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A Nerve Net System in Modal Logic

Introduction

Nerve net theory as developed by McCulloch and Pitts (1943), vonNeumann
(1956), Shannon and Moore (1956) and others can represent different input-
output relationships, thus simulating some behavior of living organisms. The
nerve net works essentially as a binary formal logical system, representing
the operations of Boolean Algebra, including counting, and is thus capable
of performing ordinary arithmetic. It can also correct errors, achieving
any degree of desired accuracy at the cost of bulk and complexities. This
mode of representation, for all its advantages, has some obvious deficiencies
in the representing of human behavior. Some of these are connected with the
nature of deductive logic. This logic ignores the content of a proposition,
assessing only its truth value. Hence, any true or any false propositions
are equivalent to each other, and any combination of propositions is either
true or false. In short, in this system, any proposition is relevant to
any other.

This indifference to content contributes to the mathematical elegance
of the theory but makes for difficulties in application. It results even
in needless complexities in the establishment of accuracy: errors in the
transmission of a proposition such as "Two and two is four' must be checked
in the same way as those for a proposition like "It is raining today." It

becomes an even greater obstacle in the understanding of psychological processes,

as in actual practice the truth and falsity of any proposition does not have
implications for the truth or falsity of all other propositions as it is re-
quired in Boolean algebra. There it is a consequence of the definition of
material implication. Attention to content requires a differentiation in the
meaning of truth which is not equivalent to a simple probability measure, but
at least to a distinction between analytic and synthetic truth. It also leads
to the notion of relevance.

A functioning nervous system operates with continuous input and output.
It has been surmised that it typically operates in an analog way and that
digital analysis constitutes a late and refined procedure. (vonNeumann 1957,
Sebeok 1962) Nerve net theory analyses its input and output in a digital
manner because the nerve net consists of binary units, neurons and synapses.
The value of this theory will be increased if features of the analog operation
of the nervous system can be translated into essentially binary calculus of
nerve net analysis. One such approach is the tramsition from the classical
logical algebra to modal logic.

Modal Logic

Modal logic includes all the principles of Boolean algebra and in
addition the operations of necessity and possibility. It is also a three-
valued logic admitting a value of "indeterminate.'" These features lead to
the inclusion of strict implication which is defined as "It is not possible
that a is true and b is not true." 1If this relationship holds between two
propositions, b can be deduced from a because of some necessary connection
between the two propositions. If they both happen to be true, strict implica-
tion is indeterminate. Deduction is thus used in its ordinary usage, and the
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meaning of a proposition is recognized, besides its truth value. The
additions made by modal logic permit a closer approximation of networks
to actual processes of organisms.

Since renewal of interest in modal logic through C. I. Lewis' paper
in 1918 (Lewis 1918, Lewis and Langford 1959), several different systems
have been proposed. For the application to nerve net theory a system is
required which has explicit transformation rules, a minimum of primitive
concepts and no differentiation of impulses by content. The best example
of such a system was found in Prior's system Q. (Prior 1957)

Prior defines the modal operators as applying to time: necessity means
"true at all times," possibility ''true at some time," true and false refer
only to the present time. As knowledge about other times may be imperfect,
we have to admit a third value - indeterminate - for all times except the
present one. This then is a three-valued logic; although Prior assigns
numerical values to the three states, he does not use them in any ordinal
sense but only as a nominal distinction. We shall identify them therefore
by symbols +, = or 0. Each proposition is then characterized by a string of
these symbols, theoretically infinite, each symbol representing the truth of
the proposition during a particular time interval. The first symbol must be
+ or -. The logic is based on four primitive operations, negation, conjunction,
necessity and possibility. Rules are given for the transformation of each
symbol under each operation. This, then, is the required development of modal
logic. It can be represented in a nerve net or a computer if it is possible
to use the three-valued strings as input and to define the operations in a way
in which the nerve net system can handle them.

Rules for Prior's System Q.

Let us first define the four operations. The definitions given here are
equivalent to those used by Prior but modified to bring out certain points
useful for later application.

Notation

Propositions are designated by small letters, a, b ...., operations by
capital letters N, K, L or M. Operation symbols are put before the propositions
they refer to. Propositions consist of a string of symbols +, - or 0, but the
first symbol cannot be 0. Three of the operations have only one argument: Na
(negation of a), La (a is necessary) and Ma (a is possible). The fourth
operation has two arguments: Kab (conjunction of a and b). Operations can be
cumulated and are performed from right to left; e.g. NMNa: it is not possible
that not a, or NKaNb: it is negated that a and not b, i.e. material implication.

Transformation rule of indeterminacy  (0).

Any operation which includes a 0, will result in a 0. In a single-valued
operation 0 is invariant. In a two-valued operation, O in either of the two
arguments will result in 0. Thus none of the operations will make indeterminate
knowledge determinate. Information cannot be gained through formal logic of any
kind.

Transformation rules for N and K.
Both of these operators work on single symbols without regard to rest of
the structure. N changes plus to minus and minus to plus. K operates on a
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pair of corresponding symbols in the sequences in the same way as ordinary
conjunction does, i.e. two plusses make a plus, all other combinations are
minus. Zeros are dealt with according to rule 3.2. These two operations

and their combinations make all operations of Boolean logic possible.

Transformation rules for L and M.

These operators change the symbols according to the type of whole
sequence. We distinguish three types, according to the presence of plusses
in the sequence. Type one consists of sequences which contain only plusses
(propositions which are always true); type two of sequences which contain
plusses and other symbols (propositions which are sometimes true); type three
of those which contain no plusses (propositions of which it is not known if
they are ever true). Type one and type three stay invariant under both L and
M transformation. In type two operator L changes both plus and minus to minus,
and operator M changes both to plus. Again, zero stays invariant. In words,
these rules mean that a proposition is necessary at any time if it was true
at all times and it will be possible at all times if it is true at any time,
except, of course, at those times at which nothing is known about the truth of
the proposition.

These rules allow all the operations of modal logic, in particular strict
implication which is defined as NMKaNb, it is not possible that a and not-b
occur jointly. For two propositions to be connected in that way, b must be
true whenever a is true. If the truth of b is not known for any time period
when a is known to be true, there is no necessary relationship between the

two propositions although they are not inconsistent with each other. Thus

two propositions can be indifferent toward each other. Meaning is thus defined
as the pattern of times in which a proposition is true.

This system thus permits discussion of several degrees of truth, can
differentiate between different propositions beyond their present truth value,
admits unconnected propositions and does this in a way which consists of simple
transformations of one symbol to another. We shall now construct a scheme of
a nerve net which can perform according to this system.

The Network System

The type of input.

In order to adapt this modal system to use in nerve net theory we have
to specify an input in such a way that a three-valued signal can be transmitted
through an off-on circuit and make the operations conform to the basic operations
of the nerve net. This means essentially that we can specify an output pattern
for each combination of inputs. Thus it can perform the basic operations of
the truth and count, but cannot distinguish between two inputs to an organ
beyond the fact that they are on or off. If these restrictions are observed,
it has been shown that nerve nets can be drawn by simple rules from the input-
output conditions. (Culbertson 1962) Consequently it is sufficient to present
here only the in-out matrices.

As stated above, Prior conceives of each proposition as a string of
three-valued symbols. Our nerve net will consist of a set of parallel organs,
one of each symbol. Although the set is theoretically infinite, it corresponds
in practice to a finite number, say n. Each of these organs consists of two
parts, the determinacy net (D) and the falsity net (F). The inputs in the
D net are firing if the proposition was indeterminate at the time to which
the organ refers, and does not fire otherwise. The input in the F net
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are firing if the proposition is false at the time and do not fire otherwise.
Outputs are read in the same way: If the D-effector fires, the value corres-
ponds to indeterminate (zero) no matter what the F-effector does; if the D-
effector does not fire, firing in the F-effector means '"false," no firing
means "true." The whole network has thus (2n) receptors and (2n) effectors.

The rules for the operations divide into two kinds: the two Boolean
operations, K and N and the modal operations L and M. For the former each
organ can function separately and only the three-valued nature of the logic
provides any differences from ordinary nerve nets. For the latter the whole
network hac to be analyzed and classified into one of the three types before
proceeding on each organ.

Input-output conditions for K and N.

For the operator N the rules are as follows. In the D-network the output
equals the input. In the F-network the output is the opposite of the input,
dead on a firing input and vice versa.

K operates with the inputs from two propositions, a and b, the input
for each network are combined separately according to the following table:

Input 11 10 01 00
Output 1 1 1 0

Applying this scheme to the D-network makes the effector fire whenever
one of the propositions is indeterminate; applying it to the F-network makes
the corresponding effector fire only when neither proposition is false. As
the F-effector is irrelevant whenever the D-network fires, it does fire only
when both propositions are true.

Input-output conditions for L and M.

Before applying the operators the whole input pattern has to be analyzed
and must therefore be stored. The analysis for determimation of the type (see
above) proceeds as follows: The D and F input .are combined according to the
following table:

Input 11 10 01 00
Output 0 0 0 1

This results in only the "true" symbols firing. After this the number of
firing fibers is counted. The determination of class is as follows:

X (number of outputs of Type
previous table firing)
n T
0 X /[n II
( 0 ( IIT

After this each organ is treated separately, but there are two kinds of
organs, one for types I and III and one for II.

For types I and III both L and M are simple identity transformations;
the input equals the output.

For type II the D-network transmits the unchanged. 1In the L-networks all
outputs fire and in the M-network no output fires. This type corresponds to
a proposftion which is true at least once, but not at all times. It is there-
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fore necessary at no time and possible at all times at which any information
is available.

With a combination of these organs all operations of modal logic are
possible.

Applications.

The use of modal logic gives flexibility to the use of networks and
makes it possible to use them in new contexts. To show two of its most
interesting features, two kinds of applications will be sketched.

Reliability

The question of possible failure of either the inputs or the system
has been attacked in different ways. Here we can use the differentiation
between analytic and synthetic statements. If we have admitted the necessary
truth of statement (La) at any time, it must be true at all times. Thus, for
any statement of this kind an error which would make the statement true at
some times and not at others is self-detecting and can then be checked. On
the other hand, synthetic propositions which are possible but not logically
necessary allow some errors which would keep them synthetic and only their
truth at different times would be stated in error. It is likely that this
division leads to economy in actual thinking. In propositions whose universal
truth is accepted, any error is automatically expurgated. Other statements
depend on correct input, that is exact empirical observation. In this
connection it is instructive to note that Cowan (1960) has shown the equi-
valence of error correcting codes to the Lewis multi-valued logic. It is
proposed here that starting with a modal logic such as Lewis' and Prior's
system will lead to different and simpler look at the problem of reliability.

Consistency

Instead of different symbols referring to different time units we may
also conceive that they refer to the relation to different conditions. We
can then analyze different propositions on whether they are consistent, in-
consistent and indifferent under different conditions and under which condi-
tions a person entertaining these propositions is consistent or inconsistent
and what he can do to achieve consistency. This would then be an approach
to "Psychologic." (Abelson and Rosenberg, 1958) The symbols can also be
interpreted as affective relationships, like, dislike and neutral and
consistency of preferences can be analyzed. A number of current psycho-
logical theories postulate a drive toward balance or consistency. (Festinger
1957, Heider 1958, Newcomb 1953, Osgood, Suci and Tannenbaum 1957). The
procedure shown here allows representation of these theories of psychological
processes in terms of these theories. This makes it possible to construct
analytical models demonstrating the differences and limitations of these
theories and also to determine the effect of the introduction of unbalancing
factors as these theories represent limiting conditions. (Back 1962) Under-
standing of imbalance through this logic of possibility and necessity will
then give a more life-like model of human behavior.
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MUSCLE-LIKE CONTRACTIVE DEVICES

Muscle-like devices may be characterized by providing a
contractive force in series with an elastic element. There
are two basic des1gns - one in which tension fibers or ele-
ments are wound in a double helex around an expandable cylin-
der, and the other in which the fibers are aligned axially
with the expandable cylinder or tube. Both mechanisms depend
on a material or combination of materials to provide an aniso-
tropic modulus of elast1c1ty. The helically wound contractive
device is finding use in prosthetlc and orthotic appllcatlons
(1) in which muscle-like power is provided to patients who
have lost the use of their own muscles, particularly in their
limbs. It has further been described (2) as a servo mechani-
cal actuator in the control of flight surfaces in millile ap-
plications. A method for the control of hydraulic valves is
described in the patent literature (3) using either the heli-
cally wound or linear fiber device.

The linear fiber contractor is of particular interest
because, unlike the helically woven system, theoretically
infinite forces are available at the beginning of contraction
when a finite pressure exists inside the expandable tube.

