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WIND TUNNEL INTERFERENCE ON WINGS, BODIES
AND AIRSCREWS

By H. GLAUERT, F.R.S.

Communicated by the Director of Scientific Research,
Air Ministry

Reports and Memoranda No. 1566

131h September, 1933

I. Gener,.t Infroduction.-It is well knowm that the aerodynamic
force e.'xrienced by a body may be seriously modified by the
proximity of another body, even when there is no direct contact.
The study of such interference is an important branch of aero-
dynamics, but in the first place it is necessary to know the behaviour
of the body apart from any interference. The most convenient
method of experiment is to investigate the behaviour of a model

in the artificial stream of a wind tunnel, and the limited extent of
this stream, bounded either by the rigid walls of a closed type of

-wind tunnel or by the free surface of an open jet, inevitably leads
to some constraint of the flow and to some interference on the
behaviour of the model. This interference could be minimised
by using very small models, but it is desirable for many reasons
that the model should be as large as possible. The study of wind
tunnel interference is therefore of great importance, since some
interference is inevitable, and an accurate knowledge of this inter-
ference will justify the use of larger models than would otherwise
be permissible.

The general nature of the interference can be appreciated most
readily by considering the conditions in a closed tunnel. If a large

body is placed in the stream, the first and most obvious constraint
imposed by the rigid walls of the tunnel is that the stream is unable
to expand laterally as freely as it would in an unlimited fluid, and
in consequence that the velocity of flow past the body is increased,
leading to an intensification of the forces experienced by the body.
Another choking constraint of a different character arises if there
is a wake of reduced or increased velocity behind the body, as
occurs respectively with a bluff body or an airscrew. The necesity
of maintaining continuity of flow in the tunnel then implies that

- -the velocity and pressure of the stream surrounding the wake

N ---- - 4
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3will differ from tile undisturbed values far in front of tle body,and this change of pressure reacts back to cause a change in the

force experienced by the body. Tile interference experienced by the pressure p at the boundary of the Jet is obtained om Bernoulli'sa iflting body, such as a wing, is of a different character. Tlhe equation aslift of a wing is associated with a general dowmard movement Po + 0 V- o {(V + u) + V2 + Wl}of the air behind tile wing and the constraint of the tunnel wallson this downwash modifies the behaviour and aerodynamic character- 
-

g Vu - (u± + v + W.........(.)
istics of the wing. Finally a fourth type of interference occurs and to the first order of the disturbance the condition of constant
if there is a gradient of static pressure down the stream of the pressure is simply that is is constant. But u is evidintly zero far
wind tunnel. This pressure gradient arises owing to the development in front of the body in the undisturbed stream, and hence is must
of the frictional boundary layer of reduced velocity along the walls be zero at all points of the boundary. This implies that the velocity
Of the tunnel, which leads to an increase of velocity and a decrease potential , which represents the change of flow from the uniform
of pressure along the axis of the tunnel. Any body is therefore undisturbed stream, must have a constant value over the whole
tested in a slightly convergent stream, and experiences an increased boundary of the free jet, and the boundary conditions assumeddrag oling to the drop of static pressure from nose to tail. in the analysis are now simply:-

These various interference effects in a closed tunnel, together Closed tunnel .= 0()

-Jhtecreponding effects in a free jet, will be discussed in alsd u n --0(.2
detail for differcnt types of body, which can be grouped conveniently 

Free jet conunder the headings of wings, symmetrical bodies and airscreFbut before proceeding to this analysis it is desirable to consider The boundary condition for a closed tunnel is exact and precise,
the precise nature of the boundary conditions, and the limitations except for any effects due to the frictional boundary layer along
of the theoretical treatment of the subject. 

the walls. The boundary condition for a free jet is approximateThe pressure gradient correction will be reserved for special only, being applied at tile undisturbed position of the bounda "rconsideration in Section 19 of Part 3, since it is important only and based on the assumption of small disturbing velocities. There
for bodies of low drag and may be neglected in tile consideration is also one other point in which the treatment of a closed tunnel
of wings and airsreus. Moreover, the pressure gradient, which is more precise than that of a free jet. A closed tunnel suallyis due in a closed tunnel to the development of the frictional boundary extend s for a considerable length with constant cross-section before
layer along the walls and to leakage through the alls, cn be and behind the model, whereas a free jet usually issues from a
eliminated by designing tie wiand tunnel with a slight expanson closed cylindrical mouth immediately in front of the model andin the direction of the stream, and is sensibly zero i a free jet. is received into a collector at a moderate distance behind the model.The discussion of the other types of tunnel intererence is based Thus the conditions differ appreciably from those of tile long free
on tile conception of an ideal stream without any pressure gradient jet, envisaged in the analytical treatment of the subject, and the
along its axis, and negl-Is both the boundary layer along the validity o1 the theoretical interference corrections must rest ulti-
walls of a closed tunnel and the analogous disturbed region at the mately on experimental confirmation of their accuracy.boundary of a free jet where the stream mingles ivth and drawsalong some of the surrounding air. 

PART IThe boundary condition at any -all of a closed tunnel is expressed 
Aings, Three Dimensionsprecisely by the condition that the normal component of the fluid - igs,-The Dh n ansin tvelocity must be zero. The corresponding condition for a free 2. General discisssou.-The method of anaysing the interference

jet is that the pressure at the boundary nist have a constant value, experienced by a wing in a closed tunnel or in a free jet is due to
equal to the pressure of tile surrounding air, but it is in practice Prandtli. The nature of the boundary conditions and the approxi-
impossible to use this exact condition in the analysis owing to the mate assumptions made regarding these conditions for a free jet
distortion of the shape of th jet caused by tile presence of a body have been discussed previously in Section 1. but in tile development
in tle stream. The approximation is therefore adopted of applying ol the analysis it is necessary to make some further assumptiOns
this condition of constant presseire at the undisturbed position regarding tile flow past tile wing itself. The lift of the wing, is
of the boundary of tile ;' . As an additional approximation, uich intimately related to the circulation of the flow round the wing.
is of the same order of 'accuracy as ta previous one, it is assuned and in effect the wing can be regarded as a group of bound vortices
that the disturbance to the tunnel velocity V at the boundary running along its span. In general the lift and circulation have

-- 
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their maxinmn values at the celtre of th4 e wing and fall off gradually and it is again possible to reduce the problem to that of two-

to zero at the wing tips. This lateral decrease of circulation from dimensional flow in a transverse plane of the distant wake.
the centre of the wig outwards is accompanied by the creation of The interference due to the limited extent of the stream will

free trailing vortices 'hich spring from the trailing edge of the in general modify the distribution of lift across the span of the

wing and pass down stream. These trailing vortices are deflected wing and in an exact analysis of the problem it would be necessary
downwards with the general downwash behind the wing, and, to take due account of this effect. This aspect of the problem is

since a vortex sheet is unstable, they ultimately roll up into two discussed in Section 7 below, but unless tile span of the wing is a

vorfices somewhat inboard of the wing tips. In the development very large fraction of the width of the tunnel the resulting change

of aerofoil theory, houever, these effects are ignored and the trailing of lift distribution is very small and may be neglected Generally

vortices are assunid to lie along straight lines passing downstream it suffices to assume that the lift is distributed elliptically across

from the wing. This same assumption is made in the analysis of the span, as on a wing of elliptic plan form, and often it is possible

wind tunnel interference, and the analysis is therefore strictly to proceed to the even simpler approximation of uniform distribution
applicable only to lightly loaded wings, of lift across the span of the waig. When the span of the wing isof eyalft ractiospn of the witg of the tunnel, the form assumed

The problem of a wing in a small tunnel involves motion ina very small fraction of the width
three dimensions, but Prandtl has shown that it can conveniently for the lift distribution is quite immaterial and it then suffices

be reduced to a problem in two dimensions only, when the wing to assume that the total lift force of the wing is concentrated at the

is regarded as a lifting line extending from wing tip to wing tip. centre of its span and to calculate the interference at this single

Considering first the flow past the wing in an unlimited fluid and point, This type of solution will subsequently be referred to as

taking the x co-ordinate downstream, the velocity potential, due that applicable to small wings.
to the wing and additional to that of the undisturbed stream, is 3. Method -of imnages.-The conception of images, as used in
of the form aerodynamical problems, can be appreciated by considering a few

f(y, z) + F (x, y Z) ...... (2.1) simple examples. If two aeroplanes are flying horizontally side

by side there will evidently be no flow across the vertical planewhere the first Junction represents the velocity potential in the of symmetry miduay between the aeroplanes, and this plane could

transverse plane containing the wing and the second function se tr y m id bte the aerne th plane cl.
changes sign with x. Since 0 must bebe replaced by a rigid wal without altering the flow in any way.

it follows that far behind the wing the velocity potential will have Thus the problem of an aeroplane flying parallel to avertical wall

the value can be solved by introducing the image aeroplanle on the other Side
th u ). . . . .of the wall and by considering the new problem of the two aeroplanes

Tur2( , z) bm fwgn re t (22) flying side by side. Similarly the interference experienced by an

Turning now to th e problem of a wing in a free jet, the interference aeropiane flying close to the ground can be solved by introducing

due to of ate exto the e ot y stream will be represented by the the inverted image aeroplane below the ground. This method of

addition of a term 'to the velocity potential, which mst satisfy introducing the appropriate image or set of images to represent

the conditions that (+ is finite at all points in the limited stream the constraint of the boundary of the stream is capable of very

and that ( + 0') must be zero at alw points ot the boundary wide application, and is the method used for nalysing most problems

It folows that i' can be divided into two terms of thb same foer of wind tunnel interference.
as , and (flat its value in the ultimate wake wvill be double its The discussion of Section 2 has shown that tile problem of
value at the corresponding point in the transverse plane containing the interference experienced by a wing in a closcd tunrel or in

the wing. The interference experienced by the wing depends solely a free jet can bu solv,'d by considering the transverse flow in a-
on the flow in this transverse plane, and hence as a convenient section of the distant wake. In this plane the w.ing is represented
method of analysis it suffices to analyse the flow in a transverse solely by the system of its trailing vortices, which now appear
plane of the distant wake, which is simply a two-dimensional pro- as point vortices and extend along a line of length equal to the

blem, and to deduce that the interference experienced by the wing span of the wing, and the problem to be solved is the detenuination

is half that which occurs in the distant wake. A similar argument of the flow which must be superimposed on that dte to the vorticeS
can be applied to the problem of a closed wind tunnel where the in order to satisfy the appropriate condition at the botndary of

boundary condition is now the stream. In tire simple assumption of a Wing o l
across the span the vortex systems comprise, merely two point

+- 0 .(2.3) .vortices of equal and opposite strengths at a distance apart equal

I; a l
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t si .6 onwhich proves that the circular boundary is a streamline of tle flowto tihe span of tihe wing. More generally any wing can be represented and may" therefore be regarded as a rigid boundary.
by a distribution of such pairs of vortices extending across the
whole span, and hence the problem of a wing with any type of lift By analogy with the problem of a rectilinear boundary we
distribution across its span can be derivcd from the simpler problem might anticipate that thc same image could be used for a fre
of a uniformly loaded wing by a process of integration. boundary if the sign of the image were reversed. The velocity

The method of images can be used directly when the cross-section potentiai of the vortex at A and of an equal image at A' is, apart
of the boundary of the stream is rectangular or circular, and solutions from the addition of any arbitrary constant,
for some other forms can be derived from these primary solutions I K
by means of suitable conformal transformations. The form of f (RAP + RAP)
image required in a single rectilinear boundary is illustrated in
Fig. 1. The image of a single vortex in a rigid rectilinear boundaryI and since
is an equal vortex of opposite sign (Fig. la), since this -pair of
vortices will by symmetry give zero normal velocity at the boundary. RAP AOP + OPA'
Bach vortex will give the same component of velocity parallel = AOP + OAP
to the boundary, and hence the condition of zero flo % along a free o
boundary can be obtained by reversing the sign of the image (Fig. lb), we obtain
and vortex and image have now the same sign. Thus the image K
system for a free boundary can be derived from that for a rigid (r + 0 - a)
boundary by reversing the sign of the images. The image system
of a uniformly loaded wing in the presence of a rigid vertical wall the -radius OR Thus the
is shown in Fig. Ic, and the correspond!ng system for a horizontal the angular positio of
boundary in Fig. d. Here, and generally throughout the report, velocity potential of the vortex and its image is not constant along
boundy it i d .H e and fgtewngy ihrigot. the iept the c..cumference ol the circle and the necessary condition for a
it is assumed that tie span of the wing is horizontal. The image free boundary is not satisfied. If, however, we introduce a second
in the vertical wall is a replica of the wing itself, but the image vortex of equal and opposite strength at any other point insidein the horizontal wall is an inverted wing. By applying the funda-t the circle, the velocity potential of this second vortex and its image

mental conceptions illustrated in Fig. I it is possible to build up w te l the voco
the image system required for a pair of walIs or for any rectangular 'il be of the form
boundary. These problems usually involve infinite series of images -- 1 ( + 0-and examples of such systems will be discussed later in the repo:t.

