass filter
in hydraulic systems, a model was adapted from Trimmer (8).
This model consists of a variable frequency force-pump, causing
a column of fluid to oscillate. The frequency of pulsation is
varied. At the proper frequency, the pulsation becomes resonant
or tuned. At any other frequency, the pulsations are dissonant.
In resonance, the translation of wave energy is maximum for a
given impulse. In dissonance, the efficiency of translation is
reduced for the same impulse.

In Figure 2, when the frequency of the pump is re-
sonant with the column of fluid, there is a maximum translation
of energy. When the frequency of the pump is lower than the
frequency of the fluid, the system acts as a high pass filter.
When the frequency is higher than the fluid, the system acts as
a low pass filter.

In resonance, impulse and oscillation are mathe-
matically related in accordance with the third law of motion.
In dissonance, the ordinary interpretation of Newton's "action
and reaction", may be misleading. This is due to the presence
of two types of pressure in dissonance: one is a resistive
pressure which does useful work by driving the fluid; the other
is a useless "reactive" pressure. The vector sum is the im-
pedance.

The resistive and reactive components of pressure
are inter-related in such a manner, that a change in one, re-
sults in a change in both; this response cannot be described
in terms of linear, logarithmic, or periodic functions.

The presence of reactive pressure in hydraulic
systems gives definite physical manifestations; it causes a
loss of efficiency and hypertensive pressure. Under some con-
ditions it results in reflected waves and eddy currents; under
other conditions, it results in turbulence.

Without differentiating between resistive and re-
active components of pressure, no theory of hydraulic flow is
rational. Without correcting for the presence of reactance,



there is no way to correlate energy with work, stress with strain,
or pressure with flow. These stresses are relative rather than
absolute, and are just as applicable at 200 pounds as at two
pounds.

The fact that these arterial nozzles have neuromus-
cular controls which change the contour to correspond with vary-
ing flow conditions, suggests that this principle is applicable
to all hydraulic systems.

It may become possible to study the effects of speci-
fic drugs on the function of these structures, and so be able to
differentiate between different types of hypertension. This, in
turn, might lead to more specific treatment for various types of
cardiovascular disorders.

The design of the arteries might be built into
aeronautipal and submarine hydraulic systems. This might be a
factor in reducing the numerous failures in the lines of aero-
planes. It might also reduce the audible turbulence in our
submarines and protect them from surveillance by sonor devices.

It might also be applied to reduce the hazard in
transferring gasoline from air tankers to bombers. One of our
defenses against collapse in the event of sudden missile attack
is the maintenance of command planes to keep our military staff
from being wiped out. The weak link in this operation is the
necessity for refueling in mid-flight. This operation is
hazardous; if the command plane loses contact with the refueling
boom, even for an instant, hundreds of gallons of gasoline may
be spilled, endangering both command plane and tanker. By de-
signing the conduits after the principles of the arteries, the
fuel can be made to flow more rapidly, and minutes can be shaved
from the operation, shortening the period of hazard.

Finally, the design of adjustable nozzles for the
carborators of our missiles, would increase their efficiency
both in fuel consumption and in power production.

From the viewpoint of analog computation, a great
significance of Womberley's work lies in its anticipation of
an anatomical discovery, which at that time had not been pub-
lished.
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APPLICATION OF NEURAL LOGIC TO

SPEECH ANALYSIS AND RECOGNITION

by

T. B. Martin and J.J. Talavage
Applied Research, Radio Corporation of America

Camden, New Jersey

I. INTRODUCTION

This paper describes signal-processing techniques for the recognition of
speech phonemes by machine. An attempt has been made to employ, wherever
useful, basic processing functions of the human auditory system. These basic
functions include neural interconnections and the mechanical transfer functions
of the receptor organs. The neural interconnections have been simulated by the
use of neural logic. The purpose of this paper is to describe the logic networks
that have been developed for the abstraction of speech features.

H. CHARACTERISTICS OF SPEECH SOUNDS

Presented here is a brief summary of the basic characteristics of vowel and
consonant speech patterns. This general description will facilitate the subsequent
descriptions of the feature-abstraction networks that have been developed.

1. Vowels

Vowels generally possess more acoustic energy than consonants and are
typified by being voiced. An example of such a sound is shown in Figure 1. The
regions of energy concentration are known as formants. Besides formants, the
positions of minimum energy and the slopes of energy between the formants and
the minima can be used as distinguishing features for vowel sounds. In each
case, the features that make up a vowel sound are relatively sustained, steady-
state speech patterns.

2. Consonants

The consonants as a class possess less energy than vowels and have
wider variations in their characteristics. The classifications of consonants are
the vowel-like, the fricative, the affricative and the plosive (or stbp) consonant.
The plosives have been studied most extensively in this investigation. Studies
of speech spectrograms have revealed two basic features of the plosives: 1

1) A stop gap, during which breath pressure is built up (This gap may
be voiced or unvoiced.)

2) An energy burst, resulting from the sudden release of the breath
pressure (This burst may be voiced or unvoiced.)



The prime source of features for the recognition of the stop consonants is the
nature of the release of breath pressure for each of the sounds. For plosives
followed by vowels, a transition occurs between the articulation of the consonant
and a following vowel. The transitional features are quite complex, since the
direction, duration and extent of energy movements to F2 and F3 of the vowel
are functions of both the particular plosive and the location of the vowel formants
following.

Studies at Haskins Laboratories 2 have revealed that the voiced plosives, /b,
d, g/, can be described by "formant-loci. " The locus is a fixed-frequency posi-
tion from wLich the consonant originates. Formant transitions proceed from
this locus to the position of the following vowel. Studies of Haskins Laboratories
of the third formant transitions 3 for two vowels also indicated the existence of
third-formant loci analogous to those found for the first and second formants.

These studies with synthetic speech indicate the complexity of basic features
inherent to the plosives. It is not to be expected that the results from speech
synthesis studies can be applied directly and without change to real speech.
However, the basic concepts that have resulted from these studies are applicable,
and, in particular, the existence of transitions as essential features of the plosives
cannot be eisputed. It is for these reasons that many of the neural networks that
have been developed are for abstracting transitory features, such as sequences and
transitions.

Ill. GUIDELINES FOR SYSTEM ORGANIZATION

Since the design of the initial levels of the equipment was guided by current
knowledge about the human auditory system, performance of the equipment is
similar in many ways to that of the biological prototype. Some of the biological
properties that were simulated in the design of the system are:

a) Effects of the outer and middle ear.

b) Filter responses matched to the shape of the traveling-wave of the
basilar membrane.

c) Amplitude variation of the maximum displacement of the basilar membrane.

d) Density of neural innervation, with position along the membrane.

e) An approximation to the spatial derivative of the traveling-wave of the
basilar membrane.

f) Sharpening of the response of the primary neurons by mutual inhibition.

A detailed comparison of the performance of the system with known psycho-
acoustic information can be found in a recent report. 4

2



IV. SPEECH-RECOGNITION SYSTEM

Figure 2 is a block diagram of the speech-recognition system, including the
primary levels of processing, feature-abstraction networks and decision elements.

1. Primary Levels of Processing

The initial processing is composed of 19 low-Q filters and a primary-
neuron level. The outputs of the broad filters stimulate the primary neurons.
Spatial differentiation and mutual inhibition have been included in the primary-
row neurons in order to sharpen the frequency response of the filters.

a. Broadband Frequency Filters

The amplitude of vibration at a point on the basilar membrane in the

cochlea exhibits a frequency response which has characteristics of low Q
and asymmetry. An electrical counterpart of this response has been incorpor-
ated into the filters of this system. Certain advantages can be shown which illus-

trate the usefulness of broadband filters. For instance, a broadband (low-Q)
filter displays an improved capability over narrowband filters for detection of

rapid transitions of formants. These transitions are an-essential feature of most
consonants. The broadness and asymmetry of the filters used in this system are
indicated by the three calculated curves in Figure 3, which also includes a photo-

graph of an experimental curve.

b. Sharpening

Some means of increasing the selectivity of each filter is needed to
improve frequency discrimination. This increase is accomplished by two types
of logic operations, each of which is based upon the comparison of the output
levels of adjacent filters. First, the input connections to the primary-row
neurons are arranged to produce a response which approximates the first spatial
derivative 5 of the traveling-wave of the basilar membrane (Figure 4). Second,
an optimum amount of mutual inhibition is distributed throughout the primary-row
neurons. The effects of mutual inhibition on the outputs of the primary-row
neurons for a given input pattern are: 1) to sharpen the energy-space response
of these outputs (where frequency has been converted to space by the filter bank),
and 2) to lower the peak amplitude. An example of this behavior is shown in
Figure 5.

2. Feature-Abstraction Networks

a. Introduction

As mentioned previously, the main purpose of this paper is to describe
the feature-abstraction networks that have been developed. The outputs of the
primary-row neurons represent the various speech patterns to be recognized. For
the purposes of speech recognition, it is necessary to abstract both relatively
sustained features and transitory features. These transitory features produce
time progressions of energy through adjacent filter sections.

The following sections will describe networks that can abstract the
speech features desired. In particular, networks are described which abstract
the following sustained features:

3



1) Energy inequalities between adjacent filters.

2) Positions of formants.

3) Positions of energy minima.

4) Positions of positive and negative energy slopes.

Networks are also described which detect the dynamic variations in the
sustained features, including the following:

1. Transitions of energy.

2. Simultaneous occurrence of several events.

3. Time sequence of events.

The networks to be described can abstract all of the above and other
features. Examples of the application of the individual networks for particular
speech sounds are presented in order to show the usefulness for speech recognition.

b. Neural Logic

The electronic neuron model is the basic computing element in the
logic networks used for the abstraction of speech features. 6,7 It is possible to
achieve logic operations with the simulated neurons because of the existence of
a threshold in the input-output characteristics. The output state of a neuron
indicates whether the summation of the input signals is above or below threshold:
this decision is a simple binary one. If the output of such a decision element is
quantized into two levels (e.g., 0 and 1), it can be used for conventional binary
threshold logic. In the artificial neurons, however, the output is a pulse train
of variable firing rate, with the firing rate representing an analog measure of
the amount by which the inputs exceed threshold. It will be shown that the analog
output capability of this computing element is an essential characteristic in the
networks developed for the abstraction of speech features. A more detailed
description of the neuron model used is contained in another publication. 8

c. Abstraction of Sustained Features

1) Differential Stimulus

The purpose of this logic operation is to establish and measure
the inequalities of signal levels out of the primary-row neurons. Each of the
differential stimulus neurons is excited by a primary-row neuron and inhibited
by one of the adjacent primary-row neurons. Since these neurons are stimu-
lated by the difference in the outputs of the neurons of the primary level, these
neurons will be referred to as differential-stimulus neurons. A typical experi-
mental response of a differential-stimulus neuron is shown in Figure 6. When
the inhibition signal is greater than the excitation input, no response is produced.
For the opposite condition, however, the output is proportional to how much the
excitatory input exceeds the inhibitory input.

4



An example of a feature that can be abstracted directly from the differential-
stimulus level is the voicing characteristic. Voicing is a characteristic feature of
all of the voiced consonants, including the voiced plosives, /b, d, g/. Voicing is
abstracted by noting the output of the differential-stimulus neuron associated
with the lowest-frequency filter. Figure 7 shows the response of the differential-
stimulus neurons to the word "bird. "1 Channel 1 contains the neuron which fires
when voicing is present. This feature is so distinct that it has been abstracted
with a reliability approaching 100 per cent. Its usefulness for plosive recognition
resides in the fact that it distinguishes the voiced group of consonants, /d, b, g/,
from the unvoiced group, /p, t, k/.

2) Neural AND Gates

The neural AND gate is a network which responds only when both
inputs are above a certain small value. The connections and symbols for this
network are shown in Figure 8. The neural AND gate has an analog output which
is roughly proportional to the product of the two input quantities, as shown in
Figure 9. The theoretical curve was calculated using a form of neural mathe-
matics described previously. 9

The outputs of the differential-stimulus neurons can be combined with
neural AND gates to abstract formants, the position of energy minima, and the
slopes of these maxima and minima. An example of each of these is shown in
Figure 2.

Although vowels were not studied as thoroughly as plosives, enough data
was accumulated to test the validity of the networks that abstract the sustained
vowel features. Simple formant abstraction was sufficient for the recognition
of most vowels. For the vowel i/ the abstraction of F1 and F2 gave an accuracy
greater than 95 per cent when this vowel was spoken by several speakers. For
other vowels it was necessary to consider F1, F 2 , F3, the minima, and the slopes.

3) Slope Detection

It is also possible to modify the neural AND gate to produce a net-
work that responds to a particular slope in the output pattern of the primary
neurons. A particular slope, as defined here, is obtained when the differences
in outputs between two adjacent pairs of primary-row neurons are identical.
Figure 10 shows the response of a slope-detection network which responds maximally
for a slope of + 2 in the primary pattern. The inputs to the slope-detection net-
work are from the appropriate differential-stimulus neurons for the particular
slope desired.

d. Abstraction of Dynamic Features

All the networks described up to this point are useful for the abstrac-
tion of the relatively sustained features that are common to vowels. Combinations
of these features are sufficient for the recognition of the vowel sounds. These
features are not sufficient, however, for the recognition of consonant sounds which
require the abstraction of the dynamic features of speech. The networks just
described can be modified to produce responses to dynamic features only. Many
of the networks used for the abstraction of dynamic features are modifications of
the basic AND gate. The time responses are achieved by the insertion of reactive
interconnections into the neural networks. Following are brief descriptions of
some of these networks.

5



1) Transition AND Gate

A transition AND gate is a network which will respond only to
cessation of input signal A followed soon by the onset of input signal B. The
networks and the symbology used for the reactive interconnections for the
transition AND gate are shown in Figure 11. Interconnections are arranged
so that the net summation of all the inputs to neuron C becomes excitatory
only for the nearly simultaneous occurrence of the cessation of A and the onset
of B. The time overlap during which these two events may occur is deter-
mined by the time constants of the interconnections. The output of the trans-
ition AND gate under constant amplitude conditions as a function of the time
separation of the two events is shown in Figure 12.

An important characteristic of consonants in general, and stop consonants
in particular, is the transition in formant frequency from a fixed locus, which
is characteristic of the consonant, to the position of the following vowel. When
this movement of speech energy crosses several filter channels, it produces
brief outputs from the formant-detection AND gates. These features have been
abstracted experimentally by transition AND gates.

2) Simultaneous AND Gate

Another modification of the basic AND gate produces a network
which will respond only to the simultaneous onset of two events. Figure 13
shows a network which will respond only if both input signals A and B begin
almost simultaneously. The time interval during which the onsets occur can
be varied by changing the time constants of the direct connections to neuron
C. It has been found that reliable responses can be achieved for onsets within
a time interval of five milliseconds. Typical responses were obtained for onsets
within an interval of 20 milliseconds. The simultaneous AND gate can be made
unsymmetrical by including a capacitor in only one of the direct connections to
the output neuron, as shown in Figure 14. The gate will respond to the onset of
input A, if input B is already present or begins almost simultaneously.

A simultaneous AND gate was used to abstract the simultaneous onset of
the second formant and one of the slope neurons. Abstraction of a single
simultaneity was sufficient for the separation of /p/ and /b/ from the other
plosives for 60 words, with an accuracy of 75 per cent. The simultaneous AND
gate which was used responded for onsets within 10 milliseconds, and discrimi-
nated against all others. A recording of this function together with experimental
AND and OR functions is shown in Figure 15.

3) Sequence Detection

Sequence detection is a necessary network function for the recogni-
tion of many of the consonants. and particularly for the plosives. These features
can be abstracted directly from the differential-stimulus level. Figure 16 shows
the connections for a network that will respond to such a sequence of events. The
selected example shown is for A to begin in a definite time interval prior to the
onset of B. Neuron 1 is connected to A through a capacitive connection so that
it is essentially an ON response to the A stimulus. This ON response is term-
inated when B begins. The three neurons below neuron 1 comprise a transition
AND gate. Neuron 1 ceases to fire at the onset of B. The transition AND gate
then has two primary inputs, one signal ceasing at the onset of B and the other

6



signal beginning at the onset of B. Thus, a response is produced when A begins
before B begins. Experimental responses of this network are shown in Figure 17.
It should be noted that no output is obtained if the time delay between onsets of
stimuli is small, or zero, since the output of the transition AND gate reflects the
magnitudes of the input stimuli as well as the duration of its two input stimuli.
Thus, the entire circuit will give a maximum response when the signal D has
been present for an interval sufficient to excite the transition AND gate, but
before the pulse-iapetition rate of signal D has decreased significantly.

It is also possible to detect a multiple sequence of events as shown in Figure
18. This network responds only if the proper order of A before B before C occurs
in the speech pattern. Many other sequence combinations have been detected by the
sequence-detector network. Such possibilities are A ON followed by B ON, A
OFF followed by B OFF, A ON followed by B OFF, and A OFF followed by B ON.

A network consisting of two cascaded sequence detectors arranged to detect
a double sequence has been used to recognize /k/ and /t/ for the 12 words con-
sisting of the stop consonants in combination with two vowels /ae/ and /o/. The
sounds /k/ and /t/ were distinguished from each other by the fact that their
sequences proceeded in opposite directions with respect to frequency. Recording
of the responses of the /k/ sequence network for two words are shown in Figure
19. For one of these words a response occurs, while in the other word this
feature is absent.

V. SUMMARY AND CONCLUSIONS

Though the primary levels of processing are modeled after the best biological
data available on the auditory system, no attempt was made to construct a precise
electrical analog. However, experiments have shown good agreement between the
model characteristics and such phenomena as masking and threshold of hearing.

An important conclusion of this work is that a speech analyzer can be con-
structed using feature abstraction by neural networks as the basic method of
signal processing. Although no completely general rules for the recognition of
speech can be formulated at this time, it is possible to achieve the desired recog-
nition for specific speakers. Many of the processing techniques developed for
the plosives, such as the abstraction of dynamic features, are directly applicable
to the other consonants. Therefore, although a specific problem was studied, the
networks developed have more general application in the field of speech
recognition.
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Figure 7. Typical Responses of Differential Stimulus
Neurons to a Speech Sound

This recording represents responses of some of the differential-stimulus neurons
to the word "bird." Channel 1 contains voicing information for both the initial
and final consonants. An AND function of channels 2 and 3 gives first-formant
information. A similar AND function of channels 10 and 11 gives second-formant
information. The voicing precedes all other neuron firing. The initial burst of
the plosive is indicated in the high-frequency channels 20, 23, and 24. It can be
seen that the second formant is completely formed only after the plosive disap-
pears. While the final /d/ is being voiced, all other firing has ceased as it
should for a stop consonant. The final /d/ plosive information follows this
"stop-gap."
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Figure 10. Slope Detection Network

In the example shown, the thresholds of neurons 1 and 2 are both -2. This means
that a net excitation of +2 must be generated by the differential-stimulus neurons.
Only under these conditions will neurons 1 and 2 fire. The outputs of neurons 1
and 2 are weighted twice as much as the direct differential-stimulus connections
to neuron C. Thus, a maximum response is produced at neuron C when inputs A
and B are both equal to 2. The case shown in the experimental curves is for a
threshold value of zero for neuron C. Increasing this threshold reduces the
range of response of the slope-detection network. For example, the threshold
can be set so that the network will respond only to a slope of (+2 +0.2) by setting
the threshold of neuron C to a value of -3.6.
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Figure 15. Experimental Simultaneous AND Gate Response

Channels 1, 2 and 4 contain differential-stimulus neuron firings common in /b/
and /P/ sounds. Channel 3 shows an AND function of A and B, or A B. The time
difference between onset of A B and onset of C is less than 5 milliseconds.
An output is then obtained from the simultaneous AND gate as shown in channel
6. Channel 7 displays an OR function of A and B, or A+B.
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STIMUUS-SAMPLING PATTERN RECOGNrIOn

Frank N. Marzocco

System Development Corporation

SSUMMARY

A generalized computer model has been constructed to simulate the
behavior of organisms according to various versions of stimulus-
sampling theory. Results already reported dealt with the learning
behavior of rats in a T-maze. With the addition of new routines to
specify the simulated environment of the simulated organism, a similar
basic program has learned to discriminate among visual patterns con-
sisting of carelessly hand-drawn alphabetic characters, each of which
is presented in a number of variations. Input to the program is a
binary representation of the presence or absence of parts of the figure
in fa 20 x 20 matrix superimposed on the figure to be recognized. Each
cell of the matrix is treated as a separate stimulus having various
numbers of elements associated with all the responses that can be made.
A random sample of elements from stimuli present in the visual field is
used to determine the response on any trial. When a correct response
is made, all elements sampled on that trial become associated with that
response. Changes in learning rates occur as the probability of select-
ing available stimulus elements is changed.

BAC 1ROUND

Mathematical models intended to predict or explain the behavior of
living organisms frequently make use of the stimulus-sampling principle.
The situation in which behavior occurs is analyzed into stimulus classes,
and the behavior itself is analyzed into classes of response. Interpre-
tations for the model are observable stimuli and responses; predictions
are ordinarily in terms of response probabilities, given the conditions
that affect stimulus configurations. In deriving properties for these
models, stimuli may be treated as if they were composed of a number of
elements or cues, each of which is associated with one of the possible
responses. The response that occurs at any moment is determined by a
sample from the totality of stimulus elements available at the time.
Each cue sampled on a given trial provides a tendency for occurrence of
the associated response, and learning occurs as a change in the associa-
tions. The amount and kind of change is a function of the particular
response that takes place in a given situation. Many variacions are
possible within the stimulus-sampling framework, and a number of dif-
ferent models have been introduced since the original work by Estes
(1950). A recent review (Estes, 1962) provides background and an
excellent description of current research being done on models of this
type.

1 The project under which this paper was prepared is supported in part

by a grant from the Carnegie Corporation of New York.
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While the stimulus-sampling principle has proved a powerful tool
for understanding behavior in relatively simple laboratory situations,
the models have been diffioult to apply to the description of complex
events. There are problems both in making some of the computations and
in establishing correspondence between the model and observations on
the real world. It is possible, however, to avoid some of these prob-
lems by employing the technique of computer simulation. The computer
is programmed to represent a set of basic behavior processes which
accord with a stimulus-sampling model, and the processes are combined
in ways that represent their multiple occurrences in the situation
being simulated. Not only should this approach permit fairly easy
extension of the model's domain of interpretation; it also provides
a tool that may be helpful in understanding details of individual be-
havior.

A computer program that simulated behavior of rats in a T-maze
(Marzocco and Bartram, 1962) demonstrated feasibility of the approach.
That program was capable of handling several sources of stimulation.
However, in applying the program to some problems of discrimation
learning, it became evident that the method of processing data was
extremely inefficient and that the program was not very flexible in
use. Both a new processing scheme and a number of new input-output
routines were therefore devised. The problem of visual character
recognition was chosen to test the machine because the problem was
intrinsically interesting and would test many of the machine's new
capabilities.

EESIGN OF THE PROGRAM

Stimuli in the computer program, as in mathematically expressed
stimulus-sampling models, correspond to particular event classes as an
external observer would identify them in the environment of the organ-
ism whose behavior is under study. Names for the stimuli to be observed
are provided on punched cards or magnetic tape. From these, the program
sets up a table used both for internal processing and for naming the
stimuli in outputs. Similarly, responses of the computer program cor-
respond to the occurrence of particular event classes as an external
observer would identify them in the behavior of the organism under
study. Names of the responses to be observed in a set of runs are also
typically provided on punched cards or magnetic tape; the program sets
up another table for these. In the character recognition problem,
stimuli correspond to discrete areas in a visual field. The areas are
numbered sequentially and the numbers serve as stimulus names. Response
names are not provided in advance for this application, however. In-
stead the program is given a set of blanks to construct the response
table, and the blanks are filled in whenever a new pattern name is
encountered.

Prior to any set of runs, the computer must be provided with an
association state. A new state may be established from card or tape
data, or a final state preserved on tape from an earlier run may be
used as a new initial state. The treatment of associations differs
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significantly from that in the T-maze simulation program. Rather than
identify separately each stimulus element under consideration, the new
program tabulates the number of elements from each stimulus associated
at any moment with each response and maintains these counts in a packed
array. An array for the pattern recognition program could thus be re-
garded as an m x n matrix, where m is the number of areas into which
the visual field is divided and n is the maximum number of character
names that the program must learn to handle.

At the beginning of each simulated trial, a special subroutine
indicates which of the possible stimuli are present and which of the
possible responses may occur. The main program behaves as if it had
taken a sample of elements from each stimulus present in the situation
to determine the response on that trial. Repeated sampling from the
pool of elements corresponding to a particular stimulus-response com-
bination would produce a binomial sample size distribution with mean
a and variance Np(l-p), where N is the total number of elements in the
pool and p is the probability that any element is selected. With large
numbers of elements, a good approximation to the theoretically exact
binomial distribution is provided by a normal distribution with the
same mean and variance. In actual operation, therefore, the program
determines the number of elements to select by choosing for each com-
bination a single pseudorandom value from the normal distribution with
proper mean and variance. The computation is performed only for com-
binations in which the stimulus is present and the response possible.
To decide which response occurs on the trial, the number of sampled
elements associated with each response is counted and the response with
the largest count is emitted. In the case of character recognition, a
stimulus is considered present on any trial if any part of the character
presented on that trial appears in the corresponding area of the visual
field. Available responses ordinarily include the names of all patterns
that may be presented, although an option is included whereby the ma-
chine may be forced to make a correct response.

Another special subroutine determines whether a response is to be
reinforced. For character recognition, the response emitted on any
trial is compared with the name of the pattern presented on that trial.
If these are different, no change is made in the associations. When a
correct response has been produced, however, the entries in the packed
array are adjusted so that all stimulus elements sampled on that trial
become associated with the response that occurred.

Alphabetic characters originally prepared for use with another
pattern recognition program (Uhr and Vossler, 1961; Vossler and Uhr,
1962) were already available on punched cards and were therefore used
as data inputs for the new program. The patterns, one of which is
shown in Figure 1, were prepared by sketching the characters inside a
20 x 20 grid. Any cell of the grid in which a part of the pattern
appeared was coded with a one and the remaining cells left blank. The
ordered set of 400 ones and blanks, together with the pattern name and
other identifying information, were keypunched according to a standard
packing format. Each set of these cards describes a single token of a
given character. Input of any set causes the computer to generate and
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store a table which lists, as stimuli present for that token, the cells
coded one in the input. The table also lists the correct name of the
pattern; that name is added to the list of possible responses if it
does not already appear there.

A single input tape used for the runs described below named 400
stimuli and reserved space for them. It also provided space for 26
responses, although only four tokens of each pattern A, B, and C were
included on the tape and only these three response names were used.
All responses were considered equally likely at the beginning of the
run, and the tape specified 100,000 cues from each stimulus initially
associated with each possible response. Control cards provided for
each run determined the amount of detail desired in the output and
caused the input tape to be preserved without change from run to run.
The order of presentation was also fixed. Additional input parame-
ters set the probability of sampling any element from stimuli present
on a given trial, determined the number of passes through the 12 pattern
tokens, and also determined for each pass whether the simulated organ-
ism was free to choose among the three responses on any trial or forced
to make the correct response. In the runs described below, the correct
response was always forced for the first pass through the token set,
and the simulated organism was permitted to respond freely on succeed-
ing passes. Whether the pass was free or forced, correct responses
were always reinforced and incorrect responses never reinforced.

Special subroutines required to perform pattern recognition were
written in JOVIAL. General processing routines were written in TAC.
All runs were performed on a Philco 2000 computer.

RESULTS AND DISCUSSION

When the parameter that controls probability of sampling any
available stimulus element was set at .001, the program produced the
results shown in Table 1. The proportion of successes obtained on the
first free-response pass was .458, while the expected proportion under
the hypothesis of random choice with independent alternatives is .333.
The critical ratio for the difference is 2.25, and the probability that
a ratio this large would occur by chance is less than 3%. Thus it
seems reasonable to conclude that some learning took place on the sin-
gle preceding trial in which the correct response was forced for each
presentation of a pattern token. It is also apparent from inspection
of the table that learning continued to take place over the 12 trials,
although there is considerable variability from one trial to another
and none of the simulated subjects learned to discriminate perfectly
among all the characters.

Another set of runs demonstrates that the machine is capable of
mastering at least the limited task of discriminating among the 12 in-
put characters. The only change in procedure was to set the probabili-
ty of selecting any available cue at .005. Of the six subjects run
under this condition, one mistakenly responded A for a B pattern, one
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mistakenly responded B for a token of C, and one mistakenly responded B
for a different token of C. All three errors occurred on the first free-
response pass for these subjects. The correct response was emitted on
each of the remaining 861 free-response trials.

w

Tests performed on the machine so far have been designed more to
expose possible faults in the programing than to provide useful data.
Nevertheless several conclusions can be drawn from the data. The com-
puter with a stimulus-sampling program can improve in performance when
presented the task of discriminating among a limited set of patterns,
and the rate of improvement is sensitive to the sampling probability
parameter. The program is capable of mastering the task, and such
mastery can be achieved quite rapidly.

Whether the stimulus-sampling technique can be used to design ma-
chines that perform effective pattern recognition against a wide range
of inputs has not been established. However, features of the computer
with a stimulus-sampling program resemble some which have already been
included in pattern-recognition devices that perform well--an outstand-
ing example is the machine reported by Baran and Estrin (1960). This
fact, together with the speed with which simulated subjects under one
condition achieved apparently perfect discrimination, justifies further
examination of the stimulus-sampling principle as a source of ideas for
pattern-recognition machines.

Whether the machine interpretation of stimulus-sampling theory can
produce valid models for discrimination and pattern recognition by liv-
ing organisms has also not been established. Trial-by-trial behavior
of the simulated subjects might have been due in large part to the par-
ticular patterns and method of presentation; however, the data show
many of the characteristics that would be expected from living subjects.
Experiments are now being designed to attempt to reproduce results like
those reported by Schoeffler (1954) and Binder and Feldman (1960).
Knowledge gained from these simulation studies may be useful later in
applying the machine to predict human behavior.
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INFORM4TION TRANSKISSION, PROCESSING AND STOR&E AMONG LIRFME
AND 10MCRS01 IN FO14AL LARKING

Samuel T. Mayo
Loyola University

820 North Michigan Avenue
Chicago 31, Illinois

THE FO4AL LMRNING SITUATION AS AN IFOI4ATISNALSS

The view of formal learning in this paper is basically associa-
tionist and subsumes field principles as subsidiary. It is a reinter-
pretation of modern reinforcement learning in term of the language of
information theory and data-processing.

An initial, although deliberately oversimplified, schematic model
of our general approach is shown in Figure 1. We have an S-R model in
whih Be is the eliciting stimulus, Re is the elicited response, and Sr
is the reinforcing stimulus. In practice, through mdiation by the or-
ganism 0, Se elicits R and is followed by Sr . Sr then acts as shown by
the feedback arrow to form a closed loop. The organism is then modified
so that Se is more likely in the future to bring about Re. This is
shown symbolically in the lower part of the figure in terms of probabil-
ities. In words, the probability of eliciting Re, given Se. at a time
in the future, t 2 , is greater than the initial probability of the same
kind at tl, some arbitrary point in time.

---------------------------------
Insert Figure 1 about here

----------------------------- ---

Figure 2 is similar to Figure 1, except that it has been elaborated.
The top three blocks portray the organism and the names of the blocks are
Sensory and Perception Blements, Association Blemmnts, and Response Ele-
ments. The environment is shown at the bottom. However, one difficult:y
is that it is impossible to separate the organism distinctly from the en-
viromment, since part of the environment is contained within the organism.

In operation, the model works as follows: The learner in the ini-
tial phase perceives stimuli from the original environment as shown by
the arrow at the far left, This analogous, in part, to Be, the eliciting
stimulus from Figure 1. Then, the inform tion from these sensory ele-
ments is associated in this intermediate pbase Nrith interpretation of
the learner's past experience, and next certain responses are made. Final-
ly, a feedback loop goes from the response elements to the original en-
vironment, and the original environment is modified. into an altered en-
vironment. The learner knows that changes in the environment have been
made and his response is modified. Eventually, the process could achieve
equilibrium, the feedback acting in such a way as to reduce any further
change in response. The feedback is obviously negative feedback. From
the standpoint of classroom learning, we would note that response behav-
ior of the learner is constituted either by new responses or old responses
which are put together into new behavior.



Insert Figure 2 about here

Figure 2 has elaborated how information flows in the learning
process. We need further to elaborate ways in which information is or-
ganized and processed.

O1 i(NIZATION AD PROCSS3ING OF 11FOfTION IN FORMAL LRNING

As background in conceptualizing the organization and processing
of information in formal learning., two references assumed vital im-
portance.

The first of these was the TaxonoW of Educational Objectives,
handbook I: Cogaitive Domain, edited by Benjamin S. Bloom and others
(1). Basically, Bloom has differentiated six major educational object-
ives, along with subsidiary ones. By "objective" is meant some termin-
al behavior which is defined operationally and which it is expected will
occur as a result of instruction. The six major objectives are called
Ebowledge, Comprehension, Application, Analysis, Synthesis, and Evalua-
tion.

The second reference was "Three Faces of Intellect" by J. P.
Guilford (2). Our interest here centers on his three dimensional model
of intellect in which the basic dimensions are Contents, Products, and
Operations. Our interest is particularly on Products and Operations.
X .nds of products differentiated are Units, Classes, Relations, Systems,
Transformations, and Implications. Kinds of operations are Cognition,
Memory, Divergent Thinking, Convergent Thinking, and Evaluation.

Space does not permit elaboration of the conceptual schemes of
Bloom and Guilford. For our present purposes, let us recognize that
the possibilities for utilizing the schemes in developing an informa-
tional model of formal learning seem to be trmendous. Although there
Is some overlap among the schemes, they also complement one another and
are cast in language which should be easy to translate into information-
al tervs.

In formal learning we can distinguish several kinds of variation
ann the processes and products. There is variation from the very
simple to the ver complex. Also, we can contrast the mere acquisitior
of knawledge with the ability to use knovledge.

In the simplest kind of acquisition of knowledge we might have
cognition or merely knoving some specific fact or relationship in an
imme&iate situation. If such kwvledge is retained, we have memory.
The analog in data-processing would be the flow of data in some vay as
by collation, punching and storage until needed at some future time.

At an intermediate level of complexity one learns to paraphrase
so as to get avay from the learning of specific kowledge. A related
process is extrapolation. ML data-processing the analogs would be



coding, various kinds of transformations and prediction from data,
respectively.

At a still higher level we have the undestanding of abstractions
and the ability to apply abstractions in particular situations. In data-
processing the analog might be sorting, comparison, and various kind. of
decision-making.

There seem to be some relationship between Bloom's "Synthesis"
and Guilford's "Convergent Production* aM "Divergent Production." In
each case one puts elements together to produce a whole. The distinction
between "convergent" and "divergent" is whether the possible outcomes
are relatively fixed and limited to a small number of such outcomes or
relatively unbounded in number and variety. In practice "divergent" has
been used synonymously with "creativity."

The process of evaluation mist certainly rank high in our hierarcb.
It involves judgments about the value of mterial and methods for given
purposes or the extent to which they conform to criteria. As an analog
in data-processing one might think of the comparison process of data-
processing mchines.

FIVE INSTIUCTIONAL KODZIS

In addition to the concepts cf Bloom and of Guilford, it is of use
to draw upon an unpublished paper by the present author entitled, "Class-
room Learning Models." Five instructional models were differentiated
and cast into informational terms. The names of the models were Lecture,
Lecture-Discussion, Seminar, Tutorial with Live Tutor, and Automated
Teaching.