The potential exists then for very high mechanical efficiency
when the contractive device is coupled to a proper load (u4).
Furthermore, the low inertia and control characteristics would
suggest useful employment in dynamic systems as a prime mover
or mechanical transducer,

Figure 1 is a photograph of a contractive device in
which the fibers are aligned axially with the expandable
rubber tube. An ideal contractive device is one in which the
fibers are assumed to be inelastic. Finite pressure inside
the elastic tube serves to force the fibers outward and there-
by draw the ends of the fibers together. It can be shown (5)
that the equation describing the shape of the fiber under these
conditions is given by -

[/ *(%z)z].x: 3771, [7’!{]

number of fibers

tension in one fiber

internal pressure in force per unit area
and y are the coordinates

where

n
di
P
X

Vle have assumed that the elastic tube has a negligible modulus
of elasticity, and serves merely to load the tension elements
with a force normal to the element. The boundary conditions
are -

d
y = at x = 0 and L
i

. 0
j ds = P = ds
%=o 2 =olp
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i

rest diameter

contracted length

T
n

L_ = rest length

S distance along fiber

« = angle between fiber and axis of tube
o,= value of « at fiber attachment.

The non-linear second order differential equation above arises
frequently in mechanics (6), but no solution with the stated
boundarv condition has been found in the literature. McKibben
(7) treated the case for r = 0 which leads to finite rather
than infinite contractive force. A solution with the given
boundary conditions relating variables of interest is given

by = T -
L=%5T [Eld k) -F(hA)]
H = mT [csado = %’Iz]

where E/fﬂk) is Legendre's incomplete elliptic integral of the

second kind with modulus k

f7ﬁe,k) is Legendre's incomplete elliptic integral of
the first kind - o

It is convenient to consider the ratio of rest difmeter d to
rest length L, as a design parameter. The ratio 7 , the
fractional contraction or excursion, is shown plotted against
normalized contractive force in Figure 2 for several ratios.
Notice that the maximum excursion occurs for 7/, = 0, the
limiting case for a long, thin device, and that the fractional
contraction is about 45% of rest length. The thick, short
device with diameter equal to rest length (74 = 1) gives high
contractive force over a shorter excursion.

The excursion versus pressgure relation for constant load
is shown in Figure 3 for two (74) ratios. The dotted lines.
indicate asymtotes for maximum excursion values,

Experimental devices have been constructed using a
surgical rubber tube with a wall thickness of about .006 inches,
diameter 0.25 inches, and length approximately 2.5 inches.
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Several fiber materials have been employed such as glass,
steel, polypropylene, and nylon. The curves below were gener-
ated with devices using approximately 200 strands of single
end multifilament 10 denier nylon with zero twist. The fibers
are preloaded in the test apparatus; consequently, the effect
of elasticity in the fibers is minimized in the data.

Figure 4 is a plot of pressure vs volume change for
several constant loads lifted against gravity. If mechani-
cal efficiency is defined as 26l¢ we can plot efficiency

p A

vs load for the data given in‘?igure 4, Such a plot indicates
that small excursions and heavy loads lead to high mechanical
efficiency. In the case of practical devices, energywhich is
used to expand the elastic tube is not usable during contrac-
tion although it is returned to the system when pressure in-
side the tube is reduced.

Direct comparison of these contractive devices with
striated muscle, for example, is difficult because the mecha-
nism for contraction is not well understood (8 & 9). It is
obvious from the data presented that there is some similarity
in the mechanical properties of skeletal muscle and the device
described, however. Muscle cells have been observed to expand
radially while contracting (10), and it is suggested that such
a mechanism in combination with pronerlv oriented colagen
fiber encasing the cell would serve to generate the observed

mechanical force-excursion relations.

Once the basic contractive device is available it be-
comes possible to produce either linear or rotary motion using
low pressure gas or liquid working fluid. Preliminary models
of three and four "cylinder" rotaryv engines have been con-
structed in the laboratory, and tests are being conducted to
determine their dynamic characteristics and efficiencv under
load.

Another muscle-like device is being studied based on
the sphincter action of specialized muscle systems. If the
fiber and elastic structure described earlier is constricted
by an increase in pressure on the outside relative to the
inner part of the tube, the tube collanses and serves as a
hydraulic valve for fluid passing through the center of the
tube. The pressure-volume change required to effect "cut-
off" is small in relation to the amount of nower controlled.
The hydraulic amplification of ac variations in pressure is
analogous to vacuum tube triode amplification of voltage and
an ac power gain is demonstratable.

Howard A. Baldwin
Laboratory for the Study
of Sensory Systems

4242 L. Speedway

Tucson, Arizona
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FIGURL 1

A photograph of a muscle-like contractive device with axiallvy

aligned tension fibers. It is shown partially inflated, and
is about 3 inches in length,
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FIGURE 2

This figure relates theoretical contractive force or pull to
percent contraction from rest length. The curves represent
three different diameter to length ratios.



PRESSURE (RELATIVE UNITS)
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FIGURE 3

Theoretical curves for two diameter to length ratios showing
pressure in force per unit area (relative units) as a func-
tion of percent contraction for constant contraction force
or load.
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FIGURE U4

Experimental results for a contractive device whose ;rest length
is 3 inches, and rest diameter = 0.3 inches giving =01, The
device was preloaded to reduce the effect of elasticitv in the
tension fibers.
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SPECTRAL SCANNING AS A MECHANISM OF COLOR PERCEPTION

George Biernson
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INTRODUCTION

It is generally believed that the eye perceives color by means of dif-
ferent types of photo-sensitive receptors having different spectral response
characteristics. Because of the three-dimensional characters of color sen-
sation and the constancy of color matches, the concensus of opinion is that
the eye has three basic spectral response curves.

Many efforts have been made to calculate the spectral response curves
of the eye, but they have all run into inconsistencies that have not re-
ceived adequate explanation. Figure 1 gives, for example, the spectral
response curves proposed by Koenig and Dieterici in 1884 (ref. 1). 1In fact,
the whole field of color theory is filled with inconsistency, and this has
prompted the continual generation of more elaborate color theories to ex-
plain (in the words of Troland) "the enigma of color vision."

Although the various color theories may vary greatly in detail, they
appear to agree on one principle: every theory (as far as the author can
determine) that has proposed a plausible mechanism for converting the op-
tical energy into a neurological signal has assumed that the eye has dif-
ferent types of photo-sensitive elements having different spectral response
characteristics. This paper suggests that that basic principle is incorrect.

PRINCIPLE OF ANGULAR SCAN

A fresh approach to attack the enigma of color vision can be found
by examining analogous processes in electronic systems. In color vision,
the eye performs a wavelength discrimination function, which is analogous
to other discrimination functions performed in electronic systems. The
most convenient one to consider is the angular discrimination used in radar
systems in the operation of tracking a target.

As shown in Fig. 2, there are two basic approaches in radar to perform
angular discrimination: (1) by the use of multiple radar detectors having
different angular response characteristics, and (2) by the use of a single
detector which varies (or scans) its angular response characteristic.

Figure 2a shows the rultiple-detector approach. Detector A (which
may consist of a waveguide horn feeding a crystal detector) is pointed
along the upper dashed line and so has a peak response in that direction;
while detector B is pointed along the lower dashed line. Along the solid
horizontal exis which bisects the angle of the dashed lines, both detectors
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have equal responses. To generate an angular discrimination signal, the
signals from detector B is subtracted from that of detector A. The re-
sultant angular discrimination signal is called an error signal because
it is zero for a target along the horizontal axis (called the boresight),
positive for targets above that axis, and negative for targets below that
axis. For example, a target T, gives a positive error voltage and target
T, gives a negative error voltage. For targets reasonably close to the
ooresight, the error signal is approximately proportional to the angular
deviation (or error) of the target from the boresight.

Figure 2b illustrates the angular scanning approach. A single detector

is oscillated through an arc, such that its direction of maximum sensitivity
varies with time between the two dashed curves. The effect of this oscilla-
tion, or scanning, operation is to produce an amplitude modulation of the
signal delivered by the detector. We are interested in the first harmonic
of that modulation, which is at the frequency of the angular oscillation
of the detector. For a target along the boresight, the first harmonic is
zero; for a target above the boresight, such as T,, the first harmonic has
positive phase relative to the detector oscillation; whereas for a target
below the boresight, such as T?, the first harmonic has negative phase.
The first harmonic has maximum amplituvde if the target lies along one of
the dashed curves; and in the vicinity of the boresight the amplitude of
the first harmonic is proportional to the angular deviation of the target
from the boresight.

The signal from the detector is amplified and the first harmonic is
demodulated by a phase-sensitive demodulator which uses the detector os-
cillation signal as a reference. The demodulator delivers a d-c signal
essentially equivalent to that which is delivered by the multiple-detector
system of Fig. 2a.

Thus both approaches deliver essentially the same angular discrimination
information, but there are some important differences. The multiple detector
system is very difficult to keep in calibration because it requires two
parallel amplifier channels, the gains of which must be kept matched. The
scanning detector system is much simpler to build, but has the disadvantage
that inaccuracies are produced if the signal from the target is modulated
at a frequency close to the angular scan frequency. The angular scan system
can be deceived by a jammer which modulates its return signal, and conse-
quently modern radar systems now generally use the multiple detector approach
despite its increased complexity.

Figure 3 shows how the angular oscillation, or scanning, of the de-
tector modulates the detector signal. Diagram (a) shows the angular re-
sponse patterns of the detector when it is at the extreme points in the
oscillation cycle. The oscillation of the detector vibrates the pattern
between the two curves. The angular positions of targets T, and T, are
shown. It can be seen that as the pattern vibrates back and forth the
signals produced by radar returns from targets T, and T. are modulated
with opposite phase; i.e., while the signal due %o targgt T, is increasing
that due to target T, is decreasing. Diagram (b) shows the amplitude of
the first harmonic of the a-c signal as a function of the angular deviation

of the target from the boresight. The different signs indicate opposite
phase of the a-c component.
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Figure (3c) shows the detector signals produced by the radar returns
from targets Tl and Tp. They consist of a-c modulations about an average
or d-c value, and are opposite in phase. If both targets were present
similtaneously and produced radar returns of equal strength, the a-c com-
ponents would cancel and the average value would be doubled. This would
give the false impression of a single target along the boresight. This
problem is avoided in most radars by a range gate that accepts only a single
target return at a time.

It has been shown that there are two basic means of achieving angular
discrimination: with multiple detectors having different angular response
characteristics or by scanning the angular response of a single detector.
When we examine other discrimination tasks in electronics we find that the
same two principles are used. These include discrimination in time, fre-
quency, distance, and many other parameters. It seems logical, therefore,
that both approaches should be considered as possible means of explaining
color vision. However, we find that previous color theories have applied
only the miltiple detector approach.

APPLICATION OF SCANNING PRINCIPLE TO COLOR VISION

Let us consider how the detector scanning principle might be applied
to color vision. Assume that the detector oscillated its spectral re-
'sponse in the same manner as in angular scan. A monochromatic light would
produce an a-c modulated waveform, just as does a single target with an-
gular scan. A white spectrum of light would correspond to an infinite
number of targets. The components due to the various wavelengths would
cancel, and a d-c signal would pe produced. Thus the average or d-c com-
ponent of the signal delivered by the detector would correspond to the
white sensation, and the a-c modulation component would correspond to the
chromatic sensation.

There are two sets of basic chromatic sensations experienced in
vision: blue-yellow and red-green, blue acting as the negative of yellow
and green acting as the negative of red. This suggests that there are two
different a-c modulation component in color vision, one component cor-
responding to blue-yellow and the other to green-red. The phase of a com-
ponent would determine the difference between blue and yellow or between
green and red. The two components could be kept separate by being at
different frequencies or by being 90-degrees out of phase with respect to
one another.

One of the problems associated with conventional radar angular scan
is that the target echo must be present for a time longer than one cycle
of the scan in order for the angular discrimination to be performed. How-
ever, in the analogous color vision situation, the eye is able to see color
from a very short pulse of light, much shorter than any reasonable scan
period. How then can the scanning principle be applied if this condition
st be satisfied? A simple answer was proposed by Robert F. Lucy, an
associate of the author. He postulated that the scanning process in color
vision is performed subsequent to detection, rather than prior to detec-
tion as in angular scan.

Figure U4 shows diagrammatically how Mr. Lucy's principle would work.
A prismatic effect within the cone separates tne wavelengtns of the inci-
dent light, such that different wavelengths are concentrated at different
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regions of the photodetector portion of the cone. The light falling on
the detector excites the photopigment and generates electric charges.
An electrical scanning mechanism is employed in the cone to control the
flow of charge. The scanning mechanism scans back-and-forth across the
detector and feeds out the charges from different portions of +the de-
tector at different instants of time.