A circular boundary (Fig. 2) can also be represented quite
simply by .he method of images. Considering first a rigid boundary,andon addition Thus the necessary condition fth variableterm is0
the image of a point vortex of strength K at any point A is an a r nd for a re ndy
equal and opposite point vortex at the inveme point A'. The satisfied by a pair of vortices anywiiere inside the circle and by
stream function V at any point P due to these two point vortices the corresponding images. Since the vortices representing a wing

is simply m always occur in pairs of this kind, tile method of images can be
used for a free circular boundary. Tile imge system is identical,

K.log APexcept for the change of sign of the vorticity, with tile system for a
--- P origid boundary.

since the complex potential function of a point vortex of strength A wing with uniform distribution of lift across its span is repre-
K and anti-clockwise rotation at the point z .is s .mited by a pair of vortices at its tips, and any form of lift distribution

•x can be represented by a system of pairs of vortices distributed
+ iv - - log (z--o) .. (3.1) along the span of the wing. Thus the conditions for all) arbitrary

distribution of lift can be derived by ink'ration from the simpler
Now if P is a point of the circular boundary, the trianples CAP -condition of a wing with uniform distribution of lift across its span.
and 0PA'aresimilar, andhence In general the lift distribution is symmetrical about the centre

A'P OP of the wing. Take the origin 0 at the centre of tile wing and tie

X5  57A const. ) axis Ox to starboard along the span. If r is the circulation at any

I _
-----
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point x of the wing, the strength of the trailing vortex springing B(x = - s). The image vortices occur at the inverse points and are
from an elcienit Jx of the wing is simply - K at"A' (x = a2ls) and K at B' (x = - alls). At any point of

dP the line AB there is an upward induced velocity due to the images,
K -- 6x.. .. .. (3.2) of magnitude

and the lift of the wing is IK a'
L f -I eV r dx .. . (3.3)7

•K 2sall
With uniform loading we obtain simply a pair of trailihg vortices _ "a s. . (4.1)

of strength :h P and the lift of the wing is
L~2sVr . .. 3.4 and at the midpoint O we have simply

L = 2s V P .. .. (3.4) Ks-Oecasiifially it is convenient to assume that the span of the wing Vo = -12
is extremely small, or in other words that the lift is concentrated
at the centre of the wing. The pair of vortices then join to form Thi xpression represents the induced velocity in the wake and is
a doublet of strength double that experienced by the wing itself. Also the lift of the

IL = 2s r wing is
and by virtue of equation (3.4) L = 2s e VK

L and hence the induced velocity at the centre of the wing is
TV) .. .. .. (3.) Ks L (4.2)

For future reference it may be noted that the complex velocity v. = r = ra4,aleVpotential of a doublet, which is the limit of a positive vortex at The induced velocity varies across the span of the wing andx = s a n d a n e g a t iv e v o r t e x a t x = - s , isT h i n u e v e o i y a r s a r o s h p n o f t w g a dwould also be modified if due allowance were made for the actual

+ o v (3.6) lift distribution of the wing, but this simple example serves to
-Z -illustrate the nature of the tunnel interference and the form of

the results. The induced velocity is proportional to the lift of
4. Interference flow.-The transverse flow in a plane, normal to the wing and inversely proportional to the area of cross-sectionthe direction of motion and far behind a wing moving in an unlimited of the tunnel. In a closed tunnel a wing usually experiences an

fluid, is that due to tile system of trailing vortices, and the calculation upwash and in consequence, at a given angle of incidence relative
of this flow is the basis of the standard theory of the induced drag to the undisturbed stream, the lift of the wing is increased and its
of a wing. When the stream is limited by rigid or free boundaries line of action is inclined forwards. It is however more convenient

-thiere is a constraint of the flow and the change in the induced -to make the comparison of free and constrained conditions on thevelocity at Pny point of the sheet of point vortices ib a measure of basis of equal lift in the tunnel and m free low. ius in general,
the interference experienced by the wing due to the tunnel constraint, at a given value of the lift coefficient, the angle of incidence and theIn these problems where the necessary boundary condition can be drag coefficient in a closed tunnel will be lower than in free flow.
satisfied by the introduction of a set of images, the tunnel interference In an open jet the sign of the interference is changed, and the
can be calculated as the effect of the induced velocities of this measured angle of incidence and drag coefficient are too high.set of images. Throughout the subsequent analysis, unless otherwise stated,

Consider, as an example, a wing with uniform lift distribution the following notation and conventions will be used. The origin 0across its span, lying along a diameter of a closed circular tunnel will be at the centre of the wing, which in turn will in general beof radius a (Fig. 3). Take the origin of coordinates at the centre assumed to be at the centre of the tunnel. Tile axis of x will beof the wing and of the tunnel, tile x axis along the span and the taken along the span to starboard and the axis of v upmards in they axis normal to it. There will be two trailing vortices, one of direction of the observed lift force. The upuard'induced velocity
strength K at the point A(x = s) and the other of strength -K at at any point of the wing %ill be denoted by v. This velocity is

%
J



---- -4- -,

- I

• 01 -Thus 6 represnts the magnilud of the tunnel constraint and in
exactly half that calculated from the image vortices of the wake, general, as will be seen later, el may be taken to be the value of T1
and may be obtained d.rctly by using a factcr 4x instead of 2,r in calcul.%*ed on the assumption of ell.ptic distribution of lift acioss
the standard hydrodynamnical formula the span of the wring. The value of 6 is usually positive for a closed

. Ktunnel and negative for a ice jet.

r 5. Closed tunnels and fr e jets.- The discussion of the two previous
sections has shown that the isnqsg systems for any wing in a closedwlch gives the velocity q at a distance r from a point vortex ofcruartneadfoth m wignthsaepiininare

stregthIt n tw-diensonalmoton.circular tunnel nnd for the sa., wing in the same position in a free
circular jet are identical except for a change of sign of all the image

Due to the upward induced velocity v the line of action of vortices, and hence that the inherfernce experienced by the wing
the lift force on the element of wing is inclined forwards by the is of the came magnitude but of opposite sign in t)e tNo types of
angle v tV, and hence the reduction of drag in the tunnel or the wind tunnel. This simple rclionshiip is a special prop,'ty of the
correction which must be applied to the observed value is circular cross-st ction, but it is possible to establish an ,teresting

general theorem' s for small wings in any wind tunnel.
AD=f dL ...... (4.3) Consider any shape of tluel, as shown in Fig. 4. and any

position of the wing. Take the origin of co-ordinates at the centre
The correction to the angle of incidence strictly involves a twisting of the wing, with Ox along tlhv sp.an and Oy in the direction of the
of the wing in order to maintain the same distribution of lift across lift. The velocitJ field due to a v ry small wing in this position
tlie span in the tunnel as in fiee air, but this twisting can be neglected is that due to a doublet of suacngth IL at 0, directed along the
in general and the correction to the angle of incidence- may be negative branch of the y a.is', .nd the complex potential function
taken to be of the flow is

Aa - dl...... (4.4) + i= -a = - - -  .. .. . (5.1)

Now consider a closed boundary and assume the region outsideIn order to obtain a non-dimensional representation of the the boundary to be filled uith fluid at rst. The rigid bound-iryresults the induced velocity v will be expressed in the form can then be replaced by a vortex sheet of strength h per unit length,

V L S such that the normal ve:ocity at any point of the boundary, due
V 7 -- r . (4.5) to this vortex sheet and to the doublet at the origin, is zero. If As

and 6n are respectively eleman, of the boundary and of the inward
where C is the area of cross-section of the tunmel. The value of q/ normal at any noint P of the boundary, the normal component
will in general be a function of xis, and its mean value, weighted of the velocity due to the doublet i'
according to the distribution of lift across the span, is a I '

;J- ;fdL .. . . (4.6)(a
-f Also if R is the distance of .any o' .er point Q of tlie boundary front

P and if (ii, R) denotes the .uss:l, b, t~t.,1i PQ aoid the normal at P,
The values of i) and can be calculated in different ways, P nd botes tltq, Nt o

depending on the assumptions made regarding the lift distribution the necessary boundary czit IS
and on the approximations made regarding the system of images. f L
The corrections to the observcd values of the angle of incidence andJ Siu (n, R) Is -. .. .. (5.3)
drag coefficient will be expressed as-

The interference expericnc-d liv the ting due to the constraint
Aa= 6 -k. ........ (4.7) of the boundary is the compon , it of the velocity due to the vortex

sheet parallel to the axis of y.and this velocity is
and d -Cos0s ...... (5.4)

4AAD = A6 kL-. ..... (4.8) --

- . " - 4
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Consider next a tunnel of the same shape with a free boundary, the same wing in cloed tunnel of breadth h and height b. The
on which the necessry boundary condition is that the velocity theorem is strictly true for very small wings only, buit will also be
potential , has a constant vah or that the tangential component . approximately true for wings of moderate size.
of the velocity is zero. Let the small wing still be situated at the
origir 0, but rotate it through a right angle so that its span lies 6. Circular htnncls.-The formulae for the interference ex-
along Qy and its lift is in the direction Ox. The complex potential perieiiced by a wing in a circular tunnel are due to Prandtll and
function of the flow due to the wing is then have been expressed -in concise forms by Rosenhead". The system

of images required to represent the constraint of the boundary,
14 _ #(X-iy) (5.5) whether of the closed or free type, has been discussed in some

+ detail in Section 3, and it has been demonstrated that the interfer-
ence experienced by any wing in a free circular jet is identical,

and the tangential component of the velocity at P due to the wing is except for a change of sign, with that experienced by the same wing

1y~ in a closed circular tunnel of the same diameter. It will suffice,
a s - * ... (5.6) therefore, to consider the conditions in a closed tunnel.

The image system for a wing with uniform distribution of lift

The necessary boundary condition can be satisfied by assuming across its span is shown, in Fig. 3, and the normal induced velocity
along the boundary a distribution of sources of strength in per unit at any point of the wing is
length such that the angential component of the velocity at the . + -  I I

boundary due to "hese sources exactly balances that due to the wing. +sa K
The necessary co dition is v = s- x = +-t at 

- sx )

f n-- sin (n, R) ds = q, .. .. (5.7) Writing for convenience

and the corresponding interference experienced by the wing is the -----
velocity (6.1)

U = cos Ods.. ...... (5.8)

we have
A comparison of corresponding pairs of equations for the rigid sK

and free boundaries indicates that V= 2C (I - .) .......... (6.2)
q----- q° which indicates that the induced velocity has its minimum value at
im = - k * the centre of the wing and increases outwards along the span.

and hence that Remembering that
u= -V . . ............ (5.9) L = 2sQVK

Thus it has been proved that the interference on a very small wing or
in a tunnel with a free boundary is of the same magnitude, but of VS k, = 2s K
opposite sign, as that on the same wing, rotated through a right
angle, in a tunnel of the same shape with a rigid boundary. In the expression for the coefficient Y, of the induced velocity, dLfintd
practical applications the wing is generally situated at the centre by equation (4.5), becomes
of the tunnel, and the tunnel itself is symmetrical in shape about
the co-ordinate axes (c.g., rectangle or ellipse). The general theorem
then states that the interference on a small wing at the centre of an
open symmetrical tunnel, of breadth b parallel to the span and of
height h, is f the same magnitude but of opposite sign as that on (I + - + l +........... (6.3k

=-4 .