Figure 3 is a paradigm for the five models in which the abscissa
is the Amount of Information the Teacher Transmits, and the ordinate is
the Amount of Information the Learner Feeds Back. The first variable is
the initial stimulus situation, the second the response which is con-
sidered to be molar in nature. The paradign is oversimplified in one
respect, It does not account directly for stimulation of students by
students. However, as stimulation from students increases, stimulation
from the instructor would tend to decrease.

Insert Figure 3 about here

It is instructive to locate each model by means of coordinates
on the two dimensions. In the lecture, there is a maximum of teacher-
transmitted information, so that our horizontal coordinate is a naxiwm
and to the right. The vertical coordinate for lecture is a low mininw,
since r minimm of information is fed back from students. Therefore,
lecture lies in the lower right hand corner of the graph. Lecture-
discussion is in the middle region on teacher-information and low medium
on student feedback. It lies in the middle from left to right and Just
below the middle on the vertical axis. Seminar has a minimum of teacher
information and a maximim of student feedback. It lies in the upper
left hand corner. Tutorial with live tutor involves a lzrge amount of
teacher information but also a le.rge amount of student feedback. It is



located on a diagonal from lower left to upper right about halIfay be-
tween the middle of the graph and the upper right band corner. Auto-
mated teaching is in the upper right hand corner and features a maximum
of transmission of information from both sources.

ANALYSIS OF PROCESSES AND PRODUCTS IN LECTURE-DISCUSSION

Let us now single out of the five models the lecture-discussion
for consideration. The lecture-discussion model is a hybrid between
straight lecture and seminar. It is a two-way information model, since
the information flows from teacher to students, from students back to
teacher, and among students. In a typical sequence the teacher may be-
gin by initiating a verbal stimulus to the group. Then one student re-
sponds with a question or comment. This, in turn, becomes the stimulus
for the teacher or another student to respond to. An actual example
will help in clarifying the model. It is a situation from a remedial
class in natural science at a public junior college.

A Classroom Zzample of Lecture-Discussion with Demonstration

Situation: Instructor had previously lectured and discussed the topics
of solutions, suspensions and emulsions. Four beakers were placed in
view of all. Each was backed with a white paper with large letters inked
upon them as follows: "l aolin and Water"; *42 Salt and Water";
"#3 Salad Dressing and Water"; and "#4 Potassium Permangaate and Water."
The beakers were stirred at the beginning of the demonstration.

Initial Stimulus: (S ) "We have four beakers containing liquids. On
the basis of what we ave learned, let us try to determine the nature of
each."

Responses, Guidance and Reinforcements: (Legend: R denotes response,
Re denotes reinforcement, and G denotes guidance.)

P1 from P: #I is not a solution." (No reason)

Re: "Correct. #1 is not a solution."

B2 from J: "I caniot see the letters in #1 nor in #3."

Re2: "That is correct. You cannot see the letters in #1 and #3."

R3 from T: "They are both cloudy."

Gl: "Are there axW noticeable differences between #1 and #3?"

R from S: "The top part of #1 is not as cloudy as the bottom. Could
be an emilsion?"

from Q: "I don't believe It Is an emulsion because an emulsion would
ye the bottom clear first. I think it is a suspension."

Be3: "Yes., it is a suspension."

P6 from U: "If #1 is a suspension, then #3 is an amision."



G2: "I suggest we wait a while. Perhaps after deciding what #2 and j4
are, we can better determine what #3 is."

w. from V: V#2 is a solution because I can see the letters and it is

w ite." (NOTE: By "white", this student meant that it was clear.)

Re 4 : "Yes, it is clear."

from CC: "I can see through #4 even though it is pink. Both #2 and
are solutions because they are clear.*

R9 from Z: "#3 is clearing at the bottom. It is the emlsIon."

Re 5 (irom delayed 02): "Yes, since #2 and. j4 are both solutions, and
since #1 is a suspension, then #3 is an emulsion."

In the above classroom example there are a nuber of interesting
observations to be made.

In a lecture preceding the demnstration-discussion given the in-
structor had transmitted considerable information about principles of
solutions, suspensions and emulsions. The learners presumably would
have utilized the operations of cognition and memory and the products of
units, classes and relations. In the ensuing discussion, learners ex-
hibited analysis and application. The output of their information-
processing produced convergent results.

One very worthwhile feature of the donstration was the opportun-
ity for students to make provisional responses which were reinforced
with little delay. The feedback to students after their provisional re-
sponses came not only from the instructor but in two cases from other
students (e.g. in %h and R). Feedback from the instructors took the
form of either reinforcemeAt or guidance. Reinforcement in this sense
was feedback of information to assist a learner in evaluating a response
and revising it if wrong or faulty, but retaining the tendency to repli-
cate the response if right. Guidance in this sense was the Intervention
of the instructor so as to restructure the stimulus field for the learner
in such a way as to make the elicitation of the correct response more
probable.

SOMZ IMPLICATIONS FOR dMZAC

1. The description of learning products and related processes in
informational terms begun here needs a great deal of additional study,
criticism, revision, and validation.

2. Maey of the principles already known about learning could be trans-
lated into information terms so as to suggest hypotheses for future re-
search and to augment and clarify learning principles.

3. There is a need to devote much mDre study to formal school learn-
ing in order to understand it adequately. It seems improbable that this
could be a simple thing to accomplish or that it could be done without
complex instrumentation.

4. Methodology of conceptualizing and diagramming the forml learning



processes need to be developed further.

5. In stimulating human learning by machine systems m up of electro-
mechanical elements or of developing min-machine systems to assist human
learning by machine, two serious problems were distinguished as a result
of the present paper. First, our present state of knowledge and under-
standing of human learning is so meager that we do not know how to simu-
late non-deterministic aspects with the deterministic elements available
with which to construct systems. Secondly, systems to simulate at least
part of the human elements are limited to convergent processes rather
than divergent and there is little or no opportunity for creative func-
tioning.

6. Another research area which suggested itself was that of investi-
gating the ways in which messages become "garbled", as when learners
fail to mster a point.

1. Bloom, B. S., (.) Taxonom of Educational Objectives: Handbook I.
Cognitive Domin. Now York: IDgnus, Green & Co., 1956.

2. Guilford, J.P. "Three Faces of Intellect." American Psychologist
14i.:4)69-79.
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T1E ORGANIZATION AND EXPRESSION OF INFORMATION IN GENETIC SYSTEM

The concept to be discussed in this presentation is sufficiently unique,
complex, and foreign to most of the audience, to limit the considerations to a

broad description of what are herein defined as genetic systems. The objective

of this paper is, in fact, to stimulate sufficient interest through a general

presentation to result in some questioning of the total concept. To a

population geneticist adaptive systems and genetic systems are essentially

synonymous, and the question arises as to whether the simulation of genetic

systems, or some aspects of these systems, is possible. If possible, can

they be of value for applications in programming, analogue design, or in

electronic devices? Will the theoretical consideration of these systems

lead to unexpected results of value? With these questions in mind, such a
program has been initiated. The present discussion will be limited, however,

to a simplified description of the concept.

Significant, recent developments pertaining to the biochemical structure

and function of the genetic material, DNA, have emphasized the extremely

specific molecular organization of the units composing the gene. This organi-

zation is associated with two classical attributes; the capacity for self-

replication, and the capacity to provide essential information to the metabolic
centers of the cell. The gene may therefore be viewed as a unit source
of information in which the message is determined by a very specific linear
sequence of nucleotide triplets along the DNA molecule. The gene, however,

has no meaning external to the specific cell system in which it can function.
Assuming the origin and existence of a protogene the evolution of multigenic
systems presumably involved three processes; (1) replication (polymerization),

(2) differentiation of the replicated units, and (3) integration of these
gene units in such a way that the resulting system (genotype) has those
attributes which characterize living organisms.

A viable organism is the result of the interaction of a highly organized

genic system with a specific chemical and physical environment. The

internal environment of the cell is in large part ordered and maintained by

gene action. The external environment, however, is both limiting and
temporally variable, and in time an individual organism will not survive.

An organism, however, has a limited life span, during which progeny are
normally produced. The reproductive mechanism, which insures continuity

in succeeding generations, also permits a gradual change in the gene system
in response to a changing environment. Normally the individual is a member

of a population of some size. The various members of the population will
differ in terms of their specific genetic constitution; however, through
selection of individuals, the population is adapted at any specific time, and

adaptable in time. This capacity is a direct function of the organization

of the genetic material.

A genetic system is herein defined as that organization of the hereditary

material which results in the persistence of a population in time. It is

concerned with the nature of the gene, and with the several levels of
genotypic organization which underlie the phenotypic array characteristic

of a population. The environment, through selection of phenotypic variants
in the population, will in time affect changes in genotypic organization.



This is the process of evolution. It involves change in the source units of
information, in their interaction, in their integration within the total
genotype, and in their expression in the population array. Genetic systems
are specifically adaptive systems capable of evolution, and they are
information systems capable of simulation. Their study is potentially of
great value in the conception of procedures and systems which may permit
the development of as yet unrealized or unconceived analogue systems.

The fundamental problem in the simulation of a genetic system is the proper
representation of the gene. It is known that the gene is composed of DNA,
and that this molecule has a double helix configuration consisting of paired
strands of linked nucleotides (Figure 1). The nucleotides contain one
of four possible bases, adenine, cytosine, thymine, or guanine. In the cross
links of the molecule adenine is always paired with thymine and cytosine
with guanine. Each strand of the molecule can serve as a template for the
synthesis of a complementary strand from free nucleotides. This is the process
of self-replication of the gene. The molecule may also serve as a template
for the formation of an RNA molecule, which carries specific information to
the protein synthesizing centers of the cell, where a specific enzyme is
produced. The specificity of the enzyme is a result of the specific linear
sequence of amino acids. The sequential ordering is coded in the DNA molecule,
with a nucleotide triplet specifying, through mediation of the messenger
RNA (and transfer RNA) one of twenty amino acids (Table I). The details of
this code remain to be determined.

For present purposes the important aspect of genetic coding as related to
gene action is that the basic unit is the nucleotide, the nucleotides are
ordered into triplets, and the triplets into a definite linear sequence along
the DNA molecule (Figure 2). An indefinite number of triplets comprise
the gene, which is capable of self-replication, and can transmit, through RNA,
specific information to the ribosome where the linear sequence of amino
acids in a polypeptide chain are determined. The resulting protein is
presumably an enzyme which mediates a specific vital step in the metabolism
of the cell. The product of the action of all the necessary gene-specified
enzymes is the functioning organism with its particular phenotypic expression.

The simulation of gene action is one of the primary concerns of the present
concept, but only insofar as it permits the analysis of the structural and
functional organization of the genotype. In the present discussion, in order
to avoid developmental considerations, a single-celled, diploid organism
will be used as an example. The genes are linked in linear sequence along the
chromosome, each gene normally occupying a specific locus on a specific
chromosome (Figure 3). The total number of linkage groups may vary greatly,
but the parceling of the genes into the various chromosomes may have a functional
significance, especially in terms of sex chromosomes. A total set of chromosomes,
each present in duplicate, will provide a complete karyotype and a complete
set of genes; i.e., the diploid genotype. The interaction of the allelic
gene pairs, and the non-allelic genes, as modified by the effective environ-
ment will result in the phenotype expressed in the individual. The phenotype
is subjected directly to selection by the environment. Those individuals
which survive compose the phenotypic population array. (Special circumstances
may also operate in the case of migration, or in small populations where
chance fixation of genes may be significant.)
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The surviving members of the population will then produce sexual gametes
through the process of meiosis (reduction division). This process involves
crossing-over between homologous chromosomes which results in new linkages

of heterozygous alleles (new combinations of information units), and it
involves the random segregation of non-homologous chromosomes. Effective
environmental selection may operate at this level in favor of individuals
of higher reproductive fitness. The haploid gametes will then recombine
according to the mating system specified (i.e., random, inbreeding, etc) as
affected by gametic selection, thereby providing a reassortment of the linkage

groups in the new generation. This array of genotypes will then proceed in
time through the next cycle (Figure 3).

The genetic system involves, therefore, a complex reiterative process. The
information is coded by sequential ordering in discrete units, the genes.
The genes are organized into partial sets, the chromosomes, by linear linkage.
The total set of chromosomes carries the necessary set of genes, perhaps with
some redundancy. The genes provide the necessary information, at the proper
times, for the series of synthetic steps which result (I) in the maintenance

of the proper internal environment of the cell, (2) in the proper structural
relationships of the cell, (3) in the proper functional relationships of the
cell with the external environment, and (4) in the feedback control of the
reproductive and genetic functions of the nuclear material. (Figure 4).

In each generation, in a large, randomly breeding population, new variability
is expressed. The ultimate source of variation is a change in the gene.
For illustrative purposes a simplified gene can be constructed of a series

of three binary triplets (Figure 5). Using every permutation, the first
triplet might specify a major functional category; for example, energy,
structure, rate, integrative, reproductive, recombinant, mutation, linkage,

and modifying functions. These categories would be determined by the partic-
ular mock-organism for which the system is designed. The second triplet
would specify a function within the major category, while the third triplet
could be reserved for the specification of alleles of each gene. This illu-
stration provides 64 genes, each with 8 possible alleles. Each gene, through its

action, would be a dependent function of other genes. An error in replication
in the first two triplets would simulate a lethal mutation, since a necessary
gene function would be lost. An error in the replication of the third triplet
would result in a viable mutation which would be associated with a change in
some aspect of the gene action.

This simplified mock-organism would consist of a total set of 64 sets of 3

triplets, with the triplets linked linearly into an optimum set of chromosome

groups, the total providing a complete karyotype and genotype. In the case
of a diploid organism each chromosome would be present in duplicate, and the

specific function of the locus would depend upon the information provided
by the interaction of the alleles (dormant, additive, heterotic).

The population would consist of a given number of genotype sets, with the

sexes equally divided. A population size (N) of several hundred, with random
mating, would be sufficiently large to minimize random fixation. These
genotypes would be expressed as an array of variant phenotypes, and this
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array would meet the simulated environment. The environment could consist
of any set of interrelated demands placed upon the population through the
individual phenotypes. Selection will eliminate some phenotypes (from the
selected generation), and result in differential reproductivity of other
phenotypes.

Reproduction would consist of the replication of each chromosome, with a
random error provided mutations at a controlled rate. In the diploid mock-
organism the exchange of segments of homologous chromosome pairs will occur,
also at a controlled rate at random sites. The chromosome pairs will then
separate and assort randomly into two complete haploid sets, the gametes.
Selection may operate upon these gametes. Random recombination of the
gametes from the two sexes would then result in fertilization and a new
generation of genotypes to complete the cycle.

Adaptation and evolution occur over a series of succeeding generations
through the changes that occur in the organization of the genetic materials
in the individuals of the population. Changes are made possible not only by
the process of mutation, but also by recombination, random segregation and

reassortment, and changes in the functional organizations of the genes
(i.e., allelic and epistatic interactions). In biological populations
a single breeding pair of diploid organisms can store a great amount of
variability, which can be expressed in succeeding generations as widely
divergent phenotypes. This expression of variability is not dependent upon
mutation. The storage of this information is essential to the survival of the
population in time. The simulation of this capability in an artificial

population would make possible a highly adaptive system.

The value of a simulated genetic population lies in its temporal response to
environmental selection. Both the phenotype and the selection index may
be many dimensional and highly complex. If, however, the selection response

pattern can be represented in two dimensions, four possible patterns can be
visualized (Figure 6). The first of these is stability selection, where the
effective environmental parameter remains constant over a long period. In
this case the continued elimination of the tail ends of the curve will lead

to a gradual loss of some variability, and a population highly adapted to that
stable environment, but perhaps with a loss of adaptability. (This might be
viewed as an optimal solution to the problem.)

In the case of directional selection one end of the curve will be eliminated

and the population will respond, with some inertia in the direction of
selection. If, after a period of directional selection, the selection

parameter stabilizes at a new level, stability selection occurs and the

population will in time reach a new adaptive state.

In a periodically varying environment in which the cycles are not too prolonged,
the population may respond in time by developing a homeostatic response. This
may occur at several different levels.

In an abrupt response, which is not too extreme, only a small portion of
the population will survive, and some stored variability will be lost. In
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time, under stability selection at the new level, variability will accumulate

and the adaptive level will be regained.

The theoretical analysis of genetic systems, and the design of genetic
populations may prove of value in several ways. The first and most obvious
is the design of adaptive systems, The population and its component
individuals can provide a system which will respond to complex selection
demands without losing its ability to revert to the original state or to
respond in the future to unpredictable changes in demands (provided that

environmental fluctuations are not too sudden or too extreme). The population
can perhaps not only adapt, but over the long term evolve, and by external
manipulations of selection parameters optimal systems for specific purposes

may be obtained empirically, and serve as models for subsequent development.
These possibilities are, of course, purely speculative at the present time.

A second use of genetic systems may be problem solving in situations where
the variables are too numerous for analytical treatment. It is not necessarily
true that these systems would arrive at unique solutions. Repetitive treatments
may be necessary. This possibility is also remote at the present time, and
based on the assumption that the capabilities of biological populations can

in fact be simulated. This remains to be proved. The concept, nonetheless,
is intriguing, and the ultimate developments will almost surely be of some

value. It is hoped that this brief and incomplete presentation may stimulate
some thought pertaining to the value of such an analysis.
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AMINO ACID RNA BASES*

ALANINE UCG
ARGININE UCG
ASPARTIC ACID UAG

ASPARAGINE UAA, UAC

CYSTEINE UUG
GLUTAMIC ACID UAG
GLUTAMIN E UCG

GLYCINE UGG
HISTIDINE UAC
ISOLEUCINE UUA
LEUCINE UUC, UUG, UUA

LYSINE UAA
METHIONINE UAG

PHENYLALANINE uuu

PROLINE UCC

SERIN E UUC
THREONINE UAC

TRYPTOPHANE UGG

TYROSINE UUA

VALINE UUG

TABLE 1 THE TENTATIVE GENETIC CODE. TRIPLETS COMPOSED OF
COMBINATIONS OF FOUR BASES ACT AS TEMPLATES FOR THE

TWENTY ESSENTIAL AMINO ACIDS CONTAINED IN PROTEINS
U -URACIL; C -CYTOSINE; G -GUANINE; A -ADENINE

(THE COMPOSITION IS KNOWN BUT NOT THE BASE SEQUENCE)



{ THYMIN E

NUCLEOTIDE CYTOSINE
GUANINE
ADENINE

TRIPLET

TRIPLET SEQUENCE (DNA)

I
GENE (500+NUCLEOTIDE PAIRS)

MESSENGER RNA J REPLICATION
(TRIPLET SEQUENCE)

CARRIER RNA
AMINO ACID (AT RIBOSOME)

SEQUENCE

I
ENZYME

(SUBSTRATE) OTHER ENZYMES

PRODUCT

OTHER ENZYME PRODUCTS

I/ ENVIRONMENT

PHENOTYPE

FIGURE 2 GENE ACTION AS A FUNCTION OF CODING



NUCLEOTIDE

LET
TRIPLET

SEQUENCE MUTATION
(DNA)

I
GENE REPLICATION

(RECOMBINATION) I
LINKAGE

CHROMOSOME

PLOIDY I I

KARYOTYPE I
(160-4 X 104 GENES)

GENOTYPE -4

ENVI RONMENT GENE INTERACTION I

PHENOTYPE I

CHANCE (N)

MIGRATION : SELECTION1

POPULATION I
ARRAY 1

SELECTION
2

GAMETOGENESIS J

MATING SYSTEMS---, .11-40- SELECTION 3

FERTILIZATION

(REASSORTMENT)

FIGURE 3 THE LEVELS OF GENETIC ORGANIZATION



uP SUBSTRATE a.

CL =)oro II
" I

a" .._..... o Jt

0 CI

V IH

Lu

,II j I

H- I I 0I

-r I I

,. -___ . _ III I I I

C- _ . I _ I

I I

" " I-.

I.

_ _ II a-
__II -f

I I I Z

It C
I I.

~ -o

~JI IuIit&f



u wi
z
LU z C

00

LU 0-

LU <

LJJ< U zwi

LL LU

COZF F-z

M: u:

00

0- LLLJ > w

0 ~~ F-- z_I
) 0 z z uiZL 0

C) 0

x <H
LL. U- zLL

QD 0 <



A STABILITY

B DIRECTIONAL

C PERIODIC

ABRUPT

D

FIGURE 6 SELECTION-RESPONSE PATTERNS



The Structural Unit of the Nervous System

Charles R. Noback
Columbia University, New York

and
Shyam M. Khanna

IBM Federal Systems Division
Bethesda, Maryland

The structural unit of the nervous system is more than the
conventionalized neuron (nerve cell). The neuron, with its dendritic
and axonic processes, may be conceived as the central core of the
anatomical unit that includes the neuron and its immediate
encapsulating extraneuronal elements. The neurilemma (Schwann)
cells* and the satellite cells of the peripheral nervous system and the
oligodendrocytes of the central nervous system are these
extraneuronal cells. The neurophysiological properties of the core
neuron are, in varying degrees, determined by the local modifications
within the neuron proper and by the extraneuronal cells.

On the basis of a combination of anatomical and physiological
criteria, each neuron may be subdivided into several segments. In
the classic concept, the neuron consists of one or more dendritic
processes, a cell body, an axon and one or more telodendritic
arborizations. Consistent with the dynamic polarity of the neuron,
the dendrites conduct impulses toward the cell body and the axon
conducts impulses away from the cell body. The cell body operates
as the hub from which the processes extend and as the neuron's
trophic center (the portion of cell concerned with the vital metabolic
activity of the neuron).

In this theory, functions can be identified with the cellts
anatomical subdivisions. For example:

1. The dendrites, and often the cell body, act as the receptive
segment (the sites for the synaptic contacts from other neurons).

2. The cell body acts as the trophic segment.

3. The axon acts as the transmissive segment (conducts nerve
impulses over a distance).

4. The telodendritic endings act as either a receptive segment
(in the sensory neuron) or an effector segment (in the motor
neuron). The axonic telodendria (effector segment) are in
synaptic contact with the receptive segments of other neurons.



-2-

A modern concept of the neuron, consistent with recent
neuroanatomical and neurophysiological data, is a modification from
that of the classic neuron (Bodian, 196Z). In this theory, the
physiologically defined segments have somewhat different relations
with the morphologically defined parts of the neurons. The receptive
segments may be the (1) telodendria of the sensory neuron of a peripheral
nerve (Fig. 1) or (2) the dendrites and the cell body in such neurons as the
motor cells of the spinal cord (Fig. 1). This segment is physiologically
characterized as that portion of the neuron whose membrane conducts
an impulse by decremental conduction (Grundfest, 1959). The transmissive
segment is (1) the "dendrite" and the axon of a sensory neuron of the
peripheral nervous system (Fig. 1) and (Z) the axon in most neurons as
the motor cell of the spinal cord (Fig. 1). This transmissive segment
is physiologically characterized as that portion of the neuron whose
membrane conducts with the nondecremental, all-or-none spike potentials.
The site where the decremental conduction is converted into nondecre-
mental conduction is probably the first node of Ranvier between the
telodendria and the "dendrite" in the peripheral sensory (Loewenstein, 1959)
or the initial segment just distal to the cell body on the axon of the motor
cell (arrow in Fig. 1). The location of the cell body as the trophic
segment of the cell may vary in different neurons (Bodian, 196Z); within
the transmissive segment of the peripheral sensory neuron (Fig. 1) or
within the receptive segment in the motor cell (Fig. 1). The essential
point is that the neuron is a complex cell with basic local specializations
with different anatomical proportions in different neurons.

Extraneuronal elements or their derivatives (for example, myelin
sheath) encapsulate practically the entire surface of each neuron. In the
peripheral nervous system, the neurilenma cells and their derived
segmented myelin sheaths (Fig. 1) encapsulate the transmissive segments:
and the satellite cells encapsulate the cell bodies in the peripheral
ganglia. In the central nervous system, the perineuronal oligodendrocytes
encapsulate the cell bodies and the interfascicular oligodendrocytes and
their segmented myelin sheath encapsulate each cell process. The cell
membrane of the neuron is in intimate contact with these extraneuronal
cells at certain regions of the neuron, including the nodes of Ranvier and
at the terminal segments. The extraneuronal cells are important beyond
their possible role in the metabolic activities common to all cells, for
they have a significant role in the neurophysiological activity of the neuron.
Two well-known examples illustrate this point: (1) a direct relationship
exists between the degree of myelination and the conduction speed of the
transmissive segment (Gasser and Erlanger, 1937) and (2) the principle of
saltatory conduction along the transmissive segment is related to the node
of Ranvier and to the internodal distance between two successive nodes of
Ranvier (Tasaki, 1959). Undoubtedly, more neurophysiological properties
will be ascribed to these extraneuronal cells and their derivatives in the
future.



-3-

Conclusions

1. In the classic concept, the neuron is essentially characterized

as a cell with processes that conduct an impulse with a nondecremental

all-or-none action potential. The dendritic processes conduct an

impulse toward the cell body of the neuron, and the axon conducts an

impulse from the cell body to the sites of synaptic contacts with other
cells.

2. In a modern concept, the neuron is conceived as a cell with

processes that possess special physiological properties. The

receptive segment may conduct impulses with a decremental potential

to a critical site of the neuron. The transmissive segment conducts

a nondecremental action potential from this critical site to the synaptic

contact with another cell.

These physiologically defined segments can be tentatively
equated with the classic parts of the neuron (dendrite, cell body, axon,

and telodendria). However, they differ in the various neurons. A
schema that applies to two neurons is outlined in the text.

3. Some of the physiological properties of the neuron are dependent

upon extraneural cells (neurilemma cells, satellite cells and
oligodendrocytes) and their products (myelin sheath). Because these

elements are significant in functional activity of the neuron, they

should be included in the definition of the structural unit of the nervous
system.

The structural unit of the nervous system should be defined to

include at least the neuron and the extraneuronal cells and their
products that encapsulate each neuron.
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Explanation of Figure

Schema of an afferent (sensory) neuron (S) and an efferent (motor)
neuron (M) illustrating some salient anatomical features essential to the
definition of the structural unit of the nervous system. The sensory
neuron is a neuron that conducts impulses (arrow indicates direction)
to the spinal cord. The motor neuron is a neuron that conducts impulses
from the spinal cord (arrow indicates direction). The triangular
arrows point to the first node of Ranvier in the sensory neuron and to
the initial segment in the motor neuron.

A Axon
I'D" Dendrite of the sensory neuron

D Dendrite of motor neuron
C.B. Cell Body
My Myelin sheath
Mu Muscle
N Node of Ranvier
S. C. Spinal cord
T Telodendria
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Human Detection and Human Variability with Emphasis on

Any Man-Machiine System

by George F. Nolan

S. S. Stevens wrote in the Handbook: "The threshold
is the value that divides the continuum of stimuli into
two classes: those to which the organism reacts and those
to which it does not." (p. 33). This idea that sensory
thresholds are points of discontinuity is conveyed by the
terms themselves, e.g. threshold, limen, jnd, etc. How-
ever, if one examines the operations of measurement where-
by the numerical value of the threshold is obtained, it
is clear that such is not the case.

The threshold is operationally a measure of disper-
sion. What we do in the psychophysical experiment makes
the threshold a-feviation of a probability curve. Accord-
ingly, it would be clearer if we spoke of a standard
deviation or a mean deviation rather than a threshold.

Put another way, a length can be measured in one
operation, but a threshold can not. To get the threshold
a series of measurements must be obtained. Then the aver-
age deviation from the mean is sometimes considered as the
threshold. This illustrates that the threshold is really
a measure of dispersion, not a separation into two classes.

This operational view of the threshold is more than
of academic importance. As a "threshold" almost any
theory is tenable, but as a "dispersion" it is clear that
a theory of change is needed. Something in the experi-
mental situation must be changing so as to produce a dis-
persion.

It can readily be shown that this source of change
lies not in the experimental equipment, but rather in the
observer's nervous system. By analogy with physical de-
tectors like radar, it is then suggested that what pro-
duces the change which the threshold measures is "neural
noise." In the case of radar, some thermal electrons are
emitted by the heat of operation, and since these are un-
related to the signal they are termed "noise." But since
the temperature suffers minor fluctuations, the noise also
varies in an erratic way.

The human nervous system also contains electrons and
minor variations in temperature. Hence it is quite con-
ceivable that thermal electrons could produce neural im-
pulses that are unrelated to seeing or hearing. Thus
when an attempt is made to see a signal it must compete



2

with this neural noise. As a result, fluctuations in
visibility are produced and these are measured by the
threshold.

From this point of view the nervous system is seen to
be a boiling, seething mass, not a static entity. Hence
the classic notion of a fixed threshold would have to be
in error.

Weber's Law

This new view of the threshold clarifies all of the
disputed aspects of Weber's law. As a result there
emerges a fundamental law of nature that promises a wide
area of practical applications. Some of these correc-
tions of the old law are the following.

That Weber's law fails at the high end and the low
end of the stimulus range - Weber wrote his law as:
DB/B n k, where DB is the threshold, B is the background,
and k is a constant. When the background is very weak the
data cease following this equation and this is termed the
failure at the low end. Now thinking of the threshold
(DB) as a dispersion caused by neural noise, it is evident
that this noise is independent of the presence or absence
of any background. But the law can be written as DB = kB
from which it follows that DB is zero when B is zero, or
verbally, the dispersion is zero when the background is
absent.

This illustrates that the law as usually written
should be wrong if the neural noise theory is right.
There is ample evidence in the literature upholding this
point and Fechner himself recognized this failure. He
proposed to salvage the law by adding a constant, viz.
DB - k(B * B') where the constant (B') was vague in mean-
ing. However, linearity can be expressed another way,
namely DB - kB + m, where obviously (m) is the value of
(DB)when there is no background.

In this latter form there is no experimental evidence
for a failure of Weber's law at the low end of the stim-
ulus range.

Consider now the other failure at the high end. Data
which show this effect are rare and have one feature in
common: they consider as "intensity" physical quantities
that have dimensions other than flux per unit area. For
example, "frequency" has been used to investigate Weber's
law in hearing, but frequency has the dimensions of the
reciprocal of time.

Restricting the law to energy will eliminate the data
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that show evidence for a failure at the high end. In terms
of the neural noise, no stimulus can become involved with
Weber's law until its energy is transformed by the receptors
into a neural impulse. Thus the so-called failure at the
high end supports the neural noise theory.

As a result of all the above, Weber's law describes
the ever-present changes in the human nervous system in so
far as these changes affect sensory and motor performance.
And the major variable (DB) has been palled the "thres-
hold," but we have seen that it is operationally a "dis-
persion."

Applying these ideas to vision via a psychophysical
experiment using the method of constant stimuli, we get
the following. Presenting the target to be seen for N
presentations, and asking the observer after each pre-
sentation whether or not he saw the target, we count the
number of positive responses where the target was seen,
say X, and the negative responses where the target was not
seen, say Y. This gives: N = X + Y. Dividing, we get:
1 a X/N + Y/N, and in the limit as N gets large the latter
ratios converge upon the probability of detection (q) and
that of non-detection (p), giving: 1 a q + p.

Describing the probability of non-detection (p) by
the general probability equation, and realizing that the
standard deviation (SD) will be related to the background
according to Weber's law, we have all the information re-
quired to predict p. Knowing p, we also know the probabil-
ity of detection (q).

However, in applying these ideas to the problem of
visual detection, the optical aberrations must be taken in-
to account because they occur before the energy is trans-
formed into a neural impulse. Th=a can be accomplished by
Nolan's method as follows:

At the dispersion (threshold), and using flashes of
light whose duration is less than the critical duration,
Karn's data show the relation:

(%)1/2 - K(r + ro),

and at longer durations:

(Q - Qo)/A - m(t - to)s

where the constant r' represents the blur disc radius
caused by the optical aberrations, and this quantity enters
into the retinal area (A).
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In other words, when we increase the target's
radius (r) by a constant amount (re) we will in effect
have removed the optical parts of the eye from con-
sideration. Considering then the luminous energy (Q)
coming from the target, the first equation states that
at threshold the energy density on the retina will be
constant (K2), and the second affirms that the flux
density will be constant (m).

Which of these two equations will apply will be
determined by whether the duration of the flash of light
(t) is greater or less than the critical duration (to).
Hence Weber's law must be expressed in terms of the
appropriate unit.

With this restriction in mind, the general pro-
ability equation can be written as: 2

p - (h)e - 1/2(x - a) /SD2

where the standard deviation SD is given by Weber's law,
x is a measure of the energy from the target, a is that
from the background, h is close to unity, and p is the
probability of non-detection.

In these equations, the constant (r') measures the
optical purity of the observer's eye, presumably (K) and
(m) measure the efficiency of the energy transformation
taking place at the retina, and Weber's constant (k)
measures the neural noise in the observer's nervous
system. Thus before we can predict the probability of
detection the observer's sensory apparatus must be
calibrated.

Such calibration raises a number of problems that
can not be answered with the available data. For example,
do some people have markedly noisier nervous systems than
others? If such is found to be the case, then the above
equations have application in personnel selection.

For another example, what physical variables affect
the neural noise? To illustrate the importance of
further work here it can be noted that it is not incon-
ceivable the certain dietary items increase the neural
noise, and through this effect hamper vision and thus con-
tribute to fatal accidents.

Summary

The central idea here presented is that the human
nervous system exists in a state of flux or continual
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change. This means that things seen in one moment need
not be seen a moment later. Actions successfully per-
formed once may fail of successful performance a little
later. And this human variability is traced to the
neural noise inherent in the human nervous system.

In any man-machine system the link between the man
and the machine should be designed in accordance with
this neural noise, which means that Weber's law should be
taken into account by the design engineer. Failure to do
so can lead to dire results. Illustrating this need are
the statistics on air fatalities.

The majority of such accidents are caused by human
failure, not equipment failure. This is easy to under-
stand from the nature of neural noise. A temporary in-
crease in the noise may cause vital information to be
unseen by the pilot until he has committed his craft to
a course of action. Then as the noise abates he re-
alizes his error but it may be too late to change course.
Accidents having such a cause can be eliminated by
designing the man-machine link along lines demanded by
Weber's law.

The mathematical application of the law to vision
has been presented showing that pilot selection in terms
of visual ability must be concerned with three factors:
the optical purity of his eyes, the efficiency of his
retina, and the noise in his nervous system.



TYPES OF SIMULATIONS OF OUTSIDE NORLDS,

AND BASIC PARAMETERS

(A paper for presentation at the

Third Annual Bionics Symposium)

by Richard K. Overton

Autonetics Research Center

Anaheim, California



A prominent interest here concerns designs for "artificial intelli-
gence," or "self-organizing systems," or "learning machines." But the
acceptable definition of these terms sometimes proves troublesome. This
paper suggests that they refer to a system which has one distinguishing
characteristic: It can construct, within itself, a model of the world
around it.

The outstanding example of such a system is the human, whoee brain
develops and revises "cognitive maps" which help him cope with "reality."
The design of mechanical systems capable of doing the same sort of thing
is a goal of many people here. I think we can facilitate the design of
such systems by clarifying the basic characteristics of simulated outside
worlds.

Types of Simulations

In certain narrow senses, the simulation of the outside world is a
trivial and common activity. For example, an engineer, prior to computing
the predicted performance characteristics of a proposed airfoil, might give
a computer data regarding the density of the air at various altitudes. The
data are a simulation of the outside world, although the computer did not
acquire them for itself.

Even machines which do their own data collection can be trivial. For
example, Autonetics has conducted computer simulations of machines which
"learn" a maze and do nothing else. They work by simply compiling a list
of proper turns; they are hardly more than automatic recorders.

There exist, of course, more sophisticated systems for simulating the
outside world.

1. There are machines which take a major step beyond the recording
of sample data from the outside world: They also analyze the
sample and make up general rules which, hopefully, are applicable
to the world beyond the sample.