The prismatic elffect probably does not senarate the wavelengths
discretely. Rather, it is more likely that it merely produces different
distributions of energy across the photodetector for different wave-
lengths. Waveguide or interference patterns within the cone may be re-
sponsible for the prismatic effect. The scanning action could be produced
by an oscillating electric field that controls the flow of charge from
the photodetector.

An important question that pertains to the scanning process concerns
the relationship between the blue-yellow and green-red modulations. In
order for the scanning to be performed in the sirplest manner, these
modulations should be harmonically related. Evidence (which is beyond the
scope of this paper) suggests that the blue-yellow signal is a first her-
monic and the green-red signal is a second harmonic.

Figure 5a shows a first approximation of how the optical energy ap-
pears to be distributed across the photosensitive portion of the cone by
means of the prismatic effect. The sketch shows the energy distributions
for specific wavelengths in the violet, blue, green, yellow, and red nor-
tions of the spectrum. For convenience, the maxirmum energy distributions
are normalized to unity. The horizontal axis labeled "position on cone"
is purposely vague, because the author does not know whether the variation
of energy is longitudinal, axial, or something else.

It is postulated that an electrical scanning mechanism scans back
and forth across the photosensitive portion oif the cone in a cyclic manner,
as 1s indicated. The effect of this scanning is to produce the waveforms
shown in Fig. 5b for the wavelengths corresponding to the energy distribu-
tions in Fig. 5a. The lower dashed waveform of Fig. 5b is produced by a
mixture of two monochromatic lights, a red plus a violet, which combined
to form a magenta color sensation.

Neglecting harmonics above the second, the yellow and blue wavelengths
generate first harmonics of opposite phase, while the magenta (i.e., violet
plus red) and green wavelengths generate second harmonics of opposite phase.
For the particular wavelengths considered, blue, green, yellow, and
mageunta (i.e., violet plus red), simple waveforms are produced. Intermedi-
ate wavelengths generate both first and second harmonics. It is signifi-
cant and desirable psychologically that magenta (which is a purple red)
is a natural primary in this theory, rather than red, even though magenta
is not a spectral color.

Evidence indicates that the waveforms are demodulated in the retina
to form d-c signals of opposing signs which produce the blue-yellow and
green-magente. (or green-"red") sensations. The waveforms are filtered
to leave the average value, which gives the black-white, or luminosity,
sensation.
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Figure 6 gives a plot of the yellow-blue a-c signal vs the green-"red"

(or magenta) a-c signal for spectral lighls of equal energy. The numbers
along the curve show the wavelengths in millimicrons. The shaded regions
give the approximate color sensations evoked by these wavelengths under
normal viewing conditions. The plot was calculated from standard color
mixture data plus a knowledge of the wavelengths at which various types

of color-blind individuals experience a grey sensation. The derivation

of this plot was given in Reference (2), but is beyond the scope of this
paper. Figure 6 shows that our green-"red" sensation is really a green-
magenta sensation.

FURTHER CONSIDERATIONS OF ANALOGY

A confusing aspect of the analogy between angular discrimination in
radar and wavelength discrimination in color perception is that two os-
cillation modes are used in color perception whereas a single oscillation
mode is adequate for radar angular discrimination. The reason for this
difference is that a radar performs angular discrimination on a single
target, whereas a receptor of the eye experiences many different wave-
length regions simultaneously and requires an additional perceptual
dimension to resolve wavelength mixtures.

For example, consider an ideal radar which has a linear error re-
sponse as shown in Fig. 7a. A target at angle ©, produces an error sig-
nal of +1, one at ©, produces zero signal, and one at ©3 produces a sig-
nal of -1, Thus for single targets, the radsr can determine the angle
from the value of error signal. However, if there are targets at angles
61 and ©3 simultaneously, the error signals for the two targets cancel,
and it appears like there is a single target at 02.

The ambiguity caused by multiple targets can be removed by using an
additional scanning mode, which generates a characteristic of the form
shown in Fig. b. If multiple detectors are employed, a third detector
can be used which subtracts its output from the sum of the other two.
The targets at angles ©;, ©p, and ©3 produce signals in this second mode
B corresponding to points indicated by (1), (2) and (3).

When the signals from the two modes A and B are plotted on orthogonal
axes, the plot of Fig. Tc results. This figure shows that if targets
appear simultaneously a means has been provided for defining in an un-
ambiguous sense the general positions of the targets, even though the
radar cannot break the multiple target return down into its separate com-
ponents to determine the exact positions of the separate targets.

The dashed circle in Fig. ¢ shows the analogous color wheel, and how
the color sensations are oriented around the wheel. By using two chromatic
coordinates in color tracking, the eye is able to distinguish a wavelength
region at the center of tihe tracking zone (i.e., at point (2) in the yellow-
green) from the sum of two wavelength regions at the ends of the tracking
zone (at point (1) in the red and point (3) in the blue, which combine to
produce point (4) in the purple).

Thus, two chromatic coordinates are required for the eye to distinguish
among the various spectral regions in an unambiguous manner. For this
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reason the eye requires two scanning modes for color discrimination, where-
as a radar system tracking a single target needs only one.

It was pointed out tnat a radar using angular scan can te deceived
if the target transmits a jarming signal modulated at the angular scan
frequency. If the eye receptor uses a scanning mechanisms one would
therefore expect that a simiiar deception might be achievavle. This is
indeed the case. When white light is modulated at frequencies *n the
range of 10 cps to 20 cps, chromatic sensations are produced vhicih are
called Fechner colors. The frecuency at which Fechner colors are observed
increases with light intensity, which appears to indicote that the eye in-
creases its scan rate wita increasing light intensity.

SUMMARY

Although the scanning principle is a standard approach for periorming
discrimination tasks in electronic systems, as far as tine author can deter-
mine it has never been considered as a means of explaining thne wavelength
discrimination function performed by the eye in color vision. All pre-
vious theories of color that have proposed plausinle means for converting
light energy into neurological color signals appear to be based upon the
miltiple-detector principle of wavelengtn discrimination.

This paper has applied the scanning principle of discrimination to
color perception and finds that it appears to provide a very simple ex-
planation for "the enigmn of color vision." Because tiis new theory of
color is based upon a detection principle which is fundamentally dif-
ferent from that of previous color theories, it opens up en entirely new
approach to the color phenomenon.
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EXPERIMENTS IN ADAPTIVE PATTERN RECOGNITION

James S. Bryan
Advanced Technology Laboratory
Philco Corporation
Blue Bell, Pa.

Introduction

This paper presents some initial results of experiments carried
out at the Philco Scientific Laboratory with adaptive pattern recognition
systems similar in concept to the Perceptron. Figure 1 is a schematic
representation of the kind of device under discussion. An object is
imaged upon a matrix of photoreceptors whose outputs are quantized to
either ONE or ZERO. Elements of the quantized image are then
weighted with plus or minus values and brought to a summation point at
the input of a threshold commonly called an A unit. Many such A units
are used and their outputs are variably weighted to a subsequent sum-
mation and threshold unit usually called an R unit. The system is
adaptive to the extent that the second layer of weights is adjusted by
some training rule to achieve separation of two training classes by
means of the R unit responses. The system's power of generalization
is then tested by noting its responses to ''unknowns, ' i.e., members of
the two classes to which it has not before been exposed.

Experiments described in this paper were carried out using two
entirely different techniques to optimize the adaptive weights: correc-
tive training as used by Rosenblatt, l and Bayes's hypothesis weighting
assuming statistical independence of A unit states. One purpose of
this experimentation was to compare and contrast these two approaches.

The corrective training algorithm used was as follows:
Corrective Training Algorithm
a. Test alternately, members of the two dichotomous classes.

b. When the weighted summation at the R unit input lies on the
correct side of the threshold, do not alter the weights.

c. When the weighted summation lies on the incorrect side of
the threshold, modify each weight by a fixed increment whose
sign is so chosen as to move the summation toward the cor-
rect side of the threshold.



Modification To Improve Generalization

d. In order to improve generalization two thresholds are
defined during training for each class with a fixed margin
or zone of uncertainty between them. Any training score
falling in this zone is treated as an error. Performance
error rates, however, are still determined with a single
threshold midway between the two used for training.

Simple Bayes' Hypothesis Weighting

This weighting technique involves computing the joint conditional
probability for each class and picking the larger. In the dichotomous
case where only two classes are involved and the individual A unit
states are assumed statistically independent, Kanal® has shown that

the weighting procedure can be described by the following simple
equations:

N
i=1
where
. mj (1 - ng)
aj = log
n; (1-m;)
(1 - m;j)
cj = log ——
(1- ni)

m; is the mean output of the i-th A unit taken over pattern
Class I.

n; is the mean output of the same A unit taken over pattern
Class II, with A unit outputs assumed to be either one or zero

\ is the likelihood ratio determined by summing all the a;j x;
and c; terms; here the x; represent A unit outputs (one or zero),
and the aj represents the ""adaptive' weight. Although the
assumption of independence is not always justifiable, the simple
linear discriminant function which results from such a hypothe-
sis has proven to be effective in pattern recognition tasks where
some degree of generalization is required.



Therefore, the decision rule is to choose Class I whenever \ > t,
and Class II whenever A\ <t, where t is a threshold determined by
a priori probabilities.

Rule For Random Connections

Unlike the random connections originally used by Rosenblatt, X

which utilize only a few connections per A unit, these experiments
were performed with connections made from every retinal element
(S unit) to every A unit. In general, the positive weights were so
arranged to form a number of random lines on the retina as shown
in Figure 2. Negative weights were applied to the remainder of the
retinal elements of such a magnitude that the total value of positive
and negative weights was approximately equal. The random lines
themselves were generated by photographing an oscilloscope which
was driven by two separate, band-limited random noise generators
on each axis, and the weighted connections were achieved by optical
ixnaging3 and summation. The use of random line connections is
believed to yield A units which are markedly more efficient than those
which use random point connections. This technique was first
mentioned by Roberts, 4 and subsequently Gamba~ has shown the
method to be quite effective in a number of recognition tasks.

Experimental Technique

All of the experiments discussed in this paper were performed
by computer simulation using special purpose hardware for computer
input. The equipment shown in Figure 3 was used to perform optically
the first layer weightings and summations. This equipment has been
described by Hoffman~ and consists of a 35 mm transport which
carries an endless loop of random line masks through the image plane
of a slide projector. When the light passing through a particular mask
exceeds a preset fraction of the light passing through the sample slide,
a ONE is punched on paper tape. As the series of masks pass the
image at the rate of 24 per second, the corresponding A unit decisions
are punched on tape and become the input for a high speed computer
(the Philco 2000) which simulates the operation of subsequent layers.
This combination of hardware and computer for simulation has been
found to be well suited to studies where a large number of training
samples must be used to obtain statistically meaningful data.

Test Material

Figure 4 shows examples of the three kinds of image classes
used to test and evaluate the systems under discussion. In order of
increasing difficulty these are:



(1) Hand-print alpha-numerics with considerable size variation,
but roughly centered in the field of view.

(2) Three kinds of normal, human, white blood cells: poly-
morphonuclear leucocytes whose nuclei have two or more
segments; monocytes which have nuclei containing a single
continuous structure, and lymphocytes which have a single-
bodied nucleus more compact and dense than the monocytes.

(3) Gray-scale aerial photographs taken at approximately the
same altitude and sorted into five classes: bridges, roads,
housing developments, urban areas, and open land. Photo-
graphs were processed to emphasize contrast but no other
preprocessing was employed.

Sample Sizes

For the hand print problem, 120 samples of each character
were used with 80 each for training and 40 each for testing perfor-
mance on unknowns. In the case of the blood cells, in all, 50 of each
class were available, 30 for training and 20 for testing. For the
aerial photographs 83 of each of the five catagories were available,
48 for training and 35 for testing. In some cases larger training and
testing populations were obtained by presenting each sample in four
rotations.