---- ---- --- ---- -~



_ _ ---- - " 1

14 15

and the mean value of this coefficient taken across the span of the and we obtain

wing is "I I sin2 0 dO

-TJI f °  1 -
2 sn'0

I {IQ df --

l(I + !1C2+ 1 CA . ..... .. . (.4) ap ,o F+ ( - 9) 92 2
i 3 (6.4)or finally

In order to proceed to the calculation of the interference cx- ( ( - M)-I-

perienced by a wing with elliptic distribution of lift across its span,
it is necessary to replace s in tie formula (6 .2 ) by a current co-ordinate + + 5 + .+. ...... (6.7)
x,, to take F

d Pdx The denominator of the coefficient of $ -s given incorrectly as
-d' t128 in Prandtls' original paper' and has been repeated in other

Where r is the circulation round the wing, and to integrate with papers. The error was corrected by Rosenhead n .

respect to x, from 0 to s. ie circulation is of the form The mean value of ; across the span, weighted according to

the elliptic distribution of lift, is

r- = ,(5) Vs- 4dx1s .. . E d

and the lift of the wing is now 4 P

L=JeV Pdx 2=seVr 0  and after integratior:

or 1 3 5 175
or l + t, + + L75+t#. ...... (6.8)

VS i, - s P . .  . . . . . . . . . .  (6.6) Numerical values of the coefficient j for uniform and for elliptic
loading, deduced from the formulae (6.4) and (6.8), are given in

Thus for a wing with elliptic loeding Table 1, and it appears that the increase of 71 with the span of
the wing is more rapid for uniform than for elliptic loading. The

Pat, 1
2 dx . subsequent discussion of Section 7 indicates that in general the

V 2sC a - x~x1
2 )  value of 6, required in the correction formulae (4.7) and (.t.S), should

be taken to be the value of derived front the assumption of elliptic

and converting to the non-dimensional system

1I f 1 d 1  
TABLE 1

V (C2 - f,2
)  -- Values of in h a dosed circular l einl

This integral can be evaluated by means of thesubstitutions Span/Diameter - - 0 0-2 0-4 0.6 0-S
et = sin 0 Elliptic loading 0-250 0-250 0.251 0-256 0-273

I" Uniform loading 0-250 0:250 0-252 0.251 0-276

-tan 0

-

t _____________________
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loading, since the lift distiibution of a uing of conventional planform. discrepancy is ascribed to the influence of a gencral curvature of tie
usualiy- approximates to the elliptical form. Fig. 5 shows the jet, due to the lift of the wing, which is cquivalent to a reduction
variation of 6 with the ratio of the wing span to tile tunnel diameter, of the effective camber of .c wing section.
and the broken curve shows the values which would be deduced
from the assumption of uniform loading. For a small wing 6 has These conclusions are confirmed by some experiments of Knight
the value 0'250, and an examination of Table I or Fig. 5 indicates and Harris'0 with three wings of aspect ratio 5 and of span-diameter
that the adoption of values of 6, based on the assumption of uniform ratio 0-45, 0-60 and 0-75 respectively. The experiments were
loading, will lead to errors of the same magnitude as the simpler made in a free circular jet ut a constant valu f the Reynoldsassumption of tla value 0"250 appropriate to small wings. number, and, instead of correcting the results to free air conditionsatpmby means of the theoretical formulae, the observed values were

As regards the accuracy required in the determination of the analysed to deduce the appropriate value of 6 for each wing.
value of d in the cort.-tion formulae, it may be noted that the
value of the ratio S/C is usually less than 0- I and that a value of 0-2
may be regarded as an extr,'ne upper limit. Even in this extreme I TABLE 2
case an error of 0-025 in the value of 6 produces errors of only
0-15 deg. in the angle of incideice and 0-0012 in the drag coefficient Free Circular Jet
at a lift coefficient of 0-5. If; general it will suffice to know the
value of 6 with an accuracy of ±0.025, and more accurate values Span/Diameter O....... 0.45 0.60 0-75
are required only for -"nusually large values of the ratio S/C or of Theoretical. .. ..... 0.252 0.256 0.266
the lift coefficient of the wing. On this basis the value of 6 for a From drag coefficient .. 0-250 0-254 0.284
closed circular tunnel can be taken to be 0.250, as for a small wing, From angle of incidence 0-254 0.264 0-354
unless the span or area of the wing is unduly large.

Experimental checks on the theoretical correction formulae Values of , ignoring the negative sign appropriate to a fr jet,
have been obtained in both closed tunnels and free jets. Higgins' are given in Table 2, and it will be seen that they fully confirm thetested two series ot wings in a closed circular tunnel. The wings conclusions drawn from the earlier experiments at Gdttinge,..
of the first series were of constant chord and varying span, so that In view, however, of the previous remarks regarding the accuracy
the tunnel constraint was obtained only as a small modification required in the value of 6, it appears that the deviation from theto the conection for aspect ratio, but the second series comprised theoretical values does not become appreciable until the span of the
.three wings of aspect ratio 6, tested at the same value of the Reynolds wing exceeds two-thirds of the diameter of the tunnel.
number, and thus gave a direct measure of the tunnel constraint.
After trying several empirical corrections with lttle success, Higgins 7. Effect of lift distribotion.-The interference experienced by a
concluded that the theoretical formulae gave the best results. wing in a wind tunnel depends not only on the shape and size of theThe largest value of the span-diameter ratio in these tests was 0-6, tunnel, but also on the type of distribution of it acios the span of
and the correction formulae for small wings (6 = 0-250) were used the wing. In his original paper Prandtl' tried tue alternative

'in the analysis of the results. assumptions of uniform and elliptic distributions, and found that
Experiments in a free jet have been made at G6ttingen4. using a the first term of the series for 6 had the same value in both cases.

series of five rectangular wings of the same aerofoil section and of The results for a wing with uniform or with elliptic loading in a
the same aspect ratio, The span-diameter ratio ranged from 0 27 circular tunnel are given by equations (6.4) and (6.) respectively.
to 0 80 and the tests were made at a constant value of the Reynolds 'The first terms, which are identical, represent the interkrcncr, lhich
number. The observea polar curves (drag against lift) of the five would be deduced from the assumption of a small ing with th,;
wings showed systematic differnces, but after correction for the total lift concentrated at its mid-point, and the subsequLnt terms
tunnel constraint, using the values of 3 appropriate to the span- represent the effect of the finite span of the wing, differing atcording
diamr.,er ratio for each wing, all the results fell on a single curve to the assumed lift distribution. Thus in order to obtain a first
swth the exception of those fur the largest wing, wlhere the theoretical appooximation to the interference it suffices to consider a small

formula appcared to underestimate the correction slightly. The wing and to calculate the induced velocity at its midpoint. This
lift curves (lift against incidence) showed similar characteristies, conclusion has also been verified for plane boundaries3 , ,kd it
but the final agrunient was not quite so good and the theoretical al,,.cars that the first approximation is sufficiently accurate fur
formula appearm to underestimate slightly the necessary correction mos. purposes unless the iing span exceeds 60 per cent. of the
even for moderate values of the span-diameter ratio. This width of the tunnel.

, V -1
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In the discussion of circular tunnels results were derived for 8. Plane walls.-Throughout the subsequer.t discussion it will
wings of ally Sp~In with uniform or with elliptic loading, but this be assumed that the span of the wing is horizontal and that its lift
method of prOLeeding to a more accurate estimate of the tunnel is directed upwards. As explained previously in Section 3, a single
interference is not strictly sound. The analysis compares two vertical wall at the side of a wing then represen#= the condition
wings with the same loading in free air and in the tunnel, but in of two aeroplanes flying side by side, and a single horizontal wall
fact the induced velocity varies across the span of the wing, as below the wing represents the condition of an aeroplane flying close
shown by equation (6.7), and hence an untwisted wing in free to the ground. These problems, which have their own importance,
air must be twisted in the tunnel in order to maintain the same will be examined here as an introduction to the problem of a
lift distribution, whereas the practical problem is the determination rectangular wind tunnel, and as a second step it is convenient to
of the change of the characteristics of the same wing in free air and censider the effect of two walls, vertical or horizontal, on opposite
in the tunnel. The effect of the twist necessar5 to maintain the sides of the wing. Since, however, the results have no practical
same lift distribution appears to be of the same order of magnitude value in connection with tunnel interference, it will suffice to consider
as the correction to the tunnel interference due to the variation of the problem of small wings only. The lift of the wing ih concentrated
the induced velocity across the span of the wing, and hence it is at its mid-point and the flow ind iced by the wing is that of a doublet
necessary to consider the change of the lift distribution in passing of strength
from the tunnel to free air conditions. .L

The exact solution of this problem in a circular tunnel has a v = VS k. .. (8.1)

been obtained by the present author13 and independently by as given previously in equation (3.5). In the figures representing
Millikanie. The method of analysis adopted by both authors the system of images, appropriate to any given boundaries, it will
was to express the lift distribution by a suitable Fourier series with then be convenient to represent the wing or an identic! ;:nage by
unknown coefficients, to calculate the corresponding induced a plus sign and to represent an inverted image of the wing by a
velocity at any point of the wing, and then to determine the co- negative sign. This representation gives a clear picture of the
efficients of the series to satisfy the conditions imposed by the shape system of images requited in any problem.
of the wing. From this analysis it appeared that there is surprisingly The image system for a smar wing Fgidwy between two rigid
little distortion of the lift distribution of an elliptic wing due to he vertical alls at a distance b apart is shown in Fig. 6. The images
tunnel constraint, even when the span of the wing was equal to are identical with the wing itself and comprise two infinite series
the diameter of the tunnel, and that the modification to Prandtl's extending to the right and to the left respectively. The distance
formula (6.8) for the interference experienced by a wing with of any image from the wing is nib, where i may have any integral
elliptic loading was negligibly small. The application of the analysis value. The induced velocity at the wing due to one of the images
to a rectangular wing'3 led to similar conclusions, and it appears is
therefore that the interference formulae derived from the assumption -

of elliptic distribution of lift are sufficiently accurate for wings of -4r m2 b2
elliptic and rectangular plan forms, whereas formulae derived and hence the total induced velocity, representing the constraint of
from the assumption of uniform distribution of lift may be definitely the tunnel walls, is
misleading. _ _ = It

In view of this analysis and of the conclusions drawn front it, p = 2 F2 g
the interference experienced by any wing in a tunnel of any shape or
will be derived either as a first approximation on the assumption V I S o S
of a small wing with the total lift concentrated at its mid point, V = T2 P A, = 0..62 . (8.2)
or as a closer approximation on the assumption of a wing of finite If there were only one wall at a distance lb from the centre of the
span with elliptic distribution of lift. This course should lead to wing, the interference would be simply
reliable estimates of the tunnel interference experienced by wings
of any shape or size, though some reconsideration may be necessary -= -

if the span of the wing is unduly large since, for example, the lift 4.rb
distribution on a rectangular wing must tend towards the uniform or
type in a closed rectangular tunnel when the span is nearly equal V I S S
to the breadth of the tunnel. n n l= k,.OS0 kL ... (8.3)

- ----- --- f11~~
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Thus the interference caused by the two %alls is 3.29 times that the interference of rigid vertical walls is of the same magnitude
caused by a singlc wall. as that of free horizontal boundaries, as may be seen from the pairs

of equations (8.2) and (S.S), or (8.4) and (8.6). The analysis alsoIf the rigid %%ls are replaced by free boundaries, tle image suggests that vertical rigid %%lls or horizontal free boundaries
system remains the same as in Fig. 6, except that alternate images sget htvria ii al rhrzna rebudre
are of opposite sign. The interference velocity then beco.nes produce the greatest interference, but the interference of a rectangular

tunnel cannot be derived in any simple manner by adding the effects
0 I n IL of the vertical and horizontal boundaries. Indeed the results for

b, 2 p the vertical and horizontal boundaries themselves show that theor interference due to two boundaries bears no simple relationship

v a s  ( to that due to a single wall.
=- k,.= 0.131 k, . (8.4)