2. A further step is represented by systems which, after making up
general rules, deliberately look into the consequences of those
rules to improve their picture of reality. Scientists do this;
their observation leads them to make postulates which they hope
are true throughout the universe. Consideration of the postu-
lates as a whole then leads them to arrange experiments which
will test their picture of reality.

One example of the making of rules which simulate the outside world
comes from the Autonetics General Information Learning Equipment (AGILE)
(8). We gave AGILE descriptions of 15 diets which were nutritionally
adequate, and had the machine "study" them. Then AGILE was able to make
up new diets; if you named two or three foods which you liked, it would
describe a diet which included these foods. These diets were based upon
the rules which AGILE had devised. Although the rules were physically
represented by numbers and areas within a computer, they behaved as if
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they were qualitative statements like these: "People should consume milk
every day." "If a person takes cheese, his consumption of milk should be
reduced." Such statements are, in effect, generalizations regarding the
world of nutrition.

It is worth noting, incidentally, that a machine which builds up its
own rules is quite different from a machine which follows rules which
people have set up. This is true in spite of the fact that the ultimate
behavior may be the same. Speaking of mechanical language translation,
for example, George Miller et al declare: "In principle, there is no
reason we cannot store a two-language dictionary and several hundred coded
rules of grammer in a computer and get a usable output." (5, P. 53) Such
a system, which does not actually exist, would behave in the same was as
would a very large version of AGILE, which also does not exist, after the
large AGILE had completed a "study" of samples of two languages. But the
two translators would have acquired their general rules in very different
ways.

The same kind of distinction pertains to the second type of system
for simulating outside worlds. AGILE cannot perceive gaps in its picture
of the outside world, and it cannot plan experiments. People can force
it to make crude experiments, but the machine is then reacting to people,
and not to gaps in its picture of the world.

Within each type of system, basic parameters affect the performance.
The identification of these parameters is of obvious value: A human
designer is more likely to attain his goal if he knows the parameters
which describe his goal.

Basic Parameters

Six parameters will be discussed below; the first five are closely
related to each other.

1. Number of Variables Sampled and Combined. For one system, the
only pertinent aspect of the outside world might be atmospheric
pressure. This would be a one-variable system. A many-variable
system might construct a simulated outside world combining, for
example, information regarding atmospheric pressure, nutrition,
and muscular strength.

Available literature indicates that all "intelligent" machines now in
existence are one-variable or few-variable systems. One reason the human
can solve certain problems which machines cannot is that the problems in-
volve many variables'. Efficient reorganization of a clerical office, for
example, might require knowledge of the talents and personalities of the
clerks, acquaintance with the various tasks the office is supposed to
execute, awareness of space and equipment requirements, and the like.
In short, the planner has to use a simulated outside world which includes
many different aspects of reality.
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2. Size. The data-container (such as a computer memory) available
for the storage of the simulated outside world may be small or
large.

The most conspicuous example of an intelligent system is the human,
but no one really knows how much storage capacity he requires for his model
of the outside world. A remarkable fact, which we have elaborated elsewhere
(7), is that estimates of the memory capacity of the human brain disagree by
a factor of one trillion.

3. Degree of Possible Abstraction. A simple data-acquisition
system may record specific data. A sophisticated system may
reduce many specific data to a smaller number of general state-
ments. The extent of the ability to draw abstractions from
data is the parameter cited here.

A hypothetical machine concerned with air pressure and altitude illus-
trates this parameter. A simple recorder would note only the raw data. A
machine capable of some degree of abstraction might also derive and record
the general rule that air pressure is negatively correlated with altitude.

There is a fundamental relationship between degree of abstraction and
memory capacity. In this connection, theoretical studies of people, and
practical experiments with machines, have led us to think that an "intelli-
gent" system does not require a fabulously large memory. The paper cited
abov9 (7) estiwates that the memory capacity of the human brain is between
4xlO0 and 3xl06 bits of information. The paper adds, ". .. the memory capacity
of the IBM Z030 will be about 2xlO7 bits. If you assume the brain's capacity
is about 10 bits, you can see that computers will soon have larger memories
than brains do."

A 30-year-old book (2) explains the basic reason for the popular over-
estimation of human memory. A person thinks, for example, that he is remem-
bering in vivid detail the inside of a house he saw as a child. But experi-
ments indicate that he actually remembers only a few salient points, and
that he unconsciously "fills in" the gaps with good guesses which he draws
from his general picture of a house. For example, he knows that houses have
walls, so he "fills in" walls which go from the floor to the ceiling; but he
does not really remember the exact texture of all parts of the specific walls
he thinks he is recalling. The person has stored a few general pictures, not
many specific pictures.

There is a price to be paid for dealing in general rules: The system
makes mistakes. It sometimes errs even in the face of "objective" evidence.
Charles Solley cites this example (9, p.100): "...in 1951 there was a
Cadillac model which was shorter than the Buick Roadmaster. One of us
asked a number of his friends which of the two was longer, when by happen-
stance the two models were parked side by side. Invariably the observers
would glance at the two cars and say, "the Caddy is longer.' They 'knew'
that Cadillacs were longer than Buicks..."
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4. Fineness of Categorization. The structure of the simulated
outside world may permit a variable to be broken down into
many narrow categories; or, the structure may allow for the
representation of only a few broad sectors of the variable.

Melpar, working under Air Force contracts (3), has built an experi-
mental maze-running machine whith is connected to an immobile "learning
network." As the machine buzzes around in a maze, the learning network
builds up, within itself, a representation of the maze. The representa-
tion deals primarily with the one variable of azimuth (or direction).
The variable is split into four categories. All turns are right angles.
That is, the learning machine simulates an imaginary world in which
45-degree turns do not exist.

Now Melpar and its Air Force colleagues are quite capable of build-
ing a machine which deals with more than four categories of azimuth. The
reason they did not was undoubtedly this: Other things being equal, the
many-category machine would have been more expensive because it would
have required more memory.

There is also a relationship between fineness of categorization and
degree of abstraction: The availability of broad categories is not sufficient
for a high degree of abstraction, but it is necessary. For example, a system
could not acquire the abstraction that "All Cadillacs are longer than Buicks"
unless it could put all Cadillacs in one category; but, the mere availability
of the category would not be sufficient for the generalization.

Psychological research indicates that people, like the Melpar maze-
runner, are broad-category systems. That is, people making absolute, non-
comparative, judgements of variables such as weights and noise level seem
able to do no more than place them in a few broad categories such as "very
heavy," "medium," etc. As one researcher has observed, people seem to
categorize on the basis of "the magical number seven, plus or minus two"
(4).

5. Degree of Generalization. A system's model of the outside
world must be applied to be of value. When elements of the
model are made to cover a great variety of new situations,
there is said to be a high degree of generalization. When
the simulation is so constructed as to be inapplicable to
most new situations, even including some to which it should
be applied, there is said to be low generalization.

The extent to which old learning is promiscuously applied to new situa-
tions is in part a function of another parameter: fineness of categorization.
If the system breaks the variables of a problem down into broad sectors rather
than fine graduations, it will tend to generalize. Inside a self-organizing
system, for example, 13 pounds of air pressure and 10 pounds of air pressure
might be represented only as "heavy." If so, each would be treated the same
way. Since identity is the ultimate degree of similarity, and since general-
ization depends upon similarity, the system would invariably generalize from
10 to 13 pounds of pressure or vice versa. Fineness of categorization does
not completely determine degree of generalization, however, because identify
is not the only degree of similarity.
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In connection with the AGILE program, Autonetics has done some research
on the effects of different degress of similarity and generalization. With
a physiological theory of similarity (6) as our guide, we once arranged the
machine so that everything it encountered was treated as similar to every-
thing else. This made for a very high degree of generalization. But it
also made for extremely slow learning. With much generalization, many
relationships between stimuli had to be treated, and this took much time.

6. Evidence Needed for Change. If the structure of the simulated
outside world is inherently plastic, only a little new evidence
may suffice to modify (and, hopefully, to improve) the simula-
tion. Otherwise, the model of the outside world may be resistent
to change in the face of new information.

No one seems to have done experimental research on the question of the
optimum degree of flexibility for a machine's simulated outside world. How-
ever some psychological studies may be pertinent.

People construct and change cognitive models which supposedly describe
the world around them. However, some people are much more willing than others
to change their model of the world when they receive new information. This
difference in willingness to change seems to reflect a rather basic aspect
of personality which develops before the college years and is thought to be
rather permanent throughout adulthood (10).

Psychologists have found the correlations between this willingness to
change and several other variables. Their work is of potential interest to
the designer of an intelligent machine. He should be interested in the
correlation between willingness to change and intelligence; he might want
to give his machine that degree of flexibility which seems optimum in
people.

The correlation between tests of willingness to change and tests of
intelligence is very low but statistically significant, and the studies fail
to reveal any particular degree of willingness to change which is associated
with high scores on IQ tests (1). These results indicate that the question
of the optimum degree of flexibility for a system's simulated outside world
is not a simple one.

Progress and Prospects

In talking about these half-dozen parameters, we have tried to apply
them to the simulated outside worlds created by both machines and people.
Now there is another sort of parameter, another question, which is of
perennial interest. To put it very crudely, how smart are machines? How
close have we come to making machines which can perform the "mental" feats
of humans?

The question is a legitimate one. But before it can really be answered,
it must be' stated more precisely. The proper form of the question is, I
think, this: Where do our most advanced machines stand, in relation to
people, on each of the parameters?
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The following comparisons, although very brief and very crude, are the
best answers which I can now make.

1. Number of variables sampled and combined: Mechanical self-
organizing systems have not even begun to approach the large
number of variables with which people can deal.

2. Size of memory: According to this speaker's estimate, com-
puters will soon be big enough to contain all of the informa-
tion that the brain can contain. But many people disagree
with this estimate.

3. Degree of abstraction: People are greatly superior to mech-
anical self-organizing systems on this parameter, but it is
not now possible to quantify what is meant by "greatly
superior."

4. Fineness of categorization: The present state of technology
enables the making of mechanical systems which, within the
limits of other parameters, can represent points close to
the human on this parameter.

5. Degree of generalization: The absence of a unit of measure-
ment makes comparison difficult. Also, different machines
vary greatly on this parameter.

6. Evidence needed for change: Lack of knowledge of the mean
value for humans, plus lack of knowledge of the effects of
individual differences among people, renders man-machine
comparisons difficult. The speaker's opinion, however,
is that machines can rather easily be adjusted to make
them close to people on this parameter.

Do these rough comparisons paint an encouraging or discouraging
picture of progress on the job of designing self-organizing systems? That
depends, I suppose, on your own personal point of view--on the standards
which you brought to this symposium, and on the problems which you have
tackled or avoided, and solved or failed to solve. Regardless of your
personal opinion on this score, I hope the basic point of this paper is
still valid: By clarifying the nature of the job, we enhance our pros-
pects for doing it.
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PRELIMINARY INVESTIGATION INTO A NEURAL NET THEORY

OF COLOR VISION

By E. L. Pautler and R. A. Wilson

Goodyear Aircraft Corporation, Akron 15, Ohio

Introduction

In many neurophysiological studies of neural coding it has been com-
mon practice to correlate steady-state discharge or some measure
of average impulse frequency of a sensory organ with intensity of
stimulation (ADRIAN, ENROTH, GRANIT). Most studies have ig-
nored the possible information-carrying capacity of the early
transient stages of neural activity, although ADELMAN et al have
shown that there is considerably less variability in the tM-iMiig of
nerve impulses during the early transient stage of activity than in the
later steady-state discharge. During the transient stage the impulse
frequency usually is rapidly decreasing toward some steady state.
(See excellent data on the Limulus eye by HARTLINE and GRAHAM,
and on the eel by ADRIAN.)

Considering the very precise and reproducible nerve impulse time
intervals demonstrated by ADELMAN et al and HORVATH et al, it
is a logical step to assume that,the time function that determines the
change of pulse frequency might be controlled by another property of
the stimulus, thus accounting for differentiation of qualities within
a single sense. To make this suggestion more plausible it is de-
sirable (1) to show some means by which a single receptor might
begin to distinguish stimuli that differ in this property (2) to show
how the time-function information might be abstracted from the
intensity information for use by the brain, and (3) to indicate means
by which a special time function detector might be identified if it
exists in some animal's nervous system.

This paper is concerned with the problem of color discrimination.
BALARAMAN has recently reviewed many of the inadequacies of the
classical color theories. Furthermore, the results of recent care-
fully conducted psychophysical experiments, though not inconsistent
with conventional theories, would not be predicted from them (KELLY,
1961a and b; 1962a and b). These same data, regarding the specific
speed of response of the nervous system to different colors, are
naturally related to a color theory that assumes that certain time
functions carry the color information along part of the signal path. A
single-receptor theory of color vision is described here; however, a
multireceptor theory that is based on the generation of different time
functions of the pulse train frequencies is equally plausible.
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Assumptions and Analysis

This analysis is based on three assumptions.

1. A single receptor cell must distinguish different
colors so that it can produce characteristic receptor
potentials which result in pulse trains probably at
the second order bipolar cell.

2. The specific receptor response to each color determines
the time constant of the pulse train, the frequency of
which is decaying exponentially. The absolute frequency
of the train contains the intensity data.

3. The pulse trains are re-emitted periodically.

Analyses and experiments by ENOCH, MYERS, and SCHROEDER
indicate the feasibility of the first assumption. Applying wave
guide concepts, they predict each color of light to be concentrated
effectively on one or more small increments of the receptor outer
segment. SVAETICHIN and MACNICHOL have observed character-
istic graded potentials elicited by colored lights, in fish retinas.

The second assumption utilizes one of several possible time functions
(DONNER, MACADAM. The notion that accommodation is relatively
slow in these cells and that the change of frequency is primarily a
result of the rate of buildup of the excitation process is implicit in
this assumption.

To maintain a reasonable signal-to-noise ratio, it is necessary to
assume that the pulse trains are occasionally re-emitted. Possibly,
lateral inhibitory fibers (HARTLINE et al) are caused to fire
periodically because of their movement along stimulus intensity
gradients by physiological nystagmus. These fibers act directly on
the receptor cell, temporily inhibitirng its potential, then causing the
characteristic potential to resume as though it had been freshly
stimulated.

For a first analysis of the possibility of using a physiologically
reasonable nerve network (POLYAK) to distinguish pulse-train time
functions, it is assumed that the pulse-trai- irequency decays
exponentially from fo to zero with a time constant, 1/k. If

f = fo exp (-kt),

then
df =-kf;
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andif df + kaf <0,

then
k>ka

This would suffice for k discrimination independent of frequency
(intensity), fo, if a perfect differentiator were realizable,

A good approximate differentiator expressed in Laplace transform
notation is:

f(p) f(P)
1+ ar p

and the new criterion is:

if __I p_

ever becomes > 0, then

The Neuron Model

It has been assumed that the responses of the ganglion cell data
processing nerve nets can be approximated adequately for pre-
liminary predictions by a four-parameter modified BLAIR -neuron
model (Fig. 1).

The nerve cell fed by the special network is thought of as an analog
device that sums up the effects of the incoming spikes and emits
pulses when the total effect of the incoming pulse trains exceeds
some threshold. (cf HARMON, and Hartline i n a letter to
MACADAM.)

The first-order lag, "T, tentatively is identified with a dendrite,
and the inhibitory, more rapidly transmitting path, having synaptic
weight A., with a different dendrite or axon. These summate on a
"ganglion cell", which also has a first-order lag characteristic with
time constant a . Even with this lag added, the same criterion,
k T' > (X -1)/ X ), must be met if the ganglion cell excitation functioc.
is to exceed zero.
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The details of the ganglion-cell pulse train are not calculated. The
excitation function is computed and compared with the threshold to
determine whether or not the cell will fire.

Each particular choice of network parameters will effect a partition
of the incident spectrum, i. e., for all colors on one side of the
partition, the ganglion cell will fire; for all colors on the other side,
it will not fire. If several ganglion cells with different network
parameters are assumed to be connected to one receptor, each color
is identified by aAl accounting of the ganglion cells that respond.

Results

Analysis and an analog simulation (DIAMANTIDES) have shown that
this partition can be made for monochromatic stimuli. Difficulties
that arise from consideration of response to individual pulses from the
bipolar train are alleviated by consideration of the spatial conver-
gence upon the ganglion cell of receptor fields (KUFFLER).

Comparison of Fig. 2, fo = 0S , and Fig. 3, fo < = 6. 25, illustrates
one of the cited difficulties. In the latter case the pulses are
sufficiently separated, relative to the time constant ('C = O ) of the
averaging processes, that considerable fluctuation occurs. Hence,
even with k < = 1/3, the criterion level, there are a series of
positive thrusts that would cause ganglion-cell firing if the threshold
were low enough.

However, enough data have been obtained, for various parameter
values in the form of E+ maximum versus 1/k plots (Fig. 4) to
show that k discrimination independent of intensity - hence, fo -
can be made by judicious choice of thresholds, e. g., the broken
line in Fig. 4. Alternatively, a slow inhibitory input, the average
of the local recent activity, can be added to the cell and produce
a threshold with the approximate form (A + Bfo)/(1 + <ip). This
allows a choice of a k discrimination point almost anywhere along the
light-hand limb of the curves of Fig. 4, still avoiding a confounding
of intensity and hue.

Some tentative selections of numbers have shown that the model can
match physiological data. Assuming a maximum fo of 300 pps from
a receptor cell and a set of 16 receptors converging on one
ganglion cell the maximum fo arriving at the ganglion cell is 4800
pps. If a varue of 10 msec is chosen for < , the maximum f0 <C
will be 48.

Consideration of the width of pulses relative to interpulse interval
and the overlap of pulses from converging receptors suggests that
the need for high f -C values may be relaxed without degeneration
of k discriminabiiy.
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"Sensitivity" Curves

Plots of maximum excitation versus 1/k look like spectral sensi-
tivity. curves when k is assumed to be simply related to the wave
length of the stimulus. The curves in Fig. 5 are not "threshold"
curves but amplitude curves, which if operated on by a
threshold device, will yield similarly shaped "threshold" curves.

It is possible to match some of GRANIT's modulator curves by
choosing three values of o. Furthermore it is assumed that
1/k is proportional to the antilogarithm of the wave length of
light. The output of these three different networks were super-
imposed on a plot of E+ maximum versus log 1/k (Fig. 5). With
the dC values in the ratio of 2:1, the sensitivity curves will
intersect halfway between the threshold and the peak (GRANIT, p 137).
The threshold was chosen to be 75 percent of the net excitation peak
value as indicated by the horizontal broken line; X was 1.5. Slightly
different curves are found if different N. values are used or if oL is
not assumed to equal -C

From Fig. 4, it is apparent that variations of fI -f , f. alone,
or IC alone will change the shape and height of EI makimum
versus 1/k curves. The spectral absorption curve of the photo-
chemical events will further modify these properties as well as
the positions of the peaks of the curves. Nevertheless, network
adjustments can be made so that none of these changes will signifi-
cantly alter the conclusions drawn from Fig. 5.

The top of Fig. 5 indicates which ganglion cells (a, b, or c) are
firing in the spectral regions indicated by vertical broken lines.
Small changes are required for some classes of ganglion cells to
fire for every visible color.

The range of k values needed to cover the full spectrum was esti-
mated to be 1.5 to 58.5 msec. The model shows that the total
number of pulses available, at maximum fo for processing by the
network will be approximately fo/k or 7 to 100 pulses for the
numbers given. Considering the fewer number of pulses available
in the red region it is not surprising that psychophysical data
show that the just-noticeable-differences of hue span large wave
length intervals. Psychophysical experiments by KELLY (1961a and
b; 1962a and b) have shown blue, red, and green mechanisms that
respond selectively to light-intensity fluctuations in the ranges from
4 to 7, from 10 to 15, and from 20 to 30 cps, respectively.

Consider the gain vs amplitude relation of the transfer function of
the network and ganglion cell:

I " ' 1 i p - (X -l) 1I+'p l+ )(1+ IA ,,'

1+ acpTCC (I1+'C PM+etP)
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I 6, 12, and 24 cps are chosen as representative peak values for
KELLY's three mechanisms, an approximation to his data can be
obtained by assigning to the model corresponding &C values of 26. 6
msec, 13.3 msec, and 6. 65 msec. At low frequencies, the sum
of three networks, with these oC values, shows similar selective
enhancement (Fig. 6). Small changes in the color discrimination
model, such as the use of slightly different approximation functions
for dendrite delay, should provide even better matbhes with these
data.

As an alternative description of the model's relation to flicker
enhancement data (LE GRAND) and subjective color phenomena,
it is assumed that lateral inhibitory fibres are self-inhibiting
and will squelch the receptor potentials only after certain minimum
intervals. Therefore, for steady illumination only one ganglion-
cell excitatory excursion could occur during each minimum interval.
If the receptor were incessantly driven by a powerfully flickering
stimulus it would be expected to force more than one excitatory
excursion in a minimum interval provided the driving frequency
were bigh enough. At higher driving rates the initial net inhibitory
response to each pulse train will begin to mask the latent ex-
citatory response to the preceding flash of light. At still higher
driving rates a temporal fusion occurs in the photochemical events
of the outer segment reducing the modulation of the effective stimulus
at the generator of the receptor Potential. Therefore, brightening,
dimming, then constant "apparent" stimulus are the perceptions
accompanying a steadily increasing driving frequency.

Each ganglion cell, whose output normally indicates a particular
color band, yields maximum apparent brightness at the critical
frequency dictated by its network parameters. At each flicker
frequency that color band, whose mediating ganglion cells' responses
are most enhanced, will appear as a subjective color.

The model also makes specific predictions of latency and excitation
functions, some of which are extremely close to data obtained in
the goldfish retina (WAGNER et al).
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EXPONENTIAL PULSE TRAIN
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LOGONS, NETRONS, AND DESCRIPTION THEORY

Buryl Payne

The Boeing Company

A basic problem in science is that of defining or measuring the "organi-

zation" or "structure" of an event, system, pattern, or configuration.

Information theory as developed by Shannon and others does not take into

account the organization or structure of events, systems, etc., but only

their unpredictability. However, D. MacKay (1950) suggested that it was

possible to distinguish a different kind of information, which he called
"structural information", and which is applicable to the description or

organization of events themselves, rather than their unpredictability.

The writer has modified and developed MacKay's original suggestions and

called the work "description theory" to distinguish it from information

theory. In description theory the interaction between the observer and

the observed is carefully examined and the relationship between this

interaction and the "organization" of a phenomenon is developed. Some

of the major concepts and an application in an area of pattern perception

are briefly discussed in this paper.

An Example From Physics

Probably the clearest manner of illustrating description theory is to

consider a simple example from experimental optics. The radiation spec-

from a mercury light source was measured at three different levels of

resolution using a Perkin Elmer Spectrometer, Model 98, with a glass prism.

The results for a limited region of the spectrum are shown in Figure 1.
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The large, single, wide peak was observed when the spectrometer was used
at a low level of resolution (wide slit width). The middle curve was
obtained from the same spectral region, but the resolving power of the
spectrometer was increased by narrowing the slit width to 0.15 millimeters.
The appearance of the two "ears" suggests that there may be two separate
or distinct line spectra in this region rather than just one. In optics,
it is customary to consider that two line spectra are resolved if the
energy level at the midpoint is 0.81 of the energy level of the peaks.
This is known as Rayleigh's criterion and is derived from simple consider-
ations of optics. By this criterion the middle curve in Figure 1 is not
quite resolvable into two components, but by increasing the resolving
power further the two line spectra are clearly resolved as shown in the
right double curve of Figure 1. These spectra are the well-known mercury
doublet at 5770 and 5790 angstroms.

In these measurements, three characteristics may be distinguished: the
number of lines resolved, the amplitutde of the lines, and the width of
the lines. At low resolving power only one line was observed which was
quite wide; whereas at high resolving power, two narrow lines were observed.
Still higher resolving power would have shown that the line on the right
at 5790 angstroms is composed of two distinct lines, one with a peak at
5789.66, and one with a peak at 5790.65 angstroms. The ultimate limit
of this process is determined by quantum mechanics, but in general it is
apparent that as resolution is increased the number of line spectra may
increase and the width of the lines will decrease.

This simple illustration from optics provides a basis for defining des-

cription theory.

The Concepts of Description Theory

Each distinguishable, independent component in the logical description
of a given pattern, event, system, etc. is called a logon and the total
number of components will be called the logon content. A logon may be
considered to be a unit of structural information. In the example dis-
cussed above, the number of logons was one, twc or three, depending upon
the resolving power of the measuring instrument.

The measured magnitude of each component or logon has some uncertainty
associated with it. This uncertainty may be measured by the variance,
and the sum of the variances of the magnitudes of all the components will
be called the metron content. Actually, there is some uncertainty as-
sociated with the amplitude, as well as the mean, but that will not be
discussed at this time. In the example cited, the line width of the
spectral lines is related to the variance. As the logon content of the
logical description of the event, system, etc. increases, the total
metron content decreases. The average metron content, or the metron
content per logon also decreases as the logon content increases, ap-
proaching a limit determined by quantum theory.

An example from statistical theory will help to clarify the relationship

between logon and metron content.

Logon and Metron Content in the t-Test

Consider two normal distributions placed side by side with means 2.7



standard deviations apart as shown in Figure 2.
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If these two distributions are added together, the result looks some-

thing like the mercury light spectrum observed with a slit width of 0.15

millimeters. The mean for the summed distribution occurs at 1.35 stan-

dard deviations, which is twice the probable error (0.67 standard devia-

tions). The curves in the figure were deliberately placed at this dis-

tance apart so that the center dip in the summed distribution wou-Id be

about 0.8 of the peak amplitude or approximately equal to the Rayleigh

criterion of resolution in optics. For such distributions the t-test

from statistics may be used to test whether or not there is a significant

difference between the means of the two distributions. The value of t is

obtained from the equation, t = 2+/(S + 2 where m is the mean and

S is the variance. In this case t = 1.91 and from table of the t distri-

bution, it is found that the probability of obtaining a difference between

the means of 2.7 standard deviations is 0.056. This is very close to the

value of significance frequently chosen in statistical tests where

p = 0.050 and t = 1.96.

In this special case the relationship between logon and metron content

can be clearly shown. If the choice is made to consider the distribution

as consisting of only one logon, then the total variance or metron content

of the summed distribution is 2.82*.

However, if the choice is made to consider the distribution as composed

of two logons, then the total metron content (defined as the sum of the

variances) will be less. For the variance of each component is one(since

S2  2 2

*This value is easily obtained from the relationship: S= (SI + S )/2
2 2 2 S2 h aincso h w

+ 2 , where S is the total variance, S and the variances of the two

components (each 1 in this case), and Sb the variance of the group means

about the common mean. In this case 2 = (0 - 1.35)2 + (2.7 - 1.35)2 all

divided by two. Therefore S2 = (1 + 1)/2 + 2(1.35)2 /2 or 1 + 1.82.



they are normal distributions) and the metron content is, therefore, 1 +
1 or 2, rather than 2.82. For any kind of distributions it can be shown
from the definition of t and the relationship between the variances given
above that M = 4S2/(t2 + 2), where M is the total metron content assuming
that two logons are resolved, and S2 is the variance of the summed distri-
bution or the metron content assuming that only one logon is resolved.
The two are equal when t = /2 and this occurs, for normal distributions,
when the means are only 2.0 standard deviations apart instead of 2.7 as
in Figure 2. This corresponds to a probability level of about 0.15 and
a slight dip in the summed distribution is just detectable. The relation-
ship between metron and logon content may have some interesting implica-
tions for statistical thinking. It may be possible to state that if the
metron content can be decreased a certain specified amount by increasing
the logon content, then it is valid to assume the existence of additional
logon content in the structure of the phenomenon under observation.

However, one important factor has been left out of the discussion so far,
and that is the resolving power of the observations. If the distribution
shown in Figure 2 was actually obtained from experimental work, then it
would not be smooth and continuous but divided up into discrete intervals.
The size of these intervals would be related to the resolving power of
the experiment or observing instrument. If the intervals were as large
as twice the standard deviation, the center gap in the distribution would
not be perceived. A histogram or bar chart would be obtained which would
indicate the presence of only one logon, i.e., the center bar would have
the largest height. However, if the size of the interval is decreased to
about 1.35 times the standard deviation, then the gap will just begin to
appear. Decreasing the interval size still further will decrease the
variance and show the gap more clearly. It could be, however, that each
component consisted in turn of subcomponents, as in the case of the mer-
cury spectrum, and these subcomponents would then appear as the resolv-
ing power of the experiment was increased.

A mathematical analysis of more complex cases, and the determination of
a formal relationship between metron content and logon content in general
terms has not yet been achieved, but an informal examination of descrip-
tion theory in a slightly different area will be helpful in understanding
it.

Mathematical Models

In general, an event may be described as an n-dimensional vector. The
logon content will be n, the total number of independent factors, and
the metron content will be the sum of the variances of the magnitudes of
each component. Only in mathematics would the metron content be zero.
Any physical measure has some uncertainty or metron content associated
with its measurement. Although a very large number of logons or vector
components may be required to describe a given event completely, in prac-
tice only a limited number of them may be selected and some uncertainty
or remainder error must be divided among those selected. In other words,
a compromise is made between logon and metron contents. Usually, in sta-
tistics, if the number of components is great enough to account for about
95% of the variance, the other 5% is dismissed as non-significant. In
other situations the number of logons is often reduced to some small num-
ber for simplicity or ease of handling even though greater variability
is incurred by this procedure. (Ordinary language reflects this tendency.)
The reader can doubtless supply examples from his own speciality, whether
it is factor analysis, fourier series, or nuclear physics. An applica-
tion in the area of pattern perception is discussed below.



Description Theory in Pattern Perception

It is reasonable to assume that the logon content of an event, system,

configuration, or pattern is related to the amount of organization pre-

sent in it. It is also reasonable to suppose that the amount of organi-

zation is proportional to the judged complexity of a given event, system,

etc. The author investigated this for a special case of patterns (Payne,

1962). The hypothesis tested was that the judged complexity of patterns

is directly proportional to the number of logons contained in the pattern's

description.

The patterns were generated from binary and ternary sequences by letting

a "0" be represented by a horizontal line segment of unit length, a

"" be represented by an upward-directed vertical line segment of unit

length, and a "-1" be represented by a downward-directed line segment of

unit length. Some of these patterns are shown in Table 1 along with their
generating sequences, descriptive codes, and logon contents. In terms

of description theory, the number of distinguishable components in these

coded descriptions is the logon content.

In many patterns this was just the number of line segments, or number of

runs in the generating sequences, but in some of the patterns there were

repeated pairs or triplets of line segments (for example, the last two
patterns of Table 1). In these cases it was possible to construct a des-
cription of the description of the patterns which was more concise then
the original description. This reduced description may be said to indi-
cate the presence of organization within the pattern and resulted in re-

duced logon content. These organized patterns were, consequently, expec-
ted to be judged as simpler than other patterns which had the same number
of line segments. The subjects were asked to rank the patterns in order
of complexity with the logon content of the patterns being used to obtain
a predicted order of complexity.

In the treatment of the data it was found desirable to divide the subjects
into three subgroups on the basis of their ranking of a criterion pattern.
(In terms of description theory, three components or logons were separated

in the data in order to reduce the total metron content, i.e., to increase
the predictability of the logon content measure for judged complexity.)
One subgroup consisted of subjects who took into account the organization
within the patterns. A second subgroup was composed of subjects who con-
sidered only the number bf line segments in their judgments, and a third

subgroup appeared to average these two factors. The subjects in the first
subgroup were called "logon minimizers". Those in the second group were

called "logon maximizers" and the subjects in the third subgroup were
called 'compromisers". Logon minimizers demonstrated a strong tendency
to perceive the maximum amount of organization present in the patterns

and hence to judge them as simple. In some cases they carried this tend-
ency further than was anticipated. For example, the third pattern in

Table 1 illustrates an effect common to several other patterns that were
tested. A prominent feature is present in the left part of the pattern,
and t7is feature is approximately repeated in the right half of the pat-

tern. However, the coding system was not designed to take such approxi-
mations into account, and hence the logon content was set equal to the

number of line segments. The predicted rank for this pattern was 10.5

and the observed mean rank was 6.5. In terms of description theory it is
apparent that the logon minimizer subjects chose to trade decreased logon

content for increased metron content. That is, they glossed over the



Table 1

Representative Patterns

Used in a Study of~ Judged Complexity

Pattern Generating Sequence Description Logoni Content

001-1010110 212,1,1,1,2,1 7

011100010010 2,3,3,1,2,1,1 
7

0-1-1-1011000-1-10100 1,-3,1,2,3,-2,1,1,2 9

0101010101 ,1111,,,,1 10

-J/(1,l) 
5

0010-1-1000101010 111,1,1, -2,3,

1,1,1,,1,1,16

(1,1),1,-,3,(,1)3 9



differences between the two prominent units and emphasized their similari-

ties.

In spite of this effect and others, which were not foreseen beforehand,
the predicted rankings of judged complexity based upon logon content were
found to account for 77 to 95% of the maximum possible total absolute

difference between predicted and experimental rankings. Three groups of

15 patterns each were tested and 225 subjects judged each group.

General Considerations

There is a tendency in science to minimize the logon content of an event,

system, etc. by developing theories which describe the data in the simplest

fashion (the principle of parsimony). The use of approximations is a

logon minimizing technique for reducing the complexity of descriptions of

scientific experiments. Yet in other circumstances it is desirable to

increase the logon content to its maximum, or to discover in detail the
structure of an event, system, etc., in order to measure it accurately

or predict its occurrence with the maximum certainty. In such circum-

stances the metron content is minimized.

Humans are unique in their ability to choose their resolving power within

broad limits, depending upon the requirements of the situation. For
example, a human may choose either to look at a wall, or at the bricks

in the wall, or even at the particles making up the bricks.

In any practical application of description theory there is often some
minimum time allowed for processing the logical description of some event,
configuration, etc. If there are constraints of both time and precision

on some information processing activity, then a compromise between metron

and logon contents must be made, for processing time is probably directly

proportional to logon content. Furthermore, there is some evidence that

a human can only handle a certain logon content (Miller, 1956). This situ-

ation occurs in the design and use of complex displays in real time such
as radar scanning or cockpit displays.

In the area of pattern recognition by machines, description theory would
imply that machines should be designed for some optimum compromise be-
tween metron and logon content, or designed to be flexible in their re-

solving power, as humans are, depending upon external circumstances.

The concept of logon content may also be applicable to the problem of

describing patterns in machine language in an invariant manner; or in
categorizing patterns in order of complexity as a first step in recogni-
tion.

Conclusions

This paper is only a brief introduction to the possibilities of this ap-

proach to problems of science. Many major points must still be worhed
out; but a few general points can be made.

Description theory strongly emphasizes the dependence of the structure

of events upon the resolving power of the observer (operational philo-

sophy), whether it is a human observing events directly with his unaided

senses, or indirectly by means of some instrument. Logon content must

always be stated and referenced to the resolving power of the observing



instrument. This is obvious, but frequently overlooked in the quest for
complete objectivity.

Actually, description theory presents no new results. It merely ties to-
gether previously existing knowledge into a general framework. It provides
a general "language" for talking about conmmon problems in science, whether
it be physics, mathematics, chemistry, or psychology.

The use of description theory may make it possible to improve and simplify
interdisciplinary communication and consequently reduce the logon content
of the scientific world, thereby making it possible to acquire more know-
ledge in less time and with less effort.
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REIATIONAL BIOLOGY AND BIONICS

Robert Rosen
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Many fields of engineering are concerned with the simulation

of the features of some physical system or process of interest

(the "object system") by means of a different process (the "model

system"). The purpose of such simulation is generally to obtain

some insight into the activities of the object system by observing

the behavior of the model system, which is usually better under-

stood, in some sense, than is the former. Bionics in particular

is deeply committed to the somewhat crude idea of simulation:

to the simulation of biological processes in technically useful

ways, and conversely, to the simulation of obscure biological pro-

cesses by systems more tractable technologically.