Performance

In each case the level of challenge was chosen to give large
enough error rates to permit meaningful comparisons. Initial ex-
periments with machine print (variable font typewriter material)
indicated that errors occurred so infrequently that systermn compari-
son would be difficult using that problem. An initial small sample of
constrained hand print also yielded low error rates (1% on individual
dichotomies). However, a subsequent larger sample was collected
with a wider range of style and size variations, and this gave con-
siderably increased error rates. Results quoted are for this second
sample. Table I presents system results obtained on the unknown
test samples. In this table no attempt is made to compare the two
techniques. Where the two techniques gave different results the best
results are shown. In each case it is clear that some degree of
recognition is being achieved, since error rates are significantly
below those which would be predicted by chance. Yet in no case is
the error rate low enough to offer promise of useful commercial
application without considerable improvement, and in the case of
hand print, better results have been obtained by other investigators
using deterministic feature extraction

il



TABLE I

CLASSIFICATION ACCURACIES OBTAINED
FOR THE SYSTEM ON UNKNOWN SAMPLES

Hand Print Blood Cells Gray Scale Aerial
Photographs

Classification 65% 82% 39%
Accuracy over A-H 3 catagories 5 catagories
Several (chance 12.5%) (chance 33%) (chance 20%)
Catagories
Accuracy for 94% 88% 84%
Single Cvs. A-H one class vs. one class vs.
Dichotomy (chance 50%) other two another

(chance 50%) (chance 50%)

Comparison of Corrective Training vs. Simple Bayes' Weighting

Only one clear difference appeared between the two techniques in
the course of some fourteen experiments in which their performances
were compared. With the sample sizes used, corrective training
nearly always converged to a zero error rate (perfect identification)
over the training sequence, whereas Bayes' weighting resulted in
sizeable error rates in most cases. When the two systems were
tested on unknowns, however, their performance was indistinguishable.
Figure 5 presents two plots of error rates for unknowns tested on the
two systems over fourteen experiments. The initial six experiments
were with the small sample of hand print previously mentioned. For
other experiments with larger error rates, although individual scores
differ, this difference appears to lie well within the noise level of the
error-rate determination. From these data it appears that corrective
training produces a false optimism when evaluated over the training
sequence only. The mechanism for this apparent ability to "'memorize"
a training sequence becomes evident when one considers that for cases
where the number of training samples is equal to or less than the
number of A units, the system can be represented by a series of
simultaneous linear inequalities with more unknowns than inequalities.
Each training sample represents an inequality and each adjustable
weight an unknown. In such a case, a solution (zero error rate) can
almost always be found.




A few experiments were run with much longer training sequences
(several examples per A unit). For these cases, although a terminal
error rate did appear for the training sequence, no improvement was
observed for the error rate on unknowns.

Some insight into the mechanism of corrective training can be
obtained from Table II. Here the form of corrective training is a
slightly different one suggested by Gamba, though the same basic
principles apply. The first step or iteration represents the results
for simple Bayes' weighting computed over the training sequence. For
all subsequent iterations, the Bayes' weights are computed for a modi-
fied training sequence which consists of the previous sequence with the
errors re-introduced to be counted twice. Notice that although the
training scores quickly converge to a low error rate, the scores on
unknowns remain unmodified after the first few iterations. Although
the error rate decreased slightly for corrective training in this ex-
periment, data taken over many experiments indicate that it will often
increase as well,

TABLE II

EFFECT OF CORRECTIVE TRAINING ON BLOOD CELL PROBLEM
(first iteration represents results for simple Bayes' weighting;
subsequent iterations show effect of reintroducing
training errors into weighting computation)

Training Unknown
1st iteration 12% 22%
2nd iteration 9% 22%
3rd iteration 8% 22%
4th iteration 3% 18%
5th iteration 3% 18%
6th iteration 3% 18%
7th iteration 1% 18%
8th iteration 2% 18%

The Effect of Increasing Number of A Units

The question of how performance is effected by adding more A
units has received considerable attention from a number of investi-
gators. Results obtainedin our experiments appear to indicate that °
although infinite Perceptrons have infinite power to memorize training

il



sequences, their ability to generalize is quite limited and is not much
greater than would have been obtained with 500 or so A units. The
analysis of experimental data which follows is not conclusive in this
question since it ignores third and higher moments, yet it does yield
some insight into the effect on performance of statistical dependence
among the weighted A unit outputs.

If one plots a histogram for the weighted summation at the input
of an R unit, taken over many test examples, one obtains curves
similar to those shown in Figure 6, showing two separate distributions
for the two classes with the overlap of the two distributions defining
the error rate. To the extent that one can neglect the effect of third
and higher order moments, the error rate is determined by the vari-
ance of the two distributions and the difference of their means. But if
one considers the individual wegighted firing of an A unit to be a random
variable Xk with a variance o then the variance of the sum of random
variables (S,) produced by all A units is given by the well known ex-
pression

N
2
Var (Sg) =) o, + 2 ) GOV (Xj Xy
k=1 j’k

the last sum extending over each of the (2) pairs (Xj X,) with j <k. It
is a relatively simple matter to compute Var (S,) and Zcrk from
experimental data. When this was done for a series of sixteen experi-
ments in which from 80 to 160 A units were used, it was found that in
every case the variance of the summation into the R unit, Var (S,),
was larger than the summation of the individual A unit variances,
usually by a factor of four or five. Thus the results implied that the
summed covariances were the dominant factor in determining error
rate. To obtain a quantitative estimate of the effect of the increasing
number of A units it was necessary to assume an average covariance
per A unit pair (COV), an average variance per weighted A unit (tr]z(),
and an average correlation coefficient (p), such that

- COVv
i =
ok

Then the R unit summation is divided by N (the number of A units) to
keep the difference of the two means constant as N is varied. This
then results in dividing Var (S,) by N2 to obtain a new variance (0'2)
for the normalized distribution. Carrying out this step one obtains



Var (Sp,) 5 ok N (N-1)
% = 0o = + ) CcOoVv
N N N
or >
og - CcOoVv

2 ——

g = + COV
N

Thus, the variance of the normalized distribution approaches COV, the
average covariance per mask pair, as N approaches infinity. Alter-
natively one can state this relationship in terms of p, the average
correlation coefficient per mask pair, obtaining,

2 _ 2 1= B =
o¢ = op N )
In so far as error rate is determined by the first and second moments
of the two distributions, it is obvious from this last expression that the

advantage of additional A units falls off rapidly after N = 1/p, and there
is little utility in having more than N = 10/p A units.

Thus far in order to preserve generality, no assumptions have
been made concerning the exact shape of the distributions. Although
some readers will consider the assumptions rash and unjustified, in
order to relate N and p more directly to error rate, the family of
curves shown in Figure 7 were plotted for the assumptions of Gaussian
distribution and equal variances for the R unit summation considered
over each of the two dichotomous classes. Here error rate is plotted
as a function of Np for problems of varying difficulty,that is, different
values of (A mean / o). The experimental points shown are for various
experiments for which p was determined. N was not a variable in
these experiments so that the points are not expected to follow the
curves. They are included only to show how closely some of our real
experiments approach the terminal error rate predicted with these
assumptions for an infinite number of A units. In Figure 7 the double
triangles represent results obtained on an 80 A unit machine at the
University of Genoa by Gamba. 2 The single triangles represent results
obtained on a 160 A unit machine and the circles are results obtained
‘with a population of 25 '"best' A units selected from an original popula-
tion of 160.



Conclusions

The comparative results for corrective training and simple first-
order statistical procedures appear to offer no preference of one
technique over the other except as dictated by the economics of imple-
mentation. Further, both analysis and experiment appear to indicate
that for very large numbers of A units, performance approaches
asymptotically to a residual error rate which for difficult problems
may be quite large. More data need to be gathered on the subjects of
A unit efficiency and terminal error rates. In justice to the Percep-
tron it must be said that it does solve problems which can not be
solved by a single majority logic element (template matching). In
order to improve the system further to achieve useful error rates on
difficult problems, we are currently experimenting with higher order
statistical techniques, and the use of statistical principles and pro-
cedures to organize both the presently random first layer, and other
additional layers as well.
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RECOGNITION OF SOUNDS BY COCHLEAR PATTERNS

William Fleming Caldwell
Bioacoustics Laboratory
1725 North Swan Road
Tucson, Arizona

Abstract

An electrical analog of the human ear has been developed to pro-
vide real-time cochlear patterns of subjective loudness along the basilar
membrane, Resulting spatial patterns may be analogous to those found in
the auditory centers of the central nervous system, It is hypothesized
that cochlear pattern shapes are of primary importance in the recognition
of sound, It is further hypothesized that the cochlea performs a partial
analysis of the sound and that the higher analysis centers of the central
nervous system perform additional analyses. Concepts and processes of
analysis and recognition are developed. Analysis is discussed from the
viewpoint of an information mapping process in a multidimensional space,
Recognition is discussed as a process of locating unknown points (patterns)
in multidimensional space by relative measures to known points, An experi-
ment is described which demonstrates the similarity in recognition between
the human and the analog using a recognition function based on cross cor-
relation.

Introduction

The following work has been accomplished subsequent to the de-
velopment of an electronic analog of the human ear which displays patterns
of loudness along the basilar membrane of the cochlea. (1,2,3). The study
is devoted to the theoretical aspects of recognition of cochlear patterns
and to an experimental demonstration of their recognition,

It is hypothesized that the sound-to-pattern transformation
achieved by the ear constitutes a partial analysis of sound, and that sub-
sequent analysis of the pattern by the central nervous system provides
recognition of the pattern and, thereby, recognition of the sound. (4,5,6).

In this study the loudness converted patterns of basilar membrane
velocity will be used. From the properties of the cochlea, patterns must
have fixed length, equal to the length along which sensory structures are
distributed, There may be a discontinuity in the pattern only at the heli-
cotrema, The pattern is mono-polar in that it represents an absolute magni-
tude, It follows that the general cochlear pattern of spatial period L may
be described as a function £(x) > 0, where £(x<0) = f(x>L) = 0.
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Pattern Theory

The pattern theory (4,5,6) constitutes a general theory of
sensory stimulus recognition. In sound recognition the theory may be
described with reference to the operation of the cochlea, The dynamic
parameters of the cochlea are such that the energy associated with dif-
ferent frequencies tends to localize in different regions along the
cochlea, high frequencies near the stapes and low frequencies near the
helicotrema. The sensory structures convert this energy into a spatial
pattern of loudness along the cochlea, The fundamental concept of the
pattern theory of sound recognition is: Sounds are recognized by means
of the shape of the spatial pattern of loudness. The recognition of time
varying sounds such as speech corresponds to the recognition of a three-
dimensional surface of loudness in space and time,

Pattern Analysis and Recognition

A common artifice in communications theory is the construction
of a geometrical signal model in abstract multidimensional space., Such a
model will be introduced here to provide a clarification of the recogni-
tion process. A signal is defined as a desired input to a communication
system and is generally mixed with undesired inputs defined as noise,
Noise is generally considered to enter the system independently of the
signal and to affect observations according to how it and the signal are
combined,

The analysis of a signal may be thought of in terms of a mapping
process, in which the signal plus the noise is mapped onto a multidimensional
signal space (n-space). In this space the signal plus noise is represented
by a region about the point that represents the signal alone. The size of
this region reflects the uncertainty about the signal due to the noise.

There are many permissible mappings of a particular ensemble of
waveforms. The choice of a signal space for mapping is determined by the
characteristics of the signal and the desired analysis process, The initial
analysis will assume that, in the case of cochlear patterns, the source must
draw the signal from a limited ensemble of patterns, All of the possible
distortions of the limited ensemble form the ensemble of all-possible sig-
nals from the source,

The limited ensemble of patterns may be represented by regions
in n-space, so that any point in a region may be termed a selection from
the limited pattern ensemble, Thus each pattern from the ensemble of all-
possible patterns will fall within a region which is designated by a pattern
from the limited ensemble,

The recognition of an unknown pattern is the determination of the
region in n-space onto which the unknown pattern is mapped. If the choice
is forced, the ensemble of all-possible patterns must be contained within
the signal space. Generally, however, neither the mapping nor the space is
known, and the relative position of an unknown pattern must be measured by
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determining its differences from each member of the limited ensemble, The

region associated with each point of the limited ensemble is determined by
the measurement of ''nearness,'

The word ''mearness' introduces the concept of distance in n-space,
and suggests the notion of an error criterion. So as to promote practical
utility, the relative weighting of the information-bearing components of
the signal must be determined by the mapping of the analysis process and
the error criterion of the recognition process. The choice of an optimum
mapping for a recognition process is dependent on the relative importance
of the information-bearing components of the signal. The mapping may be
selected to emphasize the information-bearing and de-emphasize the non-
information-bearing parts.