9. Rectangular tunnels.-The interference experienced by a
whilst that due to a single free boundary is simply small wing in a closed rectangular tunnel was calculated by the

present author t 
'. 3 and the analysis for a wing of finite span with- ,v 1 -OS 00 k, . (8.5) uniform or with elliptic distribution of lift has been developed

V - 4, V~ bT by TerazawaO and Rosenheadt . Other types of rectangular tunnel,and tle interference caused by the two free boundaries is only with some sides rigid and other sides free, have been considered1n65 times that caused by a single free boundary i by Theodorsen tt and Rosenhead t o, the analysis being limited to
the problem of small wings. It will be convenient here to discuss

The problem of horizontal boundaries above and below the first the proLlem 'of a small wing in any type of rectangular tunnel,
wing, at a distance h apart can be treated in a similar manner. The and then to consider the modifications necessary to allow for the
images are of alternate sign for rigid boundaries and the interference finite span of the wing.
experienced by the wing is

V as S The system of images required to represent the constraint
Wh2. kL 0.13l kL .. .. of a closed ectangular tunnel of height h and breadth b is shown

in Fig. 7. The array comprises alternate rows of positive and
whilst a single horizontal wall gives negative images, and this system satisfies the necessary conditionV I S S of zero normal velocity on all the rectangular boundaries. This

2 k,.=0.00 . .representation is valid for a wing of finite span with any symmetrical
(8.7) lift distribution, but in the analysis of the problem of small wings

When ttie rigid walls are replaced by free boundaries the images each image is assumed to be simply a doublet of strength
are ail identical with the wing. The interference velocity due to
two boundaries is p-= VS k.

v -_ S S--262SI. (8.8) in accordance with the equation (3.5). The induced velocity at the
V 1 h - .. (. wing, due to a positive image at the point (ib, nh), is

and a single fret! boundary gives E tjt2_2 n-h
V IS S 4= (mzb t+ 1h2-2)2
V 1 k - S0 .. (8.9) and hence the total induced velocity experienced by thle wing is

Several interesting conclusions can be drawn from an examination
of these formulae. Firstly, an aeroplane flying above the ground VSkr, m V_) b-- n h2-
experiences, according to equation (8.7), an upward induced velocity r- - - (in b + nyIu)-T
which reduces the drag at a given value of the lift, and a similar
favourable inturkrence is experienced by two aeroplanes flying Also the interference factor 6 is defined by the equation
side by side. Another point to notice is that a change from rigid
to free boundaries does not simply change the sign of the interference, V 6 S (901)
but, in accordance with the general theorem established in Section 5, -" C..., ......... ..

- - -
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where C is the tunnel area Jab, and the expwrsion for 6 in a closed Direct valuation of the interference factors for these different
rectangular trnuel is therefore types of tunnel is unnecessary, since it is possible to establish

b = -) bt - nh several interesting relationships between the different types of
(g-'j tunnel and to express all the interference factors in terms of the

+ ( n;2b 12)2 values of any one type. This analysis depends on the application
The summation extends over all positive and negative integral ofihe general theorem established in Section 5, which states that
values of m and it excluding the pair (0.0). The "luation of thed interference experienced by a small wing at the centre of a
this double summation3 leads to the expression Iosed rectangular tunnel of height h and breadth b is of the same

(1 tj q+ ' maknitude but opposite sign as that on the same wing in a free
6,= 24 (9.02) rectangular jet of height band breadth h. From this general theorem

where it follows at once that

h 62() -6 .. .. .. .. (9.04)

q = e- The general theorem also remains valid if the boundary is

This expression is suitable for numerical calculation, except when partly free and partly rigid, and hence

A is very small, since q is very small and only the first few terms - (9.05)
of the series need be retained. The validity of the expression 6, (!A) (--0..
has been confirmed by Rosenhead 1 , who derived it as the limiting and
fon of his solution for a wing of finite span. An alternative form,
suitable for small values of , can be derived in a similar manner d1()) - i ..
and is =-/

,= 1 "k + I ( -  .. .. (9.03) In particular

where 63(1) = 64 (1) = 0
r =.-I. and thus the interference on a small wing in a square tunnel of

The discussion of the numerical results derived from these formulae type (3) or of type (4) is zero.
will be postponed until the analysis has been developed for someother types of rectangular tunnel. Some further general relationships can be established by super-

Therpesu fo e rectangular tunnel imposing two of the image systems. We consider simply the doubly
ipThe results for a closed rectangular tunnel are of great practical infinite array of doublets and ignore the boundary conditions
importance owing to the existence of many tunnels of this type, after combining any two systems. By combining types (1) and (3)
but some other types are of interest and illustrate the effect of we obtain a new system of type (1) of double strength and double
different boundary conditions. '"heodors-n5 has considered the breadth. Hence
following five types of rectangular tunnel:

1) closed tunnel, v, (h,b) + v3 (h,b) = 2v, (h,2b)R) free jet,
(3) rigid floor and roof, free jetts, and remembering, from equation (9.01), that 6 is proportional to
(4) rigid sides, free floor and roof, the product of the velocity v and the tunnel area C, we obtain

(5) rigid floor, other boundaries free. 61 (A) + 63 (A) = 61 ( )) .. .. .. (9.07)
The systems of images corresponding to these different boundary
conditions arc shon in Figs. 7 and 8; and call for no special comment. This equation serves to determine te alues of 6. in terms of the
They agree with Theodorsen's diagrams except for type (5), where known values of 6.
his system is in error* and fails to satisfy the necessary boundary Similarly by dombining the systems (1) and (4) we obtain a
conditions. new system of type (4) of double strength and double height, and

This error has been corrected in the version of Theodorsen's report hence
- " published in the N.A.C.A. annual volume (1932). 61 (A) + 6, (A) 6 (2) ........ (9.08)

- T7
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which connects the values of , and 64. Another interesting result respect to in. This failure of the method of direct summation is
can be deduced from this last equation in conjunction with the due to inadequate convergence of the series and Thcodorsen's
previous equation (9.0). Wehave results 2 for type (4), obtained by this method, are incorrect.

61 0.) , (2A 1)-6 Rosenhead has examined the problem of these five types of
~ 3~ .2.)tunnel by writing down the appropriate complex potential functions

" 3(1)3(1) for a wing of finite span and uniform loading in terms of elliptic
- 2 -functions and by proceeding then to the limit of zero span. In

particular the resulting expressions for the interference factor in
-- (1 a tunnel of type (4) are

and hence J, 2. (9.12)
11-q.. .4.. .. (..(9.12)

f = ( (909) and 1

ifi l--) .. .. (9.13)
This result is a useful check on the numerical values of 6, and implies where
also that the minimum value of 61 occurs when b = / .. This q = e-A
minimum value of 61 is 0-238. r = e-11

Finally as regards the tunnel of type (5), we note that the Roseniead's resul are consistent with the various relationships,I effect of a pair of rows (I n cancels out exactly if n is odd. There esbled resly, connecting th terfe re atosi tremain only tihe even ro; , which form a system of type (3) of established previously, connecting the interference factors in tihe
double height and hence five different types of tunnel. Numerical values of the interferencefactors are given in Table 3 and the corresponding curves,

1 J
261 (.) -6 3 (2) ........ (9.10) TABLE 3

By means of these equations it is possible to derive values of Values of 6 it rclangulartunnds
all the interference factors from the known values of 6, or more
conveniently from those of 6, owing to the form of equation (9.08). bb, I , 6. J.
The interference factor in each type of tunnel can be expressed
formally by the double summation

6 b 0 00 m,';" - ?;2lh2 4 114 1"047 -0.524 --0.524 0.797 -0.524a 1 (mnb' - n 2  .9.11) 2 12 0.524 -0:274 -0:250 0.274 -0.262
_o -co 4/3 3/4 0351 -0.239 -. 112 0.096 -0-IS7

1 1 0"274 -. 0O274 0 0 -0-125where j is :hl according as the particular image is positive or 213 3/2 0.239 -).393 0.154 --0.143 --0.056
negative. In particular 1/2 2 0:274 -0.524 0:250 -0.274 0

A1/4 4 0.524 -1047 0.524 --.797 0.125

j2 = (-I)M plotted against the ratio of breadth to height of the tunnel, are
is --- (--1) . shown in Fig. 9. The important practical range is from a square

tunnel to a duplex tunnel whose breadth is double the height. In
this range the interference in a free jet is numerically greater than

but there is no simple expression for .'. Direct summation of the that in a closed tunnel, and the interference can be further reduced
expression (9.11) for tunnels of types (2) and (3), by the method by using one of the types of tunnel uith some free and some rigid
used in the original investigation 3 of type (1), presents no difficulties, boundaries. This conclusion must, however, be accepted with
but the application of the same method to the tunnel of type (4) caution since it has been established for small uings only and may
leads to anomalous results since different values are obtained require modification when due allowance is nmade for the finite
according as the summation is made first with respect to ti or with span of the wing.

. --L



i N

26 27

The detailed analysis for a wing of finite span has been duveloped the factor in the srcond term involving Bessel functions are given
as yet only for a closed rectangular tunnel. Tcrazawa' first obtained in Table 5. When a is zero the expression (9.15) reduces to the
tile solution for a %% ing with uniform distribution of lift across its span. previous expression (9.02) and hence this more detaULd analybi:,
Rosenhead" repeated this analysis, obtaining his results in a very
different mathematical form, and also developed the corresponding
analysis for a wing ith elliptic distribution of lift across the span. TABLE 5

Neither author gives detailed numerical results and their formulae (j, (_
are very inconvenient for numerical computation, but they have been Values of

reduced to more suitable forms by the present author 4 and numerical
results have been derived for square and duplex tunnels. The
general formulae are quoted below, but for the detailed analysis I r
in terms of elliptic functions the reader is referred to Rosenhcad's , ,1.-. r f
paper. 

_._1

Writing 0 0-250 0-6 0.095
2s 0-1 0-244 0-7 0.064

0:2 0:227 0-8 0.033
0.3 0.200 0.9 0.020

h -. - 0-4 0-167 1.0 0.008

b 0"5 0-130 1-2 0.000

q = C-nA serves fo check the validity of the summation of the doubly infinite

where s is the semi-span of the wing, the value of 6 deduced from series in the earlier analysis for small wings.
the assumption of uniform loading is Numerical values derived from these formulae for square and

A 29 '2
( 2 log .a. +. 2 P q2' /sin apa' duplex tunnels are given in Table 6, and are exhibited graphically

6(sin og ' - 1 + q" '/ (9.14) in Fig. 10, where the full curves refer to elliptic and the broken
curves to uniform loading. The differences between the results

and it can easily be verified that the expression tends to the previous derived from the two types of loading is far less than that in a
form (9.02) as a tends to zero. The formula deduced from the circular tunnel as given in Table I of Section 6, and in Fig. 5. Indeed,
more reliable assumption of elliptic distribution of lift across the until the wing span exceeds 60 per cent. of the tunnel width in a
span of the wing is of the more complex form square tunnel or 80 per cent. in a duplex tunnel, there is no appreci-

~ q2V ( 1 (40) 2 able difference between the two sets of results. The increase of the
5(E) = AF(a) + sa J - .. (9.15)

where J, is the Bessel function of the first order and F(.) is a TABLE 6
complex power series in a whose numerical values are given in
Table 4. In order to assibt any further calculations, values of Valites of Sin closed rwtcang-darh-'vi'4s

TABLE 4" Square (b - h) I Duplex (b - 2h)