Let us notice the obvious fact that the possibility of simu-

lating the activities of any system by means of an entirely differ.-

ent kind of system implies the belief that there exists some sort

of functional organization common to both. This common functional

organization must be largely independent of the particular struc-

tures which comprise the object system and the model system;

otherwise we could only hope to simulate a system of interest by



means of model systems of the same general type, and hence of

essentially the same refractoriness. This in turn would mean

that simulation procedures must necessarily be essentially

sterile, which is certainly not the case. From this we conclude

that the success of simulation procedures implies that a single

specific functional organization must in general be manifested

by many different kinds of physical processes or systems.

Nevertheless, when confronted with a complex organized system,

we generally tend to approach its functional aspects in terms of

the particular structural features which the system exhibits. But

from what we have just said, and from the sad experience of the

many blind alleys into which such approaches have led us, we can-

not help but recognize that the general problem of passing from

structural to functional organizations, if not indeed hopeless, is

at least fraught with grave pitfalls. In fact, we must recognize

the following propositions as holding quite generally:

1. Two flinctionally equivalent systems need not hold

any structural features whatsoever in common;

2. There is no way of inferring a mode of functional

activity from a study of the physical landmarks,

however prominent, of a particular object system.

Once these propositions are admitted, (and, as we have seen, they

follow quite naturally from generally accepted modes of practice),

we can see what an act of faith it is to believe, as many do, that

a purely structural approach to a complex functional organization,
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such as is manifested, for example, in biological systems, can be

successful in any useful sense.

As we remaked earlier, the idea of simulation of one system

by another is a rather imprecise one. This is not surprising

because simulation is a means for studying a largely unknown system

in terms of a system better known, and because simulation is usually

restricted to a specific range of activity of the model system.

There is a closely related idea, however, which has the advantage

that it can be made completely precise; this idea is given the

name realization. The distinction between the two ideas can be made

as follows: we can, if we are clever, simulate one system by another;

when we achieve a successful simulation in this sense, we may say

that both the object system and the model system are realizations of

the same abstract functional organization, which they both manifest.

The idea of the realization, or representation, of a single

abstract structure by any number of different concrete structures,

which may be compared among themselves only insofar as they share

in the given abstract structure, has long been a fruitful and fami-

liar one in mathematics. The elements of a group, for example, may

be numbers, matrices, equivalence classes of curves, etc. We cannot

recognize a family of matrices, say, as a group by studying the indi-

vidual matrices of the family. But we recognize that there is a

certain sense in which the properties of certain (but not all) fami-

lies of matrices can be "simulated" by certain families of things

which are not matrices (e.g., by homology or homotopy groups), and
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that this simulation is due to the fact that both the family matrices

and the family of homology or homotopy classes manifest the same

abstract functional organization; viz. the group axioms and whatever

further restrictions which they may both hold in common.

From these analogies, the differences and similarities between

the rather fluid notion of simulation and the more precise notion

of realization should be clear. And once this distinction is made,

it seems most natural to approach the problem of functional organi-

zation, which as we noted earlier, has proved so intractable to

structural approaches, by means of a study of how various abstract

functional organizations may be specified and realized. This is the

essence of the approach to biological systems which is now called

Relational Biology.

Before we can begin to study realizations of abstract functional

organizations, we must naturally decide how we are going to express

or stipulate the functional organizations which we want to realize.

There have been several different suggestions as to how this might

be accomplished, of which we shall discuss one here. This particular

approach, stated in all simplicity, regards the elements of abstract

functional organizations as abstract mappings (i.e., as transforma-

tions between abstract sets); the domain of these mappings may be

called inputs and the range of these mappings may be called outputs

of the particular functional units which the mappings comprise. Thus

the abstract mapping is an idealization, in a sense, of the familiar

black bax. A system is, in this terminology, an array of mappings
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which are related by the fact that the ranges of certain of the

mappings of the array intefsect the domains of other such mappings.

The idea that actual functional units in real systems may be

regarded as definite mappings, and that abstract functional organiza-

tions may be represented by families of abstract mapping processes,

is by now a reasonably familiar one. However, this idea by itself

is rather sterile; it is too general to be very useful. To return

once again to group theory: not very much of interest can be proved

by using only the four group axioms, because so many different kinds

of things are groups that there is very little structure of interest

which all groups possess in common. In order to reach the richness

of group theory, we must add further restrictions to the group axioms;

commutativity, finiteness, free-ness, etc. It is only by choosing

such a restriction and adding it to the group axioms that group theory

becomes rich, interesting and useful. Of course, if too many restric-

tions are added, the theory becomes sterile once again.

Likewise, in order to make use of the ideas concerning abstract

functional organizations which have been outlined above, we must apply

further restrictions; enough to lead to a rich theory, but not too

much to make the resulting theory essentially ad hoc and uninteresting.

One kind of restriction, originally suggested by the behavior of cer-

tain biological systems, leads to a class of systems which have been

called ('/ I, ,j)-systems, and which seem indeed to possess interesting

properties both in themselves and as models of real biological systems,

in a sense which will be made precise below. We shall now briefly in-

dicate how these systems are defined, what some of their properties
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are, and what their interest may be for the elucidation of real

biological organization and for applied fields such as Bionics.

A rapid intuitive approach to the (' , ).systems is the

following. Let an arbitrary abstract system (i.e., a reason-

ably arbitrary collection of abstract mappings) be given. To

each component (i.e., mapping) f of the system ', let us associ-

ate another component, . f. This new component ) f receives at

least one input from the original system, and is capable of pro-

ducing, among possibly other things, a copy or replica of the

component f with which it is associated. The components of I:'" may

be looked upon as having a "metabolic" character with respect to

the total system composed of and the ! f's, while the new com-

ponents f may be said to have a "genetic" function in the total

system. This new total system is an (Q,,/-)-system.

The biological motivation for studying this class of abstract

structures seems quite clear. But the question remains whether

the type of functional organization manifested by the (A. ,/)-system

can really lead to a useful theory, neither excessively overdeter-

mined nor so underdetermined that nothing of interest can be said.

In this connection, let us cite a few properties of general

(., 4 ,<)-systems, which indicate that this class of systems is of

genuine interest.

First, in any theory claiming general biological significance,

there must be some means available for the replication of certain

essential functional entities, especially those dealing with the
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"genetic" aspects of the system. Usually these means of repli-

cation must be postulated ad hoc, and have generally not been

very convincing. However, it can be shown that within an (I!,,

system, there exist (at least in principle) a large number of

induced mappings, different from the mAppings of which the system

is constructed, and that there exist, in particular, induced

mappings which can carry out the replication of genetic components

so characteristic of real biological systems. Thus in the ( , )-

system there exists, already built into the basic functional organi-

zation and not introduced ad hoc, a characteristic property of real

biological systems.

Second, it is possible to introduce a notion of optimal design

into the class of ( , )-systems, by means of the time lags which

must exist in any realization of these systems. It turns out that,

for a particular (and rather extensive) family of ( ,:,)-systpms,

an optimal form consists of the "genetic" components located spa-

tially in an approximately spherically symmetric manner, and most

of the "metabolic" components distributed arond the central cl,Jster

of"genetic" components. This arrangement is highly reminiscent of

the architecture of real cells; i.e., of the distinction between

nucleus and cytoplasm. This distinction is one of the most cormon-

place observations in biology, but is nevertheless one for which no

kind of theoretical explanation has heretofore been forthcoming.

Moreover, in these same (',)-systems it was found that the opti-

mal distribution of the "genetic"components was often linear; it
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is well known that the linear distribution of genetic material

is characteristic of real cells. These few results may give some

idea of the potentialities of the ( , )-systems for understand-

ing at least some of the aspects of functional organization of

biological systems.

The hope is, of course, that all kinds of real biological

systems will turn out to be realizations of some of the abstract

functional organizations which we have called ( , )-systems,

(or of systems constructed from ( ,! )-systems in various natural

ways). If this is the case, then our previous discussion concerning

realization of the same functional organization as is manifested by

biological systems, but at the engineering level, rather than the

molecular or biochemical level, as is the case with actual organisms.

It will be recognized that this involves much more than the mere

simulation, as this term has previously been understood, of certain

selected aspects of the behavior of organisms by engineering systems.

The resulting wide possibilities inherent in such a program, both

for Bionics (i.e., for technological applications) and for biology

itself, seems quite clear. But as we have seen, the feasibility of

a program of this type depends essentially upon a thorough study of

the properties of abstract functional organizations; i.e., on an

intensive study of Relational Biology.

Let us conclude with a brief discussion of some of the problems

connected with the notion of the physical realizability of an abstract

functional organization. The most apparent approach to physical
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realizability seems to be the following: let f : A B be an

abstract mapping. Let A , B be families of physical objects

which can be put into correspondence with the elements of A, B

respectively via the mappings : A' . A, : B - ,

where the maps , are in some sense effective. Then the

map f is physically realizable if there exists a physical pro-

cess f with domain (i.e., input set) A and range (i.e., output

set) B which satisfies the condition that, for each x B , we

have fI(x) =' f (x). Each different pair of sets A', B', and

each different pair of mappings , , , give rise to a different

physical realization of the abstract functional unit f.

Let us attempt to be more precise. For physical purposes

it turns out to be no restriction to make A and B countable sets.

Thus, we may as well replace A and B by the set Z of positive in-

tegers. Then our abstract mapping f becomes a mapping from integers

to integers. Hence it seems natural to ask whether f is computable

or not, and in fact to attempt to invoke Church's Thesis to equate

physical realizability with computability in this situation. For

the composite map f' may be regarded as a physically effective

process for computing the mapping f, as is clear from the definitions,

and Church's Thesis says precisely that if there exists any kind of

effective process for computing the values of an integer-valued func-

tion, the function must be computable (Turing). Now if the map f

were realizable but not computable, it would seem as if we would

have a real effective process (namely f') for computing the values
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of a non-computable function, which could be regarded as a con-

tradiction. Thus it seems that we really can equate realizability

with computability, in the sense we have described.

Further reflection, however, reveals that this equation is not

legitimate unless we interpret Church's Thesis as a physical propo-

sition, and not merely a logical one. In order for Church's Thesis

to be applicable to problems of physical realizability, it must be

interpreted to mean that, speaking roughly, machines capable of

computing the values of non-computable functions do not exist in

the same sense that a perpetuum mobile does not exist; namely,

that such a machine would violate the laws of physics. But in this

case, Church's Thesis becomes an empirical proposition which may be

either true or false. If false, then physical realizability turns

out to be an extremely deep concept which cannot be treated by con-

ventional ideas of "effective" processes. If true, then it turns

out that the structure of physics must be rather sharply circum-

scribed in order to be compatible with the statement of the Thesis.

It is at the moment difficult to be sure which alternative is correct,

but at the moment the author inclines to the view that the physical

form of the Thesis is actually false.

The difficult theoretical problems connected with the realiza-

bility of abstract functional organizations must be solved, it seems,

before one can build actual realizations of an arbitrary abstract

organization. But in the meanwhile, it appears to be possible for

one to check whether a particular physical system or process is
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actually a realization of a specific functional organization. It

should thus be possible, for example, to check whether a free-living

unicellular organism is really a realization of some (.,,)-system.

If we could also show that some physical or mechanical system is

also a realization of an (.,', / )-system, then we would know that the

system really does simulate the organism, and conversely. But in

order to do these things, we must learn much more about the proper-

ties of abstract functional organizations and their realizations

than we do at present. It appears more and more clearly, however,

that the rewards will be worth the effort.
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I. Introduction

4 Storage of genetic information in virus or cell represents the
ultimate in density of packing information at the present time. The
complex message also displays excellent stability against random per-
turbations of many kinds. Perhaps most remarkable of all, the stored
information can make copies of itself in an appropriate environment.

In the present paper, we inquire whether physics and chemistry
set limits, from a thermodynamical or kinetic viewpoint, on stability
and information storage density, and try to assess how closely such
limits might be approached in nature. We also consider what additional
constraints might follow immediately from the self-replicative property.
It seems highly probable, on the basis of the considerations to be ad-
vanced, that information packing densities do approach close to the
maximum possible in a chemical information storage system. It appears
likely that the larger ensemble of possible configurations required to
permit self-replication than is needed for static storage entails more
stringent stability requirements (i.e., higher binding energy) in the
former case. Lastly, the physical and chemical processes involved in
self-replication strongly suggest that chemical information is stored in
linear polymers, rather than in 2 or 3 dimensional structures. During
inert storage, however, maximum stability is achieved by closely packing
the linear polymer into a tight 3 dimensional structure.

II. Stability of Chemical Information Storage

The second law of thermodynamics implies that the equilibrium
configuration of any system is the state of highest entropy, or lowest
free energy, depending on the variables specifying the state of the sys-
tem. A configuration storing considerable information must deviate from
the state of maximum entropy; indeed, the magnitude of that deviation can
be equated with the stored information. In order that the information
not be degraded by thermal fluctuations, it is necessary that each "bit"
have a sufficiently large configurational energy to prevent its oblit-
eration.

What is a reasonable approximate binding energy at room tem-
perature? We suggest 20 kT for the following reasons. First of all,
the Arrhenius or Boltzmann factors, exp - (E/kT), turn out to be of the
order of l0- 8 to 10-9. This makes the bit some 8 or 9 orders "more
probable" as constituted than degraded. Secondly, binding energies an
order of magnitude less than this are unstable, being less than the en-
ergy of a hydrogen bond in water, which is notoriously labile. Thirdly,
a binding energy an order of magnitude greater than this is comparable
to the heats of sublimation of highly refractory metals, i.e. indicative
of far more stability than required.
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On general physical grounds, therefore, there does not seem to
be much hope of "writing" a stable bit in a chemical system at an appre-
ciably lower energy expenditure than 20 kT, which at room temperature
is of the order of 0.5 ev or l0 - 1 2 ergs. Significant improvement could
be obtained only by storage at very low temperature.

III. Packing Density Estimates

Assuming the possibility of stable bits, it is natural to in-
quire about the limitations on density of bit packing which might be im-
posed by the structure of matter. Here one is dealing with parameters
unobtainable from macroscopic physics or thermodynamics. They are es-
sentially quantum mechanical in origin, being determined in the same way
as the sizes of atoms or molecules.

The linear dimensions of atoms range up to several Angstrom
units (AU); the smaller molecules, radicals, and side groups range from
this value up to about 10 AU or so, with the more complex molecules go-
ing over to macromolecules like polymers of virtually unlimited extent.
It seems reasonable to take 10 AU as an order of magnitude estimate of
the linear dimension of a bit; an order of magnitude less than this is
well below molecular size, whereas an order of magnitude greater than
this is characteristic of highly complex molecules much larger than the
bionic information units in DNA.

With this value of the average bit dimension, the volume of a
bit is of the order of 10-21 c.c. An ultimate limitation on the den-
sity of chemical bit storage is thus to be expected somewhere in the
neighborhood of 1021 bits/c.c. It appears that the genetic material in
viruses and cells, when closely packed in the inert form, has a bit den-
sity not far removed from this value. It thus seems likely that bionic
information storage has already achieved the approximate maximum density
possible in a chemical system.

IV. Constraints Due to Self-Replicability

In a chemical system it is reasonable to impose the condition
that self-replication must occur using only processes compatible with
solution chemistry. This means that "building blocks" must diffuse to
the self-replicating structure from solution, and interact by short-
range chemical forces. A kind of "template model" thus seems unavoid-
able. During the replicative phase, it is clear that a complex structure
cannot be closely packed into a 3 dimensional configuration, but must
be in the form of a sheet or a string. The reason is that the interior
of a 3 dimensional structure would be inaccessible to diffusants; a
hollow shell or the like is clearly more like a sheet than a closely
packed ball. Also, it is hard to envision separation of model and
template for a 3 dimensional structure, in which homologous parts are in
contact, which does not do violence to the structure. Workable models
involve "unrolling" or "unraveling" of the structure which is tantamount
to assuming dimension 1 or 2. Even crystal growth occurs only at a
bounding surface.

The replication process can be divided into two phases, the
first being assembly of the replica bit by bit (the pun is meaningful).
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followed by the separation of model and replica. The first phase is of
the nature of a polymerization process, whereas the second is dissocia-
tive, i.e. a kind of de-polymerization. At first glance the two proc-
esses appear to be mutually incompatible.

The resolution of the difficulty appears to be as follows.
The thermodynamic "drive" for processes in solution is that the free en-
ergy, F = E - TS, decrease in a natural process. It is easy to see from
this equation that there are essentially two ways to "push" the reaction,
namely to decrease the energy E or to increase the entropy S. At equi-
librium the two terms balance in the sense that change in one implies an
equal and opposite change in the other.

It is now clear that the assembly stage must be characterized
by a sufficiently large reduction in E, for each bit, to overcome the re-
duction in entropy brought about by withdrawing that bit from solution.
Once the replica is assembled, the increase in entropy resulting from
separating model and replica must be more than enough to overcome the
energy binding them together. This energy can be very much smaller than
the energy released in building the replica.

One can view the arrival of a building block at the active
growing point, and its binding at that site, as analogous to the conden-
sation of a solid or to crystallization from a solution. The binding en-
ergy, however, is essentially that of polymerization; a large amount of
energy can be released if the polymerization depends on a condensation
reaction in which a highly stable molecule is split off. In the case of
proteins, for example, the amino acid building blocks can link by splitting
off water. Steric factors (lock and key analogy) can insure that only the
proper building block slips into a particular site. It is clearly
possible to have most of the energy go into internal bonds of the replica,
with relatively weak interactions left over to hold replica and model to-
gether (e.g., van der Waals forces). To sum up the assembly phase, there
are many condensation reactions or the like capable of overcoming solu-
tion entropy and building a model.

Now consider the relative changes in entropy involving the
separation of sheets and strings. If two sheets separate, the entropy
increases, but the increase is small per unit structure in the sheet, be-
cause of the relatively rigid framework (or net) in which the unit is
linked. The sheet can exist in many folded configurations, but these are
far fewer than those possible for a chain consisting of the same total
number of units. Exact calculations pose many formidable combinatorial
problems, many of which are yet unsolved. It is possible, however, to
give a simple approximate consideration which shows that a chain of N
units has many more configurations than a sheet containing the same number
of units.

Suppose each unit can be packed tightly with Z other units
around it in space. For a chain 2 of the sites will be occupied, where-
as in a sheet perhaps 4 will be occupied. The value of Z may be perhaps
6 or 8. At a link in the chain one may bend the chain so that the
"right" end can continue in any of (Z-2) cells. Neglecting end effects
and excluded volume effects one can thus kink up the chain into approxi-
mately (Z-2)N configurations giving a contribution to the entropy of the
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order of

S hai A/ Nk log(Z-2).

For a square sheet, with each unit surr unded by 4 oLhers in the net,
one can "crease" the sheet in any of N1 2 "vertical" creases, a similar
number of "horizontal" creases, and (2N)1/2 left sloping diagonal creases,
or a similar number of right sloping creases. The 4 families of creases
are mutually compatible for multiple creasing within themselves, but one
runs into steric problems if one tries to mix families in large numbers
(one can, of course, "flap corners" for central creases of other kinds,
but one can convince oneself that a reasonably small fraction of the
total configurations in a family can be obtained this way). The result
is that

Ssheet V c 1 N1/ 2 k log (Z-4) + c2,

where cl and c2 are small constants. It thus follows that chain entropy
exqeeds sheet entropy by a factor which is an appreciable fraction of
N1/2 , thereby facilitating separation of model and replica on thermody-
namic grounds for large N (say 10 ).

Further strengthening of this argument results from the consid-
eration that 2 chains in contact along their length are a "ribbon", i.e.
a narrow sheet, until they dissociate. One can therefore argue that one
should compare the entropy of two chains with that of 1 sheet, with the
further restriction that only transverse kinks need be counted for the
ribbon. It is easy to show that to the kind of rough approximation of
previous formulae we have

Sribbon .V (Nk/2) log (Z-3),

which is to be compared with double the chain entropy expression above.
To sum up, the entropy increase for separating 2 chains is so much greater
than that for separating 2 sheets that one can overcome reasonably strong
binding forces in the first case which would be enough to "glue" 2 sheets
together (for comparable energies per nearest neighbor bond).

The foregoing arguments strongly favor bionic information cod-
ing in the form of a linear polymer during the self-replication phase.
This does not exclude the possibility of a tightly packed configuration
during inert storage. Indeed, such a configuration would be preferred
from the point of view of stability against many kinds of degradation,
thermal or otherwise. In particular, radiation damage which can "heal"
within a tight 3 dimensional configuration could "snip" a chain. Loci
on a chain vulnerable to chemical attack could be protected in a tight
configuration bounded by stabler groupings. Resonance stabilization,
stabilization by internal H-bonding or chelation could be available which
would not be available in the chain form. One can therefore see strong
arguments in favor of 3 dimensional inert storage, with a unidimensional
replicative phase, from the point of view of survival of a particular
system in competition with similar systems in a given chemical environ-
ment. One can also see from this that the binding energy per bit in the
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chain form is expected to be higher than the minimum binding energy per

bit required for stability alone.

V. Conclusion

From the foregoing discussion the following conclusions can be

advanced as having a high degree of credibility.

1. Bionic information storage density is probably not far re-

moved from the ultimate density possible in a chemical system, which ap-

pears to be of the order of 1021 bits/c.c.

2. The binding energy per bionic bit is probably higher than

the minimum required from considerations of passive information storage

alone.

3. Self-replication in bionic or chemical systems, as a con-

sequence of thermodynamics, strongly suggests the necessity of coding

information in the form of linear polymers.

4. At times other than the replicative phase, packing of bi-

onic information into a tight 3 dimensional configuration appears to be

favored.

All four of these expectations seem to be reasonably well

realized in nature.
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1. Pattern Recognition and Statistical Decision Theory. Pattern
recognition is an extremely useful capability of living organisms which
enables them to order and categorize the vast streams of data which are
continuously received through the sensory organs. In abstract terms,

pattern recognition can be defined as the categorization of signals into
classes,

In the literature one finds usually two types of problems under the
heading of pattern recognition: (1) Those where the classes, into which
the signals are categorized, are described in a definite way from the
beginning and the recognizing device has only the problem of referring a
given signal to a class. (2) Those where the classes have first to be
established during a period of slearning', before signal classification
is performed. This second type is frequently called *adaptive pattern
recognition'.

In this paper we will be concerned with the first kind of pattern
recognition problems only. It is obvious that statistical decision
theory with its well developed mathematical formalism provides a frame
for a unified treatment of special pattern recognition techniques, but

actual examples of application are rare.

The specific case selected in this paper is the discussion and
interpretation of a technique which will be described in Section 2 and
which has been proposed as basis of a speech recognition device. This
technique will be shown to correspond to an optimal decision rule in the
sense of minimizing the average risk. It is also shown to be equivalent

to a decision rule which maximizes the cross correlation coefficient of
the signal and a set of stored signals,

Following essentially Middleton 1) for the background in decision
theory we assume that a signal', which belongs to one of M + 1 classes,

is received. Due to the addition of noise this signal will be Modified
and the observed signal will be '. The decision problem is to determine
from which of the M + 1 signal classes the observed signal originated.
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The elements of statistical decision theory which must be determined
are t

(a) Q'( ' - the a priori distribution density of all
possible signals

(b) F(V'iS) - the conditional distribution density of obtaining
the observed signall? given r

(c)C(,V)- C N'o - the cost matrix which defines the cost of makingthe decision (that the observed signal came
from class J) when the signal actually came from
class k.

(d) 6(V) - the decision rule (the probability of deciding
V if r is observed).

(e) R(rs) - the evaluation function, specifically this
function is taken as the average risk (or loss)
associated with each decision rule S for a
given signal distribution.

An important goal of the statistical decision theory formulation is
to determine an optimum decision ruleS* such that R(jrS*) is a minimum.

The average risk,which we have chosen as the evaluation function,
is given by

(1) R(Or ):frff)? , ~ d(Iv d FM FS/)4

where SX, ' respectively represent signal space, observation space and
decision space.

For the M + 1 signal classes, (M signals plus noise alone) let
represent a signal in the tk1 signal class. jurther, designate the
sighal distribution in the klh class as Wk(S). Finally, let pk be the
a priori probability that a ignal from class k is on the input. Then,
the signal distribution 'S) can be written as

(2)~

where the class k = 0 represents noise alone.

The decision space 7has M + 1 components with each component
being the decision that a given observed signal came from class k.
The system is required to make a decision so that

NA %"
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Upon making the substitutions

(A (AeA): - E' ,a - 1, 04--,

PO FA~IM )e

(*) Af (.8)

the average risk becomes

(4) Rid-,$)° .. = , Sa IVt= ,Vo),t, .r

and the optimum decision rule is:

If A~ 7  Aj(V

and A(7 ) 5 0 for all jK , 1,

choose S('j. I V) : I, 'Vii ) =a X, - -

If A M ? for each k = 1, --- M

choose J( jI') i, iIV') zO, Y" its ,'"" 'z

2. Application to an Electronic $Cochlea*. The preceding results of
decision theory will now be applied to the recognition problem of patterns
derived from an electronic *cochlea". A complete description of this
"analog cochlea" is given elsewhere 2).. For the present, it suffices to
say that this electronic device simulates transformations performed by a
human cochlea. It consists of a delay line which performs a type of
frequency analysis on a time signal in that inputs of different frquencies
result in maximum voltages at different points along the line. The output
signal from the cochlea is a 36 dimensional si,nal obtained from 36 taps



uniformly distributed along the length of the line. The signal at each
tap is rectified and averaged so that the composite output of all 36 taps
is a set of 36 narrow band (less than 10 cps) signals.

Based on the observed output of the cochlea, it is desired to determine
from which class of speech sounds the input signal originated. A given
signalron the input will be defined in terms of the signal it generates
on the output in the absence of noise. Any observed signal can be repre-
sented by a 36 component vector (the unit vectors corresponding to each
of the 36 outputs) as

A sighal from class k is written as

(6) # ' ' % 1---- f, - - -

Choose a cost matrix of the form S : - - C. , which expresses the
reasonable assumption that the costs of correct decisions are zero, and the
costs of all incorrect decisions are equal, say C0. The decision rule then
becomes:

(7)
for all j X 0 j 1:o, 4--,

choose 6( IV):i, 6(=p7) -O
Fo the special case of additive signal and noise, i.e.,Tf=S + N,
F(V WfssI)w - where w(iN denotes the noise distribution.

The signal distributions Wk(S) must be determined experimentally for
each lass k. For convenience we will assume that the distribution
Wk i(A of the JAh component of signals from class k is normal, i.e.,

i "

(8) : ((g)
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where u(S ) is the unit step function and is introduced because the outputs
from the nalog cochlea are always positive. The no__wl24 zation is not

quite correct but the error is negligible for large S k and small O'ki.
If each of the 36 outputs is statistically independent of all other
outputs, then,

(9) W.'" ) - ", I, € )

As each output includes an averaging of the signal, the noise distri-

bution is approximately discrete, i.e.,

(10) W(')
and

The decision rule then becomes

If F W ( 6 ') W 'Vwj 0 $')

(12)forall j C

choose J(i.i7) I,V?/?~

where

(13) W-, .........7 e

The above decision rule defines the recognition procedure and will

require a computer for the mechanization*

3. Equivalence of the Decision Rule and Correlation. The problem to be

considered in this section is: *Under what oonditions is the decision
rule obtained in the preceding statistical decision theory formulation
equivalent to a decision rule based on maximizing a correlation function?'
Two decision rules are equivalent if they make the same decision concerning

the origin of a given observed 3ignal. The correlation between two

vectors T and 7 is defined 3) to be

w tur

which is identical to the dot product e.vIes , where e V and eS are
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respectively the unit vectors in the directions 7 and S. t g(k)
be the mean of the probability distribution &k(S and letstil be a
variable vector such that

s(k) 7

Assume a noise distribution W(N $rN -(- ). A given observed signal Vcan be expressed as

V = )+a +N

".% "f V -- ft ()0
or V= V- N = (k)+ s(k)

Consider-now a decision rule based on maximizing the correlation between

V'and IM J. It can be shown that

--f --f I -- ,1 ILIIIV19 IA '1

If(I s(Q, is normalized to the same value for all k, then for any given
observation Yr! maximizing the dot product is equivalent to picking k
such that a )I is a minimum.

Turning now to the statistical decision rule, with W (N) =4F(N
n

k( k(sT

where w ' (s) is the probability of occurrence of the vector s from the
class k. If the a priori probabilities Pk are equal for all k then th&-
statistical decision theory rule simple maximizes the probability w'k(S ).
Te two formulations are equivalent, subject to the preceding restrictions,
provided &'k(n is a monotonically decreasing function of 14" and
independent of k.
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ABSTRACT

A human observer can usually be trained to detect the existence

of a variety of signals embedded in many kinds of noise. This training

process is a simple yet nontrivial example of adaptation in living

organisms.

By certain decision-theoretic techniques, the behavior of the

trained observer has been shown to be very close to that of certain

mechanisms of statistical inference. However, the dynamic, as opposed

to the static, characteristics of the adaptation mechanism in this

observer has in the past received little attention. This paper shows

how a Markov-chain model yields a description of these dynamic charac-

teristics. Attention is focused on "settling time," behavioral sta-

bility in a fluctuating environment, and the "self-healing" benefits

of feedback. An approximate method of relating "open-loop" and "closed-

loop" performance is suggested.

A two-level hierarchy of feedback is shown to be precisely analyzable

by Markov chains. Because of various mathematical obstacles, most

hierarchic structures in the past have yielded only to approximate analysis.

The Markov-chain model permits an evaluation of the utility of the

training process. We find, for example, that in certain situations the

untrained observer will be more successful, on the average, than the

trained observer, although the reverse is usually the case.



A M&RKOV CHAIN MODEL OF ADAPTIVE SIGNKL DETECTION

1. INTRODUCTION

When a human observer is trained by a sequence of reinforced
trials to guess whether a presented physical stimulus is signal-plus-
noise or pure noise, his probability of a correct guess usually increases
with experience. This training process is a simple yet nontrivial ex-
ample of adaptation in living organisms.

The behavior of the above observer has been shown to be very close
to that of certain mechanisms of statistical inference [1] However, the
dynamic as opposed to the static characteristics of adaptation in this
observer has received relatively little attention. This paper will show
how a Markov chain model can help us develop an insight into the quali-
tative aspects - as well as certain quantitative aspects - of these dy-
namic characteristics.

The emphasis here will not be matching the model's detailed
behavior to that of the real observer. Rather, a course match will be
considered satisfactory, provided the model yields useful qualitative
information on adaptive behavior. In particular, attention will be
focused on the interrelationships among the so called "adaptation charac-
teristics" [2]. These characteristics are "learning", behavioral sta-
bility in a fluctuating environment, and the "self-healing" benefits of
feedback ("reliability" in engineering terminology).

Another advantage of the Markov-chain model is that it makes
possible a precise analysis of a certain type of two-level hierarchy of
adaptation. Because of various mathematical obstacles, other hierarchic
structures have in the past yielded only to approximate analysis.

The Markov-chain model also permits an evaluation of the utility
of the training process. We find, for example, that in certain situations
the untrained observer will be more successful, on the average, than the
trained observer, although the reverse is usually the case.

2. PHILOSOPHY

The philosophy underlying our study stems from classical feed-
back control theory. We assume that every adaptive process is describable
as a system consisting of a "plant", a "critic", and a "controller" (Fig.
1). The "plant" refers to that part of the system which is to be con-
trolled or "trained"; the "critic", incorporated in the experimenter or
system designer, is a mechanism that computes a performance index; the
"controller" is that part of the system that adjusts the plant parameters
in response to the input/output behavior of the plant. The controller
may be viewed as a teacher that trains the plant during a "training peri-
od"; after the training period the plant may be left to operate without
the controller.

A distinction is made between "adaptation" and "feedback" [1].
Adaptation is viewed as a purely behaviorial feature, while feedback is



purely structural. A system is viewed as adaptive if it exhibits one or
more of the following "adaptation characteristics":

1. Stability: The performance index remains within prescribed
bounds when the environment changes.

2. Learning: The performance index increases when the environ-
ment and the plant remain fixed.

3. Reliability: The performance index remains within prescribed
bounds when uncontrolled plant parameters undergo fluctu-
ations.

Feedback is often a means to achieve these characteristics or to
raise the degree to which these characteristics are manifested. (In Fig.
1 the feedback loop is formed by branches B and C.) On the other hand
adaptation may be achieved without feedback -- both "open-loop" and
"closed-loop" adaptive systems are possible.

The present study is part of an effort directed toward under-
standing the ways in which various forms of feedback affect the adapta-
tion characteristics of closed-loop discrete stochastic systems. We hope,
as a result of this effort, to obtain an insight into the relationships
between open-loop and closed-loop behavior of such systems.

3. THRESHOLD LEARNING

In this paper we discuss a discrete version of a well-known model
of adaptive signal detection - the Neyman-Pearson observer [3,4]. Because
this model achieves adaptive behavior via an adjustable threshold, we
refer to it as the TLP model, TLP standing for Threshold Learning Process.

The TLP model has the advantage of relative simplicity, as well
as the fact that other models can be viewed as generalizations of it.
Furthermore, certain adaptive processes in a variety of disciplines are
related to TLP's. Signal detection in communication systems, pattern-
recognition in computers, stochastic approximation in statistics, and
certain decision-theoretic models of automatic control systems share
with the stochastic learning models of psychology the theme of the TLP
model.

We introduce the TLP model by describing a psychophysical experi-
ment. An observer is asked to focus his attention on a display device,
such as a screen or loudspeaker. During a certain time interval one of
two sets of stimuli, JO or J1, is chosen at random, and a randomly se-
lected element of that set is presented to the observer on the display
device. The observer senses a physical feature of the stimulus - e.g.
light intensity, frequency shift, etc. We call the subjective measure-
ment the "value" of the stimulus. The observer is forced to guess the
identity of the originating set, J0 or J1, basing his guess on the
perceived values of present and past stimuli in the experiment. Usually
one of the sets is called "signal-plus-noise" and the other set "pure
noise", because of the physical process by which the two sets are
generated.

In most cases the observer's response is necessarily subject to
error, because some elements of J. have values greater than those of



some elements of J1, while some elements of J| have values greater than

those of some elements of Jo.

After his response the observer is told the correct answer. In

psychologists' terminology, this completes a "trial", the trial consist-
ing of a stimulus S, a response alternative A, and a reinforcing event
E [5]. In any single experiment, the observer is asked to execute a
large number of SAE trials in succession. In most such experiments the
observer will be more successful on the average as he executes more

trials, finally reaching a stable or "asymptotic" performance.

The behavior of this observer has been simulated with moderate

success by the Neyman-Pearson model [1]. A discrete adaptive version of
this model -- the TLP -- is illustrated schematically in Figure 2. The

binary source emits a sequence, u, of O's and l's at times 0,1,2,3,....

The occurrence of a 0 or a 1 means that J or J1, respectively, is the
set of stimuli from which the presented eyement is to be taken. The
"channel" mixes u and a noise sequence to form a sequence of subjective

values v. (As indicated in the figure, the channel may be part of the
observer; in other cases it is part of the observer's environment. In

this paper we assume the channel is in the observer.)

The observer compares v with a threshold k, producing the quanti-
ty v-k. If v-k is zero or positive, then the observer's guess is y=1
(i.e., the presented element belongs to J1). If v-k is negative then
y=0, which represents the guess that the presented element belongs to Jo.
The guess y is then compared to the correct answer u in a "decision
mechanism", which is part of the observer. As a result of this compari-
son the threshold k is shifted up or down to a new value. This completes
an SAE trial.