In the study of human sound recognition, the hypothesized analysis
and recognition processes must ultimately be compared with human performance
under similar conditions, The choice of a signal space for sound recogni-
tion is very difficult--the exact analytical solution for an optimum mapping
is probably impossible, There is, however, a system for which certain par-
allels can be drawn which has undergone optimization over a long period of
time--the human hearing system, By constructing analysis and recognition
devices similar to the human, it should be possible to achieve some form
of optimization for a speech recognition system,

Cross-Correlation as a Recognition Process

The Cauchy-Schwarz Inequality for real integrals is

L - L 2 L 2
[jofcx) g(x) dx| = [ [£0] ax [ [aGT'ex Eq. 1

The cross-correlation function is defined as

L
f f(x) g(x) dx Eq. 2
0

and the normalized cross-correlation function is defined as

L
J £ 80x) ox

Eq. 3

/L 2 - 2
fotf<x>J dx Iofs<x>l dx



Assume that f(x) is an unknown pattern which is to be recognized
: th . s
and that gm(x) is the m pattern from a dictionary of patterns containing

M possible patterns, The dictionary contains the ensemble from which all
patterns are drawn, and to which all unknown patterns are to be compared
for the process of identification that constitutes recognition. Both func-
tions are real, non-negative, and of spatial extent L, Thus

f(x) -- the pattern to be recognized

gm(x) -- the mth pattern from a stored ensemble of M patterns

The cross-correlation function is a maximum value when the two
patterns are proportional, in which case the normalized cross-correlation
function achieves its maximum value of unity. It should also be noted
that the normalized cross-correlation function is independent of the
magnitudes of the two patterns.

The right side of Eq. 1 may be thought of as the product of
the energy of f(x) and the energy of gm(x). Since the gm(x) are to be

stored in a dictionary, it is possible to adjust all of the gm(x) so that
they have equal energy, as

L 2 2
I Igm(x)l dx = A", wherem = 0,1,2,3,...M Eq. &4
0

This normalizes all patterns stored in the dictionary.

Consider the unknown pattern f(x). In any particular case of
recognition, this pattern will have total energy set by the incoming
pattern magnitude, Thus

L
Hi ]f(x)lzdx = B Eq. 5
0

where B is a constant for any particular pattern to be recognized,
Using the Cauchy-Schwarz Inequality and these conditions, there is ob-
tained a further inequality yielding recognition. This is

L
jof(x) g (x) dx < AB Eq. 6

Thus the cross-correlation function on the left will, if computed for all
of the M patterns in the dictionary, be a maximum for the one which is pro-
portional to the unknown pattern. Now envision a device that computes the
correlation function of f(x) and each of the g (x) and then selects that

g (x) showing the maximum correlation function. This is recognition! Note
that the only normalization required is that of the stored pattern, a com-
paratively easy task,



Next consider the problem where f(x) does not exactly correspond
to any of the g (x) due to noise or because of a limited dictionary of
patterns, The mean-square error between f(x) and gm(x) is

2 - 2
SR CRERCTR Eq. 7

which expands as

2 t 2 % 2 L
e” = f0|f(x)| dx + jolgm(x)l dx - 2[ £(x) g (x) dx Eq. 8
0

: 2 T oo :
Since € can only be positive or zero, conditions obtain as

s 0 iE ey $ g_(x)

€2 =0 if f(x) = gm(x)

Again using pattern energies and the condition that all gm(x) have the same
energy, there results

L

- i 2j0f(x) g (x) Eq. 9

€ = B2 + A2

Thus if f(x) is not identical to one of the (x), the elementary
recognition device will select that g (x) which shows the least mean-square
error with f(x). In addition, an equivalent device may be hypothesized
which measures the mean-square error between the incoming pattern and each
of the stored patterns, and then picks as the recognized pattern the one
having the least mean-square error, -

While the present interest is in hypothesizing a process that
may be related to the human, it is obvious that in doing so the fundamental
basis is discussed for a recognition device which might be incorporeted in
a general speech communication system, Thus the two devices, human and
machine, may to a degree be treated interchangeably throughout this dis-
cussion.

In hypothesizing analysis and recognition processes, the error
criteria are not actually known and thus may not be used to establish the
correct relations, As more data become available, it may be possible to
compare human and machine recognition processes so as to evaluate human
error criteria,
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Cochlear Pattern Analysis of Eight Vowels

The theoretical concepts of cochlear pattern recognition have
been developed to the extent necessary for sustained sounds. These tech-
niques will now be applied to eight sustained vowels and the results com-
pared with those for human recognition.

In this study, both voicedand whispered vowels will be used.
Although the whisper excitation spectrum is similar to a random noise,
the spectral shape of whispered vowels is not greatly different from
that of voiced vowels (except at relatively low frequencies). As will
be shown later, the recognition of voiced and whispered vowels is not
noticeably different,

Eight vowels were selected to be used in experimental studies
of recognition. The selected vowels are representative of the range of
sustained speech sounds, and are given below in both phonetic symbol form
and in a form which more literally indicates their sound,

Phonetic Approximate Example of
Symbol Sound Sound
v (ee) eat
¥ 4 (i) it
£ (eh) bet
R (a) can
a (ah) father
A (uh) but
J (aw) awe
“ (00) blue

The eight selected vowels were recorded, both voiced and
whispered, A tape was then made to present, in random order, 48 voiced
(whispered) vowels, each vowel being presented six times., The observers
were presented with samples of about one second duration, and were in-
structed to make a check mark indicating which vowel was recognized.
This tape was presented to a total of 32 trained observers and the re-

sults tabulated into confusion matrices, one for voiced vowels and one
for whispered vowels,

An additional tape was made using the same speaker as used for
the human recognition studies, This tape had longer samples, of about
seven seconds each, so as to implement oscilloscope observations. The
tape was used to excite the analog ear and the resulting patterns were
photographed. Conditions were maintained constant throughout the series
of photographs, and at least three samples of each vowel, voiced and
whispered, were taken,



The average pattern was used to represent each vowel. The
patterns were quantized to a magnitude scale of 40 levels, It will be
noted that the magnitude scaling is arbitrary and chosen for convenience
in manipulation in the recognition processing. The procedure selected
was to sample the patterns at 19 points along the cochlear pattern--the
end points, which are necessarily zero, are included in the tabulations
for clarity, The sample data estimates of the necessary functions were
then easily computed, The sampled data estimate pattern of the normal-
ized cross-correlation coefficient is

Sy A
P _ Eq. 10

21 21
S;? . ;B?
g1 ‘e

21
S;.b.
0

The cochlear patterns of vowels used in the recognition studies
are tabulated in Tables I and II.

Voiced Vowels

Quantized Pattern Shape Data

v A A J

Sample No. (€)1 (eh) (@) (am) @) (a0 (o0)
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.5 0.5 0.5 0.5 0:5 1.0 0.5 1.0
2 120 1.0 2.0 1.0 1.0 2.0 1.0 2.0
3 255 4.0 355 2.0 2.0 4.0 2.0 3.5
4 5.0 7.0 5.0 4.0 4.0 7.0 3.0 6.0
5 8.0 10.5 9.0 6.5 5.0 11.0 6.0 10.0
6 15.0 14.0 13,00 10.0 7.0 14.0 8.5 14,0
7 16.0 14.5 14,00 12,5 7.5 12,0 8.0 12,0
8 13,0 13.5 14,0 14,5 8.0 10,0 6.0 10.0
9 5.0 9.5 1.5 15,0 10.0 9.0 5% Q5D
10 2.0 7.0 8.5 14.0 15,0 195 8.5 10.5
11 0.5 4.5 5.5 1010 17.0 10.5 12,0 1.5
12 0.0 3.0 4,0 8.0 1545 75 14,5 10.0
13 0.5 2.5 39 7.0 7.0 5.0 14.0 6.0
14 05 3.0 3.0 3.0 30 3.0 6.0 4.5
15 1.0 3.0 155 1.0 1.0 1:5 3.0 4,0
16 1.0 2.0 0.5 0.5 0.5 1.0 0.5 3.0
17 0.5 1.0 0.0 0.5 0.5 1.0 0.5 2.0
18 0.5 0.5 0.0 1:0 1.0 2.0 0.5 0.5
19 0.0 0.0 0.5 1.0 1.0 1.5 1.0 0.5
20 0.0 0.0 0.0 0.5 0.0 1.0 05 0.0
21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pattern Energy 779 963 958 1177 1130 1061 922 1112

Pattern Area 72.5 101.0 99.5 112.5 106.5 115.5 101.5 120.5
Average Energy 1013
TABLE I



Whispered Vowels
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13
14
15
16
17

18
19
20

21
Pattern Energy 900

1095
112.5

986
91.5

1163
103.0

794
82.5

1035 891
103.0

103.5

786
80.5

Pattern Area 81.5

Average Energy 956

TABLE II

The normalized cross-correlation coefficient was computed for the voiced

The results are shown in the cor-
The matrix shows a normalized correlation
coefficient of about 0.9 or greater in all cases except one,

and whispered patterns for each vowel,.

relation matrix of Figure 1,



Cross-Correlation Matrix of Voiced and Whispered
Vowels for the Normalized Cross-Correlation Coefficient

Voiced Vowels

i ¥ 5 E | R @ A 3 «
(ee) | (1) (eh) | (a) (ah) | (uh) | (aw) | (oo0)

i 0.90
I 0.90
E 0.98
= 6
% ‘ll 0.9
S
- a 0.94
o
o A 0.83
S
) 0.92
0.93
QU
FIGURE 1

The normalized cross-correlation coefficient was computed for all pairs
of voiced and of whispered vowels. The information is summarized by de-
fining a recognition matrix, The recognition matrix is a combination con-
fusion matrix and correlation matrix, There is, however, one important
difference in that vowel confusions that are symmetrical about the diagonal
are combined by summation so that the recognition matrix is symmetric,

This alters slightly the form of the recognition data, However, confusions
which are symmetrical about the diagonal have identicalnormalized cross-
correlation coefficients, so it does not matter how two vowels are con-
fused--the associated correlation coefficient remains unchanged,

The number in the top of each cell of the recognition matrix is the
normalized cross-correlation coefficient, The number in the bottom of
each cell is the number of recognitions from the human recognition tests,
These recognition matrices are shown for voiced vowels in Figure 2 and

whispered vowels in Figure 3,
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Recognition Matrix of Voiced Vowels

Using Cross-Correlation Analysis

P | I |E€ |R [ | A] O] «

(ee) | (1) | (eh) | (a) |(ah) | (uh) | (aw) | (oo0)
4 1.00 [0.95 | 0.92 |0.77 |0.52 | 0.82 | 0.55 | 0.59
A 190 [ 4 0 0 0 0 0 2
1.00 | 0.99 | 0.91 [0.72 | 0.94 | 0.66 | 0.93
i 154 87 0 0 5 1 10
1.00 | 0.95 {0.78 | 0.95 | 0.76 | 0.94

& 162 23| 3 2 0 I
1.00 [0.91 | 0.94 | 0.78 [ 0.94

] 173 | 12 9 3 0
1.00 | 0.94 | 0.93 | 0.91

aQ 146 38 35 2
1,00 | 0.87 | 0.99

N 153 4 2
1.00 | 0.90

J 182 0
1.00

W 182

FIGURE 2
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Recognition Matrix of Whispered Vowels
Using Cross-Correlation Analysis

(ee) | (1) (eh) | (a) (ah) | (uh) | (aw) | (oo)

v 1.00 |0.96 0.86 |0.64 0.46 | 0.31 | 0.28 | 0.79
L 188 2 2 0 0 0 0 0

1.00 0.94 0.71 0.46 | 0.39 | 0.35 | 0.87
159 43 1 0 1 0 0

1.00 |[0.88 0.69 | 0.63 | 0.49 | 0.96
131 | 53 3 2 0 0

1.00 0.92 | 0.90 | 0.88 | 0.95
176 12 1 1 0

?E3 ™M 4

1.00 0.86] 0,93 | 0.8

a 132 33| 42 3
1.00| 0.98 | 0.78

A\ 169 2 1
1.00 | 0.74

) 180 1
1.00

Lk | 191

FIGURE 3

To compare the results of human and machine recognition, the
pairs of numbers from recognition matrices were plotted on the scatter
diagram of Figure 4, An ideal recognition system would recognize a
pattern only when the normalized correlation coefficient is equal to
one. The addition of noise into an ideal system has the effect of in-
troducing errors., The errors are evidenced by the confusion of patterns
having high correlation coefficients, The theoretically correct curve
should be expected to have a shape such as that defined by the points on
the scatter diagram,



RO s o o == 0 S s i I ()
i
B il :
9 °
l: g
§ 120 }— |
Q
3 I
> I
80
L |
: ",
g 40 :‘. I
=9 * .|
Pd s,
O b—c——c — o0 ¢ ° 0eoe o O %0 %508% 0 '3‘&%3}.4
I } | | I I
o 0.2 o.4 0.6 0.8 1.0

CORRELATION COEFFICIENT

FIGURE 4, Scatter diagram for cross-correlation
recognition



= T

Summary

The scatter diagram is thought to sufficiently define the re-

sults--it indicates recognition. It must be kept in mind that it is the
error criterion used in the recognition analysis that determines the
amount of difference between patterns., If the sound-to-pattern transform-
ation and/or the error criterion are changed, the relative position of the
sound will be changed. In terms of the geometrical concept of analysis
and recognition, the analysis and recognition processes are determined

by the mapping and the measure of '"mearness,"

Acoustical speech is a '"channel language' when interpreted in

terms of the ultimate receiver, the human brain. It is believed that more
emphasis should be placed on the end language and less on the channel lan-
guage, The concept of cochlear patterns is believed to be a powerful ap-
proach to the subject of speech analysis and recognition. The problem is
not made simple, but the concept combines work from a number of fields
into a common approach,

6.
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MECHANICS OF PATTERN RECOGNITION
C. W. deCeault, The Boeing Company

I. INTRODUCTION

Apropos of the situation in which the community of scientists and
engineers find themselves in the study of pattern recognition - and
indeed in the general area of inquiry into cognitive processes - is
the introductory statement made by Einstein [1] in an address at
Columbia University.