Values of F(o) 2slb j (U) 6(E) a(U) 6(E)

o) I a F(a) 0 0-274 0-2741 0-274 0.274
1 0-2 0-276 0-275 0-254 0.23

0-4 0"284 0.281 0.214 0-225
0 0:2618 0'5 0-2S0 0:5 0:292 0:2S6 0-197 0-208
0! 02624 0-6 0-290 0 6 0.305 0"295 0"185 0-194
0.2 0-265 0.7 0.304 0-7 0-326 0.307 0"181 0-1$3
0:3 0:2679 0.8 0.325 0"8 0-3G2 0-327 028, 0-IS3
0"4 0-2730 0.9 0-358 0"-8 0-435 0.359 0-219 0.139

- -. . . . . ... . . . . .. . . . . .
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interference factor 6 with tile span of the wing iii a square tunnel to a free jet, are given in Table 7. Ignoring the one discordant
is similar to that in a circular tunnel, but in the duplex tunnel value, it would appear that the value of 6is slightly greater than 0.40
there is an important decrease, leading to a minimum value of 0182, and that there is no systematic variation with til span of the wing.
which is 33 per cent. below the value, for a small wing, when the no tha c of i fo smain in his t e w o be ing.
wing span is 77 per cent. of the breadth of the tunnel. Since the to be value of 6 for a sma wing in this tunnel would be estimated
span of a wing usually lies between 40 per cent. and 60 per cent. to be 0.369, being the same as that in a closed rectangular tunnel
of the breadth of the tunnel this feature is important, and the of breadth-height ratio .I/V1' Moreover, in such a closed tunnelapplication of the interference factor derived from the consideration we should expect some rise of the coefficient 6 with the span of theof a small ofng would overestimate the appropriate conection for wing in the light of results given in Table 6 and Fig. 10. On the
tunnel constraint. This result sho%%s that the values of 6, deduced whole, therefore, the value of 6 deduced from the experiments
from the consideration of small wings, give only a first approximation appears to be in general agreemont with the theoretical calculations.
to the correction required by a wing of finite span, and that con- 10. Elliptic tun1zds.-Closed tunnels can be constructed with any
clusions concerning the relative merits of different types of tunnel shape of cross-section, but if a free jet is used it is advisable to
must be accepted with caution until the effect of finite span has been avoid any corners and the cross-section usually has a circular or
investigated. oval form. The circular tunnel, for which detailed results have

Experimental checks on the theoretical formulae for the inter- already been obtained, is only a parti-ular case of the more general
ference in rectangular tunnels have been obtained by Cowley and type of elliptic tunnel, and a knowledge of the interference in
Joness and by Knight and Harris LO. Cowley and Jones tested a rectangular and elliptic tunnels will suffice to give a reasonably
biplane, formed of tW;o identical rectangular wings of aspect ratio 6 reliable estimate of the interference in any type of oval tunnel.
and of 3 ft. span, in 4 ft. and 7 ft. closed square tunnels, and found The interference e-perienced by a small wing in an elliptic tunnelsatisfactory agreement between tle tu~o sets of results after correction has been calculated by tle present authorls, and tile analysis forfor tunnel interference according to the theoretical formulae for a wing with uniform loading has been developed by Sanuki and

small wings (6 = 0.274). These experimental results have been Tani" and for a wing with elliptic loading by Rosenhead. Before
corrected again using the values of 6 correspuidiul Lu tie a,. ual discussing these results, however, it is proposed to establish an
span of the biplane, i.e. 0-315 in the 4 ft. tunnel and 0.282 in the important theorem's concerning a wing with elliptic loading in an
7 ft. tunnel. The uncorrected and corrected polar curves are shown elliptic tunnel whose foci are situated at the wing tips.
in Fig. 11, and it will be seen that the correction for tunnel inter- In general it is desirable that the interference factor shall be
ference has brought the two discordant observed curves into almost small, in order to avoid unduly large corrections to the observed
exact agreement. The correction of the angle of incidence is shown results, but the magnitude o these corrections inevitably rises %%,,h
in Fig. 12 and is also very satisfactory, though not quite so good the size of the wing since it is actually proportional to 6S. Another
as that of the drag coefficient. It is remarkable that the theoretical important point is the variation of the induced velocity across the
formulae, which are developed on the basis of small lift forces, span of the wing, which leads to a distortion of the lift distribution.
should give satisfactory agreement throughout the whole range It has been shown in Section 7 that this effect is unimportant in a
up to and including the stall of the wing. circular tunnel, but it would nevertlieles, be a very desirable quality

Knight and HarrislO used three wings of aspect ratio 5 with of a wind tunnel if it gave uniform induced velocity across the span
span-breadth ratios of 0-45, 0•60 and 0 75 respectively. The of the wing. This criterion, rather than the magnitude of theexperiments wtae made in a free rectangular jet of bradth-height interference factor 6 really defines the optimum shapc of a %%indratio A/2 at a constant value of the Reynolds number, and the tunnel.

obser ed values were analysed to deduce the appropriate value of 6 Now consider a wing with elliptic distribution of lift acro.,s
for each wing. Values of 6, ignoring the negative sign aplr, opriate its span. The flow in a transverse section of the distant vuake i

that due to a straight line, of length equal to the span of the wing,
TABLE 7 moving downwards with a constant velocity w, and the complex

Rectangular je't potential function of this flow is
i + #+i=iw(z:V )--. ...... (10.01)

ragnbeait n ... , .. 042 0.4 0.75 where s is the semi-span of the wing. ThusFrom~~ ~~ dacolccn .. 0420 .412 0"400
From angle of incidenco . . 0-602 0.402 0-444
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Thusi hecoedtneand at any point of tile line itself in the closed tunnel W' a - b
wx w a--

i u- :F :v~s-_2 and in the free jet
V3 W W, a-bI W

where the upper and lower signs of the expression for u correspond Finally, since
to the upper and lower sides of the line. w SkL

Consider next the flow represented by the complex potential V -2.rs2

function the values of the interference factor in the two tunnels are
+ iV = i(w - W )- iw -v/z-- s2 (10.02) b

This will give the same tangential component of the velocity as 6 -2(a.+ b) ....... (1004,
before on both sides of the line and hence the same intensity of for the closed tunnel, and
the trailing vortices represented by the line, but there is now a
uniform interference velocity = a

2(a+ b) (10.05)
V W' for the free jet.. The condition of uniform interference across the

span of the wing is satisfied in any elliptic tunnel, with rigid or free
Thus the complex potential function (10.02) satisfies the condition boundary, if the wing extends between the foci of the ellipse and if
of giving unifoms interference across the span of the wing, and it the lift is distributed elliptically across its span. The condition
remains to examine the conditions under which this flow will ari.e. IL .. iI U .

Putting same span, and the optimum shape of tunnel for testing a largewing therefore appears to be one which satisfies this confocal
= scosh .......... (10.03) property for the largest span of wing to be used. Since the cross-

sectional area C of the tunnel is determined by the wind speedthe complex potential function (10.02) becomes required and by the power available for operating the tunnel, the

+ i, = i { (w - w') cosh - wsinh 1) s cos 71 shape of the tunnel is uniquely determined by the two equations
- { (w - w' sinh - w cosh } s sin n/ al - b2 = s2)

Now the stream function V is constant over the boundary of a nab= C1 ........ (10.06)

closed tunnel, and hence the flow represented by the complex The tunnel may have a rigid or a free boundary, but the inter-
potential function (10.02) will occur in the closed elliptic tunnel ference is smaller in the closed tunnel. Numerical values of the
defined by the cquation interference factor are given in Table 3 and are shown as cui%

w sin]:= (w- w'} cosh €in Fig. 13, the negative sign for the free jet being omitted in thefigure. Values of sIV/ are included in the table to show the

Similarly the velocity potential # is constant over the boundary of ratio of the span of the wing to the diameter of the circle of the
a free jet, and the shape of the jet is defined by the condition same area as the ellipse.

w cosh $ = (W - IV) sinh TABLE 8cosh " =(w - to) sih €Confocai elliptic tunngds

In each case the boundary is represented by a definite value of the

parameter $, and is therefore an ellipse with foci at the tips of the Breadthfleight ""I !0 1.5 2-0 2-5 13"0
wing. The semi-axes of the ellipse are ... 0 0.913 1-225 1-449 1.633r.sedt tunnel) 0-250 0"200 0"167 0-143 0-125a = scosh 6(free jet) -0-250 --0.300 .--0333 0-357 -0-375

b = s sinh O (

,-- --

-- --..... - -~ --
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Turning next to the pcoblem of a small wing at the centre of closed tunnel or in a narrow free jet, and the minimum value occurs

any elliptic tunnel, it has been shown by the present author' s that when the major axis is approximately 1-35 times the minor axis.
the problem can be reduced to one of a doubly infinite array of Indeed the results are similar to those already obtained for rect-
doublets, such as occurs in the problem of rectangular tunnels, angular tunnels, but the values of tile interference factor are slightly
by means of the transformation lower in an elliptic than in a rectangular tunnel for equal values of

z--. c sin C" ............ (10.07) the ratio of breadth to height. In general the span of the wing
will be along the major axis of the ellipse and the interference is

The boundary of the ellipse is taken to be i) = 0 and the semi-axes then less in a closed tunnel than in a free jet.
are then

a = c cosh 0, TABLE 9

b = c sinth 0 Closed elliptic tunnels

It is necessary to consider in turn the conditions when the span of
the wing lies along the major or along the minor axis of the ellipse, Breadth/height.. 0-305 ,0553 0 -781 1-000 1-280 1-795 3-2S0
but the results for a free jet can be derived directly from those 0686 1 03S3 0.292 0-250 0-231 0-243 0-364

for a closed tunnel by interchanging the axes of the ellipse and
by changing the sign of the interference factor. The resulting The interference experienced by a wing with uniform distribution
formulae are as follows. Writing of lift across its span has been determined by Sanuki and Tani'7.

-to The span of the &ving is assumed to lie along the major axis of the
ellipse and the solution is obtained by expressing the stream function

r= e-n2/20 of the flow by suitable infinite series. Results are given for closed
the interference factor, when the stan lies along the major axis of r tunnels and for free jets. The more important solution for a wing
thoet elliptic facno, he the span w i ud jisiribui i - f. lUZ across its span bas been obtained
closed elliptictunnel, is by Rosenhead"' in terms of elliptic functions. The resulting for-6 m sinb 0 cosh 0 ' (2p - 1)qP- mulae are very complex, but numerical values of 6 have been

I + Oq-1  calculated by Rosenhead for closed tunnels and for free jets, and

2 1 0 (2 -- I) 72P-1 are reproduced here in Tables 10 and I1. In these tables the span
-sinh i 1 '0 1(, -1 + r2

?' 
)_- 4 Oih0cosh 0(20 - -- + (10.08)

TABLE 10
where the alternative values are suitable for large and small values Closed elliptic tunnds
of 0 respectively. Similarly, when the span lies along the minor
axis of a closed elliptic tunnel, there are the two corresponding
expressions Breadth/height. 1 r- I 2/3 1 312 2.

62 = sin]h 0 cosli 0 q z - 1)q - 0 0-427 J 0.331 0.250 0-231 0.254
- q 0.2 0-433] 0-334 0-250 -0-228 0.245

= sinh 0 cosh 1 t -.,') (10.09 0"4 0-45 0.344 0-250 0-221 0-2220 2 + -- (1009) 0-6 .067 0:250 0:212 0.1'6
0.8 0.427 0-250 0-204 0-176

These expressions ar rather complex, but in practice it suffices 1.0 0-20 0-200 0-167
almost invariably to retain only the first term of the exponential

series, and, unless the ellipse approaches very closely to a circle, of the wing is expressed as a fraction of the distance (2c) btctr,
the formulae appropriate to small values of 0 should be used. the foci of the ellipse. When the breadth of the cllipse c..c'cds
Numcrical values derived from these formulae are given in Table its height, the ratio of the span of the wing to the breadth of the
9 and are shown as curves in Fig. 14, the full curve corresponding tunnel is
to the closed tunnel and the broken curve to the free jet, but without s L.. . (
the appropriate negative sign. The interference is least in a broad a - - - -."(a .. .