A few more parts of the TLP remain to be explained. These are

the binary source, the channel, and the decision mechanism.

3-1. The Binary Source

The binary source is described in statistical terms, namely, the
conditional probability that u-1 at time n, given that u at times 0,1,..,
n-I is a specific sequence of O's and I's. Denote this probability by

P[u(n) = I (u(j)] for j = 0,1,..., n-I].

In many situations of interest, P is either independent of u(j) for
j=0, 1, ..., n-i or dependent only on u(n-1). In the first of these
cases, P represents a time-varying Bernoulli source, and in the second

case a time-varying Markov source [6]. Usually P is also independent of

n, so that the source is time-invariant or "stationary". In the work
reported here, we assumed that the source is stationary and Bernoulli.
We shall let p denote the probability of a zero, i.e., p 2 Pr(u=O).

3-2. The Channel

The channel is described by two conditional probability densities:
p(v[u=O) and p(vJu=1). The quantities p(Vlu=O)dV and p(Vlu=1)dV are the

probabilities that v lies between V and V + dV given that u=O and u=1,

respectively. For convenience we define fo(v) A pp(vlu=O) and



f1 (v) = (1-p)p(vJu=1). The f (v)ls represent components of the total
probability density p(v). We call them a priori densities. An example
of the forms that fo(v) and f1 (v) might take is shown in Figure 3. In
this case note that if v > a,u may be identified as I with no possibility
of error. However, there is no region R on the v-axis such v E R implies
that v=O with no possibility of error. Thus, for the channel described
by Figure 3, u=1 may be identified with certainty for some values of v;
but no matter what v may be, the observer can never be sure that v=0.

3-3. The Decision Mechanism

The TLP decision mechanism is very simple, yet nontrivial. Hope-
fully, the simplicity will help us achieve an insight into the dynamics
of adaptation.

The decision mechanism changes the threshold k only when uJy.
Thus, if u(n) = y(n), then k(n+1) = k(n). However, if uOy, k is moved
either up or down, depending on whether a "false alarm" (a "Type I"
error) or a false rest (a "Type 2" error or a "miss") was incurred [7
8, 9]. A false alarm is defined as u=O, y=1. A false rest is defined
as u=1, y=O. In the event of a false alarm, k is shifted upward from
ki to k% + 1, since such a shift usually reduces the false alarm proba-
bility (see Fig. 3). In the event of a false rest, k is shifted down-
ward from k i to ki. . The sizes of the shifts may be assumed arbitrarily;
they may be left as unknown fixed parameters; they may vary independently
of the responses; or they may be adjusted in accordance with a "rein-
forcement policy" or "feedback policy" operating on the past record of
successes and failures. In this study we concentrate on the simple case
where the sizes of the shifts are chosen and fixed arbitrarily. Further-
more we shall assume that the number of available thresholds is finite,
i.e.: k=akk ... , k , where k1 < k < ... < k . At the extreme thres-
holds k_ and the model behaves as follows. R false alarm at k=kmoves te threshold to k , but a false rest has no effect on the thres-

hold. A false alarm at k m has no effect on the threshold, but a false
rest moves it downward to km-1 . We refer to this method of adjusting
the thresholds as the "simple TLP reinforcement policy".

The above model is describable as a Markov chain. In the next
section we introduce the reader to Markov chains, and we indicate certain
advantages of the Markov chain model for the study of adaptive processes.

4. KkR=OV CHAIN MODELS OF ADAPTIVE PROCESSES

A distinguishing characteristic of adaptive processes, in
engineering as well as the life sciences, is the problem of making de-
cisions in the face of uncertainty. One of the simplest models for
which quantitative measures of uncertainty can be found is the Markov
chain [10]. The Markov chain has the further advantage that there exists
a convenient method of describing the dynamics of its statistical behav-
ior.

The basic concept of the Markov chain is illustrated by the
"state transition graph" in Figure 4. Each branch in this graph repre-
sents the conditional probability of a state transition. Specifically,
P0 1 is the conditional probability that the next state will be 1, given
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that the present state is 0. Suppose the row vector r(n)m[ri(n)] repre-

sents the probabilities of the chain occupying the various states at

t-ime n. And suppose P(n) is the matrix [p,j) at time n. Then one can

show that

r(n) = E(O) P(O) P(1) ... P(n-1) (1)

(See 6.) In the case where the chain is stationary, P(n) is independent

of n, and

r(n) = r(O) pn * (2)

If the Markov chain represents an adaptive process, then certain

states will be "desirable". and others "undesirable". Equations 1 and 2

permit us to evaluate the time behavior of the probability of occupying

one of the desirable states. If two different adaptive processes can be

simulated by Markov chains, Equations 1 and 2 enable us to compare the

time-domain performance of the two systems. Later we shall show how the

Markov chain model permits us to interrelate the three "adaptation char-

acteristics" -- "learning", "stability", and "reliability".

5. MARKOV CHAIN DESCRIPTION OF THE TLP

Figure 4 illustrates the state transition graph of the Markov
chain of an open-loop TLP. "Open-loop" in this context means that the

threshold k is held fixed. The three states (T,0,1) represent false

rest, correct response, and false alarm, respectively.* The set of

desirable states for this process consists of just the single state 0.

Hence the performance index is the probability ro(n) that the process
will occupy state 0 at time n.

The open-loop TLP is Bernoulli or, as we refer to it, "state-

independent," because every transition probability p is independent of

state p.. For example, p 0 = po plO Consequently, in the open-loop
TLP ro(n) remains constant at the value poo -- i.e., the transient
response has a time constant of zero.

On the other hand the closed-loop TIP is not state-independent.
A five-threshold example of an open-loop TIP and the corresponding
closed-loop TIP is illustrated in Fig. 5. The five thresholds are
k=1,2,3,4,5. Part (a) of this figure represents the open-loop system,
which consists of five disjoint state-independent chains, one chain for
each value of k. Part (b) represents the same system after the loop is

closed -- i.e., under reinforcement.

In both parts (a) and (b), every column of three nodes repre-

sents the triplet of states corresponding to a specific threshold k. As
in Fig. 4, the upper state of each triplet represents a false rest, the
middle state a correct response, and the lower state a false alarm. A

transition from one threshold to another can take place from a false

rest or a false alarm, but not from a correct response. At a false-rest

state the threshold is moved to the left; at a false-alarm state the

threshold is moved to the right (except for the boundary constraints at
k=1 and 5). These shifts in threshold values are indicated by the

*False rest is defined as the condition y=0 when u=1, correct response as
y=0 when u=0 or y=1 when u=1; false alarm as y=1 when u=O.
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diagonally oriented branches in Part (b). These branches represent
"feedback transitions", because they are a result of closing the feed-
back loop. Note that the feedback transition probabilities are equal to
the open-loop state probabilities existing at the new threshold value.

Thus, closing the loop seems to have the effect of converting
m state-independent three-state chains into a single state-dependent
3m-state chain. The new chain, of course, may be analyzed by the matrix
techniques discussed in the preceding section. However the analysis can
be simplified considerably if we note that certain groups of states can
be "combined" into single states [11]. A result of such combining is
the reduction of the fifteen-state chain of Figure 5 to the five-state
chain of Figure 6. The particular combinable groups of states are the
following triplets: Al, A2, B1; A3, B2, Cl; B3, C2, DI; C3, D2, El; D3,
E2, E3. This is based on the fact that in the matrix P certain parts of
the rows corresponding to these triplets are identical. (The details of
state combinability are given in the appendix.)

One disadvantage of combining states is that both desirable and
undesirable states are lumped together. This means that the combined-
state probabilities are not individually useful as performance indices.
However, a little study reveals a simple relationship between the com-
bined-state probabilities and a desirable-state probability of a TLP.
This relationship is

r.(n) = qii wi(n-1) (3)

where q.. is defined as the self-transition probability of combined-state
i, wi(nY is the probability that the TLP will occupy combined-state i at
time n, and ri(n) is the probability that the TLP will occupy the desira-
ble member of the triplet constituting combined-state i.

Thus we have the following formula for the probability that the
TLP will occupy a desirable state at time n:

m

z(n) 7 qii wi(n-1). (4)

i=!1

where m = number of available thresholds. For the model of Figure 6,
m=5.

The quantity z(n) of Equation 4 may be viewed as an index of
success for an ensemble of individuals going through a given training
program. The graph of z(n) versus n may, consequently, be considered a
"learning curve."* The learning curves we have encountered in this
study have all been monotonic decreasing or monotonic increasing. Such
a curve may be roughly described by three numbers:

a) the initial value, zj 4 z(l)

b) the asymptotic or "final" value, which we denote as

lim z(n)

* Bush and Mosteller define learning as "any systematic change in be-
havior ... whether or not the change is adaptive, desirable for certain
purposes, or in accordance with any other such criteria." [12,page 3].
See also Shannon's definition [13].
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and c) the peak settling time (or "learning time"), which we define
as A

N Max N(zl)
z1

where N(zl) is the smallest positive integer satisfying

jz(m) - z, 1  .91 t - z, for all m > N(z 1 )

(N is the settling time of a specific z(n).)

Thus the triplet (z1, t, N) constitutes a rough description of a
learning curve, provided the curve is monotonic.

The initial value z depends mainly on the initial setting of the
threshold, which may be dificult to control experimentally. On the
other hand t and N are both independent of initial conditions. Conse-
quently t and i are more powerful than z as descriptors of the learning
curves.

In any specific situation, the qSi's will be known in terms of
certain parameters of the environment and the observer. For example,
the qii's may be known in terms of p and the conditional variance of v.
(By conditional variance of v, we mean the variance of v, given the value

of u. We denote this by Avu2.)
u

We may interpret p as the relative frequency with which a sample
of "pure noise" is presented to the observer. Consequently p is a
parameter of the environment.

We may interpret Av - as an index of the observer's measurement
error, which is a result of uthe noise in the observer's detection appa-
ratus (his eye, for example). Consequently Avu2 is a parameter of the

observer. (In communications systems, however, this conditional variance
is a parameter of the environment, since in these cases the channel is
not part of the observer.)

A
Suppose we are interested in the interrelationship of t, N, P,

and . Equation 4 yields, in the limit as n - o , a relation of the
form

q)Q, N) = *(p, Av 2 )
u

where p and * are single-valued functions.^ later we shall show how such
a relation leads to contour maps of and N on a "stability-teliability"
plane.

6. THE QUkNTAL TLP

In order to minimize the computational labor in the analysis of
the TLP model, we simplified the model in two respects:

1. Only three thresholds are available: k=1,2,3.

2. The a priori densities fu(v) were assumed to be piecewise
constant, with the points of discontinuity occurring at an
available threshold value. (These discontinuities facilitate
the determination of the optimum threshold (sec. 7-2).)
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The resulting model -- the "quantal" TLP -- is just about the
simplest known nontrivial example of a discrete adaptive stochastic
process. There is some evidence that this simplicity makes the quantal
TLP basic -- in the sense of providing fundamental concepts from which
theories of more complex TLP's can be built.

Figures 7-9 illustrate three quantal TLP's, denoted as Models I,
II, III. In these figures the available threshold values are marked by
crosses on the v-axis. The three models differ in the distances between
the group of thresholds and the centroid of f,(v), i.e., the mean of the
subjective values of the signal-plus-noise stimuli. (Hereafter we shall
denote the centroids of f 0 (v) and f (v) by go and V,, respectively.) It
is usually more difficult for the oLserver to estimate v| than to esti-
mate vot since v| depends on the unknown signal statistics (in particular,
the average intensity of the signal), while o does not. Hence it is of
interest to see what effect a shift in v| will have on the adaptive be-
havior of a TLP assuming that the available thresholds (ki) and the
a priori density fo(v) are fixed.

The behavior of a quantal TLP can be expressed in terms of four
parameters: k, a, 0, p, where

k = threshold value
= amplitude of central part of the conditional probability

density p'1f (v). Note that when a = 1, Lv' is minimized;
when a = = Avl maximized if fo(v) is restricted to single-
peak funcions; when a = 0, Avo is maximized absolutely.
bears the same relation to (1-p)-l f1(v) as e does to p'1fo(V).

p = frequency of occurrence of zeros in the sequence u.

The lumped transition grap4 of a three-threshold TLP is shown in
Figure 10. In this figure the ails, bits, and ci's represent the open-
loop transition probabilities corresponding to k=1,2, and 3, respectively.

The values of all the transition probabilities for Models I, II,
and III are tabulated in Table 1. These probabilities are obtainable
from well-known formulas [7]. For example,

a, = f1(v) dv

a2  1 f(v) dv + f f 1 (v) dv

a3 = fo(v) dv

The probability that a desirable state of the closed-loop TLP
will be occupied at time n is obtainable from Equation 4 by setting m=3:

z(n) = a2 wI(n-1) + b2 w2 (n-1) + c2 w3 (n-1) (5)

where w.(n) is defined as the probability that combined-state i will be
occupie at time n. The three combined states are defined in terms of
the nine original states in Fig. 11.



Model I Model II Model III

a 0 0 0

a2 1 ( + a) 1 (1 a) -( + a)

a - (1 a) 0+ a) 0-

bl I-P 0 a1 2 ( a

1 p p
b2 2" (1 +aC) 1 - ( - a) 1 -7 "(1 - a)

b a (1 + a-(1 -a)1 2 ( -a )

I -0 (I + oOI-P a
2-( 2c 1-p T (l- a)o

c 1 (1 a) + P(1 .ca) -L(14ax) + VP I-a) 1

c3  0 0 0

TABLE I

Several methods are available for finding explicit expressions
or numerical curves for the w.(n) and, in turn, z(n). Among these

methods are matrix algrebra [t], eigenvalue evaluation [14], generating
functions or "x-transforms" [6., 15], and signal-flow-graphs [16]. Still
another approach is analog computation, based on the signal flow graphs.

Because of the consistently observed monotonic character of z(n),

it is convenient to describe z(n) by two Rarameters: the asymptotic
probability and the peak settling time N. (The peak settling time is

defined in section 5.) The parameters C and N may be found by any one of

the methods just mentioned for finding z(n). However, signal-flow tech-

niques -- in particular, certain refinements and extensions of these

techniques -- have proved themselves particularly effective for this

purpose. A report on these techniques will appear at a later date.

We have analyzed for the three quantal TLP's of Figures 7-9,
with the added assumption that a = P. Under this assumption is a func-

tion of a and p, and may be described as a contour map on the C -P plane.
The subject of contour maps will be discussed at length in the next

section.

In addition, we have made an analysis of the transient response

and, in particular) the peak settling time of Models I-III. This will be

discussed in section 8.
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7. ANALYSIS OF THE -M&PS

We suggest that the performance of adaptive as opposed to non-
adaptive processes can be understood through studying their "adaptation
characteristics" (sec. 2). The adaptation characteristics are determined
by the relation of one or more success indices to the dynamic behavior of
the observer and his environment. In the quantal TLP we have one parame-
ter describing the observer (a), and one describing the environment (p).
(The parameters a and p are assumed to be unknown to the observer.) Our
success index for the TLP is z(n), which we describe roughly by and N.A
Since two of the three adaptation characteristics are concerned with the
success index as a function of the evnironment and the observer, it is
natural to depict t and N as surfaces over the a - p plane. Figures 12
to 14 show the t surfaces by means of contours along which is constant.
(One advantage of the quantal TLP is that its simplicity enabled us to
compute these contours by hand.) Other hand-computed contour maps, in
Figs. 23-25, depict v-surfaces, where V is an approximation of N, to be
defined in section 8.

Of course, other graphical forms for displaying the relations
between z(n), a, and p are possible. A well-known form is the ROC (Re-
ceiver Operating Characteristic), which is a plot of asymptotic hit
probability* versus asymptotic false-alarm probability. Such forms may
yet prove to be useful for our purposes. We felt, however, since the
contour maps permit two of the adaptation characteristics -- stability
and reliability -- to be viewed directly as areas on the a - p plane,
and since in addition they display a descriptor of the learning curve as
surface over this plane, that the maps are likely to yield greater
insight into adaptive behavior than some other graphical form.

7-1. Stability and Reliability

What do the contour maps tell us about the adaptation character-
istics? The answer is: they give us a quantitative indication of sta-
bility and reliability, and relate them to a descriptor of the learning
curve (t or N).

Suppose the range .8 < I < 1 is considered "good" asymptotic
performance. Then the shaded portions of Figures 12-14 represent the
"good" regions of the a - p square. (The "ae- p square" is the physically
realizable region of the a - p plane, namely 0 < U, p < 1.) Note that
for a specific a the range of p in these shaded regions is a measure of
the stability, since p is a parameter of the environment. Similarly, for
a specific p the range of a within these shaded regions is a measure of
reliability, since a is a parameter of the observer.-, Hence the areas
of the shaded regions represent a combined measure of stability and
reliability.

* Hit probability is defined as the joint probability that y=1 and u=].

*: Another viewpoint on reliability is to consider a itself as a meas-
ure of the reliability of the observer's detection apparatus, since

t= Iimplies u is relatively large, while a = I implies Lvu is
relatively small. By this viewpoint the center of gravity of the = .8
contour over the o-axis in the region I < a < I would represent an aver-
age measure of the reliability. This 4iewpo7int is possibly more real-
istic. However, the viewpoint in the text also has validity, and in
addition has certain graphical advantages.



11.

Let us compare the areas of the shaded regions. Denote the

shaded areas for Models I, II, and III by AI, A2, and A3 respectively.

Note that Al < A2 < A3. Quantitatively, A2 is approximately 5 A3, and A1
is approximately A2. Furthermore A1  .55, A2 = .85, A3 - 1. We con-

jecture that thesl results will be similar in certain respects to those

of other sets of TLP's having similar sets of distances between the group

of threshold values and Vie

Another interesting question is: How do the t-surfaces of the

open-loop and closed-loop TLP's compare? The open-loop characteristics

of the quantal TLP are obtained easily. Denote by tk the contour of

constant asymptotic probability for the case where the threshold is con-

stant at the value k. Then from an inspection of Fig. 11(a), we see that

t, = a21 2 = b 2, 3 = c2 ' (6)

The quantities a2, b2 c2 are simple functions of a and p (see Table 1).

The resulting contours of t, .2' 3 are given in Figures 14-19. Com-

paring these maps to the t maps, we note that for any specific one of the

three TLP's, and for any specific threshold k, t, > t in certain regions

of the a - p square, although %k < t in most of the square. This cor-

roborates the intuitive expectation that in most situations the untrained

observer will be less successful on the average than the trained observer,
although the reverse will be sometimes the case.

Let us now consider the "good" regions of the -maps, i.e.,

those regions where 0.8 < tk < 1 (shaded in the figures . We shall
denote the areas of these "good" regions by Ak (the superscript indicating
the threshold, and the subscript the model number), Ind call t em "sta-
bility-reliability areas". We note that A Z .28, A1 -= .40, AI Z .28.
This is to be compared with the closed-1oo value A1 = .55. Consequently
the increment in shaded area yielded by closing the loop in Model 1 is,
on the average, approximately .23. _We call this increment the average
stability-reliability improvement, I, the bar over the I denoting the

averaging operation. We compute I by the formula

I = A - 1k (7)
m m

where Xk (A IA + A2 + A3). (8)
m 3 m m m

Somewhat greater, but not significantly greater, values of I are

obtained for Models II and III. This information is stmmarized in Table
2.

Model I Model II Model III

A1  .28 .30 .30
m

A2  .40 .75 .75
m

A3  .28 .75 1
m

Ik .32 .60 .68
m

A .55 .85 1

I .23 .25 .32
Table 2
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We see that shifting v. seems to have little effect on I. Perhaps I is1
an approximate invariant that characterizes a class of reinforcement
policies.

7-2. From Open-Loop Maps to Closed-Loop Maps

The following goal is basic in our philosphy of adaptation theory
(sec. 2): Find a simple method of estimating the closed-loop behavior
from the open-loop behavior.

Toward this goal, we describe a method for estimating the closed-
loop t-maps from the open-loop t-maps. The method is based on a) the
fact that t is maximized when the threshold k is held fixed at that value
k=kM such that fo(v) > f,(v) for v < kM and fo(v) > f (v) for v > k_
[4, 17] and b) an assumption that = where IM denotes the
asymptotic success probability for the case r=kM.

In short: we shall present evidence that suggests that an esti-
mate of the S-contours -- particularly the shapes of the t-contours --
may be obtained by computing the M-contours. The M-contours of the

quantal TLP's are obtained directly from the bk-contours (the open-loop
probabilities) by the following formula:

= Max ( k) (9)

It is a simple matter to apply this formula graphically to the k-con-
tours: one merely uses those portions of the ak-contours that lie on thetopmost k-surfaceo

The M-maps for Models I and II are given in Figures 20 and 21.
Each of these was constructed from appropriate portions of the -maps.
(The tM-map for Model III is trivial, since for this model tM every-
where in the a - p square.)

If the SM-map and t-map for Model I (Figs. 12 and 20) are com-
pared, we find a resemblance in the general shapes of the contours.
Furthermore, if they are superimposed, we find a moderate numerical
approximation for the larger values of t, in particular for t > 0.9. An
even closer approximation is observed for Model II (Figures 13 and 21).
And, of course, a perfect match is obtained for Model III. These approxi-
mations are displayed in Figures 20 and 21, where the contours of = .8
and .9, drawn as dashed lines, may be compared to the corresponding
contours.

This evidence suggests that the tM-contours can provide a way of
estimating roughly the closed-loop t maps from the open-loop maps. In
particular, a qualitative effect of a parameter change -- such as a
change in P with no corresponding change in a -- might be conveniently
estimated in this way.

7-3. Comparison of Open-Loop, Closed-Loop, and Optimum -Surfaces

When we study a closed-loop adaptive process a natural question
is: how useful is the training program? I.e., is the trained observer,
or the observer undergoing periodic reinforcement, more successful on
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the average than the untrained observer, and, if he is, how much more
successful is he? In feedback-theoretic terms this question amounts to:

how do the open-loop and closed-loop behaviors compare? Another question

in this connection is: how close does the adaptive mechanism approach
the optimum performance, where "optimum" refers to the best possible
performance under the condition that all the a priori statistics of the
environment and the observer are made available to the observer.

In terms of settling time, of course, the adaptive process is
worse than either the open-loop or the closed-loop processes. This is

because the settling time of a fixed-threshold TLP is zero. (The subject
of settling time is discussed at length in section 8.)

On the other hand, in the case of , intuition tells us that
usually will bear the following relation to , and M:

k < < M (10)

Furthermore, if the feedback policy is sufficiently effective, we may
expect that on the average will be closer to M than to k" These con-
jectures are verified from an inspection of the contour maps.

In addition, intuition leads us to expect that the stability-
reliability areas, defined in section 7-1, will satisfy an inequality
similar in form to Equation 10. Let us see whether the facts bear this
out.

Again we shall assume that .8 < < 1 constitutes "good" asymp-

totic performance. The open-loop and closed-loop stability-reliability
areas have already been compared. They are tabulated in Table 2. To
compare the adaptive to the optimum asymptotic probabilities,we compute
the stability-reliability areas of the SM-maps. Approximate values for
these areas are given in Table 3, where they are compared to the corre-
sponding areas of the open-loop and closed-loop processes.

Model I Model II Model III

Ak .32 .60 .68
m

A .55 .85 1
m

A .80 .94 1
m

Table 3

We note that, as expected, the following inequality holds in all
the models:

Ak < A < AM  (m = 1,2,3) (11)
m m - m

In models II and III, we note also that A is significantly closer toM -k m

A than to A -- an indication of an effective reinforcement policy.
m m

This is not so, however, in Model I, where A is roughly midway betweenm
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Ak and AM . This indicates that the simple TLP reinforcement policy ismrelatively inefficient when the channel statistics are similar to those
of Model I (Fig. 7, with a = p). A more effective reinforcement policy
for Model I should therefore be sought.

8. TRANSIENT BEHAVIOR

Because the observed TLP learning curves, z(n), have been con-
sistently monotonic, they can be approximately described by just t and N.
(We defined N in section 5.) The parameter is a measure of the asymp-
totic performance, and N is a measure of the transient performance. In
this section we describe an approximate analysis of N.

One way to find the transient performance of a TLP is to compute
z(n) numerically as a function of An. If a z(n) is computed for every
possible initial threshold, then N may be found by measuring N on every
z(n). Table 4 lists the values of N found by this method. Figure 22
illustrates a set of curves found.by this method. In each curve the
threshold was chosen so that N = N. The source of these curves is Model
I, with a = .75; the four curves correspord to p = .2, .5, .9, and .955.
Unfortunately this method of analysis is computationally laborious and
analytically opaque.

A more fruitful method is based on the characteristic equation

I,- x I = 0, (12)

where P is the lumped transition matrix. In every TLP examined so far,
the roots of this equation (the so called "eigenvalues") have been
positive real. Consequently an approximation of N is

R V 1 log 10 (13)

where is the eigenvalue closest to, but not on, the unit circle of the
x-plane. (Equation 12 always has a single root at x = 1.) We computed
by hand the V-contours of Models I - III. These are given in Figures 23-
25.

In order to evaluate the utility of v as an approximation of N,
we evaluated V for four a, pairs in each of Models I, II, and III. We
computed N numerically for each of these same cases. The results, tabu-
lated in Table 4, show V to be surprisingly close approximation of N.

An interesting qualitative observation: when p is small, V is
sensitive to V ; but when p is large, V is relatively insensitive to V1.
This may be attributed to the fact that when p is large, most of the
threshold adjustments are due to false alarms, and that the statistics
of false alarms are independent of V, (see a3, b3 1 c3 in Table 1).

9. QUALITATIVE ANALYSIS

The threshold models in signal detection theory as well as in
other areas are more complex than our simple quantal TLP. Most of them
have more than three thresholds, and most of them have continuous rather
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Model I Model II Model III
A A A

p N V N V N V

.100 24 25.4

.200 8 7.3

.400 46 45.0

.500 4 4.0 5* 17.3 37 35.6

.900 13 10.3 19 17.3 21 19.3

.995 18 16.6 19 17.3 19 17.3

a .75 in all cases.

Table 4

* Degenerate case, in which two of the initial thresholds yield no

transient component in z(n).

than discontinuous f (v)'s. We believe, however, that our quantal TLP's

share certain behavioral properties with the more complex models, at
least on a qualitative basis.

Examples of the qualitative properties (or "quales") we have in
mind are:

1. The approximate invariance of I with respect to _I"

2. The approximate invariance of with respect to a or p in
certain regions of the a - p plane. Specifically, in Figures

12 and 13, is roughly constant with respect to wide vari-
ations of p if (a, p) falls in sector B. Also, t is roughly

constant with respect to wide variations of a if (a, p) falls

either in sector A or sector C.

3. The fact that in Model I N is a minimum with respect to a at
p = .5 (Figure 23).

4. The fact that in Model III N is approximately invariant with
respect to variations of p whenever (a, p) falls in sector A
of Fig. 24.

5. The approximation M yields a rough estimate of the
shapes of the t contours from the k contours.

A specific example of quale preservation is given by the nine-
threshold TLP illustrated in Figure 26. This TLP is characterized by
two normal fu(v)'S, whose standard deviations are equal, and whose means
are separated by four standard deviations. The nine thresholds are
distributed uniformly and symmetrically with respect to the vu's in the
manner shown in the figure. (In the figure the threshold values are

marked by crosses.) The resulting lumped Markov chain is a nine-state
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random walk whose graph is topologically identical, except for the four
additional combined states, to the graph in Figure 6.

To approximate this TLP by one of the quantal TLP's, we first note
that the sum of the f (v)'s contains a dip between two peaks. Consequent-
ly we attempted to ma2ch this TLP to Model II. The dashed line in Fig.
26 shows an attempt at fitting the staircase f 0 (v) of Model II to the
normal fo(v). The resulting value of a is approximately 0.8.

In Figure 13 we note that at c = .8, lies between .95 and I
regardless of the value of p. And in Figure 24 we note that at a = 0.8,
V remains constant at the value v = 22 provided .1 < p < 1.

Two learning curves, z(n), of the nine-threshold model were com-
puted: one for p = .5, the other for p = .995. These curves are shown in
Figure 27. Note that the two t's as well as the two N's of these curves
are approximately the same, as predicted qualitatively from the contour
maps of the quantal TLP's. Furthermore, both values of lie between .95
and 1, as the -map predicts.

10. HIERARCHIC MODELS

One obvious feature of human adaptation is the ability of the
human being to adapt at one or more hierarchic levels. I.e., the human
being is able to observe his own adaptive behavior and -- over a suf-
ficiently long period of time -- to change his internal decision mecha-
nism in such a way as to raise his probability of success.

In this section we shall indicate a Markov chain approach toward
analyzing a certain type of hierarchic process.

10-1. Coarse-Fine Control

Under certain circumstances, a human being will jump from fine
control of threshold values to coarse control and back again to fine
control. This may be simulated by a Markov chain in which special states
represent part of the decision mechanism for moving from fine to coarse
control or vice versa.

An example of coarse-fine control was applied to the nine-thres-
hold TLP of Figure 26. The nine thresholds were divided into three
groups of three: a left group, a center group, and a right group. These
were viewed as three "fine-adjustment" groups.

Each of these groups may be regarded as a "local" three-threshold
TLP. In addition to the local TLP, an "express" TLP, consisting of the
central state of each local TLP, was instituted. Moving from any state
in a local TLP to a state in another local TLP can be achieved only via
the express TLP. To enter the or leave from either an express or a local
TLP a critical state must be entered twice in succession. This mecha-
nism results finally in the 19-state Markov chain shown in Figure 28.

Under the assumption that the initial threshold was at the most
negative available value, two learning curves for this process were com-
puted: one for P = .5., the other for p =.995. These are shown in Fig. 29.
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Comparing these curves with the corresponding curves of Fig. 27, we note

that the 's are about the same, but that the settling time in the hier-
archic process is about two or three times that of the nonhierarchic
process. Thus the effect of the hierarchy in this case was to slow down
the response.

This observation brings forth certain natural questions leading
to further study. In this discussion, however, the generation of any
specific questions or conclusions regarding this particular hierarchic
model is secondary to the primary purpose, which is to show that a Markov-
chain approach can yield a precise analysis of this model. This is a
distinct advantage over the approximate analyses common in certain
branches of automatic control theory, where hierarchic models have re-
ceived much attention.

11. SUMMARY AND CONCLUSIONS

The TLP models of signal detection form a class of very elemen-
tary discrete adaptive processes. Hence an insight into these models
may point the way to general theories of adaptation. For the more im-
mediate goal of understanding TLP behavior, a Markov chain analysis of
quantal TLP's can be of help. In particular these models help us relate
the open-loop and closed-loop observers in certain signal detection
experiments to various combinations of experimenter's reinforcement poli-
cies and observer's decision mechanisms. The simplicity of the quantal
TLP enables us to interrelate the adaptation characteristics -- stability,
learning, and reliability -- in a reasonably straightforward way. These
interrelationships have suggested certain qualitative generalizations on
TLP behavior,

An attraction of the Markov chain approach is the ease with which

the dynamic or "transient" behavior of a Markov chain may be computed.
This has led to the concept of peak settling time N as a partial descrip-
tor of the learning curve z(n), and to the use of V, which is a simple
function of one of the eigenvalues of the chain, as an approximation of
N.

Present evidence suggests that by approximating the a priori
densities by a three-step staircase function, one can use the contourA
maps of the quantal TLP's to estimate the qualitative sensitivity of N
to changes in the signal-plus-noise occurrence probability p, and in
addition to estimate the size of the asymptotic success probability .

Certain of the results presented here suggest experiments to
verify whether a real observer will behave as a TLP would behave under
specific changes of reinforcement policies. This is of particular inter-
est in the case of the coarse-fine hierarchic TLP, where waiting time and
group size may have significant effects on the dynamic behavior.

Of course the higher level adaptive processes in nature are too
complex to be conveniently described by finite Markov chains. We believe,
however, that an understanding of the simple TLP's will point the proper
direction to more sophisticated models.

The following specific observations of TLP behavior are of value
both as likely descriptors of real adaptive processes, as well as
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ingredients of an intuitive understanding which will, we hope, lead us
to a theory of the adaptation dynamics of discrete stochastic processes.

1. The observed TLP learning curves have been consistently
either monotonic increasing or monotonic decreasing. Furthermore the
observed eigenvalues of the TLP Markov chains have been consistently
positive and real. We suspect a general theorem on this matter is pro-
vable.

2. The stability-reliability area A of a closed-loop TLP falls
in between that of an averaged open-loop TLP, Xk and that of an optimal-
threshold TLP, A. As V1 increases, AM-A decreases substantially, while
A-Ak increases slightly. Hence the simple TLP reinforcement policy
(described in section 3-3) is more effective when the overlap of the
f (v)'s is relatively small. In particular, the simple TLP reinforcement
policy for Model I does not seem sufficiently effective -- a more effec-
tive one should be sought.

3. The stability-reliability improvement in TLP's, defined as

IA - Ik seems to be approximately independent of V1.

4. In any TLP where the f (v)'s overlap, the open-loop success
probability k is smaller than the closed-loop success probability for
most values o a and p, although for some values of a and p the reverse
is the case. This is equivalent to the following statement: In most
situations the untrained observer is less successful, on the average,
than the trained observer, although the reverse is sometimes the case.

5. In certain regions of the a - p square, the values of and/
or V are relatively insensitive to changes in p or a or both. For ex-
ample: if 0.8 < a < 1 then will lie between .95 and 1; and if, in
addition, p varies anywhere in the interval .1 < p < 1, V will remain
constant so long as a is constant.

6. Closed-loop t-contours can be estimated from the open-loop
k-contours by the approximation t M and the formula

=k

7. When p is large, 7| has little effect on settling time. But
when p is small the effect is very substantial.

8. In the symmetric model, Model I, the peak settling time is
a minimuim when p = .5.

9. Some support of the "quale-preservation hypothesis" has
been obtained by approximating a normal fu(v) of a nine-threshold TLP by
a three-step staircase function.

10. A "coarse-fine" hierarchic process, in which "local" TLP's
are connected by an "express" TLP and a simple waiting-time mechanism, is
precisely analyzable by a Markov chain. This is an advantage over the
approximate methods common in the literature on hierarchic control
systems.
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APPENDIX

Combining States

Suppose two or more states of a Markov chain Ma are viewed as a
single "combined state". This combined state, together with the remain-
ing uncombined states, will under certain conditions form a Markov chain
Mb in which the transition probabilities connecting the uncombined states
are identical to those in Ma. These conditions are known as the "com-
bining classes" restrictions [18] or "lumpability" conditions [i1 page
124].

The combining state conditions are satisfied among each of the
three groups of states enclosed by the dashed lines in Figure Jib. Con-
sequently we were able to reduce the nine-state chain of the quantal TLP
to an equivalent three-state chain.

In this appendix we discuss the combining state restrictions with-
out proof. Proofs are readily available elsewhere [11, 18].

Definition: States 0 and I of the (m + 1) X (m + 1) matrix pa
are said to be combinable if there exists an m X m matrix Pb7in
which the transition probabilities among states 2 to m are identi-
cal to those of pa and if

r a(n + 1) = ra(n) P_a (n 0,1,2,...) (Al)

implies that

r (n + 1) = r (n) P (n = 0,1,2,...) (A2)

independently of r a(0),
where

ra(n) state probability vector = [roa(n), r!a(n),..., r a(n)]

rb(n) 2 [ro(n) + rI(n), r2(n), ... , r (n)]

This definition is easily extended to any two states, regardless
of their labels.

If two or more states of Pa are combinable, then Pa is said to be
lumpable []I.