"But science in the making, science as an end to be pursued

is as subjective and psychologically conditioned as any other

brand of human endeavor - so much so that the question what is

the purpose and meaning of science receives quite different
answers at different times and from different sorts of people."

One might argue that pattern recognition is really a very old
subject of inquiry; for philosophers and psychologists perhaps it is.
But as a subject of inquiry in the exact sciences, it is very young.

As a natural outgrowth of this new inquiry there has arisen a need for
explicit and exacting definitions, descriptions, and measures that are
capable of embodying an enormous and growing mass of evidence concerning
the nature of pattern recognition. From the scientists attempting to
make fruitful gains in their knowledge of pattern recognition, there have
evolved a number of definitions of pattern recognition. A study of

these various definitions indicates that an increasing number of re-
searchers are adopting a common definition of pattern recognition; it

is the essence of this definition which we intend to abstract, elaborate
and state formally in part III of this paper.

II, CONCEPTS OF PATTERN RECOGNITION

In the next several paragraphs are sketched the notions and con-
cepts of pattern recognition as rendered by a few notable investigators;
these few samples are believed to be representative of the opinions of
a great many investigators. These statements are taken out of context
and therefore should not be subjected to close scrutiny without con-
sulting the references indicated.

Minot ﬂﬂ states that "A pattern may be defined as an arrangement
of matter or energy or both ...." Kelly [3] refers to Webster's diction-
ary which "defines recognize as meaning to know again, implying that
the cognitive mechanism has seen the object before and learned to know
it." Metzelar [4] gives the following definition: " ... pattern recog-
nition is the solution of the problem of sorting different events into
preassigned classes." Minsky [5] renders his concept of pattern recog-
nition as follows: " ... pattern recognition methods must extract the
heuristically significant features of the objects ..... assigning
names -- symbolic expressions -- to the defined classes,"

David[B]in connection with speech recognition reveals his con-
cept of pattern recognition in the statement: "Such categorization
depends upon abstract properties of the acoustic event, ...." Selfridge
[? says pattern recognition entails " ... extraction of the signifi-
cant features of data from a background of irrelevant detail,"
Dineen,[8 a collaborator of Selfridge, states: '"Our theory of pattern
recognition is that it is possible to reduce by means of a sequence of
simple operations a configuration to a single number or by means of a
set of such sequences to a set of numbers,"



An approach to the problem of automatic pattern recognition is
suggested in the question, '"What to measure and how to process the
measurements," as posed by Abramson and Braverman Eﬂ .

Fischler (10 decomposes pattern recognition into two subproblems
whose solution depends upon a capability of "abstracting significant
features" and "identifying the pattern which gave rise to a particular
set of features." For Sebestyen [11] pattern recognition techniques
provide "a means for characterizing classes from a small number of
their members," and a capability for classifying "a new input stimulus
eeeas a member of one of several classes." Greene [12] mentions a
"crude pattern recognizer capable of recognizing a class of patterns...
the discriminating features, or 'perceptual units' are rigidly built
into the objects to be discriminated."

Lewis [)13] writes on "statistical recognition systems, characterized
by the following two statements: (1) information about the patterns
is stored in the machine in the form of pattern properties or character-
istics and (2) the system's decision is based on the methods of statisti-
cal decision theory." Gill DJQ states that " ... the recognition itself
is a result of a predetermined series of decision rules.

Finally we mention Estes! [15] remark: "An adequate theory of
pattern perception must not only describe the course of acquisition,
but it must also yield predictions as to the likelihood that a learned
pattern will be recognized under changed circumstances."

ITI. STRUCTURE OF PATTERN RECOGNITION

Ultimately ones attempt to define such fundamental concepts and
notions as are involved in pattern recognition are likely to end in
unresolved or unresolvable problems in semantics., However, a set of
hypothesis concerning the relationships among primative terms provides
a definite basis against which factual evidence may be tested and upon
which modifications or revisions may be made. In the following para-
graphs we offer definitions and postulates which are believed to be not
contrary to experimental facts and within which the various concepts of
pattern recognition that have appeared in the literature might be sub-
sumed,

The guiding premise in the following development was that the sig-
nificant aspects of pattern recognition as reflected by certain interpre-
tations of pedestrian, non-technical usage of the words pattern and
recognition require only a technical substance in order to initiate an
adequate theory. The particular sense in which the words "pattern"
and "recognition" are taken in ordinary non-technical usage and which
at the same time seems most amenable to our purpose are as follows Dﬁ]:

pattern: anything shaped or formed to serve as a model
or guide in forming something else.

recognition: to know as identical with something previously
known,

It is from these definitions we wish to construct technical defi-
nitions of "pattern" and "recognition." Most difficult in this task is
establishing a technical counterpart for the phrase "to know," i.e.,
to be cognitive. We consider this problem first.



In ordinary usage, "to know" means to "fix in the memory" or to
be "aware of'" among other interpretations; further the process of cog-
nition does not take place in a vacuum, but in a system. Hence, we
consider the following definitions (analogous to those proposed by
Ashby [17] ):

variable, x3: a quantity which assumes at each instant one
element of a fixed set of symbols,{y]1 assoc-
iated with that variable

cognitive system: an ordered n-tuple of variables denoted by

X = {xl eece xn

state: the n-tuple of symbols assumed at any instant by X:

X(8) = fry (0, oo x (0] x;(D)ey};, 1.0 m for
every t.

With this definition of a cognitive system, no implication of
memory or store is made. Rather the system at each instant has merely
an awareness as reflected by its state. The fixity of the sets {y}.,
from which the variables xj must assume their symbols is postulated
in order to avoid the possibility of an ambiguity resulting from an
arbitrary redefinition of the symbols in the sets {y}i: the tautology
aza, for any symbol, a, occurring repeatedly in a sequence of states
is thus expressly implied.

A recognition system may now be defined as any system which contains
(1) a cognitive system as a coupled subsystem,

(2) a store and retrival, or memory, of any arbitrary set of states or
sequences thereof,

(3) a ruleR, for establishing whether or not any two states have the
same identity,

Finally a pattern recognition system is a recognition system which
contains a means of formulating rules Ry, Ro, R ... etc which establish
identity among various sequences of states; the name assigned to the
rule is the name of the pattern. Further we postulate that although the
rules R} Ry ... are perhaps quite different from one another their
formulation is based entirely on an analogy among various sets of states
or sequences thereof. Here we use analogy in the sense stated by
Polya (18] i.e., "two systems [states] are analogous if they agree in
clearly definable relations of their respective parts.,"

Iv. INTERPRETATION AND PERSPECTIVE

An enormous variety of topics directly and indirectly concerned with
the subject of pattern recognition have been discussed in the literature
[;9,2@] but less in number are the occasions when the respective authors
have taken time to relate their work to the totality c“ the pattern
recognition process. Let us now interpret some aspects of :he profuse
activity of current research on pattern recognition in terms of the
structure suggested in the previous section.

The dichotomization of the universe, U, into a pattern recognition
system, S, and its surroundings, §, can be accomplished with practicable
clarity in nearly all cases of living organisms and automata., Further,
two subsets of entities s¢ S and 8cS are presumed to exist and be
operationally definable by the following scheme. Let I(a,b) represent
the set of interactions between the entities of any two sets, a and b,



Thus s represents the set of sensors in the system of entities S if

I(S-S’E) = ‘P' (1)
and s represents the set of stimuli in 5 if
I(g-;’S) = ‘p (2)

where ¢ is the empty set. Equations (1) and (2) state that the re-
moval of entities s, 5 from S, S respectively, result in a cessation
of interaction between the pattern recognition system and its surroun-
dings.

It is among the set of states resulting from the interactions
1(s,S) that pattern recognition is sought or conducted. The pattern
therefore cannot be said to exist in the surroundings S,but in their
interactions with S. Mention of this simple observation is seldom
made; however, it is felt that a better perspective of the recognition
process can be had by including it in our considerations,

A. Sensors

The sensors utilized by living organisms and the sensors em-
ployed in automata have both received much attention in the past
decade., It is natural that such should be the case, for the
sensors, s, in a pattern recognition system, S, not only link the
system to its surroundings,S, but also they provide an access to
the cognitive subsystem within S and determine in part its state, X.
In the design of many automata as well as in the Gestalt theory
of perception it is presumed or implied that the output of the
sensors form directly the n-tuple of variables defining the cogni-
tive system and their values determine directly the state of this
cognitive systems On the other hand, there exists evidence,
gathered from studies of living organisms (e.g. references[21,22])
that some processing of sensed data occurs prior to the instant of
cognition; the implication is that the variables xj are the result
of an operational processing from many sensors the collection of
which does not directly constitute a part of the cognitive subsystem.
Therefore some of the most complex studies of pattern recognition
systems are concerned with the discovery of the operational relations
between the sensor inputs, ey, and the variables xj: xj(t)=0;j(ej...eq).

B. Data Processing (23]

One class of processing which has received considerable attention
is that in which a functional form or function value remains un-
changed under specified transformations of the arguments.

Moreover, the concept of invariance under transformation is
essential in the classification of a variety of events into one or
another of several defined sets. Since many of the fundamental
principles of mathematics and physics can be most succinctly put
into a form expressing the invariance of a function, a substantial
background in this area has been established. Suggestions have been
made as to the application of these invariances to pattern recogni-
tion (e.g. Hu [24] , Golomb [25] ); yet, the scope in this area needs
broadening,



Invariance of operation of a system under intermittant operation
or failure of components, for example, is a topic which the study of
biological functioning has stimulated; the studies of ven Neumann [26]
and Rosenblatt [27] examplify investigations of this type.

C. Memory

Memory, or the store and retrieval of data is an essential part
of a recognition system. Means of storing and retrieving limited
quantities of data in automata have been studied (e.g. [28,29,30])
theoretically and effected practically in machine computers. In
humans the mechanism of memory remains undiscovered; the multi-
plicity of data that can be fixed in the human memory for the pur-
poses of recognition appears to far outstrip the capacity of even
the largest computers known. Ironically pattern recognition as a
human function appears to be a means of reducing the need for a
virtually infinite and precise store of data as well as a means of
selectively retrieving certain data., While mathematically the
space of all possible combinations of states over a finite duration
is infinite, the context of our hypothesis implies that the rules
Ropy Rl, «.. etc. restrict the possibilities to a small finite number
of subspaces, and thereby govern the store and retrieval of states
or sequences thereof,

D. Logic

As a means of detecting inconsistancies in and of bringing to
light the implication of a set of premises, deductive logic is as
indispensible in the study of pattern recognition as it is in any
other scientific inquiry. But the formulation of these premises by
a weighing of available evidence is an art or pseudo-science reserved
for inductive logic. For example, by our previous definition of a
pattern recognition system, we hypothesized the existence of a sys-
tem which formulates rules, R}, R> «.. etc. by using the inductive
process of analogy. While arbitrary and plausible, other methods
of induction might be used such as the five "canons of induction"
suggested by Mill Bl].

The fundamental problem of pattern recognition is analogous to
the problem confronting one who formulates rules for bidding in
contract bridge; where for successful play the rules must be appli-
cable to any one of the half trillion possible l3-card hands that
might issue from a single 52 card deck. As with the rules evolved
for bridge, the rules Rj;, R> ... etc. formulated in a pattern
recognition system are more likely to be the result of the appli-
cation of inductive logic than a rigorous deductive approach., The
studies in heuristic programming E5,32] and general problem solving
[33,3h] directly concerned methods of solution of this fundamental
problem of induction and consequently are of utmost importance in
the development of the mechanics of pattern recognition.