..---.
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and when tile height of tie ellipse exceeds the breadth the corres- TABLE 12
ponding formula is Oval jet

S Sa
c .. . (10.11) Span/breadth 0-45 0.60 0-75

From angle of incidence 0.498 0386 0.383
where a and b arc the seni-axes of the ellipse. The results for a From drag coefficient 0-340 0320 0328

circular tunnel are not revealed by these tables, since the span of Calculatd ......... 0-296 0-290 0-300

the wing is zero for all values of s/c. Full results for tile circular
tunnel have, however, already been given in Section 6. 11. Downwash and tailselting.-Hitherto the analysis has been

Rosehhead's values of 6 are also shown in Figs. 15 and 16, where confined to the problem of the interferencc experienced by a wing
the abscissa is the ratio of the span of the wing to the breadth of in a wind tunnel, though the experimental work of Cowley and Jones$,

illustrated in Figs. 11 and 12, indicates that the results of the
STABLE 11 analysis can also be applied successfully to a biplane'system. If,

Free llitic j however, the complete model of -n aeroplane is tested in a wind
tunnel, it is evident that the interference experienced by the tailplane,
situated some distance behind the vings, may differ from that

Breadth/height. 112 1 2/3 1 I 3/2 2 experienced by the wings themselves. In other words, there will be
--- ___an interference on the angle of downwash behind the wings and on

-- 0 -0-254 I -0-231 --0-250 --0-331- -0-427 the tailsetting reqaired to trim the aeroplane. Let el be the induced

-- 0265 -0 234 -0-250 -0:328 -0-416 angle of upwash experienced by the wings, and let r2 be the additional

0"4 -0.311 -- 244 -0.250 -0321 -0.392 angle of upwash in the neighbourhood of the tailplane of a model
0.6 -0.267 -0-250 --0.312 -0365 aeroplane. As a consequence of this interference the do n-ash
0:8 -- ,%99 --0.. -.0304 -0.3 angle r and the t6ilsetting n to trim the aeroplane at a given value
1.0 -0.-250 -0-300 of the lift coefficient will be measured smaller in a wind tunnel

than in free air and will require the corrections
the tunnel. In a closed tunnel the value of 6 increases with the ArC= e+ eZ
span of the wing when the breadth of the tunnel is less than the . (11.1)
height, bat decreases in the more usual condition with the sp;n of Arr = C:

tie wing along the major axis of the ellipse. These results arc The lift of the aeroplane may be assumed to be given wholly by the
similar to those obtained previously for rectangular tunnels and wings, and thus el can be expressed in the form
shown in Fig. 10. The corresponding values of 6 in a free elliptic
jet are shown in Fig. 16, and it will be noticed that the numerical -
value of 6 never decreases to the same extent as in the closed - ,.
tunnels.
unner cwhere 6 is the interference factor whose value, in different types
No expeimental checks on the value of 6 in elliptic wind tunnels of wind tunnel, has been considered in the previous sections. it

are available, but Knight and Harrisii have obtained results in is now necessary to determine the additional interference e. in the
two oval jets wilh semi-circular ends, the ratios of breadth to height neighbourhood of the tailplane of an aeroplane.i being respectively . / and 2. Sanuki and Tani51 have made annehouhoofhetlpaefanerpne
approximat ecti l auan 2. thvlue ofand to be made" .The problem of this additional interference in a closed rectangular
a in at theoretical calculation ofthe value of 6 tobe epetd wind tuie a encnilee yGaetadlrtshorn' N'ho
inthe first of these two tunnels and the comparison with the values wind tunnel has been considered by Glancer and H h o

deduced from an analysis of the experimental results is given in have obtained the solution on the assumption that the distance of the

Table 12, where the negative sign appropriate to a free jet is ignorcd. tailplane behind th2 wing is of the same order of magnitude as the

The calrulated values, which are based on the assumption of uniform semi-span of the wing, and that the dimensions of the wing itself

distribution of lift across the span of the wing, are in fair agreement are small compared with those of the tunnel. The solution therefore

with the values deduced from the drag coefficients, whilst the corresponds to the conditions assumed for small wings in the earlier

analysis of the angles of incidence leads to rather high..'r values analysis.
as noticed previously for circular tunnels.

- -\
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The systems of images used to represent the constraint of the TABLE ! 13

boundaries of a rectangular tunnel have previously been considered Rctangular
only in relationship to tile two-dimensional problem of a transverse R gr els
section of the wake behind a wing, but it can easily be seen that I I I
this method of images is equally valid for the three.dimensional Type. b/h a,'7
problem of the whole tunel. Thus, for example, if two identical
-aeroplanes are flying side by side, there will be no flow across the Closed tunnel........1.0 0-480 1-75
vertical plane midway between then, and this plane can be replaced Closed tunnel... .- 2.0 0.535 2-13
by a rigid boundary without modifying the flow in any way. In fact Free jet. ...... 1.0 - 748
all the systems of images, used in the discussion of different types
of rectangular tunnels, remain valid for the three-dimensional An attempt to derive a formula for the interference on the
problem, but a positive image must now be interpreted as a system ang e o a iv a circular t e ha ee e e y the
identical with the wing itselt, including both the circulation round angle of dowrash i a circular tunnel has been made by Siferth
the wing and the accompanying system of trailing vortices.which represents

ti y cosideing teachmageing turst iosrilen tortes, daccurately the conditions of this three-dimensional problem. the
By considering each image in turn it is possible to write down an vortex images of the two-dimensional problem of a transverse

exnression, involving doubly infinite summation, for the induced section of the wake can be extended forwards parallel to the trailing
velocity at any point of the tunnel. The analysis is simplified vortices of tile wing as far as the transven.e plane through the
if the span of the wing is small compared with the dimensions wing itself, but it is not possible to complete the image system
of the tunnel, and if tile induced velocity is calculated only at a point in any simple manner by transverse vortices wi,,ch will satisfy the
of the central axis of the tunnel at a small distance I behind tile necessary boundary conditions. Seiferth's formula represents
wing. The expression for tile excess of the induced angle of upwash merely the effect of these longitudinal image vortices and is therefore
at this point over the value at the wing itself, is then incorrect in principle. Moreover his expression is of the form

Li -' 1,12 b2 - 20i h2

e - - (m b + _ Y) .. (11.3) Li ' - . K
No simple expression for this doubly infinite sum can be obtained where a is the radus of the tunnel and s is the semi-span of te

and it is necessary to evaluate the sum numerically for each shape wing. This formula contains the fourth power of the linear dimensions
of tunnel. The results are expressed conveniently in tile form wn.Ti oml otistefut oeo h ierdmninof the tunnel in the denominator, whereas the previous formula

,= 6' S 1  -  - -  (11.4) (11.4) for a rectangular tunnel contains only the third power of.. these dimensions. Thus Seiferth's formula appears also to be
incorrect in form. Indeed we may anticipate that the interferenceand numerical values for the two most important types of closed in a circular tunnel will not differ greatly from that in a squarerectangular tunnel are given in Table 13. The expression for tunnel of corresponding size. The interference on the wing itself is

e, in a free rectangular jet is identical with (11.3) except that the
factor (-l)* is 6hanged to (-I)m. Unfortunately, however, there S
is no simple connection between the results in closed tunnels and el = 0-250 .h,
free jets, such as occurs in the case of the interference experienced
by the wing itself, but the numerical value of 6' for a free square in a circular tunnel, and
jet is included in the table. It will be noticed that this value is S
numerically smaller than that in a closed square tunnel. These £ - 0.274 kr,
values refer only to small wings and may need modification when
due allowance is madc for the actual span of the wings. The value in a square tunel. These expressions give equal values if the side
of 6, which defines the interference on the wing itself, varies with of the sqiare is 0 o925 times tale dia nterof tie circle. If ve assue
the span of the wing in a closed tunnel as shown ii Fig. 10, and there that the interference on el the of don wash ill also have equal
will probably be a sympathetic variation of the value of 6'. Values values in the two tunnel, the formula for this interference in
of the ratio of 6' to 6 have therefore been included in Table 13 and, circular tunnel becomes
failing more definite information, these values may be used to I'
determine the appropriae value of 6', in any particular problem. t 6' I(

--F-. ...---..
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where d is the diameter of fie tunnel, and the numerical value of
6' does not differ by more than I -er cent. from that appropriate increase in the value of the maximum lift coefficient. Similarly
to a square tunnel. In the absence of a true solution of the problem there will tend to be a decrease of the maximum lift coefficient
in a circular tunnel, it 'Is suggested therefore that the interference in a free jet. The tunnel constraint on the distribution of lift across
on the angle of downwash and tailsetting may be estimated approxi- the span of a wing is, however, known to be small unless the span
mately from the formula (11.5) using the same value of 6' as in a of the wing is a large fraction of the breadth of the tunnel, and we
square tunnel. may, therefore, anticipate only a small interference on the maximum

Experimental confirmaton of the accuracy of the -formulae lift coefficient of a wing, depending mainly on the breadth of the
for the interference oh the angle of downwash and tailsetting in a tunnel.
closed square tunnel has been obtained by Glauert and Hartsborni Another type of interference on the maximum lift coefficient
by testing a complete model aeroplane in a 4 ft. and in a 7 ft. may occur if the chord of the wing is large. Consider, for simplicity,
tunnel. The uncorrected and the corrected results are shown in a single horizontal boundary above the wing. The wing and its
Figs. 17 and 18, and it will be seen that the application of the image will then form a divergent passage, which will tend to caue
theoretical corrections for tunnel interference has brought the a breakdown of the flow over the upper surface of the wing and
discordant observed results of the two tunnels into excellent hence a reduction of the value of the maximum lift coefficient.agreement. This second type of interference %%ill depend mainly ou the ratio ofthe chord of the wing to the height of the tunnel.

12. Maximum lift coeicint.-The preceding analysis of the It is not possible to estimate the magnitude of these interference
interference experienced by a wing in any type of wind tunnel has effects, since they depend on the stability of the flow over the upper
been developed on the basis and principles of modem aerofoil surface of the wing near the critical angle of incidence. It is necessary
theory, which is essentially an approximate theory suitable for to turn to experimental results, but here again it is difficult to obtain
small lift forces. The experimental results, which have been obtained a reliable answer owing to the variation of the maximum lift
as checks on the theoretical formulae, have however shown that coefficient of a wing with the scale of the test and with the turbulence
the analysis remains valid over a wider range than might have been tA th,. wind stream. Results obtained in different wind tunnels or at
anticipated and that in fact. it may be applied with confidence different values of the Reynolds number are, therefore, el little
throughout the usual working range of a wing. On the other hand value in this connection, but there are available a few series of
the analysis gives no direct indication whether there is a tunnel experimental results from which it is possible to deduce some
constraint of the maximum lift coefficient of a wing, and it is in tentative empirical conclusions.
fact incapable of giving an exact answer to this question, though A detailed investigation of the tunnel interference on the
it is possible to deduce some conclusions regarding the general maximum lift coefficient of rectangular wings has been made by
nature of this interference. Bradfield, Clark and Fairthorne*. The main series of experiments

Consider first an untwisted wing of elliptic plan form in an was made in a closed 7 ft. wind tunnel, inside which smialler tunnels
infinite fluid. The downward induced velocity, due t(, the system of were constructed by the usc of false floors and sides. Thus it was
trailing vortices, has a comtant value across the span of the wing, possible to test a wing in tunnels of different size and shape whilst
and each section of the wing operates at the same effective angle maintaining the same value of the Reynolds numher and the same
of incidence. Hence ;we may ant'eipate that every section will

--reach its critical angle simultaneously and that the maximun. lift TABLE 14
coefficient of the elliptic wing will be sensibly the same 2.s that Maximum lift coeffcietl in closed huinnds
of the acrofoil section in two-dimensional motion. Considering
next a wing of rectangular plan form, the downward induced velocity Tunnel. R.A.F. 30 Aerofoil A R R.A.F. 2 I.A.17.19is least at the centre of the wing and increases outwards towards the h X 48in.)i
tips. Tius the centre of the wing stalls first and the maximum lift