Theorem: States . and V of stochastic matrix Pa are combinable
if and only if the corresponding elements in all columns but 4
and v of rows ii and V are identical, i.e.,

P1j = PVJ for j j ,v. (A3)

Denote the combined state by w and the lumped matrix by pa. To
find Pb, use the following equations:b a

P b Pa if i# i, V; j# , V (A4)
b

Pj = P ifj# , V (AS)

b a aPffla = P li + P Lv (A6)
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The above theorem is interpreted as follows. States 4 and V of
p are combinable if and only if the transition probability from state V
to any state j is equal to the transition probability from state V to
state j for every state j j 4 or V. To find the lumped matrix Pb first
add column V to column 4, then delete rows 4, V and columns 4, V.

The theorem is extendable in an obvious way to any group of
states.

Exercise: Which pair(s) of states are combinable in the following
matrix?

1 2 3

1 .2 .4 .4
aP= 2 0 .8 .2 (A7)

3 .1 .4 .5

Answer: Only states 1 and 3 are combinable. The lumped matrix
is

(1,3) 2

pb (1,3) .6 .4 (A8)
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A DISCRETE MODEL FOR EYE TRACKING MOVEMENTS

by

Laurence R. Young*
Lawrence Stark**

Department of Aeronautics and Astronautics, Massachusetts
Institute of Technology, Cambridge 39, Massachusetts.

** Neurology Section, Electronic Systems Laboratory and
Biology Department, Massachusetts Institute of Technology,
Cambridge 39, Massachusetts.

INTRODUCTION

A sampled data model has been developed to describe an

important biological servomechanism ----- the control system for

human eye tracking movement. A series of experiments were conducted

wherein a subject attempted to maintain fixation of a horizontally moving

target, while the position of his head remained fixed. Study of the eye

movement records led to three principles which formed the foundation

of the model. First, the system was shown to be of the input-adaptive

type, exhibiting anticipation and improved tracking when the input is a

predictable waveform. 1 Second, the smooth pursuit and rapid saccadic

systems were functionally separated, with the former acting as a velocity

tracker and the latter as a position servo. 2 Third, the discrete nature of

tracking in the nonpredictive mode required a sampled data model for

adequate description.

The evidence leading to a discontinuous control model stems

from five important expei mental results: (i) the system response to a

target pulse of less than 0. 2 sec. duration is a pair of equal and opposite

saccadic jumps, separated by a refractory period of at least 0. 2 sec.;



(ii) under open loop conditions, in which the effective visual feedback

is eliminated by addition of an external path from measured eye position

to target position, the system step response is a staircase of equal

amplitude saccades spaced approximately 0. 2 sec. apart; (iii) during

constant target acceleration the eye velocity changes in rather discrete

jumps at 0. 2 sec. intervals, with position errors corrected by saccades

in the direction of target motion; (iv) the frequency response was

calculated by an on-line digital computer which performed a Fourier

analysis of the eye movement response tc a random continuous input;

the resultant marked peak in gain near 2. 5 cps is consistent with a

sampled data system operating with a 0. 2 sec. sampling period; 4 (v)

inaccuracy of saccades associated with anticipation of square wave

target motion indicates that such saccadic movements are based on

previous remembered position, and for 0. 2 sec. preceding the saccade
5

no visual information can modify its course.

THE SAMPLED DATA MODEL

In the model shown in Figure 1, the error angle (e) between

the target angle (c) and the actual eye position (r) is detected at the

retina. This error is sampled by an impulse modulator (M) at sampling

intervals, T, where T is the average refractory period between

saccadic jumps or changes in pursuit velocity (about 0. 2 sec.). The

synchronization of the modulator is assumed to be set to coincide with

the beginning of a target motion, if the eye had made no saccadic jumps

during the previous 0.2 sec.

For saccadic position correction each sampled error

impulse larger than the 0.30 dead zone is delayed by one reaction time,

T, and integrated to give a step command indicating the desired change



in eye position.

Whereas fast saccadic movements serve to position

the target image on the sensitive fovea in the center of the retina, the

purpose of the pursuit system appears to be stabilization of the target

image on the retina by maintaining the eyeball at the correct angular

velocity. The error rate is estimated by the last difference between

error samples divided by the sampling interval T. The error rate

estimate is the desired change in eye velocity, and its integral is the

component of eye velocity attributable to the pursuit system. The first

limiter reflects the fact that the pursuit system does not attempt to

follow high velocities present in target discontinuities or during saccadic

jumps, and the second limiter indicates that pursuit velocity saturates

at Z5-300 /sec.

The dynamics of the extraocular muscles and the eye

loading them are very rapid compared to the sampling rate of the over-

all system, 6,7 and may be neglected in a simplified analysis.

The transient responses and frequency characteristics of

the non-predictive eye movement system model agree quite well with

experimental findings.

VARYING THE VISUAL FEEDBACK

In order to study the operation of the error sensor,

controller and load dynamics it would be desirable to investigate the

system in the absence of visual feedback. (See Figure Za.). The

feedback path is an inherent part of the system, however, since rotation

of the eye displaces the target image on the retina. It could be

eliminated only by physically opening the control loop, as for example



by mechanically restraining the eye from moving and observing the

torque exerted by the muscles.

Fortunately, the use of an eye movement monitor which

yields an instantaneous voltage signal proportional to eye position

permits the effective visual feedback to be varied conveniently by adding

an external feedback path from eye position to target position, as in

Figure 2b. Measured eye position is amplified by X and subtracted from

the input command to drive the target position. Thus, an eye movement

Ar reduces the observed error by (1 + a) Ar. By varying the sign and

magnitude of at, the eye movement control system may be studied for

any value of effective visual feedback. 8

The equivalent transfer function of the linearized model

for variable feedback, neglecting eyeball dynamics is:

(R(s)1  M (l-Z) 2  Z _+__1_l_K) 1

SP (l-(l-K) Z) 2 Ts s

where M is an impulse modulator of period T = 0. 2 sec., and Z a pure

delay of T sec. The input (C) is target command angle and the response

(R) is eye angle. Additional feedback is provided by the external

amplifier a.

K = 1 + C is the effective visual feedback. When the target

velocity exceeds the limitation of the pursuit system (+ 30 0 /sec.) the

pursuit loop opens and the transfer function reduces to:

(-4R(s)) = M [ -l.( -)Z

.e S

Figure 3 shows the calculated model step responses under

variable feedback conditions. As the feedback is reduced from normal



(K = 1, Figure 3a) to open loop (K = 0, Figure 3c) the response approaches

a staircase, and finally reaches instability for positive feedback (K4 0,

Figure 3d). When effective visual feedback is increased, however, the

model indicates a response of damped sampled data oscillations (1<KC2,

Figure 3e.). When the gain is doubled the predicted response is a train

of sustained oscillations of eye movements (K = 2, Figure 3f), and for

larger values of feedback the calculated response is one of unstable

alterations (K.2, Figure 3g).

The experimental records corresponding to each of these

cases are shown in Figure 4, where it is seen that the variable feedback

step responses are in good agreement with predicition.

DISCUSSION

The model shown in Figure 1 was developed in accordance

with the three hypotheses mentioned in the introduction, and was based

on transient and frequency response data for normal eye tracking.

The fact that this same model also predicts the correct experimental

findings for tracking under conditions of various other widely varying

values of effective visual feedback lends strong support to its validity.

In addition to the step responses discussed above, the model correctly

predicts other transient responses, conditions for spontaneous oscillation.

and the family of frequency response curves for variable feedback. 8
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FIGURE LEGENDS

Fig. 1. Sampled data model for eye tracking movements.

Fig. Z. (a) Simplified eye movement control block diagram.

(b) Method of experimentally setting effective visual feedback.

Fig. 3. Sampled data model computed step response with seven

different settings of effective visual feedback.

(a) K = 1.0 (normal.)
(b) K = 0.3
(c) K = 0.0 (open loop)
(d) K = 1. 0 (positive feedback)
(e) K = 1.75
(f) K = Z. 0 (double gain)
(g) K = 2.3

Fig. 4. Experimental eye movement step responses with seven

different setting of effective visual feedback.

(a) K = 1.0 (normal)
(b) K = 0.3
(c) K = 0.0 (open loop)
(d) K = 1. 0 (positive feedback)
(e) K = 1.75
(f) K = 2.0 (double gain)
(g) K = 2.3
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LIMITS TO ANIMAL DISCRIMINATION AND RECOGNITION

IN A NOISE-FREE EXTERNAL ENVIRONMENT

4ohn L. Stewart
Bioacous tics Laboratory

1725 North Swan Road
Tucson, Arizona

Abs tract

Two kinds of neural noise impose limits to animal discrimina-
tion. Existence of noise allows theories of optimum waveform processing
to-be applied to animal central mechanisms, provided it is assumed that
optimization has been evolutionarily achieved so as to maximize survival
probability. Sensory mechanisms are discussed from the point of view of
modified least-squares and matched-filter design techniques. The nature
of stimulus-dependent neural noise requires the presence of functional
processing mechanisms recognized under the names of temporal summation;
phasic, tonic, and non-adaptive neurones; and mutual inhibition. Animals
may develop sensory modulation techniques and/or characteristic behavior
patterns so as to overcome relatively intense neural noise at low fre-
quencies. Because the animal appears to be optimized under constraints
imposed by neural mechanisms, it is implied that the performance of an
artificial animal may exceed that of a real animal to the extent that
machine internal noise is less than animal neural noise.

Neural Noise and Discrimination

A patch of similarly stimulated sensory cells produces a sequence
of neural pulses in response to a suitable non-negative temporal stimulus
of measure S(t). Pulses are characterized by the short-time-average pulse
rate m(t), where averaging time includes at least a few adjacent pulses.
If k is a positive exponent and G is a constant, there may be formed a

kgeneralized representation m(t) = GS(t) . Large G is associated with
physically large sensory organs where a given stimulus results in a rela-
tively large number of neural pulses. Large k is associated with sensory
systems which display a rapid increase in the number of neural pulses with
stimulus intensity (as may be due to facilitation). Both k and G may de-
pend on S(t) and its past history (as in fatigue).

If pulses occur at random in time, the pulse train represented
by m(t) contains unavoidable noise analogous to gas pressure as explained
with statistical mechanics or shot noise in an electron beam. The variance

of this noise a2 is proportional to the short-time average m(t). (1).

_____ /~S(tk/2
The neural signal-to-noise ratio is m(t)/ S(t)k . Both

the absolute neural noise level and the neural signal-to-noise ratio in-
crease with stimulus intensity: Neural noise is stimulus-dependent. If
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subjective measure is based on m(t), the uncertainty in this measure is
k/ 2based on y. The neural JND is thus related to a - S(t) . The neural

Weber fraction is proportional to the ratio a/m, which is simply the in-
verse of the neural signal-to-noise ratio. If the JND is corrected so as

not to show finite a for zero S(t), there may be written a - S(t)k / 2 + a0;
the neural Weber fraction is then proportional to 1/[/"C S(t)k/21 +

0/[GS(t)k ]. This fraction is a monotonically decreasing function of S(t)

for k and G positive and fixed numbers. (2). The classical Weber fraction
(not its neural equivalent) in terms of the stimulus measure S(t) is prob-
ably adequately expressed as the neural fraction to some suitable positive
exponent. A small Weber fraction, which implies finer discrimination, de-
mands large S(t), large k, and/or large G. A relationship between the size
and complexity of an animal sensory organ and ability of that animal to
discriminate between a number of different stimuli is demonstrated.

The subjective measure of stimulus intensity is often found to
be related to stimulus intensity as a power law with a fixed exponent. (3).
Although the short-time-average neural pulse rate m(t) is probably mono-
tonically related to the subjective measure, there is no reason for this
relationship to be either simple or defined with a fixed exponent. In re-
porting a subjective measure, the animal (human) may compensate for a non-
constant exponent and other factors so as to give the outward appearance
of a simple fixed-exponent formula for description. Such a psychological
phenomenon can of course be expressed mathematically, although it is not
appropriate here to seek such a representation.

In addition to noise as cited, there also exists relatively slow
random modulation of the average pulse rate due to several complex electro-
chemical causes, blood flow, breathing, and other body motions. The result
is to add relatively intense noise components at and near zero frequency.
The standard deviation of this component of noise appears to be proportional
to m(t), and thus the signal-to-noise ratio is independent of m(t). If A
and B are frequency dependent constants, the total signal-to-noise ratio at
a given frequency may thus be expressed as m(t)/o - m/(A/m + Bm), which is
/m/A at high frequencies and 1/B at low frequencies. Low frequency, or
"excess" noise, is similar to that found in solid state and thermionic
devices.

Large m(t) at frequencies where B in the foregoing is ignorable
yields a large signal-to-noise ratio and precise discrimination is possible.
At low frequencies where the term Bm dominates, the signal-to-noise ratio
is independent of m(t); large intensity signals are not in this case appreci-
ably easier to discriminate than are smaller ones. Without auxiliary mechan-
isms, animals are less able to discriminate low frequency or constant stimuli
than changing stimuli.

If survival demands that the animal be relatively sensitive to
slowly varying stimuli, the animal has no recourse other than to modulate
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such stimuli so as to produce a fluctuating neural signal m(t) which has

frequency components above those of excess noise. The animal may do this

in two different ways. He may adopt effective behavioral mechanisms,
such as sniffing, fast flying, or tapping. Alternatively, automatic modu-

lation of a sensory organ may result from evolution, as nystagmus in the

mammalian eye or possibly blood flow and respiration modulation of the
inner ears of birds which are accurate at passive sound localization.

Pattern Recognition

The neural signal m(t) provides a temporal pattern. Recognition
of the pattern requires identification of pattern shape. Certain aspects

of this shape are important to survival; the animal thus attempts to identi-

fy a "survival-equivalent pattern" which may or may not be the same as the

actual pattern. It is taken here as axiomatic that pattern identification

has been optimized through evolutionary mechanisms. A type of optimum de-

tection and identification of temporal patterns is provided by the so-called

matched filter. Although such a filter 2er se cannot be located in the ani-

mal central nervous system, its equivalent in terms of functional signal pro-

cessing must exist if the optimization axiom is valid. The ideal mathematical
process implemented with matched filters is related to cross correlation,

although a less precisely defined mechanism actually applies because condi-

tions for the ideal matched filter do not exist.

Several matched filters, each matched to one of the possible

mk(t) survival-equivalent signals, are excited simultaneously. The one

with the largest output signal-to-noise ratio at the proper readout time

designates identification. If Mk(p) are Laplace transforms of the mk(t)
and Mk(jw)12/27 are spectra, and if N(j) 12 /21 is the neural noise spec-

trum,) then the k-th matched filter is QkMk(-p)e -PT/N(p)N(-p) where the Qk

are (properly normalized) constants and T is a stabilizing delay. (1).

The noise spectrum extends to the kilocycles, wheras spectra of the mk(t)

diminish at modest frequencies. The optimum matched filter thus attenuates

high-frequency components; low-pass filtering of this sort produces an

averaging effect called temporal summation. This effect, a central mech-

anism, is a necessary part of optimum recognition.

As an aside, it is to be noted that, if a simple routine for ad-

justing a matched filter to a particular stimulus does not require specific

knowledge of the stimulus, a form of learning has been achieved. If the

routine is sufficiently simple, adjustments may be made automatic so as to

provide self-adaptive learning.

Excess noise results in large JN(jw) 2 at low frequencies. This

causes the magnitude of the optimum matched filter to be relatively small

(but not necessarily zero) at low frequencies, unless survival very heavily
weights slow variations in m(t) (with corresponding loss in discrimination

ability). As a result, the matched filter shows a rising mamagnitude-with-



-4-

frequency characteristic at low frequencies. This behavior is associated
with phasic-tonic neural behavior. Existence of modulation phenomena fur-
ther augments this effect because slowly varying neural signals are thereby
rendered even less important. In combination with temporal summation,
phasic-tonic behavior yields a neural transfer function that is band pass
(with a peak at around 2 cycles per second for the neural system central

to the cochlea in the case of hearing).

An animal neural system may be characterized by branching neural
fibers and recruitment such that the rate of neural pulses reaching the
central region is larger than that emanating from the sensor. In such
caseq, optimum behavior may require that phasic-tonic neurones also be
introduced in various ganglia in the ascending system as well as perhaps
in the sensory organ. Temporal summation may similarly be distributed
in some complex manner associated with creation of various generator
potentials.

It is pointed out that so-called sustained stimuli should be
treated as temporal patterns (Gestalt). A typical case is one that in-
creases from zero, remains relatively constant for an arbitrary time,
and finally decreases. A pattern for mk(t) with a calculable Mk(p) ex-

ists. Long duration mk(t) show predominantly low-frequency spectral com-

ponents, whereas shorter duration mk(t) display broader spectra. The width

of the spectrum, especially with respect to components above those of excess
noise, is quite dependent upon the manner in which a "constant" stimulus is
started and stopped.

The classical theory for matched filters presumes noise to be
independent of the signal. Since neural noise is stimulus-dependent, a
correction is evidently required. The classical filter function is pro-

portional to 1/IN(jw)J 2, which yields the point-by-point proportionality
1/m(t) for neural pulse noise. A variable correction factor m(t) is thus
implied. The approximate correction procedure is to square m(t) prior to

functional processing by the filter, which is matched to m(t) 2 instead of
to M(t). (4).

The animal probably effects the squaring operation on the basis
of signals experienced in his recent past and predicted in a gross average
sense into the future. As a consequence, phenomena of forward and back-
ward (in time) masking can be expected. That is, a relatively weak pattern
that occurs immediately prior to or following a more intense pattern may
be subjectively attenuated in amount depending on relative magnitudes.

2 At low frequencies where excess noise is important, IN(jw)I
2 c

m(t) , and thus cubing m(t) is suggested for correction. Because low-
frequency components are normally attenuated in any event and because
the difference between squaring and cubing m(t) does not greatly affect
spectrum shape at low frequencies, the correction for pulse noise is
probably adequate also for excess noise.
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The optimum matched fi4ter provides derivative action (phasic-

tonic neurones) which augments pattern changes and so combats excess

noise. The squaring operation augments waveform peaks and de-emphasizes

small m(t) regions so as to combat stimulus-dependent pulse noise. The

process of cross-correlation further acts to emphasize signal waveform

maxima. These factors act to "sharpen" the overall waveform (within

fundamental smoothing effect limitations given by temporal summation).

If forced on a neural signal system defined along a line in space rather

than in time, they suggest the phenomenon of mutual inhibition.

Two-Dimensional Recognition

Next consider an array of sensory cell patches where individual

patches may be excited differently. Such an array characterizes a line

of tactual stimulation, the cochlea of the ear, an organized distribution

of somewhat specific chemical cells in olfaction, an open contour image

in vision, and so forth. Along the array there exists a form of spatial

resolution which causes a complex stimulus to localize. Neural inter-

connections between adjacent sensory cells as well as possible limits to

mechanical resolution (as in the cochlea) result in the spatial pattern

being relatively well self-correlated; that is, signals from individual

sensory cell patches are not independent of one another. The various cell

patches produce temporal short-time-average pulse trains. The spatial

pattern may be thought of as "sweeping out" a surface, the configuration

of which is not unlike a strip contour map.

Each patch of sensory cells produces a neural signal waveform

and is subject to neural noise. It is no longer appropriate to recognize

a specific waveform from a specific patch because of the overall organiza-

tion into patterns. The survival-equivalent cell patch neural signal is

thus important only in the ensemble average sense. An optimum filtering

function for each patch is in this case given by the least-squares tech-

nique. Results are similar to those obtained with matched filters pro-

vided the ensemble of possible neural signals is reasonably constrained.

That is, attenuation of high frequencies provides temporal summation,

avoidance of excess noise yields phasic-tonic behavior, and the presence

of stimulus-dependent noise suggests a squaring operation. (5). For a

spatially self-correlated pattern, these mechanisms augment changes by

derivative action in both space and time dimensions and also emphasize

pattern peaks and de-emphasize valleys in both dimensions. In general,

the entire surface is "sharpened." In the actual animal, the sharpening

mechanism may exist partly in the spatial array, as in mutual inhibition,

rather than entirely in time, as suggested in the foregoing.

Recognition of the surface can be accomplished by sequentially

recognizing spatial cross sections with a section-to-section time that is

less than the relaxation time associated with temporal summation. Recog-

nition of such a sequence is similar to that applicable to a sequence of
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waveforms from a single patch. If least-squares filtering is employed for
each cell patch signal, it is of course improper to repeat the process in
the matched filters. (Alternatively, all filtering could be left to the
matched filters without use of any least-squares filtering of individual
cell patch waveforms). It must be recognized that there exists consider-
able correlation between neighboring cross section patterns which, to be
accounted for, demands suitable ordering of the sequence of outputs from
the many matched filters. (2,6).

Another approach for achieving recognition of a surface config-
uration is to obtain continuous waveforms which designate cross section
area, centroid along the spatial axis, and various central moments. This
approach is a parallel one as opposed to a sequential one. There exist
general theories as to the applicability of central moments as approxi-
mants. It would appear that, for the kinds of patterns to be expected
in neural cell patch arrays, this scheme can be made as accurate as de-
sired by including a sufficient number of higher-order moments for de-
scription. Its great advantage is that it is capable of accounting for
redundancies between cell patch signals in space as well as in time. (7).

Stimulus Frequency Regions

There exist two frequency regions associated with fluctuations
in m(t) which are separated by a broad frequency interval referred to as
the fusion frequency. Periodicities in m(t) above this frequency are re-
moved by filtering (temporal summation). Below the fusion frequency,
pattern recognition of individual periodicities is possible and the
sensation of discrete impulses is provided (vibrato in hearing, tactual
pulses, and so forth). In the region of the fusion frequency, recognition
may be confused and psychological "discomfort" may occur. (The percep-
tion of audio low-level difference tones above the fusion frequency may
be due to other and unique mechanisms.)

That important neural information is contained in periodicities
of individual neural pulses appears unlikely; relevant effects are con-
sidered here to fall into the category of "incidentals." [Volleys may,
however, provide a transfer function of the sort pT/(l + PT) between the
external stimulus and the sensor.]

Periodicity in an average sense may in some cases, however, be
significant. A modulating sense organ could conceivably place signal
components at, say, 15 cycles per second so as to avoid excess noise by
a wide margin. A simple narrow-band bandpass filter centered at 15 cycles
per second, followed by a deteqting mechanism for changing the bipolar
15-cycle signal component to monopolar form, realizes necessary temporal
summation. In any event, the theory of optimum filters applies directly
as before. It is only required that the spectrum of the (survival-equiva-
lent) modulated neural signal be known; wide avoidance of frequencies con-
taining excess noise may make possible the ignoring of such noise altogether
with the result that only pulse noise with a white spectrum need be con-
sidered. In this event, phasic-tonic neural behavior need not constitute
an optimum strategy for the animal (unless the survival-value neural signal
spectrum so indicates).
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Some Comments

The functional task of a group of neural elements appears to
be that of a continuous mathematical operation, perhaps of moderately
complex form. The function is mechanized with a large number of discrete
pulses such that appropriate statistical averages are provided. It would
appear that animal behavior from a neurological point of view may be de-
scribable using techniques akin to those in classical statistical mechan-
ics and communications theories. The identification of complex functional
signal processing procedures from studies of individual neural fibers ap-
pears doubtful, unless behavior of a large number of fibers can be statis-
tically predicted as a result.

The animal seems to be optimized to his environment under the
forced constraint that information must be processed using analog-coded
neural pulses. There is little doubt that machines can be built to dis-
criminate and recognize similarly. An evident conclusions is: The perform -

ance of an artificial animal can exceed that of the real animal only to
the extent that machine internal noise is less than animal neural noise.
Since technology provides low noise devices which are not necessarily
constrained to operate on the basis of pulses, the robot super-animal
from the point of view of sensory discrimination and recognition appears
to be quite feasible. (8).
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1. Stewart, J. L., Fundamentals of Signal Theory, McGraw-Hill, 1960.
Chap. 11.

2. The theory presented here is not in disagreement with that given by
the author elsewhere. See Stewart, J. L., Science, Vol. 137, 618-619
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crimination, MRL-TDR-62-12, 6570th Aerospace Medical Research Labora-
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relate to noise band intensity, centroid, and width control signals,
which individually have bandwidths of no more than a few cycles per
second.

8. This research was supported by the Bio-Acoustics Branch, Aerospace
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INTRODUCTION

GENERAL

In general terms, the interaction between a human operator and a machine
can be thought of as occurring at a "man-machine interface." From the
machine side, this interface is bridged by displays which act upon the
operator's sensory organs; from the operator's side, by effectors applied
to the machine's controls. The man affects the machine through control
inputs, usually by the use of manually applied forces or displacements to
the machine control through aircraft sticks, steering wheels, or even push-
buttons.

The opportunity and requirement for manual control of a spacecraft was
identified in the recent orbital flights where manual or "fly by wire" control
was necessary for completion of the flight. In these orbital flights, manual
control took place in situations of weightlessness where free movement of
the extremities was unimpeded. However, there are environmental condi-
tions where man unassisted by a servo boost system may be ineffectual in
machine control.

In high accelerative-decelerative force fields, it would be difficult for the
human operator to make rapid and accurate corrections to the craft's flight
path during long periods of deceleration, as may be experienced on re-entry
into the earth's atmosphere following an earth orbital flight. The operator
subjected to perhaps 5-8 transverse G's finds that he no longer can respond
rapidly or accurately in positioning his arms in space to undertake control
measures. The affector link, the operator's vision, as one example may func-
tion normally under those conditions, but his ability to respond to a present-
ed problem with purposeful arm movements may require mechanical support
and assistance in order to close the effector link.

The additional physical effort required for arm movement and the concomit-
ant pilot fatigue that is experienced in a fully pressurized protective garment
reduce the operator's efficiency. An automatically controlled servo boost
system will facilitate the natural movements of the suit wearer. These con-
ditions are ideal for the judicious application of a myoelectric control system

*This work was supported by the U.S. Air Force Aeronautical Systems
Division under Contract No. AF33(657)-7771.



to provide the basic input for closing the effector link. The pilot attempt-
ing a purposeful muscular action of his extremities provides a signal in the
form of myoelectric potentials which may be used as the input to a logic
control system. The system output, in turn, may be used to control the
mechanically supported and aided movement of the extremities. The visual
feedback to the operator of the position of the extremities enables him to
limit voluntarily the genesis of the myoelectric potentials when the intended
action is achieved.

OBJECTIVE

The objective of the technical effort involved two major areas of investiga-
tion. The first was the selecting of basic arm movements and the muscles
to be instrumented, determining both the activity patterns characteristic
of the movements and the optimum means of transforming the "raw" myo-
electric signals for servo system use. In addition, control logics were to
be formulated which relate the myoelectric potentials to the desired servo
action.

The second major effort was directed towards defining for a simulated task
the degree of precision in control actions which could be obtained through
the myoelectric transforms.

TECHNICAL APPROACH

BACKGROUND

The basic electrical properties of the myoelectric potential for a maximal
contraction of an average size muscle when detected at the skin surface have
been found to be as follows:

Total Bandpass 3-1000 cps

Bandpass of Maximum Signal Power 10-200 cps

Amplitude (peak to peak) 1-3 my.

Myoelectric activity can be easily detected by the application of conductive
plates to the skin area over a contracting muscle. Traditionally, the elec-
trodes used have been relatively heavy plates, and have contributed greatly
to recording artifact while making long-term recording difficult. However,
an extremely low mass, flexible foil electrode developed by Sullivan and
Weltman (4) permits the instrumentation of an unprecedented number of arm
sites and results in an improved signal to noise ratio in the signal.

The myoelectric signal impressed across a set of electrodes when amplified
and displayed appears as a spiked, randomly varying voltage level. The
peak to peak amplitude of the displayed signal is associated with various
ranges of muscle activity from complete relaxation to voluntary contraction.

The useful myoelectric control signal exists only in the voluntary contraction
range with an amplitude of 60 to 3000 microvolts. The relaxation and
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psychological stimuli signals are buried in the "noise" (observed at Z0 to 30
microvolts) normally found at the body surfaces. Voluntary effort can en-
tail either an attempt at arm movement (resulting in a "natural" pattern of
myoelectric activity over a selected set of muscles), or a practiced iso-
metric contraction of specific muscles (again yielding a pattern of activity).
In both situations, one natural and one trained, it is necessary for a follow-
ing servo system to make use of the total pattern of activity. The alterna-
tive to the use of several muscles as "signal sites, " if more than one servo
action is desired, is to use one muscle and a temporal code (e. g., Morse)
whereby bursts of activity in a specified sequence initiate servo action. Tem-
poral coding, however, is an inefficient and slow technique.

Traditional measures, such as the peak-to-peak amplitude of the raw signal,
are suited neither to differentiation of activity and inactivity nor to servo
use. However, a number of electronic transformations exist which material-
ly increase the reliability of pattern recognition. The smoothing transforma-
tion in particular yields a signal suitable for control use (5).

EXPERIMENTAL PROGRAM

The myoelectric control of a servo boost system to position the operator's
hand was selected as the most direct approach to the generalized problem
of myoelectric control. Accordingly, the planned experimental program
was directed towards the acquisition of data necessary for demonstrating
the feasibility of this approach.

It is probable that manual controls will not be positioned within the whole
volume of a manned capsule but rather the region of interest is roughly the
spherical surface swept out by the operator's hand with the arm comfortably
extended and limited by his functional visual range. The experimental pro-
gram was restricted to this area on the assumption that instruments would be
confined to this curved surface. An additional requirement of the program
was that the hand, on reaching a selected position on the curve, would re-
main stable without continuous effort. Initiation of new myoelectric activity
would be necessary to move from a stable point.

Derivation of ON-OFF Control Logics

The experimental study of this program was divided into two phases. The
first phase was conducted in conjunction with the Biotechnology Laboratory
of the University of California Los Angeles. The experimental objective
was the derivation of ON-OFF control logics for a sub-group of most useful
arm movements. The second phase was conducted by Spacelabs at its
facilities and consisted of static task simulation, dynamic uniplanar task
control simulation, and manipulative task simulation.

The control logics were formulated in the following manner: myoelectric
signals detected at six muscle sites were tape recorded during arm man-
euvers for simulated 1-G, 3-G, and 6-G conditions. Continuous move-
ments within the available arm range were simulated by movements initiat-
ed from predetermined static arm positions. The tape recorded signals
were smoothed by low-pass filters, displayed on oscillograph paper, and
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their peak values transcribed into detailed tables. Threshold values were
chosen for each muscle and the observed signal amplitudes converted to the
binary notation "0" (sub-threshold) and "1" (supra-threshold). Binary
tables were determined for each subject.

Task Simulation

The experimentation in Phase Two, Task Simulation, followed from the re-
sults of the initial phase.

Static Task Simulation - Simulations of a four-movement myoelectric
control task were accomplished by combining a programmable central
logic unit with a visual feedback display. The simulator was used both
to evaluate the logics suggested in Phase One by use of a success-
probability criterion and as a means of estimating reliability of myo-
electric control over the available arm position range. Reliability
was studied as a function of training and an additional control logic
derived.

Dynamic Uniplanar Task Control Simulation - Since the crucial ques-
tion in myoelectric control is whether or not the operator can adequate-
ly position a moving servoed brace, a uniplanar dynamic task was con-
structed and used to evaluate performance. The simulator was de-
signed for up-down motion, and provided a direct contrast with the
equivalent control actions under static conditions.

Manipulative Task Situation - While myoelectrically controlled arm
movement itself is of interest, the practical objective of this move-
ment is to place the hand in a position to operate a switch, a knob, a
lever, and so forth. Accordingly, the dynamic or in-movement simu-
lation was combined with manipulative task so as to permit estimates
of the average time-to-response, the positioning precision necessary
to provide useful hand function and the myoelectric interference asso-
ciated with various hand motions.

INSTRUMENTATION

The myoelectric servo boost system, Figures 1 and Z consists of the follow-
ing components: test stand and couch, arm supporting splint and sleeve,
negator springs, electrodes and leads, electromyographic signal condition-
ing amplifiers and vest, control logic computer, uniplanar power drive, and
a power supply. Each of the components contributed to the success of the
program but only the control logic computer will be described in detail.

Control Logic Computer (Figure 3)

The central logic computer consisted of four identical logic channels because
all the truth tables contained either 3 or 4 muscle combinations. In addition,
six "and" gates and two "or" gates were added to the computer in order to
supply the required flexibility.

The raw amplified EMG signal from the signal conditioning amplifier was
first passed through a high pass filter with a low frequency cutoff of 3 db at
30 cps. The purpose of this filter was to eliminate the large, low frequency
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baseline shifts which were primarily due to movement artifact. After filter-
ing, the signal passed through a full wave rectifier. In order to establish a
baseline without signal degradation, the output of the filter was connected to
an operational amplifier, with feedback time constants that allowed effective
peak detecting without the disadvantage of the usually long time constants of
a passive detector. The object of the smoothing transformation was to supply
a varying dc signal which closely follows the envelope of the EMG signal.

Next, a Schmitt Trigger was used to separate out noise and also standardize
all the EMG signals to the same trigger level. As the EMG signal increased
in amplitude, it exceeded the preset trigger level and the Schmitt Trigger
generated a pulse which existed until the EMG decreased below the trigger
level. The raw EMG signal was converted to a square wave pulse that varies
from 0 to 10 volts and the width was controlled by the duration of the muscu-
lar contraction. Following the Schmitt Trigger was an inverter with an out-
put opposite to the Schmitt Trigger, or a square wave pulse that decreased
from 10 volts to 0 volts when the EMG signal exceeded the preset trigger level.

To complete the logic for the computer, both the Schmitt Trigger and the
inverter were necessary. Thus, a single muscle, when contracted, produced
both a signal which was 10 volts (Schmitt Trigger) and a signal which was
0 volts (inverter).

The terminology of the truth tables for a relaxed muscle, Anterior Deltoid
for example, was represented as follows:

(AD) = 0 (Output Schmitt Trigger)

(M) = 1 (Output Inverter).
Consequently, when the Anterior Deltoid was contracted, the terminologies

change state as follows:

(AD) = 1 (Output Schmitt Trigger)

(MTI) = 0 (Output Inverter).

The "and" gates of the computer were designed with zero output under normal
conditions. However, if all the inputs are in the 1 state, then the output shifts
from 0 to 1. Consequently, when a condition is written for a control motion,
all of the inputs must be in the 1 state before the "and" gate can pass the com-
mand and initiate the function. For example, the equation for up may be
written:

Up = (AD) + (M_M) +(ISD) + (P)

(AD) = Anterior Deltoid

(EMTh) = Medial Deltoid

(P"D) = Posterior Deltoid

(P) = Pectoralis

(B) = Biceps

(T) = Triceps



In analyzing the above equation for Up it can be seen that 3 of the 4 condi-
tions are already in the 1 state. Consequently, to satisfy the condition,
only the anterior deltoid can be contracted. If any other of the above mus-

cles are contracted at this same time, their state will change to 0 and the
command will not be initiated.'

To handle more complex functions, "or" gates were installed which pass a
command if a 1 appears at any of the inputs. Therefore, the "or" gates were
programmed from the output of the "and" gates, then either one combination
or a second combination of muscles produced the desired output. For example:

Down = (IM) + (PD) + (T) + (E) OR (AD) + (PD) + (T) + (9).

The final section of the computer contained the relay driver which was pro-
gra:Uaned to operate from the output of either an "and" gate or an "or" gate.
Consequently, when the gates switch to a I state, the relay contacts closed
and performed a control function such as starting and stopping or turning
on and off lights.