E. Decision Theory [35]

Whenever a multiplicity of plausible and creditable hypotheses
are formulated, there arises a natural urge to adopt the one which
best fits in some sense the available evidence., Whenever a given
set or sequence of states is encountered, and it must be categorized
as one of a fixed set of patterns, a decision is required to



determine to which member of the set it belongs. Decision theory
and a special branch of it known as hypothesis testing, embody a
formal and orderly structure for satisfying under certain conditions
the aforementioned goals, Numerous instances of the application of
decision theory can be cited in the literature; e.g.., see references
[36,37,38]. Decision theory is well suited to instances where the
evidence is in sufficient volume to warrant statistical analysis,

as for example alpha-numeric character recognition[}?%

CONCLUDING REMARKS

The definitions and hypotheses proposed herein provide: (1) a
basis upon which through modification or rejection and replacement
it is hoped that a unified theory of pattern recognition might be
evolved; and (2) an interim structure within which various aspects
of the mechanics of pattern recognition may be put in perspective.
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I. INTRODUCTION

Flexible neural networks have been built that modify their logic functions by the
adjustment of continuously variable controls. The neurons used in these networks
simulate the biological neuron with its variable firing rate rather than a neuron which
makes a simple binary threshold decision. The variable firing rate of the neuron permits
the analog values of the input signals to yield analog values of the output signals. Neural
logic has been found to be an efficient tool for the recognition of speech and visual pat-
terns and for simulating animal behavior.

Although several kinds of electronic models of the biological neurons have been
builtl, 2,3, only a few neural processes4»5,6 have been investigated thoroughly. This
paper describes the possibilities of performing logic functions that fully utilize the
analog properties found in the biological neuron. Neural logic recognizes a marginal
decision as a marginal decision, whereas binary logic makes no distinction between
a marginal decision and a firm decision. In neural logic, noise and incidental distor-
tions in the input pattern simply decrease the confidence level of the final decision,
while in binary logic such pattern deviations may result in an erroneous decision. The
advantages of neural logic have been realized in stationary as well as temporal infor-
mation processing!.

The analog properties of the neuron have also been found to be advantageous
in the development of adaptive logic systems. In these systems, it is possible to
quantitatively determine the magnitude of the corrective signal that must be applied
to each variable of the system, thus reducing the period of adaptation.

II. CHARACTERISTICS OF THE NEURON MODE L

The characteristics of the electronic neuron model used in these studies are
shown in Figure 1. The two types of inputs, excitation and inhibition, are summed
at the input of each neuron. The neuron has an internal threshold below which there
is no output signal. Once the threshold has been exceeded, the output firing rates of
the neuron are proportional to the net excitation (excitation minus inhibition) in ex-
cess of threshold until a saturation point is reached. Thus, the neuron contains
digital properties by virtue of its threshold, and analog properties that are realized
by the variable frequency of the output pulses.



III. PERFORMANCE OF THE BASIC NEURAL NETWORK

The basic neural network shown in Figure 2 operates from two input signals,
A and B, which may be the output signals of other neurons in the system. This
network itself is composed of three neurons N1, N2 and N3, with variable inter-
connecting weigats. The input to any neuron is determined by the output level
of the driving neuron and its interconnecting weight. The weights are passive
and can be thought of as variable resistors.

It is apparent that the network as shown canhave an almost infinite combination
of input-output relationships, since each of the interconnecting weights and each
of the thresholds of the neurons can be varied continuously throughout their
dynamic ranges. It was therefore decided to limit the performance of the net-
work to functions that are useful for pattern recognition and that permit a ready
comparison with other logic functions. The simplified network, shown in Figure
3, was developed to generate the analog equivalents of the 16 logic functions that
are possible with a two-input digital-logic network. Aside from deleting many
of the interconnections, the threshold levels of the three neurons are set to
zero. Also, it should be noted that certain signal inputs to N3 are summed before
being sent through a weighting element. In this way a single adjustment can con-
trol several inputs. As a result of such grouping, only four variable weights
(W, X, Y and Z) are needed to generate the desired logic functions. An externally
generated signal, Emax, set at the maximum firing rate of the neurons, is also
supplied to the network. e

A detailed study of the logic functions of the network has been made. Figure 4
shows the results of a theoretical analysis of eight transfer functions of the network,
which were obtained by setting each variable control to either extreme of its dynamic
range. The additional group of eight logic functions that can be generated are not
shown, since they are simply the complements of those presented here. Figure 5
shows the results of an experimental verification of the logic. The coordinates on
each figure show the full ranges of the two input signals, A and B. In Figure 4 the
output amplitude of the network is shown as the running parameter. In Figure 5 the
output amplitude is proportional to the brightness.

A detailed comparison of each of these neural-logic functions can be made
with reference to Figure 6, which shows the corresponding digital operations.
For example, the lower right portion of Figures 4 and 5 can be likened to the
digital AND function: the output is at a maximum when both of the input signals
are at their maximum. However, unlike digital or binary threshold logic,
neural logic gives a continuous range of output signals throughout the ranges of
the two input signals. Specifically, in this logic circuit, the output signal is
proportional to the smaller of the two input signals.

The upper right portion of Figures 4 and 5 can be likened to the performance
of a digital OR circuit: the output signal is present whenever either of the input
signals is present. More specifically, this circuit responds to the larger of the
two input signals. The other neural-logic circuits have their digital equivalents,
and can be given corresponding functional word descriptors.



IV. DETAILED DESCRIPTION OF THE NEURAL NETWORK

The operation of the neural network can best be understood by fol-
lowing the signal flow through the network when it is set for AND operation. A
simplified circuit of the AND network is shown in Figure 7, which has been
derived from the circuit shown in Figure 3 by setting control X to the minimum im-
pedance and controls W, Y and Z to the open-circuit condition. An input signal A
will excite Nj as much as it inhibits N2, and an input signal B will excite N2 as much
as it inhibits N1. Therefore, as long as A and B are equal, N1 and N2 will have no
output. Whenever A is larger than B, N1 will have an output proportional to its net
excitation. Likewise, N2 will have an output when B is larger than A. The inputs
to N3 and hence the output of the network will be equal to

A_(AB) _(BA) B
2

Eo= 2 2 z * ()

if the neuron is designed with a transfer function of unity and if the signals to N3
are attenuated by one-half. Since neurons have no output signals when the net
input excitation is less than zero, the associative laws of addition cannot be ap-
plied. Thus, equation (1) can be simplified to the following extent:

Eo = % 33 -% = Aor B, whenA=B, (2)
_A _AB_ B _

Eo =  mEgTHeEe B, when A>B, 3)
il o B o B o

Eo =5 T A, when B>A. 4)

These results show analytically that the output of the network of Figure 7 is
proportional to the smaller of the two input signals.

V. CONTINUUM BETWEEN LOGIC FUNCTIONS

A continuum between the 16 logic functions can be generated by this neural
network by gradually changing each variable weight to any impedance level within
its dynamic range. For example, Figure 8 shows a function obtained by setting W
and Z to minimum, and X to one-half, and Y to maximum impedance, thus generat-
ing a function that is midway between the OR and the EXCLUSIVE OR logic functions.
Figure 9 shows experimentally derived data of a network continuously changing its
logic function.

VI. CONCEPTS OF ADAPTIVE NEURAL LOGIC

The functional continuum between the logic states is useful in building an
adaptive logic system that converges rapidly to the desired logic state. A de-
tailed examination of the network shown in Figure 3 reveals that each of the four
variable weights has greatest effect at the extremes of each of the four quadrants



bounded by the input signal space. Figure 10 shows the position and the extent
of influence of each of the variable weights. These figures also shows two addi-
tional important factors: 1) the effectiveness is distributed linearly, and 2)
controls X and Y affect the entire signal space, while controls W and Z affect
only one-half of this region. Further, it is apparent, from the discussion and
the figures, that any combination of settings of the four variables results in an
output that is the sum of individual outputs. In fact, the equation for the output
of the network shown in Figure 3 is given by

Eo

XB -A) Y + Z (A-B) whenA>B (5)

= Emax

E

5 XA + (E

-B) Y + W (B-A) when B>A (6)
max

where Emax is the maximum value that A or B may attain.

It is now possible to determine a simple adaptive method that can attain
any desired logic function by a series of successive approximations. For each
desired logic function there is a correct output signal for any pair of input stimuli.
Moreover, it is known which weights have the most control over the output signal.
Thus it is possible to adjust the weights in proportion to their relative significance
and in proportion to the amount of error. Random trials of input pairs can there-
fore correct various combinations of the weights, ultimately resulting in the cor-
rect setting of all of the weights.

VII. THE ADAPTIVE SYSTEM

The details of the adaptive system based upon the above described concepts
are shown in Figure 11. The basic neural network is presented at the left of the
figure, showing only those aspects of the circuitry pertinent to the adaptation
process. The magnitude of the error signal is established by subtracting the
actual output signal of the network, E,, from the desired signal, Eq. The magni-
tude of the correction signal for each of the four variable weights is obtained by
multiplying the error signal by the degree of control that each of the weights
exercises for the specific pair of input signals. The degree of control is deter-
mined by signals Cy, Cx, CY and C7z derived from circuit connections that
satisfy the signal relationships given in equations (5) and (6). The actual correc-
tion signals are then applied to the respective weights to bring the performance
of the system more nearly into line with desired performance.

To determine the speed by which the adaptive network modifies its perfor-
mance, a digital computer was programmed to simulate the adaptive system,
Figure 12 shows the results of this analysis. Each point on the curve is an
average of 16 samples of input signal pairs which were programmed to have a
random distribution. The curves themselves designate the error in the adaptive
system after a given number of instructions. Different modes of adjusting the
weights are shown to illustrate typical limitations of practical adaptive networks.
Curve A shows the system performance when for each trial, each variable weight
is fully corrected. Curve B shows the performance of the system when
the maximum weight correction is limited to 10 per cent of its dynamic range.



Curve C shows the performance of the system when the weight correction is
limited to a fixed five per cent step. The decrease in system performance for
the two restrictive operating modes can thus be readily assessed.

VIII. CONCLUSION

Some of the performance capabilities of a network of simulated neurons
have been explored; there are indeed many more logic functions possible.
RCA has found networks of simulated neurons to be particularly desirable in
the classification of temporal patterns, since for these tasks, the sequence or
simultaneity of events can be measured efficiently.

Although we do not claim that the structure of our network approximates
the structure of any part of the animal brain, we do sense close similarities
in the externally perceived actions. This feeling is based upon the realization
that all but the most basic living processes exhibit an analog performance
range8. The brightness of a light is perceived to vary from "dull" to "ex-
tremely bright'’; the temperature of water is felt to range from 'very cold"
to "very hot''; two events are perceived to occur ''simultaneously' or with
variable degrees of delay. Since the input stimuli have dynamic ranges, the
responses exhibit dynamic ranges. An animal may decide to run rapidly, to
run, to walk, or not to move at all; a person may decide to react cooperatively,
neutrally or defiantly; a situation may be adjudged to be unfavorable, accept-
able, or very favorable.

In situations where adapation is required, functional continuums also
exist. A person that responds to the louder of two sound stimuli may be taught
to respond to the difference in loudness between these stimuli. Since the
trainee gives analog responses, it is possible to tell him just how much to
correct his response. In this manner the person can continually evaluate his
actual performance with respect to the desired performance, and correct his
actions accordingly.

In summary, we conclude that logic functions and network adaptation can be
achieved with artificial neurons that incorporate the variable firing-rate capability
of the biological prototype. Such neurons require fewer levels of logic when
simulating human capabilities and human behavior.
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Figure 7. Neural-Logic Network Equivalent to Binary AND Gate

13



Figure 8. Logic Function Representing 50% "OR" and 50% "EXCLUSIVE OR"
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Automatic Variable Decoder

by
Edward J. Farrell*

In this paper, results in statistical decision theory
are applied to the general problem of decoding binary coded
messages in the presence of garbling (noise); optimum de-
coding schemes are described. Certain "adaptive or learning"
capabilities are introduced into an optimum decoding scheme.
The resulting adaptive decoding scheme is shown to have a
relatively simple implementation which would operate with
an input bit rate in the neighborhood of two megacycles.
This adaptive decoder is called Automatic Variable Decoder.

In particular, the Automatic Variable Decoder (AVD) de-
codes binary coded messages which are being received from a
remote station, which may be sent in a partially unknown
code, and which may be garbled in transmission. The AVD
also follows gradual random or systematic changes in the
coding scheme, so that no decoding key is necessary for
the receiving station to “read" the sending station. This
adaptive capability is desirable for communication systems
in which privacy is important. Figure 1 illustrates this
application of AVD.