- coefficient of the rectangular wing will tend to be lower than that
of an elliptic wing of the same acrofoil section. Now in a closed 7 7 0-415 0.511 0.653 0.898.
wind tunnel a wing experiences an upward induced velocity, due 7 0.64W0 0-912
to the constraint of the tunnel walls, which, is least at the centre 4 7 0.92tiei0-443 0.528 0-6.r 0-926
of the wing and increases outwards towards the tips. This inter- 3 7 0-934
ference will therefore tend to counteract in part the ordinary induced 31 31 0.545 0.938

._ idtY1tf a rectangular wing, and we may anticipate a corresponding -
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degree of turbulence of the wind stream. Thle experimental results known to be insensitive to changes of Reynolds number, and hence
for four rectangular wings of aspect iatio 6 are sumnnarised in is also probably insclisitive to changes of turbulcnce, and the
Table 14, each value being tile mean of thle results obtained at I values of the maxinunt lift coefficient of this wing are as follows:
wind speeds of 60 and S0 ft./sec. It will be noticed that thle value 5 ft. free jet .. 0-4992
of the maximum lift coefficient increases as tilc size of the tunnel Free air 0 . 500
decreases, and that the effect is due mainly to the breadth of the 1
tunnel .ahilst changcs of thle height of the tunnel produce only small The free air value was estima~cd from the tebts in thle series of closed

-effects in general. In Fig. 19 thme values of the maximum lift tunnels, and there appears to be a small decrease of the maximum
coefficient have been plotted against tile ratio (SIP2) of the area 1 lift coefficient in the free jet. Some other experimental results,
rf the wing to the square of the breadth of the tunnel. The points I obtained by Prandt14 by testing a series of rectangular wings of
for each wing lie on a set of straight lines of approximately the aspect ratio 5 and of section GUttingen 389, are given in Table 16.
same slope and to a close approximation it is possible to write for These results showv very little change of the maximum lit coefficient.
all wings, which give widely different values of the maximum lift There is a slight increase with~ the size of the wing, but the larger
coefficient, wings were tested at lower wind speeds in order to maintain a-

k~, max) 0'3 .. . (1.1)constant value of the Reynolds number, and this change of wind
A kL(max = -38 2 (1.1)speed may have been accompanied by a change of turbulence.

Thie maximum error due to the use of this simple formula appears TABLE 16
to be of the order of +_0-005 in the value of the maximum lift
coefficient. Max'inM imn lift coefficient in a free jet

The same authors0 quote results for a group of slotted wings
tested in a 4 ft. and in a 7 ft. tunnel. A cheek test on one of the 0. 5. .1 0.05 67 0.51209 Wwig nasmall tunnel, constructed inside the 7ft. tunnel, suggested 0I 7
th~~t fh~,ro 'ta ""p !tdif'" h effotive ttri,,nr 0.560 058 057 059 07

ofth wotnnl, n tereutsmy hreoe eaccepted as- _ _ _ _ _ _ _ _ _

giiga fair measure of the tunnel interference. These results The evidence regarding thle maximum lift coefficient of a wing in a
aecollected in Table 15 and it appears that the mean increment free jet is inconclu.ive, but the interference undoubtedly is very

of the maximum lift coefficient is 0-12, whereas the empirical small and may be neglected except for unusually large wingso.
formula (12.1) would have suggested a value of 0-024 only. Thus
there appears to be an increased tunnel interference on the maximum____________
lift coefficient of a slotted wing, but there are unfortunately no
results available for a more detailed analysis of this rather peculiar PART 2
result.

IThe four wings of Table 14 have also been tested in a 5 ft. free .lVings, Two Dimensions
jet9 but thle results cannot be accepted as reliable determinations 13. Inuc ~raweof the flow.-Tbe preceding diseu-zion and
of thle tunnel interference owing to possible differences of thle aayi aebe eoe otepolmo igo iiesa

turblene o thestram.Theaeroomisecion ishowverin a wind tunnel, and it is now necessary to consider tile nature of

TAB3LE 15 the interference when the wing stretches across the whole breadth

Maximin, lift coefcinofsotd igsiclsdm'es of thle tunnel. If, for example, a wing stretches from wall to wall
________________ ficient____ of __slotted ________inclosed__________ of a closed rectangular tunnel there wvill be no system of trailing

Sloted ~ing ~ 7ft tnnelvorices, apart from any minor effects due to the boundary layer
SotdWn.4 ft. jurl alontune.g thle wall1 of the tunnel, and thle preceding method of analysis

It A.F.6............. 0SO however, a constraint of the flow imposed by time roof and floor
Amscrewv 3........ 10 0-92 of the tuniel, and it is necessary to develop a method of estimating

It A.. 28 ~87 075 . tile magnitude of this constraint. Tme failure of time preceding
It A.F. 28 laerlt)0:98 0 85 analysis to give any indication of this interference is due to the

______________________I ______________________underlying assumption that a wing may be replaced by a lifting

" \
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line or bound vortex along its span. Consequently tihe formulae 4
for the interference are really independe of te chord of the wing The effect of a pair of similar images at equal distances above and
and the erencre relwn ind ane of a formula of the type below the point 0 will cancel out exactly and there is no resultant

induced velocity due to the series of images appropriate to a closed

At = k,. tunnel or to a free jet. We note, however, that the induced flow
C at 0 due to the point vortex at C is curved ; there is an upward

is (lie solely to the definition of the lift coefficient. The formulae induced velocity in front of 0 and a downward induced velocity
for the corrections to the angle of incidence and drag may be behind 0, and this curvature of the induced flow is in the same
written in the alternative forns sense whether the inducing vortex is above or below the wing.

Thus the wing at 0 is situated in a curved flow, and this curvature
A = 6 L of the flow will modify the force experienced by the wing. Thus aCe V2  

symmetrical wing at zero angle of incidence would give zero liftand in an unlimited stream, but in order to obtain zero lift in the induced

AD = 6 curved flow it would be necessary to increase the camber of the wing
CD V

2  
in accordance with the curvature of the flow. Actually the lift

where 6 depends on the shape and nature of the wind tunnel, on the of a given wing will be reduced by an amount corresponding to anereo 6f dhepn on the shapan naturead of the tunnel, ondtheeffective reduction of camber of this magnitude. It is convenient
ratio of the span of the wing to the breadth of the tunnel, and on in the first place to calculate this curvature correction due to a
the distribution of lift across the span of the wing, It is evident single direct image of the wing, which is in effect the problem of
that these formulae are quite independent of the chord and area of
the wing, and their validity has been fully justified by the experi- biplane wings of nfinite span as considered by the present authore

mental results available. This result is due to tle fact that the chord be correction ina closed tunnel or free jet can then be derived

of a wing of finite span will in general be only a small fraction by a simple process of sumation over all the images.

height of the tunnel, but, when we turn to the problem of a wing
str ,tchine across the whnlo hreadth of tile tunnel, the chord of thp Referring to Fig. 20, if w is the downward induced velocity at
wing wilftend to be larger and, in order to obtain reliable estimatee a point P of the wing at a distance x behind 0, the radius of curvature

wig f the streamlines is given by the equationof the interference experienced by the wing, it is necessary to
consider the finite extension of the chord. V dw

The problem to be considered is one of flow in two dimensions
only, since the flow may be assumed to be the same in all planes
normal to the span of the wing. Exact solutions of the problem and the relationship between the camber and radius of a circular
have been obtained for thin symmetrical aerofoil sections, but it arc is
is more instructive to consider in the first place an approximate
method of solution which reveals more clearly the nature of the c
interference due to the tunnel. Consider a closed tunnel of height h 8R
%%ith parallel rigid boundaries above and below the wing. The
boundary conditions are satisfied exactly by the introduction of an Thus -the effective reduction of camber of the wing due to the
infinite column of images above and below the wing, the images induced flow is
bing alternately inverted and direct replicas of the wing itself. c dw
Shnilarly the conditions in a free jet may be represented 1; an Y = V V ... (13.01)
infinite column of images identical with the wing.

In order to appreciate the nture of the interference due to Also the induced velocity at the point P is
these images it is convenient to consider the effect of a single direct
.mge as illustrated in Fig. 20. Consider first the effect of a point K X
votex of strength K at the point C. The induced velocity at a 2n h2 + "2.

point 0 at height 1 above C is wholly horizontal and of xn*gnitude and hence

Kt dw K h 2 -x-U=2kdx = 2n (h52+ x..............(13.03)

- - ---- ----
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roximation w equation (13.03) would lead to a term of order (ch)4. This closerto be vezy smalland ay y chord of the wing analysis of tile problem shows that tile total interference due to theorepresent te wing by a concentrated curvature of the flow comprises tile effective change of camberpoint vortex of strength K, where (13.05) and a change of the effective angle of incidence coiresponding
K = cV. .. W.......... (13.04) to the induced velocity (13.06).

On this basis we put x = 0 in tile equations for the induced velocity Now the characteristics of a circular arc aerofoil of camber Yand canber. The iuduced velocity is zero, but there is an effective are given by the equationsreduction of camber of magnitude k. = a (a + 2 y)
1 iCV'an
()k,. (13.05) and

In a free jet we shall obtain 4 -

1[(¢)' k 1 ) Compannb tihe wing subjected to interference with the sanic wing
Y ,7 h 1 48 h " " .in an unlinated stream, the increase of the moment coefficient due

and in a closed channel to the effective reduction of camber is

I ' (1)u 96 h k.-k.W 1 0 k,

There results were given by Prandtll in his original paper on wind and the slope of the moment curve is
tunnel interference and have been reproduced by other writers, but dA. I - i \ IJ 3A [
the approximation is in fact too crude and is not a true representation - . . .. (1M.07)
of the effective camber to tile order (c~h)2. The discrepancy arises dk 41 8
from the fact that the correction to the camber must be applied Similarly the increase of the angle of incidence, necessary to maintainwith reference to the mid point of the wing, whereas the point the same value of tile lift coefficient, is
vortex representing the circulation round the wing must be placed
at the centre of pressure, which is the centroid of the bound vortices a - a )- + 2 Y
distributed along the chord of the wing. -

Proceeding to this closer approximation, let 0 be the centre of (E)l 'O3ki,.4k) (13.08)pressure coefficient of the wing, related to the coefficient of the &- "moment about thle leading edge by the equation
or alternatively the decrease of tile lift coefficient at tile same angle ofk. = - 0 h incidence is

The coordinate of the midpoint of the vdng is then kL )k- = (J (3.+4k= .. .. (13.09)
X = (0.5 - O)C

and in accordance with the previous equations (13.02) and (13.04) Finally the moment coefficient of an aerofoil in an unlinited stream
the normal induced velocity at this point, to the order of accuracy can be written in the form
(ile2,is I

V It\2
w - (0.5 - )kz, and this relationship can be used as an approximation in the ex-

pressions for the corrections to the angle of incidence and lift
(k,. + 2k.) (13.06) coefficient, which then become

No correction is required to the expression (13.05) for the effective a - a I) = (kL -
2 ,u) .. .. (13.10)

camber to this same order of accuracy, since the retention of x in

I 
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and and the induced drag coefficient of the wing in the jet will be

)) (k, + 2p) ( ck, hh k=ff" * .. .. .. .. (14.2)

In general p is small compared with k,, and it is zero for a
symmetrical section, The correction to the angl of incidence or lift Alternatively, at the same angle of incidence in the jet and in an

coefficient is then double thc value which mould be deduced by the unlimited stream, we have

first approximation due to the effective camber (13.05), ignoring a-ao-iw
the indticed velocity at the centre of the wing (13.0h) The formulae
(13.07) to (13.11) give the effect of a single image, identical with

the wing itself, but the interference due to the infinite columns
of images representing a free jet or closed tunnel can be derived

quite simply ty multiplying the expressions for the interference by it

aapproprate factor. This factor isnr'3for a free jet and -n'6fora where a is the angle of zero lift of the wing, and thus

dosed tunnel. In particular the lift at a given angle of incidenceL. (.
is decreased in a free jet and increased in a closed tunnel. L 21 . .......... (14.3)

14. Free jefs.-In the preceding section expressions have been where I is the lift in an unlimited stream and L is the lift in the

obtained for the interfelence on the characteristics of a wing in a. free jet at the same angle of inciden~e.