DATA ACQUISITION AND ANALYSIS

Derivation of ON-OFF Control Logics

The myoelectric signal was obtained through the use of low-mass silver-
foil electrodes attached to the skin by Eastman 910 adhesive (4). The sig-
nal was amplified by a transistorized bioelectric preamplifier. After pre-
amplification, the myoelectric signal was filtered to eliminate frequencies
below 20 cps. The amplified and filtered signals were stored on magnetic
tape by a seven-channel FM tape recorder.

The tape recorded signals were subjected to electronic transformation dur-
ing the subsequent analysis. The equations of the smoothing networks, and

the analog computer circuits used to synthesize them were described by
Weltman and Lyman (5). At the output of the smoothing circuits, the char-
acteristically spiked EMG waveform appeared as a relatively slowly varying
voltage whose magnitude was approximately proportional to the mean level

of myoelectric activity.

The peak myoelectric activity levels measured on the records of the
smoothed signals were transcribed into detailed tables which specified sub-

ject, muscle site, arm position, arm movement, and gravity level.

Control Logic Tables - If it is assumed that only the high-G con-
ditions are of importance for control applications, it is possible to
formulate binary logics for the four movements of greatest interest
(i. e., up, down, in, and out) using sets of three or four muscle
sites. The logic matrix which enabled the subject to perform read-
ily the four movements of the arm is presented in Table 1. This
logic utilized the three heads of the deltoid muscle; anterior, medial
and posterior, along with the pectoralis muscle.

Task Simulation

Static Task Simulation - Four experimental subjects, all engineering
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students at a nearby college, were instrumented with the low mass
electrode over the proper muscle sites. The myoelectric signal was
processed through the signal conditioner amplifier and control logic
computer as described previously in this report. Six logic matrices
were evaluated and the results in the format of successful movements
to trial movements were tabulated.

TABLE I

A FOUR-MUSCLE CONTROL LOGIC

MUSCLE SITE

Anterior Medial Posterior PectoralisMOVEMENT LOGIC
Deltoid Deltoid Deltoid

1 0 0 0 Up = (AD)

0 0 1 0 Down = (AD)(MD)(PD)( P)

0 0 0 1 In = (AD) (9b) (PD) (P)

or

1 0 0 1 (AD) (KM) (P-D) (P)

0 1 0 1 Out = (XD) (MD) (PD) (P)

A training curve was evident in that the percentage of successful
movements increased with the number of trials to reach a plateau
level. This success to trial figure was taken to represent the opti-
mum achievable for the particular logic table being tested. Towards
the end of the individual experiments, which generally ran three to
four hours, a definite fatigue effect was observed. The success to
trial ratio decreased as the subject became fatigued and was unable
to contract selectively the proper muscles.

Dynamic Task Simulation - The same four subjects were used in
the dynamic task simulations. The arm support splint moved in a
track that allowed only up and down motions. The speed of move-
ment was controlled manually by the experimentor. All four subjects
were able to control up and down motion of the arm splint after a
learning period of under one minute to two minutes. Relaxation was
important in cutting down the learning period as there was a strong
tendency to tense all of the shoulder girdle muscles. Instruction as
to what muscles were involved in the selected movements and their
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anatomical location was invaluable in enabling the subjects to exer-
cise complete control over up and down motion. Both auditory and
visual commands as to the limit of excursion of the splint were ful-
filled with up to 90 percent success up to an arm support splint speed
of 13.5 degrees per second. At speeds greater than this, there was
oscillatory hunting about the termination point especially in short
tracking maneuvers. Of great significance was the ability of the sub-
jects to initiate and sustain either an up or down movement and then
to either correctly register in or out while the brace was moving.
The subjects were able to follow visual and auditory cues in perform-
ing tracking movement with a high percentage of success.

Manipulative Task Simulation - A simple manipulative task board
consisting of a toggle switch that turned ON and OFF a light and a
resistance potentiometer that controlled the brightness of the indica-
tor light was used to ascertain the effect of motor speed or simple
manipulative functions. The task was to initiate up movement, sus-
tain it to approximately 60 0 inclination and turn the light off. At arm
support splint speeds up to 6.8 degrees per second, no difficulty was
encountered in the following phases of the task: initiate, sustain, stop,
perform manipulative task.

Performance of the manipulative task did not trigger up, down, in, or
out indicating the muscles instrumented were not involved in the five
tasks. At splint speeds greater than 6.8 degrees per second, a de-
gradation in fine positioning ensued that was progressive with increas-
ing splint speed.

CONCLUSIONS

The results obtained from this investigative program proved to be a signifi-
cant advance in the successful utilization of the myoelectric potentials through
a preprogrammed computer to control a servo boost system. The myo-
electric control system functioned accurately for 90% of the selected test pro-

gram including tests conducted with simulated increased accelerative forces.

The evolved logic table utilizing the three heads of the deltoid muscle and
pectoralis muscle proved to be extremely successful for the control of up,

down, in, and out movements of the extended arm. The subject utilizing the
logic table was able to control in and out motions while the arm was moving
up or down.

For the ON-OFF type of servo system used in this study, a splint speed of
13.5 degrees per second appears to be the optimum for gross movements and
6.8 degrees per second optimum for fine manipulative movement.

The subject was able to control the arm in tracking maneuvers utilizing both
visual and auditory cues.

The subject utilizing the present myoelectric servo boost system was able to

perform manipulative functions successfully.
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PLAN FOR THE SIMULATION

OF THE PHOTORECEPTOR AND BIPOLAR CELL LAYERS

OF A FROG'S RETINA

By Louis L. Sutro

Instrumentation Laboratory
Massachusetts Institute of Technology

3 January 1963

1. Introduction

The simulation considered in this paper is intended to assist

in determining the connections between the photoreceptor and bipolar

layers in a frog's eye. These connections have been described,

principally by Drs. Lettvin and Maturana, in the papers presented by

them jointly with Drs. Pitts and McCulloch.

My goal is to build a working model of a frog's eye out of com-

mercially available components or out of integrated circuits. Before

attempting to design out of such components more detailed information

is needed about interconnections than is available today. The guess and

test method of simulation appears to be a possible way of obtaining this

information.

The method I propose to employ in planning a simulation of the

bipolar layer of cells is to first represent each cell by what I call a

Lettvin model, then convert this to a Pitts - McCulloch model,

and finally lay out a single electronic model which can be time shared to

represent all of the cells in the bipolar layer. (See Figure 1)

It will become evident in reading this paper that a useful simulation

of the photoreceptor and bipolar layers of a frog's eye requires simulation

of ganglion cell and tectal cell layers also. Planning the simulation of

these layers will follow the planning described here.
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2. The Living System to Be Simulated

Figure 2 diagrams part of the retina of a frog's eye and its

connections to the brain. The retina is shown to consist, essentially,

of three sheets of cells. There are interconnections between the

sheets but not between cells of the same sheet.

The sheet of photoreceptor cells consists principally of two

types of cells: cones and red rods. A third type of photoreceptor cell,

the green rods, is relatively scarce. Initially, we will simulate only

the first two kinds.

The sheet of bipolar cells consists of three kinds of cells: Type I

connects widely and exclusively with cones. Type II appears to connect

only to red rods. Type III appears to connect with different types of

photoreceptors. Initially, we will simulate only types I and III, using

a single time-shared artificial bipolar cell.

The system of interconnections that we propose to try first is

described in "Two Remarks on the Visual System of the Frog" by

Lettvin, Maturana, Pitts and McCulloch1: "The general notion (is)

that one sort of bipolar cell may 'see' different kinds of photoreceptors

as opposed in action, while another sort of bipolar sees one kind of

bipolar only. .. This notion is suggested by the anatomy; it is convenient

to our deciphering of the ganglion cell function; it is not contradicted by

any facts we know; and in fact it is supported to some extent by work on

retinas of fish."

Figure 3 diagrams the above types of cells. The body of each cell

is represented by a rectangle, deudrites and axon by converging and

spreading lines respectively. Table I shows how bipolar cells are believed

to be connected between the rods and cones listed in the left column and

the four principal groups of ganglion cells shown in the right column.
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3. Model Neurons

In a short paper entitled "Form-Function Relations in a Neuron, "

Dr. Lettvin writes: "I suggest that subthreshold excitatory events tend

to add to each other in a receiving cell, whereas an inhibitory event

tends to shunt, or divide the excitation."

Position of inputs on a dendrite is very important. "Suppose that

a single dendrite leads to a cell body. Let an excitatory synapse occur

at the tip. An inhibitory synapse anywhere between the tip and the cell

body will attenuate the excitatory signal. But if the inhibitory synapse

also occurs distally, then excitors closer to the cell body will not be

shunted by that inhibition. Rather, the constellation of inhibitors and

excitors in the distal portion of the dendrite, decoupled by the resistive

path down the dendrite, will act as a current source of variable strength."

Figure la is a Lettvin model of a neuron in which an excitatory

input is represented by a bar parallel with a dendrite, an inhibitory input

by a wiggly line that crosses the dendrite. Figure lb is a Pitts-McCulloch

representation of a neuron where the inhibitory input, instead of shunting

or dividing the input, simply subtracts from it. A Lettvin model will be

replaced wherever possible by a Pitts-McCulloch model, since the latter

is more easily simulated.

A refinement not described in this paper is logarithmic response

of the photoreceptor cells. This is important because it assures that

ratios of brightnesses will appear the same over a wide range of values

of these brightnesses. (Remember that to multiply two numbers, you

add their logarithms; to take a ratio, you take the difference of their

logarithms.) The result of omitting this logarithmic response is to limit

the model's performance to the detection of silhouettes. This seems

permissable in a first pass through the problem. Lettvin and Maturana

used silhouettes for the most part in their original measurements on a

frog's eye.

4. System

Let us concentrate on two types of photoreceptor only, the cone

and red rod; and on one type of bipolar, that called Type III in Table 1.
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Red rods and cones would be connected to Type MI bipolar cells to

indicate local differences of brightness. At least three different connection

schemes will be needed to obtain the kinds of information required by

the three kinds of ganlion cells shown in the right column. Time delays

will also be needed to permit comparing the responses at two different

times to indicate movement. This paper will explore only one connection

scheme and no time delays.

The basic connection scheme to be explored is shown in Figure 4,

where two photoreceptors are shown, one capable of exciting the bipolar

cell with a weight of 1, the other capable of inhibiting it with a weight

of -1. By convention, the cell is said to "fire" when the algebraic sum

of the inputs equals the threshold, in this case 1. In this example, the

bipolar "fires" only when the left photoreceptor is excited and the right

is not. This is an elementary 'boundary detector.

A more elaborate boundary detector is shown in Figure 5. An array

of seven photoreceptors is shown in the top view, together with the

weight to be applied to the bipolar cell when each photoreceptor is

stimulated. The schematic diagram shows these inputs together with

the threshold, here assumed to be six. Any combination of inputs that

add up to six will causethis bipolar to fire. This would be a boundary

running roughly diagonally across the top view from upper left to lower

right. The threshold of six allows some slop in the boundary. The

light side of the boundary, at the lower left, can extend over one of the

"-2" cells and the bipolar cell will still fire; or it can fail to light one or

both of the " 1" cells. In any of these cases the total will equal or exceed

the threshold. Feedback from the tectum can be arranged to raise the

threshold so that only a sharper boundary will be responded to; or

lower the threshold so that a sloppier boundary will be responded to.

The planned system is shown in Figure 6. Red rods will be simulated

by one Vidicon tube, cones by another. A filter in front of each tube

will restrict its input to the desired spectral range. A sputtered silver

mirror will divide the incoming light so that an image will be erected

on the face of both tubes. The same deflection control applied to one tube
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will be applied with a delay to the second so that only one tube will

be read at once. The deflection pattern, or raster, is described in

section 6.

The video signal from each tube will be applied to a clipping

circuit that will pass only peaks of the video signal exceeding a pre-

determined threshold. Each train of pulses that results from this

clipping will then be applied to four gates, represented by a single box

in Figure 6, which admits four trains of pulses from the magnetic tape.

The maximum excitation that can be received by the model of

a bipolar cell from one input will be assumed to be seven initially; the

maximum inhibition, minus seven. Each input weight, therefore, can

be represented by three bits, plus a fourth to represent the sign. Since

the two Vidicons will be read alternately, the weights of rods and cones

can be stored alternately on the same four channels of tape. However,

the speed of simulation can be doubled by storing the weights from the

cones in one set of channels, the weights from rods in another.

Part of the input to each bipolar cell may come from the tectum.

This input enters the same OR rates as the weights from the rods and

cones, but at a different time.

It is apparent that digital recording of weights is not necessary

for the accuracy required. Analog recording would do. But it is

easier to keep the system all-digital at the start, particularly as the

weights are likely to be determined by a digital computer.

5. Hardware

Let us consider from left to right the hardware required to implement

the system of Figure 6 . Lenses are available with angle of acceptance of

1650 which approximates that of a frog's eye. Vidicon tubes are available

with as many discrete "spots" as there are photosensitive elements in a

frog's retina. ("Spot" is a term employed in television engineering to

describe a resolution element.?) The deflection control has been conceived

as two groups of counters for horizontal and vertical deflection respectively,
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plus decoders to convert the counts to deflection currents. A television

camera chain, now shown, will provide the necessary power for
accelerating the electron beam, aligning, focusing, and deflection.

In Figure 6, information is stored in a loop of magnetic tape,
such as that of an Ampex FL-300 continuous loop recorder, where length
of tape is adjustable to 150 feet. Using tape one inch wide, 14 tracks can
be recorded. Tape could also be run from one reel of tape to another, or
the tape could be eliminated and all of its information generated by

formulas in a general purpose computer.

The first track on the tape of Figure 6 contains a signal to synchro-
nize the raster, generated by the deflection counters, with the information
stored on tape. The second track contains clock pulses to advance the
counters in the deflection control. The next four tracks contain a binary
representation of the weight of the input from each rod, to the bipolar cell
whose input is being integrated. The next four tracks contain comparable
information on the input from each cone. Each block on the tape, marked
by a pair of horizontal lines, contains the weights of all the inputs to one
bipolar cell. This is the bipolar-cell raster described below.

The last channel illustrated provides the threshold for each block
to the decision element. This information could be placed on the same
track as the deflection sync. signal. Further information that needs to be
stored on the remaining tracks is that required to connect the bipolar cell

layer to the ganglion cell layer.

The digital integrator and decision element adds algebraicly all the
inputs at one block and compares the total to the threshold. If the total
exceeds the threshold, the simulated neuron "fires" and delivers a pulse

to the ganglion cell layer.

6. Scanning Pattern

The input to each bipolar cell is conceived as a hexagonal array of
either rods or cones. (See Figure 7.) One way of sweeping this pattern
is to direct the electron beam first to the center, then to the first ring
around the center, then to the second ring and so on. The first ring con-
tains six hexagons, the second 12, the third 18. Simulation of the inputs
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to a bipolar cell may be achieved using only two rings or a total of 19

hexagons. If this proves unsatisfactory, the next ring can be added,

bringing the total to 37. Digitally controlled deflection has been used

for several years at Lincoln Laboratory, M.I.T. Based on their

experience, 0. 511 sec. should be allowed for deflection to an adjoining

hexagon, 5± sec. for the settling time following deflection from one

raster to another. Thus a 19-hexagon raster would require 9.511 secs.

for the hexagons plus 5 ji secs. to get to the next raster--a total of 14.5

± secs. The 37-hexagon raster would require 2 3 .511 secs. This is very

much faster than the FL-300 tape unit can feed weights to the integrator,

but not necessarily faster than it would take to generate the same inform-

ation by formula.

In the simulation it is planned to have successive rasters over-

lap each other. Thus every hexagon would be swept either 19 or 37

times, depending upon the size of the raster. The sweep time for the

entire retina is either

614.5[ secs. x 19 x 10 = 275.5 secs. = 4.6 mins.
6or 2 3 . 5

1 secs. x 37 x 10 = 869.5 secs. = 14.5 mins.

By eliminating the overlapping of the rasters and letting the computer

handle the overlapping, the first time can be reduced by a factor of 19,

the second by a factor of 37. If a saw-tooth-wave deflection can be used,

as in television, the time to sweep the complete retina will be 1/30

second.

7. Experimental Method

The method proposed for determining the interconnections be-

tween photoreceptors and bipolars is to assign a weight from -7 to +7

to each hexagon in a raster in a manner similar to that shown in Figure

5. In addition, weights must be assigned to the feedback from the tec-

tum (superior colliculus) shown at the right of Figure 6. I have described
5

the general function of this feedback in an earlier paper. In a frog,

the weight of the feedback changes the threshold of the bipolar cell,

enabling it, for example, to follow an interesting motion. It is expected
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that many trials will be needed to achieve a performance that simu-

lates that of a frog's eye.

8. Conclusion

A method has been presented of representing living neurons

first by a Lettvin model, then by a Pitts-McCulloch model and finally

by a time-shared electronic model whose characteristics are either

stored on a magnetic tape or generated by formula. The method leads

to the representation of the inputs to a bipolar cell by a hexagonal

raster on a television camera tube. The weights to be assigned to

each position in the raster and the threshold of the cell will be deter-

mined experimentally.
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Table 1 - Connection Schemes in Planned Simulation of Frog's Retina
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a. Lettvin Model. Inhibitory b. Pitts McCulloch Model.
input (wiggily line) divides Inhibitory input (circle)
excitatory input (bar). subtracts from excitatory

input (barl

Figure 1. Conceptual Models of Neurons



Figure 2a. Section through frog's eye according to Cajal
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Figure 2b. Schematic diagram of frog's visual system
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Figure 3. Schematic Diagram of Photoreceptor and Bipolar Cells in Frog's
Retina
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Figure 4. Suggested method of connecting two photoreceptors to
a bipolar cell to indicate that photoreceptor on the right
is excited, that on the left is not.
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Figure 5. Suggested Method of connecting seven photoreceptors to a

bipolar cell to indicate a boundary.
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ABSTRACT

A function of integral geometry, called the PF image transforma-
tion, which is characteristic of the shape of an optical image falling
on a viewing retina is defined. Machine programming of the image
transformation has been accomplished. Results of the machine computa-
tion of the function for a set of psychologically-calibrated imagery
are displayed. It is demonstrated that the transformation yields
automatic recognition of general imagery both as to class and as to
discrimination between members of the same class.



1. Introduction

During the first Bionics Symposium, Dr. A. B. J. Novikoff gave a
paper which suggested the use of the methods of the little known branch
of mathematics known as integral geometry as a tool in the approach to
the problems of image recognition. Functions of integral geometry were
to be used in the generation of transformations of planar images. The
transformations described are independent of the position and orientation
of an image in a viewing plane or retina. As these integral transforma-
tions of imagery are independent of translations and rotations of the
images, they are thus characteristic of the shape of images of standard
area. The rationale behind the systems applications of such transforma-
tions is that if recognition processes are applied to the transformations
of images instead of the quantitized images themselves, generally, a
considerable reduction in the dimensionality of the recognition problem
will have been obtained.

BALL (1962) has further pointed out that by using dimensionless
ratios of quantities involving the scale of an image, functions may be
obtained which are invarient with respect to scale changes as well as
translation and rotation of the imagery. With a proper choice of the
integrals forming the quotient, such invarient functions may be inter-
preted as probabilities. Conceivably, there could exist practical
sampling techniques for a statistical determination of these probabili-
ties which could be used for the automatic recognition of imagery on
the basis of shape.

A rather general class of such functions, called statistical
transformations has been under study at the Astronautics Division of
Chance Vought Corp. This paper will present some of the results of
these studies.

Some earlier studies in image recognition at Chance Vought resulted
in the numerical integration of an integral equation used by NIEDER (1960)
to describe a possible coding taking place in the retina of the horseshoe
crab (Limulus). Nieder described an integral function such that a
response at any point within an illuminated figure would be a function
of the responses at, and the distances to, all other illuminated points
falling within the figure. A transformation, or coding, is then
described as the distribution function of the responses as a statisti-
cal sampling of the point responses is made over the figure. The
psychophysiological significance of this is it suggests a mechanism for
the communication of information as to shape from a retina to higher
centers by means of parallel unaddressed channels. The resulting trans-
formations obtained by numerical integration for rectangles and an L-
shaped figure are shown in Figure 1. Note that the transformation
results in numerical information characteristic of shape. This numerical
information could be used as an input to computing machinery and the
transformations categorized.

1



The work on the Nieder transformation or coding described in the
preceding paragraph led to the concept of a class of transformations
known as statistical image transformations. The concept had its origin
in the question: what modification of the statistics of distance
relationships in a random distribution of points or line segments in a
region of a plane would take place when only those points falling
within a given image or shape were considered? Such a modification is
referred to as a statistical image transformation. It was thought
that a consideration of such functions could lead to practical mechani-
zations which could be used in automatic image recognition systems for
the categorization of imagery on the basis of shape. In the case of a
statistical image transformation which has been defined as the PF(d)
image transformation, the design of a mechanization is in an advanced
stage at Chance Vought.

2. The Pp(d) Image Transformation

The basis for the PF(d) image transformation to be described is a
set of geometric elements. These geometric elements are directed line
segments of length d having-end points identified as an origin point A
and a terminal point B. The origin points A are distributed over a
retina R by the choice of a random couple (x, y). The terminal point B
for each origin point A falls at a distance d from A in a direction
determined by a random number 0. Each element of the set of geometric
elements is thus determined by a random triple (x,y,Q). This geometry
is shown in Figure 2. The definition of the PF(d) transformation is
stated as a conditional probability.

PF(d) is the conditional probability that if the origin
point A of a line segment of length d falls within a
figure F lying entirely within a retina, the terminal
point B also falls within the figure.

Symbolically,

1)pd) Pr(BE! F/AE" F'i Pr [(BE. F).- (AE F)]
PF,(d)mPjBFIE)="~Ji (1)t ,3 Pri AEFPJ

It is now seen that if the scale for the measurement of d is chosen
such that the area of the image or figure under consideration is unity
that the transformation function PF(d) is invarient with respect to
translations, rotations, reflections about an axis, and dilations of
the figure so long as the figure F falls entirely within the retina.
Thus, the Py(d) transformation is characteristic of the shape of the
transformed figure or image. This is to be expected as the shape of
an image is a characteristic which may be fully described in terms of
measuring stick and protractor operations such as the statistical
operations used to define the PF(d) transformation.

2



The integral form of equation (1) may be obtained by observing:

Area() (xS)E C Cy

Pr AEF Area F -4- - Ty- (2)

(x,'S)ER

Pr [(BE F) (AEF) Area 1 R TF[(x,y);d] clxdy

(X,y)EF (3)

where the integrand function is defined as

TF[(x,y);d ] 2 percentage of the perimeter of a (4)
circle of radius d lying within
the figure F.

Scale invarience for the PF(d) transformation is obtained by scaling the
measure of d to the square root of the area of the transformed image.

One may go on to define other image dependent probabilities that
exist among the subsets of lines having origin points within the retina R.
However, care must be taken not to assume invarience on the condition
that the figure F merely falls within the retina. For example, the
probability

Pr[(B#F) (AZ F)
PrCB~FA~F1 = Pr f ALIFJ

possesses the same properties of invarience as (2.1) on condition that F
falls entirely within the retina. On eht other hand, a brief inspection
shows that the probability

Pr JBCF/A F} Pr t(B& F) * (AtF)j (6)Pr (A4 F
L -,r JPr [ A *F I

is not invarient unless we restrict the image F to fall within a sub-
region of the retina all points of which are at least a distance d
from the boundary of the retina. Such a subregion is termed, by
analogy, a fovea.



Still other variations and generalizations of the basic PF(d)
transformation have come under consideration. Some of these are:

(1) The directed line segnents are restricted to lie in a segment
of angular width 0 about a reference @. This yields a function of d and
Q and the parameter 0 which retains orientation information in the
transformation.

(2) More points other than the origin and terminal point A and Bare considered. This would possibly provide information on edge structure.

3. Numerical Integration of PF(d) Transformation

For a few figures of a restricted class, circles and rectangles,
it was possible to integrate and obtain an analytical expression for
PF(d). Graphs of the transformations for a square and a lx) rectangle
are shown in Figure 3.

A numerical integration for a computer was devised which consisted
of the numerical integration of equation (2) by the choice of random
points in a retina and determination of equation (3) from the considera-
tion of the geometry of a circle associated with a random point and its
intersections with an image. Figure 3 shows the experimental machine
approximation to the Pp(d) transformation for a square and a rectangle.
For the example chosen, the number of random points used in the approxi-
mation was N = 150. Comparison of the experimental approximation with
analytical values of the transformation for several rectangular images
showed the error to be less than .005 in the determination of PF(d).
The computer program was restricted to images formed by vertical and
horizontal boundaries; this restriction implies no loss in generality
of the results regarding discrimination between imagery by means of
the PF(d) transformation.

4. Vectoral Rep resentation and Comparison of Experimental
P -d)Transformtions

For comparison of the results of experimental PF(d) transformations
from two sets of experiments on a set of figures, a method of comparing
vectors derived from the PF(d) transformation was devised. This methodof comparison was suggested by GUILIANO (1961) and SESTYEN (1961).
2he mean square vector differences for all combinations of two sets of
experimentally derived Py(d) vector transformations were tabulated
according to a recognition array. Such a recognition array for a set
of five rectangles is shown in Figure 4. Vector components were chosen
for values of d at intervals of 0.1; the magnitude of a particular
component is the Pp(d) transformation value at the particular component.
In the tables, the mean square values are compared as values of Pp2x 105.
A low value of the vector difference indicates similarity of the two
images corresponding to that low value.
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5. Recognition of Class and Discrimination in a Set of Images

Two sets of PF(d) transformations of a set of ten images selected
for experimental transformations were computed with the machine program.
The two sets of experimental transformations were compared in the form
of the experimental array of Figure 4 as mean squares of vector differ-
ences between the two experiments for each image. The recognition array
for the ten images is shown in Figure 5. Features to be noticed are
the relatively low values of vector difference for images belonging to
the same pair and the absence of discrimination between figures of the
same pair, or class, at a resolution of N = 150. Discrimination between
images belonging to different pairs is evident although the discrimina-
tion among Alpha-Beta to Gama-Delta is "poor." It is concluded that at
this level of resolution, N = 150, the PF(d) transformation is useful for
recognizing class membership in 9 out of a possible 10 class comparisons
in this set, or universe, of images.

Two sets of Py(d) transformations for each of the images Alpha,
Beta, Delta, and Gamma were computed at a resolution of N = 1000. The
result of this experiment is shown in Figure 6. Class discrimination
between the classes Alpha-Beta to Gamma-Delta is evident. At the higher
resolution,discrimination between images of the same class is evident.

6. Conclusions

A statistical image transformation function known as the PF(d)
image transformation may be defined as a conditional probability and
written as a quotient of integrals. Results of the numerical integra-
tion for a set of ten figures belonging to two classes show that it is
possible to obtain recognition as to class and discrimination between
slightly different images of the same class.
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MULTI-STABILITY THROUGH STATISTICAL CLASSIFICATION:
AN APPROACH TO SELF-ORGANIZATION

Malcolm R. Uffelman

SCOPE Incorporated
Falls Church, Virginia

INTRODUCTION

Current literature abounds with examples, discussions, and
definitions of self-organizing systems. Of those authors*
who spend a portion of their time in definition, Dr. von
Foerster1 has produced the approach which seems to me to be
the most fruitful. However, Dr. von Foerster is primarily
concerned with the organization of the internal states of the
system. When we speak of a self-organizing system we are
not, in general, so concerned with what the system does with
its internal states, but with what the system does to and
with its environment. Environment action and system reaction
are the parameters of interest. For this reason, I define a
self-organizing system with respect to its output states.
In Fig. 1 we see a block diagram of a self-organizing system
located in its environment. The system is coupled with its
environment through Nt input channels and No output channels.
If, for simplicity, we consider each output channel to be
binary, then there are 2No possible responses to inputs from
the environment. The conditional entropy of the response
space (tke output entropy) is simply log2No bits if any one
of the 2 0 outputs is equally likely to occur for any input.
This value we shall denote Hm, the maximum output entropy.
A system which is not organized (i.e., a "new" or cleared
system) can be expected to respond in such a manner. If
the system is a self-organizing one, then, as it gains ex-
perience in the environment, we expect the output entropy
to become less than Hm. This is just saying that as the
system becomes experienced, its response to selected inputs

*Because of the wealth of reference material a general list

is given at the end of this paper. While numerical refer-
ence to a source is made only for specific items, the author
acknowledges the invaluable assistance of all the listed
sources.
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becomes biased in favor of certain responses. This is not
saying that the system is a good self-organizing system; its
responses may be incorrect as judged by a knowledgeable
observer. However, this system is becoming organized since
its response to given inputs is becoming predictable. But the
general definition is not this simple. We must consider the
case of a system which has become organized to an environment
and then is thrown into a new environment or encounters totally
new stimuli in the old environment. It may, at first, have an
output entropy which is considerably less than Hm, but the
environmental change could be so radical that it is unable to
respond correctly without reorganization. The system must go
through a period of unlearning. The output entropy would in-
crease with respect to time until the system has sufficiently
unlearned its previous experiences and begins to be organized
to the new environment Its entropy would then begin to de-
crease. Thus, for the general case, we would expect a curve
such as shown as Fig. 2. The curve of output entropy, start-
ing with low entropy and increasing until some point T,
decreases as time continues. For the case of an unorganized
system T would be zero.

Since I have proposed to define a self-organized system in
terms which can be measured, it should be possible to have a
measure of the degree of organization of a system. Dr. von
Foerster has given a definition for degree of organization
using Shannon's statement of redundancy. While Dr. von
Foerster proposed this measure through consideration of
internal states, it fulfills the general boundary conditions
that we would expect when the actual conditional entropy of
the response space (output entropy), Ho, is used. Thus, the
degree of organization, denoted K, is simply

H
K=lI--K ~H0

m

Notice that if observed output entropy is equal to the maximum
output entropy the degree of organization is zero. If, on the
other hand, for each input stimulus the output is perfectly
predictable, the degree of organization of the system would be
unity and we would have a deterministic system.

Using the above, we can state:

If, for a given system and a compatible environment, the value
of K, for t greater than T, is generally increasing, the system
behaves as a self-organizing system.

-3-
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This definition does not suppose to tell us what a self-
organizing system is, but merely what behavior will constitute
a self-organizing system.

FUNCTIONAL ASPECTS OF A MULTI-STABLE SELF-ORGANIZING SYSTEM

W. R. Ashby3 has stated the basic behavior rule for a self-
organizing system: "If the trial is unsuccessful, change the
way of behaving; when and only when it is successful, retain
the way of behaving." From this definition we see that a
self-organizing system should be able to:

1. Evaluate its response
2. Change its response
3. Remember successful responses

Additionally, it is necessary in any realistic system that it
can become organized to a large variety of stimuli. This
implies that the system must behave as a multi-stable unit.
A switching function is required which comes into play only
when it is necessary to change a behavior pattern and it should
cause only needed changes in the internal state of the system.

Fig. 3 shows a block diagram of a generalized system to per-
form the above requirements. The block marked SWITCHING FUNC-
TION must decide when it is necessary to change the response
to a given stimulus. It must also assist in directing the
change. The decision to change a response is based on the
values of the essential variables. The switching boundaries
established for these variables constitute a goal condition
for the system. In other words, the goal of the system is to
maintain the interaction between itself and its environment
such that the essential variables are constrained to remain
within acceptable limits.

If a stimulus/response action occurs which causes one or more
of the limits to be violated, then the system must change its
input/output function such that a response to that input is
found which allows the essential variables affected to return
to and remain at an acceptable value.

-5-
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DESIGN OF THE SYSTEM

A block diagram of the statistical classification, self-
organizing system, made up of three functional sub-units, is
shown in Fig. 4. The system is composed of:

(1) The Adaptive Memory. This unit is a modification
of a linear-threshold net system,4 called CONFLEX I,* which
employs the theory of linear statistical classification

2'4 ,5

to classify stimuli. Because the theory of this unit and
others similar to it is well covered in current literature,
we shall only describe the characteristics of interest to us
and not delve into its functioning. The Adaptive Memory unit
can be described by:

a. It has N. sensory input channels.

b. It has No output channels each of which can have
three states: +1, -1, or NO DECISION (denoted by 0).

c. It can be trained to classify M stimuli as any
one or combination of output responses with a probability of
correct response approaching unity.

d. Any one or more of the No output channels can
indicate a NO DECISION output.

e. Training can take place either by positive error
correction or by negative error correction.

(2) The Search Unit. The Search Unit contains No random
switches. They are random in that at any time, t, the proba-
bility that any one of them is in the +1 state is p, and the
probability of being in the -1 state is (l-p). The outputs
of the random switches are sampled by control signals from
the goal unit. The outputs are buffered with the outputs of
the adaptive memory by logic units whose logical function is:

Adaptive Memory Out Search Out Logic Out

+1 +1 +1
-1 +1 +1
-l -l -l

+1 -1 -1
+1 0 (unsampled) +1
-1 0 (unsampled) -1

0(no decision) 0(unsampled) 0
0(no decision) +1 +1
0(no decision) -1 -1

*Developed by SCOPE Incorporated under Contract AF33(657)-7509.
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Notice that when the switches are being sampled their outputs
override the outputs from the adaptive memory.

(3) The Goal Unit. The goal unit compares environ-
mental inputs and the system's response to the goals set by
the requirement of maintaining the essential variables with
limits and decides whether or not the response is satisfac-
tory. If the response is not satisfactory, the goal unit
will sample the search unit outputs until an acceptable out-
put is found.

Although the theory and the design of the goal unit is the
most important and most interesting phase of the over-all
system concept, space limitation prevents any detailed dis-
cussion at this time.* However, a few general comments are
in order.

There are several ways in which the goal unit can direct the
search unit.

a. Repeated sampling of all No switches until a
completely satisfactory response is found. The mean time to
a solution for this method of search is 2No trials (if p =

0.5).

b. Sample each switch separately, proceeding to
the next switch only after a satisfactory response is
obtained. The mean time for solution for this method of
search is 2No trials (if p = 0.5).

c. Samples in which satisfactory switch states
are retained and only unsatisfactory switches are released
and re-sampled. The mean time for solution for this method
of search is 2+ log 2 No trials (if p = 0.5).

For any given system the method of search used will depend
on the a priori knowledge of the environment which the
designer has, the complexity of the goal unit, the nature
of the problem, the extent to which the goal unit can measure
the environment, and so on. In many problems of a complex
nature, it is quite possible that the goal unit would itself
be a self-organizing system deriving the system's higher
goals from primitive goals such as survival parameters.

After the search unit has found a satisfactory solution, the
goal unit uses it to correct the response of the adaptive

*References 5, 7, and 8 discuss the goal problem in greater

detail than is possible here. The interested reader is urged
to consult them.
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memory unit. As mentioned previously this correction may be
done by either positive or negative correction methods as the
situation demands. As time progresses, the adaptive memory
learns the proper response to stimuli and the search unit is
activated less and less.

As an alternate to the random (p = 0.5) search, the goal unit
can be equipped to learn to bias the individual switches
(p / 0.5) and thus, by directing the search, shorten the time
required to find a solution.

CONCLUSIONS

Since the system memory is based on linear statistical
classification, the hardware requirements for such a system
will increase in a linear manner with the number of stimuli
in the environment* and not as a function of 2 s , the number
of possible input states.** The search time is a function
of the number of output channels and not of the input channels
or number of stimuli in the environment. The primary advan-
tage of this system over others proposed is its search speed
and its linearly growing hardware. Both of these advantages
are the result of the use of separate search and memory units.

The major area of investigation remaining before it will be
possible to build such systems for general use is that of
goal theory. It is a relatively easy problem to design
special goal systems for limited environment problems. We
are now investigating several applications of this type.
With the development of an adequate goal theory, it will be
possible to build generalized systems which will develop
their own operational goals and can be shifted from job to
job as the situation may require.