The basic operation of the AVD is identification of
sequences of binary digits with one of several fixed items,
which may be quantitative or qualitative. The AVD can be
applied to many identification problems. For example, con-
sider a physical experiment that has N possible outcomes.
Each time the experiment is performed a sequence of binary
digits is obtained as the experimental resultsy experi-
ments are performed repeatedly. The goal is to select the
correct outcomes on the basis of the experimental results.
If there is an unknown "drift" in the observations, it is
necessary to have a method of selecting the correct out-
come which is independent of the "drift®". The AVD-can be
used in such a situation.

* UNIVAC Division of Sperry Rand Corporation, Univac Park,

St. Paul, Minnesota.
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General Remarks on Decoding

To discuss the decoding scheme used in the AVD and its
relation to other decoding schemes, it is convenient to
first consider decoding in general. Various terms used in
this paper are defined by Figure 1. Assume one wishes to

transmit N messages, m(l), m(2), ’ m(N). These messages
are coded into sequences of binary digits each of length nj;
c(l) is the code for m(l), 0(2) is the code for m(z), etc.
Obviously N < 21, Let x represent the received message;

X is a sequence of n binary digits. Let Pi(x) represent

the probability of receiving x given that c(i)
the value of Pi(x) is determine%lgrom(;?e characteristics
of the garbling and the codes c y C s *°** . On the
basis of the received message x, a decoded message m(l)
or m(2) or s=s gy m(N) is selected using a prescribed de-
coding scheme.

was sent;

There are several measures of the utility of a decod-
ing scheme. Three measures will be considered:

(1) average probability of correct decodings

(2) probability of correct decoding for "least
favorable" messagess

(3) probabilities of correct decoding which are
in a fixed ratio.

Let pi(D) be the probability of selecting m(i) as the de-
coded message when m(l) is sent and decoding scheme D is
used. The average probability of correct decoding is

N 3

Z 19 pi(D), where \; is the probability of sending m(l) .
i=1

The probability of correct decoding for "least favorable™
messages is min {pl(D), pz(D), cee, pN(D)}. The third

measure of utility is of a different nature. 1In certain



applications it may be desirable to have the pi(D)'s 15 8
certain ratio; i.e., wipl(D) = wzpz(D) = eee = wNpN(D)
where the wi's are positive. The goal is to select a de-

coding scheme D* that satisfies the above condition and for
which there is no "uniformly better" decoding schemej i.e.,
there is no decoding scheme D' such that pi(D*) < pi(D') for

all values of i and pj(D*) < pj(D') for some value of j.

These measures of utility lead to decoding schemes that
have the same form and differ only in the value of certain
parameters: viz.,

if x is received and
Dy wixiPi(x) = max {wlxlpl(x), ceey waNPN(x)},

then select m(i) as the decoded message.

If Wy = l.for all i and if xi is the probability of sending
message np% Dx maximizes the average probability of correct
decoding. If wy T 1 for all i and if the xi's are selected
so that pl(Dx) = pz(Dx) = .. pN(Dx), then Dy maximizes the
probability of correct decoding for "least favorable™
messages. For given wi's, if the xi's are selected so that
W1p1(Dx) = wzpz(Dx) = eee = wNpN(DK), then DX satisfies the
requirements of the third measure of utility, provided all
xi's are positive. These statements follow directly from
decision theory.*

An adaptive decgding schgme Dx can be easily implemented
when LA =1 f?g)all i and Xi is the orobability of send-
ing message m . The following discussion is restricted to
this situation. When xi is not the probability of sending
message m(i),the implementation of Dx with adaptive
capabilities requires further investigation.

* See "Statistical Decision Theory"™ by L. Weiss, p. 71 ff.,
McGraw-Hill (1961).



Basic Operation of AVD

The basic operation of the Automatic Variable Decoder
is illustrated in Figure 2. First consider the decoding
operation. From the input x, x P (x)y X Pz(x), ceey

ANPN(X) are evaluated simultaneously. % &
Pl(x) = max {xiPl(x), weay AP (x)}, m(l) is selected as

the decoded message. The practicality of such a decoding
procedure depends on the probability function P (+), which

in turn depends on the code c(i) and the garbling in trans-
mission.

Next consider the adaptive operation. If the code c(i)
changes or is partially unknown, the receiver must estimate

(l) to evaluate Py (x) and select decoded messages. The
nominal code c( ) represents the receivers "best" estimate
of the code for m(l).A(l) is based on those previous x in-

puts for which the decoder selects m(i) as the decoded
message. The time required to obtain a decoded message
from a given input x depends primarily on the time to
evaluate xiPi(x). The adaptive operation does not directly

effect the decoding time.

Operation of AVD for Simple Garbling

If the garbling is symmetrical and is independent be-
tween digits, the basic operation of the AVD can be simpli-
fied. 1In other words,

d:
_ Bt
P, (x) = (1-p)"(.:b>

where p < % is the probability a digit of c(i) will be

changed by garbling and d; is the number of digits of (1)

that have been changed to form x. The decoding scheme Dx

can now be written as:
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if x is received and

Dx a; + di = min{a1 + d1’ a2 + dz’ A & dN}
then select m(i) as the decoded message,
where
log Ay tn log(1l-p)
ai= -
log(p/1-p)
If the messages m(l), m(2), LE ™ m(N) are equally likely,
then a = a = e¢¢ = a_,
1 2 N

The operation of the Automatic Variable Decoder for
simple garbling is illustrated in Figure 3. The decoding
operation is relatively simple. The logical sums

X @’8(1), X @’6(2), ceey X @’E(N) are formed simultaneously,
d, is the number of "1" digits in x@’c\(i); and a; is a

i
fixed constant as defined above. If di + 8y = min{d * al,

°y dN+ aN} then m(i) is selected as the decoded message.

Since the logical sums can be formed as x enters the decod-
er, there is essentially no processing times after the
last digit of x is received, the decoder gives the decoded
message. The input digit rate is limited by the time re-
quired to obtain the nominal codes from storage. Using
drum storage synchronized with the input, one can achieve
an input digit rate in the neighborhood of two megacycles.

Next consider the adaptive oggration; and in par-
ticular the code corrector for &( and the first digit of

(1) 1Ir the first digit of the logical sum x ® 21) is
"frequently" 1, the first digit of 6(1) is likely to be in-
correct. The corrector counts the number of times 1 occurs

in the first digit of x @€ for successive x inputs

which are decoded as m(l). If the count for r inputs to

the code corrector is greater than r(p +€ ), the corrector
changes the first digit of €(}). The other n - 1 digits of

2(1) are corrected in the same way. The value of € > O
determines the probability the corrector will correct when
it should. This probability and the minimum time between
changes in the coding scheme are interchangeable.
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If there is no garbling in transmission, 2(1) 45 the
previous x input for which the decoder selects m(i) as the
decoded message. In this case, each transmission of m(i)
can use a different code c(i), provided successive codes

for m(i) differ in at most one or two digits and the codes
for the N messages remain distinct. If there is garbling

in transmission, 2 (1)
puts for which the decoder selects m(i) as the decoded

message. In this case, a particular code for m(i) must
be used several times before it can be changed. To adap-

tively decode in the presence of noise, 2" must be greater
than N. The number of "redundant™ digits in x depends on
the garbling, the rate at which the codes are changed, and
the number of messages N.

is based on several previous x in-

The "digit counts™ and nominal codes could be stored
on a drum or in delay lines in synchronism with the input.
The "digit count" one stores is the count for r inputs
minus the integer closest to r(p + €).



SOME CONSIDERATIONS OF POLYSTABLE SYSTEMS
Howard S, Fitzhugh II

Westinghouse Electric Corporation
Electronics Division
Baltimore, Md,

I INTRODUCTION

The purpose of this paper is to describe some of the results
obtained from a computer simulation study of polystable systems,
A polystable system may be defined, in most general terms, as any
system having many possible states of equilibria. These many states
of equilibria result from the characteristics of the individual cells
or elements making up the system and the ways in which these elements
affect each other., By determining the modes of operation of such
systems, as a function of the characteristics of the elements in
the system, and the manner in which these elements affect one another,
some new and dynamic processes concerning behavioral activity in
extremely complex systems may be obtained,

The proposed approach to understanding complex system behavior
is similar, in certain respects, to that taken by the statistical
physicists in departing from Newtonian mechanics to describe the
"behavior" of molecules in a volume of gas. Such departures were
necessitated as a result of the complexity of the problem and did
not invalidate many of the previous results, but rather offered new
approaches to the understanding of complex situations,

II ELEMENTS OF THE SYSTEM

The basic building block or element of the system under consider-
ation is a simple two input, two output sequential circuit (Fig. 1)
with four possible internal states,

1
x' YI I Zl
%z Yo I 2,
Fig. 1

The behavior of linear sequential circuits in general can be
defined by the equations on the following page.

-1—
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t+H _ ) E——
I £ (Ko =Xy —X 5 ¥, LY, —Y ) (2)

Where Z;% is the 1P output at time t,
Y;%*1 s the ith internal state at time t+1;
Y;® is the ith internal state at time t;
X;% is the i'® input at time t; and the

X's, Y's, and Z's are binary variables, O or 1,

Equations (1) and (2) can be represented by output and transitional

matrices respectively or a state diagram, an example of which is shown
in Fig. 2,

a=00
b= 0l
c=10
d=11I

' a C,J/q,
Where e : O‘ means that if the device is in state a

and input b is applied, theVoutput will be state ¢ and the circuit
will remain in state a. However, if input a,c, or d is applied when

the circuit is in state a, the output will be state a and the intermal
state of the circuit will become b,

By stipulating that the output of the element at time t be equal
to the internal state of the element at time t+1 s> the output and trans-
itional matrices that would ordinarily be required to describe the
behavior of the circuit can be combined into a single matrix, or from
equations (1) and (2), if Zit - Yit+1 , then

. t- b4 — t
£y X=Xy =X5 Xy, Yp— Yy )i £(Xy, X=Xy X 5 ¥, Y Y, Y )

-2 -



Such stipulation reduces the gating that would normally be required
in the design of such circuits and also greatly facilitates computer
simulation.

A typical state diagram and corresponding transition and output
matrix of a single element is shown in Fig. 3.

t vt
= 3
v g b ¢ d°
a a d ¢c ¢
b b b a ¢
c b d a ¢
d b d a ¢
TRANSITIONAL AND
STATE DIAGRAM OUTPUT MATRIX

Fig. 3

The transitional and output matrix may be represented by four
boolean matrices, one for each possible input state as shown in Fig. 4.

a|bjc|d ytt a|b|c|d ytt
all |O[O|O alO|(I1 |O|O
0, 2]0|0[0]1 b, P]O|1]0]O
c|O|O}|1]|O c|1({0]O0]|O
d{O|O]| I |O d|Oo|O|I |O
yt yt
(a) (b)
a|blc|d ytH a|b|c|d ytt!
alO|I |O|O alO|(I1 |00
¢, 2|0]0 |01 d,, b|OjOjO]|I
c|1|]O0|]O|O c|!1]0]0|O
d|o|O| I |O djo(fo|I|O
yt yt
(c) (d)
Fige 4



If the input sequence a,c,d,b, were applied to this single element,
the resulting transitional and output boolean matrix would be obtained:

1000 0100 0100 0100 0010

0CO01 0001 0001 0100 0100

0010 @ 1000| @ 1000, @ 1000 = 0100

0010 10 0010 0010 0100
a > c > d ] b

From the resulting boolean matrix, the new state diagram could
then be obtained as shown in Fig, 5.

© (b))

Figo 5

This state diagram represents a situation which tends toward
state b, for the applied stimuli sequence a,c,d,b. (If the sequence
a,c,d,b werc applied a second time, state b would be reached no matter
what the initial state of the element.)

Rather than looking upon the element or circuit as a specific
logical design, consider the conditional probabilities of changes taking
place within the circuit, There are a number of ways of calculating
the probability of a change. One method is to first determine the
probability occurrence of a given internal state as a result of random
inputs, and then determine the over-all probability of a change in the
internal state of an element by multiplication with the conditional
probabilities of a change from that state, If P (A ) is the probab-
ility of a change in the internal state of an element, then:

P(&) = P(a) P(&/a) + P(b) P(A/b) + P(c) P(A/c) + P(d) P(A)/d) (4)
or
i=d
P(a) = 2 P(1) P(8/i)
i=a where a,b,c¢, and d are the possible states
of the element., We can then define a quantity S = 1-P(A ) as the

stability of the element. This was done for a number of state diagrams
as shown in Fig, 6.
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a/a b/b

bcd/b
a
abd/a acd/d
c aqbc/c d
c/c d/d
25% STABILITY 29% STA<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>