*See References 4 and 12 for a demonstration of this.

**See References 5, 10, and 11 for systems which grow in
this manner.
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INTRODUCTION

Recent biological research has demonstrated that the various
peripheral sensory organs of animals often perform property discrimi-
nating functions, selecting and relaying to the brain that information
important to the survival of the animal. This paper describes an optical
sensing technique which utilizes present hardware capabilities to per-
form a similar data selection function.

Several sensor cells which perform sensing functions similar to
those found in the frog's eyel have been described in a previous paper. 2
These property sensor cells utilize photoconductive films with special
geometries. Research aimed at the development of faster and more
sensitive films is presently being performed at Armour Research
Foundation, and techniques which can be used in the synthesis of cells
with special geometries are also being studied.

However, the primary emphasis in this paper will be on the utili-
zation of such property sensitive sensor cells in information processing
systems rather than on the cell synthesis procedures. In particular,
this paper describes a property sensor with a special geometry which
is used to abstract information for recognition of numerical characters.
It also describes a vector model which allows this recognition to be
performed over a large class of rotations and translations.

An electrolytic tank model of the photoconductive sensor was
constructed and used in conjunction with distance measuring electronic
circuitry. The experimental results obtained with this equipment are
presented.

VECTOR MODEL

The photoconductive sensor cell with the configuration shown in
Figure 1 is used as the information abstracting element of the system.
It is evident that the values of the conductances, G, , shown in this
figure are functions of the configuration projected 1 on the photocon-
ductive sensor cell. The seven conductances

G Pit G pi G P, GP4I Gp , G P6, G P

1 2 3 4 5 6 7
may be considered seven features of an optical input configuration, P,
and the seven can be interpreted as a vector:

IJ. Y. Lettvin, H. R. Maturana, W. A. McCulloch, and W. H. Pitts,"What
the Frog's Eye Tells the Frog's Brain," Proceedings of the IRE,
November 1959.

2 E. F. Uretz and J. R. Weyer, "Some Property Sensitive Photoconductive
Configurations," Proceedings of the San Diego Symposium for Bio-
medical Engineering, June 19-21, 1962.



The distance between any two vectors,

G N= I GNsG N 0GN 'G N4'G N,GN 6GN 7

and GK2 IG K'GKfG K G K'G KG KGK)7

is defined in the usual Euclidean sense as

D = 71( G -G 1/2

DN - GKJ = ID(GN, G K)

For this distance to be useful in the character recognition system,
the following criterion must be satisfied:

Relative to this distance, any character which is to be
classified as an N, should have its corresponding vector
closer to the vector G , than is the vector of any
character which is noto be classified as an N.

That is, given the vectors G G , and G., corresponding to the
characters I, J, and N. If J is to be classifiedas an N while I is not to
be classified as an N then the inequality

D (G J, G N) < D (GI, GN)

should hold.

The normal character orientations, positions, and shapes shown
in Figure 2 were assigned for each of the numerals 0, 1, 2, 3, 4, 5, 6,
7, 8, and 9. However in classifying a non-normal input configuration,
one must be rather careful. A character cannot be translated or
rotated indefinitely without the vector distance from its associated
normal vector becoming large. In fact, if a character edge crosses an
electrode, the vector output is appreciably altered. Therefore, the
translations and rotations illustrated in Figure 3 (using the number 3 as
an example) were selected as extreme representatives of the class of
configurations to be identified as identical with their normal counterpart.
In addition experiments were performed to determine the effect of alter-
ing character sizes and/or fonts. Although quantitative results are not
included for these cases, it can be stated that character size and font
were not at all critical in obtaining a correct identification.

ELECTROLYTIC TANK SIMULATION

Photoconductive cells with the necessary special geometries are
presently under development at Armour Research Foundation. However
since such cells were not functional when the method was first proposed,
an electrolytic tank model of the photoconductive sensor cell was used to
test the feasibility criterion described earlier in the paper. The tank
was used to simulate the electric field properties of the photoconductive
film.

- 2-



Figure 4 shows the impedance between 1/8 inch electrodes placed
one inch apart in an electrolytic tank with tap water used as the electro-
lyte. Note that the impedance between electrodes is a non-linear
function of electrolyte depth, and in fact even with a film of electrolyte,
an impedance as low as 75 Kilohms was measured. Therefore the
experimental tank arrangement illustrated in Figure 5 was used. This
simulated a dark to light impedance ratio of approximately 15 to 1 (a
very nominal ratio when one considers the ratios obtainable with photo-
conductive films).

The circuit shown in Figure 6 was used to obtain data from which
the conductances, GN., could be computed. This circuit was placed
across each of the i seven electrode pairs and seven independent
readings were taken. A set of readings was obtained for each character
normally placed and also for each character translated, rotated and
followed by other characters. This data was reduced with the aid of
Armour's UNIVAC 1105 computer, and the results are given graphically
in Figures 7 through 10.

The graphs given in Figures 7 through 10 plot the distance of each
non-normal character from its normal counterpart and also indicate
which different character is closest to the normal character and what
that closest distance is. Figure 10 plots the maximum distance of a
character from its norm when followed by a second character and indi-
cates which second character causes this maximum distance. The
graphs show that the criterion for the feasibility of tle technique is
satisfied with but two exceptions. (The character 9 rotated counter-
clockwise is vectorially further from a normal 9 than is the character
4 rotated clockwise, and the character 9 followed by a 4 is vectorially
further from a normal 9 than is the character 4 rotated clockwise).

These two exceptions are not a serious deterrent to the overall
feasibility of the system since an error can be eliminated simply by
slightly increasing the threshold associated with the 9 (thereby reducing
slightly the amount of rotation which a nine can undergo and still be
identified).

In addition to obtaining ordinary vector distances as described
above (square root of the sum of the squares), distances defined as

7
D Z G= GN.- GK. (2)

j=l j i

7 3/2

D 2; GN. G K. (3)
j=l i i

were used in a manner completely analogous to that described for the
more conventional distance measures. The results with the distance
measures of equation (2) and (3) were quite similar to those given in
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Figures 7 through 10 and will not be included here. They were computed
to determine the feasibility of using various non-linear hardware
techniques for computing distance (many of these techniques compute a
"hybrid" distance similar to those given in equations (2) and (3).

DISTANCE MEASURING HARDWARE

The initial hardware implementation of the vector distance measur-
ing device is given in Figure 11. It used seven isolated current sources
and seven bridge circuits. The output from the unbalanced bridge was
rectified and fed to a differential amplifier. (A low output therefore
corresponded to recognition. ) However, it was found that the current
flowing between a given pair of electrodes in the electrolytic tank was
appreciably altered by induced currents generated by the voltage im-
pressed across other electrodes. This difficulty can be corrected by
using either frequency multiplexing or time switching circuitry, but both
of these processes add appreciably to the overall complexity of the
system.

Therefore, a modification of the vector model which allows simul-
taneous current measurement at a single frequency was tried and found
to be satisfactory. A single current source is applied to the electrodes
as shown in Figure 12 and the conductances GA , GB1 GC2 GD,..., GH seen
when looking into each of the eight electrodes is monitored. The conduc-tances are then treated as the components of an eight dimensional vector.

G = (GA, GBI GC , GD , GE, GF , GG, GH).

The distance between vectors is then computed directly with the circuit
of Figure 13. Although the vector model is altered, the interaction of
currents between electrodes are now an integral part of the model and
do not interfere with the successful operation of the circuit. The results
when using this circuitry were quite similar to those already obtained
using the computer calculation and will not be described again. It was
found that all of the characters could be identified under the translations
and rotations illustrated in Figure 3, provided the character rotations
were limited to 250 in a few key instances.

SUMMARY

The character recognition method that has been described has sev-
eral promising features. The method reduces the requirements on the
necessary prenormalization equipment since character identification can
be made over large class of transformations. Also, by suitable selec-
tion of threshold, it is possible for the system to autonomously "recog-
nize" the presence of a character thus eliminating any additional
decision making operation. Present activity at Armour Research
Foundation is directed toward the determination of the effect of change
in character size and font, expansion of the methods to include alpha-
numerics, and an investigation of the feasibility of using analagous pro-
cedures for encoding more general pictorial information. *

*The work described in this paper was supported in part by the Electro-
magnetic Warfare and Communications Laboratory of ASD.
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A NETWORK ANALOG OF THE HUMAN
AUDITORY PERCEPTION SYSTEM

By

L. H. Vallese, ITT Federal Laboratories, Nutley, N. J.

L. A. deRosa, ITT Communication Systems, Paramus, N. J.

1. INTRODUCTION

In rece t years, mainly through the pioneering investigations of
G. Von BOkesy 1), numerous experiments have been conducted on the
physical, physiological and psychological phenomena associated with the
auditory system. Although the functioning of the latter is still
obscure, especially in connection with the action of the auditory nerves
and of the auditory cortex, a considerable degree of understanding has
been gained with respect to the functioning of the ear itself (outer ear,
middle ear, cochlea).

Experiments conducted on suitable preparations of human and
animal samples of auditory organs and also on a number of hydraulic and
of electric models have provided information about the frequency
dependence of the vibrations at the stapes and at points along the
basilar membrane for a constant sound pressure at the eardrum. On the
other hand, these results do not bring out a suitable explanation of the
remarkable pitch resolution characteristic of the human auditory system;
it has been suggested that the detection process occurring in the Corti
organ may be responsible for a considerable enhancement of the pitch
resolution. In the following, a brief review of the frequency-dependent
characteristics of the ear is given; an interpretation of the functioning
of the Corti organ is discussed together with a method of implementation
of the same by means of a suitable phase-sensitive detector.

The practical realization of a cochlear analog based on such
design is described, and its results are illustrated.

2. TECHNICAL DISCUSSION

From the studies of G. Von Bekesy ( 2 ) and of J. Zwislocki(3 ) on
human auditory systems, it is known that the frequency response of the
stapes for a constant vibration at the tympanic membrane has maximally
flat amplitude with a frequency cutoff at about 1500 cps and a phase
variation from 0 at d-c to about -37T/2 at high frequencies. On the
other hand, the propagation of the signals inside the cochlea occurs as
an attenuated traveling wave, resulting in a maximum of vibration at a
particular region of the basilar membrane; if the frequency is increased,
the region of maximum moves towards the stapes. This results in a pheno-
menon of localization along the basilar membrane; in Fig. 1 is shown the
approximate distribution of the various frequencies, and in Fig. 2 are
shown the amplitude and the phase responsTs at various frequencies as
functions of the distance from the stapes 2).
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Several attempts have been made to build analog models of the
cochlea; some of these consist of rubber membranes of variable stiffness,
stretched along an axial plane of a cylindrical tube filled with water;
other types consist of mechanical resonant reeds of type similar to the
Frahm frequency meter, with a suitable rubber strand coupling the
various reeds together; still other types have used electric circuit
analogs, such as transmission lines or networks. To-date, a considerable
degree of uncertainty still exists about the basic assumptions of the
cochlear model; for example, Von Bekesy has pointed out that five dif-
ferent types of waves could be considered in an elastic membrane similar
to the basilar membrane: compression waves. shear waves, dilatation
waves, Rayleigh waves, and bending waves. In general, the analytical
difficulties connected with the study of the elastic properties of such
systems are very complex unless suitable simplifying assumptions are in-
troduced. For example, one may assume that the basilar membrane consists
of transversal elements of variable stiffness, with no direct elastic
coupling in the longitudinal direction; in this case, the coupling occurs
by propagation of the waves through the liquid medium. Alternatively,
one can assume that the longitudinal elastic properties of the membrane
are predominant and that the system is equivalent to a rod of variable
stiffness, immersed in a fluid medium. We note that, in the former
interpretation,the membrane is liked essentially to a lumped-parameter
discrete resonant system, which is excited by waves propagating in the
elastic medium; in the second case, the membrane is liked to a distri-
buted structure in which traveling waves propagate with the velocity of
sound in the medium. Such interpretations are basic in the design of
analog models. Another point of view which is widely followed(4)is
based on the consideration of the amplitude and phase responses at
various frequencies along the basilar membrane (Fig. 2) as measured by
Von Bekisy. These experimental data may be translated in terms of
complex transfer functions, which may be synthesized with passive RLC
networks.

Although these problems are important, since any one of the
previous assumptions may fail to represent the entire functioning of the
cochlea, they are not of direct concern for the present paper. We are
interested in discussing a mechanism of detection peculiar to the Corti
organ, which may be responsible for the enhancement of the frequency
resolution of the auditory system.

With reference to the graphs indicated in Fig. 2, it is seen that
the vibratory responses at various points along the membrane are repre-
sented by curves with rather flat amplitude versus distance variation,
but with well-defined phase variation. If we convert these curves into
corresponding responses at specific distances along the membrane, we
obtain the typical responses shown in Fig. 3. These have low Q figure of
merit (of the order of 1.1) and show a slope of about 6 db/octave at
frequencies less than resoM ce and about 20 db/octave at frequencies
above resonance. Flanagan. has shown that these curves may be repre-
sented with sufficient accuracy by means of transfer functions of the
type

T(s) K (a + ) -sT

(s + p)(s 2 + bs + c)
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This expression possesses a simple negative real zero, near the origin,
as well as a simple negative real pol and a pair of double complex-
conjugate poles; the delay factor eT is used to bring the phase
response in line with the experimental data. In order to take into
account the effect of the propagation of sound through the middle ear,
the previous transfer function may be multiplied by the function

Tc() - ( 2  (2)(a + CL)a+ 1 7

which has a simple real pole and one pair of complex-conjugate poles.
An illustration of the resultant response is shown in Fig. 3 for three
different regions on the basilar membrane, respectively, near the apex,
at an intermediate point and near the oval window.

The rather poor frequency resolution presented by these responses
is not consistent with the well-known perception properties of the human
auditory system, which, for example, is known to be able to discriminate
two tones of frequencies, 1000 and 1003 cps, when these have intensity of
80 db above threshold and are presented alternatively with a slow repeti-
tion rate. It has been suggested that the mechanism of detection by the
Corti organ may be responsible for the enhancement of pitch resolution.
Von Bekesy has found experimentally that radial and longitudinal vibra-
tions are excited along the Corti organ, with the former preponderant in
the vicinity of the stapes (hence for high frequency sounds) and the
latter preponderant in the vicinity of the helicotrema. The complex
vibratory pattern of the Corti hair cells indicates a differential rela-
tionship w M the displacement of the basilar membrane; for example. W.
H. Huggins has suggested that the response of the Corti cells may be
produced from a combination of an excitation force proportional to the
transverse membrane displacement and of one proportional to its fourth
derivative with respect to distance. Therefore, two separate waves of
neural excitation would act on the Corti organ, respectively, on the
inner and on the outer hair cells; these would produce a coherent stimu-
lation only at the point of the basilar membrane where they occur in
phase. Since the difference of phase between these two waves varies at
a large rate with respect to the distance (about 110 degrees per milli-
meter according to Huggins), a reasonable explanation of the high pitch
resolution is derived.

An electrical model of such phase-sensitive detection may be
realized in a number of ways. For example, the time of occurrence of the
zero crossings of each traveling wave may be compared by means of coinci-
dence circuits, and voltages proportional to their separation in time may
be used as detector output. A simpler method consists of the direct
analog multiplication of the two signals and of the time integration of
the resultant product.

A cochlear analog has been built at ITT Federal Laboratories to
demonstrate the feasibility of realization of pitch-resolution enhance-
ment by means of a phase-sensitive detection scheme.

The representation of the traveling-wave signals acting on the
Corti organ may be obtained by means of two parallel lumped-parameter
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transmission lines (Fig. 4). Following Huggins, these signals could be
made, respectively, porportional to the transversal displacement of the
cochlea and to its fourth derivative with respect to the distance along
the membrane. However, such an interpretation is sufficiently specula-
tive that a simplification in which it is assumed that both signals vary
with distance with similar amplitude and opposite phase distribution is
reasonable. The synthesis of the transmission lines may be obtained from
network theory; for example, writing the differential equations which
describe the behavior of the mechanical vibrations of the cochlea, the
analog transformed equations of the electric transmission-line system may
be derived. On the other hand, since the detection is to be performed at
discrete points along the membrane, only the corresponding responses in
the time or frequency domain need be reproduced. On this basis, the
block diagram of the cochlea analog may be transformed as shown in Fig. 5
where individual "channels" are considered, which are fed from the same
input signal. It is also clear that, instead of comparing the responses
from corresponding opposite output ports of the two transmission lines,
it is sufficient to compare the response of each port with a single
reference signal, which is represented by the input wave. The actual
cochlear analog which has been built consists of ten channels, each
possessing a transfer function of the type

T(s) 2 as (2)

a +bs+c

i.e., with a zero at the origin and a pair of complex-conjugate poles in
the left half plane. The coefficients, a, b, c, have been chosen so that
the peak resonances of the various channels are distributed uniformly
within the range 300 to 3000 cps and the Q figures of merit are of the
order of two. The amplitude and phase variation of a typical response
are expressed as follows (Fig. 6):

aa) exp j - arctan u.. (3)

J(c _02 ) +u2 b 2

The output from each channel is detected by means of a diode peak
detector and may be displayed on a scope using a cummutator to convert
the spatial distribution to a temporal representation. On the other
hand, the output from each channel is also processed through a phase- (5)
sensitive detector (Fig. 7). This consists of an electronic multiplier >)
whose input factors are, respectively, the signal from the channel output
and the signal applied at the cochlea input. Due to the orthogonality
property of the sinusoidal time responses, the integrated output of the
multiplier is zero for all the products of different frequency terms and
is non-zero for the products of isofrequential components. There results
that the output of the multiplier-integrator detector is proportional to
the amplitude of the signal at the channel output and to the cosine of
the phase difference between the latter and the input cochlear signal.

(5) The description of this multiplier will be given in a separate paper.
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To illustrate quantitatively the expected performance, assume

that the Q of the circuit is large enough that the resonance frequency

may be represented with

alres (5)

and the frequencies corresponding to a 3-db amplitude drop-off, respec-

tively, with

0)1 j - ± b(6
2

The 3-db bandwidth and figure-of-merit Q as measured at the peak detector
output are respectively

b. "= _ (7)

In correspondence of the frequencies a1 and a 2 the output channel phase

angles are

0 1 - ± -T/ 4 ( 8 )

and, therefore, the output signals from the phase detector are 6 db down

with respect to the resonance value; there follows that the resulting

3-db bandwidth and Q are respectively

4 ) 1 A3 b7 3 ( 9 )

The actual measured responses of the cochlear analog are in agreement

with this result, providing Q enhancements of the order of 1.5 to 2

times (Fig. 8).

Further improvements of the pitch resolution may be obtained in

a similar manner, synthesizing the channels with networks having transfer

functions with suitable phase versus frequency variation. Although Von

Bikisy has measured directly the phase distribution of the vibratory
response along the basilar membrane, one is not necessarily limited to

considering his phase angle values, since the complex functioning of the

Corti organ may introduce an effective phase variation of much higher
order than that occurring at the membrane.

The corresponding network representation may be made in terms of
a suitable non-minimum phase-transfer function; in fact, it is known that,

if the amplitude response of the network-transfer function is prescribed,

the associated phase response may be written as sum of the so-called
"minimum phase value" and of the phase response of an all-pass transfer

function. The minimum phase value is expressed by means of the Bode's

integral relationship(6)
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(O)=-1 dA V + v(O

7(w TloIV+-W I dv (10)

where A(a) is the logarithm of the amplitude function; the phase of an
all-pass transfer function is a negative quantity, with a negative rate
of change with frequency.

Although it would appear that, with the use of phase detectors of
the above-described type, a frequency resolution as high as desired may
be obtained, in practice, a limit is imposed by the amplitude function.
In fact, assuming that the output of the phase detector is proportional
to the product of the amplitude function and of the cosine of the phase
angle, the said output must remain smaller than a prescribed quantity
outside the pass-band of the network.

3. CONCLUSION

It has been shown that a practical realization of the pitch
resolution enhancement may be obtained assuming a phase-sensitive-
detection function within the Corti organ. An actual realization of
such a phase-detection method has been built using electronic multiplica-
tion and time integration. A ten-channel cochlear analog has been built
in which an enhancement of resolution of the order of 2 to 1 is demon-
strated. The output signals obtained from the ten channels are detected
either by peak detector or by phase detector and displayed on a cathode-
ray oscilloscope by means of a rotating commutator. Possible extensions
of this work as well as inherent limitation of the technique have been
discussed.
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STUDIES ABOUT INFOMATION PROCEMING IN M
OLIACTORY BULB

Radolf von Baumgarten

Physiological Institute, University of 08ttizgen
G8ttingen, Germany

The olfactory bulb is a suitable structure for the study of
information processing in living organisms for the following reasonst
(1) It is a comparatively simple and well-known anatomical structure.
which can serve as a 9model brain'; (2) The olfactory bulb to similar
in all vertebrates; (3) It is possible to identify single nerve cells
of different layers (mitral, tufted, and granule cells) without histo-
logical evaluation during the experiment; these cells answer in specific
ways to stimalation of the lateral olfactory tract (LOT)o the anterior
commissure, and the olfactory mucosa; and (4) The slow-wave activity
(induced waves) in the olfactory bulb is much more regular in amplitude
and frequency than that of cerebral cortex.

The following is a short explanation of the anatomy of the olfactory
bulb. Nerve cells of the olfactory bulb are segregated in concentric
layers, each composed mainly of a single nerve cell type, A... tufted,
mitral, and granule cells. Olfactory stimuli excite the bipolar cells
in the olfactory mucoss which project with their azons to olfactory
glomeruli in the bulb. Within such a glomerulum. azon terminals of
bipolar cells synapse with the dendrites of mitral and tufted cells.
The tufted cells are situated at a depth of 0.5-0.7 m. and have long
axons which form the rostral portion of the anterior oommissure and end
in the lateral olfactory bulb within the granule cell layer, Mitral
cells lie in an especially small layer, between 0.7 and 1.1 mm. depth.
Their axons form the lateral olfactory tract, which terminates into the
prepyriform cortex. The deepest layer of nerve cells is composed of
granule cells, which are found at depths greater than 1.2 am.

The projecting position of the bulbs together with its well-
segregated cell layers, offers to the neurophysiologist a unique oppor-
tunity to record single identified nerve cells of different types and to
drive them antidromically or orthodromically or to inhibit them.

Heretofore antidromic stimalation of the lateral olfactory tract was
performd. Mitral cells respond to such stimulation by antidromic action
potentials; tufted cells exhibit usu,'lly a synaptically-driven action
potential, end granule cells, which are already identifiable by their
greet depth, cannot be driven at all by lateral olfactory tract stimalt.



In a series of experiments in rabbits, in collaboration with Dre.
J. D. Green and M. Mancia, the functional organization of the olfactory
bulb was studied by microelectrode recording, using the stimulation
techni.ue in the lateral olfactory tract or in the anterior commissure.
Nbst of the experiments were performed under local anaesthesia and curare.

Mitral cells responded to single shocks to the lateral olfactory
tract with an antidromic action potential within a very short latency
of 0..5-2.0 msee. Simultaneous with antidromic innervation, the spon-
taneous activity was blocked for a period of 35-1.0 msec. This antidromic
inhibition took place also when, in single cases, the nerve cell soma was
not invaded antidromically. This indicates a recurrent or collateral
inhibition by axon collaterals of mitral amDns. However, an inhibitory
interneurone of the Renshaw type could not be detectedo The latency of
the lateral inhibition appears too short for two synapses to be involved,
as would be the case were an interneurone present.

Intravenous or bulbar application of drugs with an inhibitory effect
of the Renshaw mechanism, such as strychnine and dihydro-P -erythroidine,
could not influence the length of the collateral inhibition.

When the lateral olfactory tract was stimulated with repetitive
shocks, an inhibition of mitral and tufted cells appeared, which out-
lasted the stimulation period, so that finally the spontaneous activity
was blocked for a period of several seconds after the end of the stimu-
lation and full recovery appeared after about one minute. The accumulation
of an inhibitory transmitter must be considered as the reason for such
prolonged inhibition.

In collaboration with Dr. G. C. SalmDiraghi and co-workers, we tried
to inject topically transmitter substances to single nerve cells within
the olfactory bulb. For that, we used five-barreled micropipette elec-
trodes, consisting of four drug-containing barrels fused to a central
recording barrel with external tip diameter of from 2 to 6 microns. The
central recording barrel was routinely filled with 5 M NaC1 solution. Of
the other barrels, one was always filled with 3 N NaCl as control barrel,
in order to identify current artifacts; the remaining three barrels were
filled with any three of the following substancess Acetlycholine
chloride. 1 M; Noradrenaline bitartrate, 0.5 M; Serotonine createnine
sulfate, 0.05 M; Mbnosodium-l-glutamate, 2 M; Phyostigaine sulfate.
0.5 N; or Dihydro-A -erythroidine hydrobromlde, 1 M. The drugs were
injected electrophoretically by application of an electrode current of
adequate polarity and .02-0.2 microamps to the drug-containing barrel.
The saline-filled control barrel was simultaneously polarized with an
opposite polarity, in order to minimize polarization ot the recorded
nerve cell membrane. & holding potential was applied to the drug-contain-
Ing barrels to prevent leakage of active ions when no drug injection was
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intended. The action potentials of the recorded cells were recorded
with an oscilloscope and camera and were simultaneously fed into a counter
which, in turn, aetivated the pen of an ink-writing oscillograph.

One hundred and sixty-eight units were successfully studied, of Which
23 were classified as tuted cells, 36 as mitral cells, and 35 as granule
cells. Seventy-four cells could not be clearly identified. In each case
we observed that the effects followed the onset of drug administration by
periods of 2-10 seconds. Twenty-four percent of the cells tested with
acetylcholine changed their rate and pattern during the tests. 76% showed
a decrease, while 66% showed an increase in their discharging rate. It
Is noteworthy that the antidromic invasion of mitral cells never was
influenced by acetylcholines but only the spontaneous firing could be
influenced. This suggests that the synaptic nembrane Is influenced by the
acetylcholine rather than the conductile membrane. Of the 23 tufted cells
investigated, 7 were acetylcholine-sensitive. Of these, 2 responded with
an increase and 5 with a decreased unit rate during acetylcholine adainis-
tration. Those that responded with an increase also shoved an increased
probability of synaptic invasion consequent to lateral olfactory tract
stimulation when acetylcholine was administered to the cello Of 9
acetylcholine-sensitive mitral cells encountered, 7 responded with a de-
crease and 2 with an Increase in their activity during acetylcholine
tests. Physostigmine decreased the rate of firing of all 6 tested nerve
cells, but the magnitude of such decrease was never comparable to that
elicited by acetylcholine. Dihydro-/2-erythroldine, gallamine, and atropine
were administered to 4, 2. and 1 cells, respectively. In no case was the
discharge rate of the unit obviously modified by the administration of
such substances.

Noradrenaline was administered to 93 units, of which 18e3% were
found to be sensitive to it, 3.2% increasing and 15.1% decreasing their
rate of activity during tests.

Serotonin decreased the discharge rate in all of 8 tested cells.
L-glutamate influenced 17.7% of the tested cells, mostly in the sense of

increasing the discharge rate; only in 2 cases did they find a decrease.

It should be mentioned that the insensitivity of units to micro-
electrophoretic drug application does not necessarily mean that the
administered drug has no action. It is possible, in fact, that the lack
of effect may be due to too few molecules reaching the active sites,
rather than through absence of active sites. Insufficient arrival of

ions may arise from insufficient injection from the electrode or rapid

inactivation by enzyme action. On the other hand, an Inhibiting or
facilitating effect can be mediated directly or indirectly by means of
adjacent interneuronee. However, in the olfactory bulb reciprocally
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acting interneurones of the Renshaw type could not be detected, as
mentioned above, and it appears possible that acetylcholine has a
different action, inhibiting or facilitating, if applied to different
cells of the same type. A functional heterogeniety in mitral cells was
early postulated by Adrian. Such a divergence of function is implied by
the variability of responses of different aitral cells to the same
substance as observed in this study.

Another observation which supports the view of functional hetero-
geniety in mitral cells is that tufted cells can be driven synaptically
by stimulation of the lateral olfactory tract. This means that some mitral
cells exert a facilitatory action, whereas others, as is shown above, are
inhibitory for other mitral cells. P rovided that Dale's Law is valid,
that is that one and the seme nerve cell has only one sort of nerve
endings, we have to assume both inhibitory and facilitatory mitral cells.

Another part of our experiments concerns the origin and distribution
of the slow waves within the olfactory bulb. In terms of the general
distribution of extracellular currents, spontaneous activity, induced
slow waves and potentials evoked by antidromic stimulation of the lateral
olfactory tract are similar in the olfactory bulb. In each case, the
main current flow is axial with respect to the neurones, and not
tangential.

The induced waves, which appear during stimulation of the olfactory
mucosa with odors and which were recorded from inside the bulb. are in
phase with those recorded from the surface when the microelectrode is
above the mitral layer, while they are 1800 out of phase below the mitral
layer. The induced waves are markedly reduced in amplitude at the level
of the mitral cells. Evoked potentials produced by stimulation of LOT
are characterized by a sharp negative deflection which can be recorded
through all bulbar layers and which represents the antidromic compound
action potential. It is followed by a slower, negative wave, indicating
inward currents in the glomeruli and external plexiform layer. As the
recording microelectrode passes through the mitral layer, the recorded
negative wave Is reduced in amplitude and gives place to a positive
deflection which increases in amplitude and duration as the micro-
electrode goea deeper in the granule layer.

Large voltage gradients of up to 20 mV./mm. occur across the mitral
layer both during the evoked potential and during the induced wave of
Adrian.

The results suggest that there are at least two time-locked virtual
generators involved in the production of the slow waves, one above and
one below the mitral layer.



Action potentials (from mitral, tufted, and granule cells) are

correlated with the negative-going phase of the induced waves recorded
from the same microelectrode. In the granule layer the induced waves
are inverted in phase with respect to other layers and consequently the
granule cells tend to fire out of phase with mitral and tufted cells.

Mitral cells are driven on the first negative component of the
potential evoked in the superficial layers of the bulb by etimulation of

the LOT. Tufted cells discharge on the second negative wave. Granule
cells are often inhibited during the sharp negative and large positive
potential recorded in the granule layer.

The positive component of the evoked potential recorded in the

granule layer and the induced wave recorded at the same level are most
easily attributed to synaptic and post-synaptic events, since neither of
them could be correlated to action potentials at the same level.

The rate of firing of a proportion of mitral, tufted, end granule
cells of the olfactory bulb was modified by high frequency stimulation
of the midbrain reticular formation. The effect was usually inhibition.

Natural peripheral stimuli also affected spontaneous discharge of
olfactory bulb neurones.

Stimulation of the intraluminar thalamus failed to modify the
firing rate of cells influenced by reticular activation.

Reticular stimulation sometimes reversed the effect of an olfactory
stimulus converting inhibition to excitation and vice-versa.

Reticular stimulation increased somewhat the amplitude of induced
waves produced by an olfactory stimulus, but by itself did not produce

slow wave activity.

The responses of mitral, tufted, and granule cells to stimulation
of the olfactory macosa with various odors was studied in another series
of experiments. We triedr (a) to identify the type of cells studied
physiologically, as well as histologically, (b) to observe the influence
of the same olfactory stimulus on different types of neurones, (c) to
study the pattern of discharge of the same neurones in response to
different odors, and (d) to study the effect on the same neurone of
independent stimulation of two olfactory mucos. A variety of responses
was observed from different cells in the external plexiform mitral and
granule laype. The effects most commonly observed weres (a) facili-
tation, which could outlast for a few seconds the duration of the
stimulus, (b) facilitation during the stimulus followed by an inhibition
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as the stimulus ceased, (c) short inhibition at the very beginning of
the stimulus and facilitation afterwards, (d) inhibition during the
period of the stimulus or longer than the stimulus itself, (e) short
inhibition both at the beginning and at the end of the stimulus, and
(f) burst discharges during the period of stimulation, which could be
followed by an arrest of firing when the stimulus ceased. Different
nerve cells of the same kind could answer in quite different ways to the
same odor stimulus and, on the other hand, one and the same nerve cell
could respond to different odors in a different way. There is also a
high functional specificity within the network of neurones of the ol-
factory bulb.

Inhibitory effects like the collateral inhibition we found may serve
discriminatory functions and may facilitate edge perception similar to
the mechanism in the limalu eye. Very weak odors and small odor
differences could be biologically amplified in that way. The tufted
cells of one side sent their axons across the anterior commissure to the
granule cells of the olfactory bulb of the other side and exerted there
a probable inhibitory effect. Looking for a biological significance of
this arrangement, it could be interpreted as subserving direction finding
mechanisms which enable an animal to find its way to the food by small
gradients in odor concentration at the side of the two olfactory mucosa.
This is probably more the case in lower animals, such as amphibia and
fish, where the two nostrils are relatively farther apart and point in
opposite directions.
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Few opportunities are available for the observation of complete
biological societies functioning in a manner analogous to the society
of man. A honey bee colony provides such an opportunity, being a
collection of individuals which must work together. In fact a single
bee cannot survive alone. The colony has many of the same prob-
lems which confront man, including provision of food, water, venti-
lation, nursing care, housing, police protection, and rubbish disposal.
Some form of regulation is essential or the result would be chaos,
with each individual performing tasks which would not necessarily
benefit the society as a whole. It is concfivable that such regulation
might be a completely automatic process, or a complete stimulus-
input, response-output process, or a combination thereo Since
we know that a stimulus-response mechanism is involved, and
since all bees do not respond to the same stimulus at any one time,
it is plausible that both automatic and stimulus-response processes

operate simultaneously.

What ever the actual regulation process, it is apparent that
communication between individuals occurs. It is reasonable to
assume the following steps are pertinent: (1) that information
about the needs of the colony be gathered, (2) that such informa-
tion be converted into a form capable of being transmitted by indi-
viduals to other individuals, (3) that the information be transmitted,
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(4) that the information be received, (5) that the information be
interpreted, and (6) that the receiving individuals respond as a
result of the new information input. All of these acts involve infor-
mation processing by individual honey bees, both before and after
transmission.

Several questions arise concerning the nature of bee communi-
cation. What acts as the transmitter or receiver? What is the
nature of the signal? What is the transmission medium? What is
the information capacity of the system? What information is carried
by the system? How is the information coded? The answers to
these questions and to others, equally thought provoking, are not
easily acquired; but we have learned enough thus far to recognize
that bees have a highly sophisticated means of communication.

Possibility of Information Transfer by Sound Among Worker Bees

After a honey bee has successfully foraged for nectar and re-
turned from the source to the hive, it executes an intricate "dance"
upon the vertical face of the comb, as shown in Figure 1. This
dance, a figure 8 maneuver called a "waggle dance,' apparently has
associated with it information concerning distance, direction, odor,
and strength of the food source. Certain other bees pay very close
attention to a dancing bee, and are then observed to fly out independ-
ently and find the same ood source. Although the dance has been
studied in some detail, we have yet to determine the method of
information transfer from a dancing bee to a recruited bee. Several
possibilities, however, are suggested, and analysis of experimental
evidence indicates some are more plausible than others.

The most widely circulated view is that communication takes
place by whole hody physical actions of the dancing bee on the sur-
face of a comb. One may observe that the orientation of the bee
while waggling is related in a specific manner to the direction of the
food source from the hive, and that the number of waggles per dance
is related to distance. The strength of the source, according to von
Frisch, may be indicated by the "vigor" or amplitude of the waggle
during the dance. But it is dark within the hive where the dance takes
place, indicating that successful transfer of information by visual
observation would be difficult if not impossible. The spectral re-
sponse of the bee photoreceptors is greatest in the ultraviolet and
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FIG. I. HONEY BEE WAGGLE DANCE PATTERN.