free jet or closed tunnel due to the induced curvature of the flow
in the neighbourhood of the wing. This is the only interference in a Combining these downwash corrections to the characteristics

closed tunnel, but there is an additional type of interference in a of a wing in a free jet with the previous results for the effect of

free jet owing to the downward deflection of the jet behind the the induced curvature of the flow, the final formulae for the charac-

wing. The magnitude of this additional interference, which is in teristics of a wing in a free jet are as followq. At a definite value of

fact far more important than that due to the curvature of the flow, the lift coefficient, the necessary increase of the angle of incidence

has been determined by Prandtl by considering the appropriate in the jet issystem of images' and alternativelyha endeemn yeconsideringsthe o°nward  a--!( ' +1 (--f ((k,.-+ 2.) .. (14.'4)

momentum imparted to the jet'1. he rate of mass flow in a jet 2 k 1 +

of height h and breadth b is eVhb and the ultimate downward
velocity ,5 imparted to the jet by the lift of the wing is therefore the increase oi the drag coefficier.t in the jet is

determined by the equation (14.5)
eVhbwo- eVtbchLk- 

k,

or to which it may be necessary to add a small crrection owing to the

w, kr change in the effective camber of the wing, and the espression for
N h , the moment coefficient in the jet is

Now the jet approaches the wing horizontally, and the downward 1 i

induced velocity to experienced by the wing will be half the ultimate - - h,

downward velocity of the wake. Thus 
4 W. (146)

W I Alternatively, if the small correction due to ju in equation (14.4)
is neglected, the ratio of the lift of a wing in an unlimited stream

St te al of to its lift in a free jet at the same angle of incidence is

As a consequence of this down rd velocity the angle of incidene T
of the wing in the jet must be increased, in order to maintain the i +i! + (14.7)
same value of the lift cesfficient as in an unlimited stream, by the -T

Ttis equation applies strictly to wings of symmetrical section,

S(14.) but will also be approximately true for all wings except at very small
a -- a A . .. . . .values of the lift coeffi cient.

JIWPJ

-
-*- - 6

%'4



!w

0 -

48 49
These formulae have becn derived by an approximate method of addition of the factor - ar/6 appropriate to a closdd tunnel. At a

analysis suitable for small values of cit, but an exact solution for a t ao rite tora of til a
straight line acrofoil, corresponding in practice to a thin symmetrical definite value of the lift coefficient, the decrease of the angle of
section, has been obtained by Sasaki23 . The analysis is of a complex incidence in thc tunnel is
forn, but Sasaki has givcn numerical results for a range of values . IE) (kL + 2)
of c/h and for an angle of incidence of 10 deg., corresponding to a . (15.1)
lift coefficient of 0.5,15 in an unlimited stream. These results are ah
reproduced in Table 17. Sasaki's results have been compared with and the expression for the moment coefficient is
the approximate formula (14.3) by Karman'2 . This comparison I ." /c\ 2 )
is shown in Fig. 21, together with the curve of the second approxima- 4m P - - I + 4 5 .. (15.2)
tion (14.7) which includes the effect of the induced curvature of the whilst there is no change of drag. Alternatively, if the small

correction due to i in equation (15.1) is neglected, the ratio of thelift of a wing in an unlimited stream to its lift in the tunnel at theTABLE 17 same angle of incidence is

Free j (a = 100) L (152)

C LILO L D/L 2k/kL This relationship applies strictly to wings of symmetrical section,but will also be approximately true for all wings except at very

0 small values of the lift coefficient.
0.051 0.924 0.0128 0.051 Sasaki 3 attempted to obtain an exact solution for a straight
0.128 0.826 0.0287 0.128 line aerofoil but his analysis.contains a mathematical error. The0.260 0.680 0.0483 0.261 correct solution has been obtained by Rosenhead 2 3 and his values
0.425 0.532 0.0619 0.427 of L/Lo are given in Table 18. For small and moderate values of

the lift coefficient a single curve of L/L0 can be drawn against c/lI,
but separate curves are obtained for values of the lift coefficient

flow. The agreement of this secono -pproximation with Sasaki's equal to or exceeding 0.5. These curves are shown in Fig. 22
accurate results is very good for moderate values of c/h. Also the where each curve corresponds to a definite value of the lift co-
figure shows clearly that the interference is due mainly to the efficient in an unlimited stream. Inthe ordinarypractical range, where
dowrimard deflection of the jet behind the wing, but that the effect c/h does not exceed 0.5 and the lift coefficient itself is not unduly
of the induced curvature of the flow is quite appreciable. The last high, it is sufficiently accurate to ignore these minor variations
column of Table 17 has been added to Sasaki's table for comparison
with the approximate formula (14.5) and it appears that this TABLE 18
formula gives an accurate estimate of the increased drag of a wing
in a free jet. This comparison with Sasaki's exact analyi.k of the Closed tnnel, valucs of L/L,
problem shows that the approximate formulae (14.4) to (14.7) are
sufficiently accurate for reasonable values of c/h, and the approximate 0-10 0.20 I030 0-40 I050 I070 I090
analysis has shown that the interference is due mainly to the down- A I 0 0 0 0 0 0
ward deflection of the free jet behind the wing, and partly to the
induced curvature of the flow past the wing. L Smal 1.004 1.016 1.036 1.060 1.094 1.175 1.270

0.50 1.004 1.036 i.037 1.062 !.098 1.185 i.285
0.75 1-004 1-017 1-038 1.065 103 1.198 .S3)7

15, Closed wind tlmncls.-In a closed tunnel, where the flow is 1.00 1.004 i-Cli 1-040 i,069 1.109 1.215 1.33S
constrained by rigid parallel walls above and below the wing, there
is no general deflection of the stream behind the wing, such as and to use the single curve of L/Lo against c/h appropriate to smalHoccurs in a free jet, and tile interference expe rienced by tile wingantouet sglcrvofLaait l prpiteosmloccs siny tat fre jet, the intnced by tvalues of the lift coefficient. This curve is shown on a larger sc.de
is simply that due to the indued curvature of the flow. Te inter- in Fig 23 together with tihe approximate curve according to equitiun
ferunce is threfore given by the equations of Section 13 with the (15.3). The agreement is quite satisfactory, and the error of the

- --
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approximate formiula docs not exceed 2 per cent. of the lift in the Thia general nature of the interference cxpericnced by a symmet-
range of c,'/h shown in this figurc, but for largLr values of c/h; it would - rical body has been discussed briefly in Section 1. The interference
bc advisable to use Rosenhead's accurate curves. is of a complex nature and it is convenient to consider in turn the

A comparison of Figs. 21 and 23 shows that the interference following three aspects of the problem
is far greater in a free jet than in a closed tunnel. Thus when ()Thdietcnratofhebuayofheirsem
the chord of the wing is half the height of the tunnel, the lift is on) The irowt pstrit the boy fte i sra
increased by 91, per cent, in a closed tunnel and is reduced by 43 per ontefo asIh oy
cent, in a free jet. This large difference is due mainly to the down- (2) The additional constraint arising from the existence of a
ward deflection of the free jet behind the wing, though, the correction wake of reduced velocity behind the body.
due to the curvature of the flow in a free jet is also double that (3) The effect of a gradient of pressure along the axis of the
in a closed tunnel. wind tunnel.

Throughout this analysis it has been assumed that the wingitsno nesartocsdrteetheelm ts fteis placed in the centre of the stream, but Rosenhcad 25 has also givenItino nesar tocsdrthetreelm ts fte
results for a wing whose mid point is at a distance a from the axis problem more precisely and to derive formulae for the magnitude
of the stream. The method of images can also be used to determine of the interference experienced by a body.
the interference due to the induced curvature of the stream in this The direct constraint due to the boundary of tie air stream
case, and the approximate formula for the lift is arises because rigid walls prevent free lateral expansion of the

1.0 - \ / aof uniform pressilre at the boundary. This type of constraiA
16 \1 h 3/. would occur under the ideal conditions of a perfect fluid, and it is

I Eperimental confirmation of all these theoretical formulae possible to represent the boundary conditions by- the introduction
for tarnnel interference is lacking at present, apart from some tests of an appropriate system of images, similar to those used in the
at Gdttingen21l where a series of aerofoils were tested in a free jet problem of a lifting wing. Oinrg to the presence of these images
wvith the ends of thme wings, adjoining two vertical walls normal the body experiences an induced interference velocity, but thet

totesa.According to the formula (14.5) the induced daoftedrag of a body in a perfect fluid is zero and it w ill remain zero also
%%ings should have been equal to that of a wing of aspect ratio 4.4,whnsbetdotiscsrat.Ioev, %pssote
whilst an analysis of the experimental results suggested an equivalent actual conditions, we, may conclude, as a first approximnation, that
aspect ratio if 4.1. This difference of 7 per cent. in the induced a body in a wind tunnel will experience an effective velocity ubhich
drag is not unduly large, and it " aascribed by Prandtl m to the is the algebraic sum of the undisturbed velocity and of this induced

act that t' a free surface of the jet was curved instead of horizontal, velocity, and that the actual drag will be proportional to the square
as assumred in the theoretical analysis. of this effective velocity. Thus the estimate of this first type of

tunnel interfere,:e is based on the calculation of the induced velocity
due to the appropriate system of images in a perfect fluid. As in

PART 3 I the ease of a wing, the induced velocity will really have differentI values at different points of the body, but it wvill usually suffice to
Synonefrical Bodies cilculate the induced velocity at some typical poit Ind to assumec

16. General disciess io.-The problem of the interference ex- that the wvhole body is subjected to this modified velocity.
perienccd by a body, on which the resultant force is a drag without The second type of constraint, due to tm aeu ~u~ l~t
any cross-wvind or lift component, differs noticeably from that of a behind a body, is unimportant for a good strejiniini. bvd) but is
lifting wing. WVhen consider.rg thme behaviour of a wing in a wind the dominant factor for a bluff body. Tme existenicc of this stake
turnel it is lcgitimatc to base the analysis on the assumption of a iniplics that the velocity outside the wake in a closcd tumindl must
perfect fluid and to ignore the frictional drag on the surface of the be higher than the mean velocity in front of the bud) in order
wying, but this course is no longer possible with symmetrical bodies to maintain continuity of flow. Consequently the pktssure of thme
since their drag depends essentially on the departure from these wake is reduced below its value in an unlimited strttam, and this
ideal conditions. The pioblem is, therefore, inevitably more complex, reduced pressure reacts back on the body to cause an iii%,re,.sed
a purdy theoretical solution of the problem is impossible, and it is drag. This type of interference occurs only in a closed tunn~l amnd
necessary to rely partly on empirical factors derived fronm the is absent in a free jet where the whole jet can expand lattrally
an Issof appropriate experimental results. behind the body and so maintain the sanme pressure behind and in

fI
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front of the body. It is possible to obtain theoretically an expression will be relatively unimportant, and thus the disturbance of the
for this constraint, but it is necessary to rely on experimental flow caused by any symmetrical body at a large distance from itself
results to determine an empirical factor owing to insufficient know- can be represented by the single term
ledge of the nature of the wake behind different types of body. • A1t

The third type of interference arises in practice owing to the W=.- 2--.. ......... (17.02)
development of the boundary layer along the walls of a closed wind 2
tunnel, which leads to a gradual increase of velocity along the where i is the strength of a doublet, directed against the undisturbed
axis of the tunnel. Any body is, therefore, tested in a slightly stream. Now a circular body of radius a is represented by a doublet
convergent stream with a falling pressure gradient, and the body of strength ZaOV, and hence the approximation of representing the
experiences an increased drag owing to the drop of static pressure from interference of any body by a formula of the type (17.02) implies
nose to tail. This pressure gradient correction is most important for that the body may be replaced by an equivalent circle of radius
good streamline bodies whose drag is low, and is relatively unimportant
for bluff bodies of high drag. It is, therefore, legitimate to calculate v It is convenient now to write
the magnitude of this correction from the ideal conditions of a
perfect fluid. The magnitude of the pressure gradient must be = 2'TA, = V ..... . (17.03)
measured in the wind tunnel itself, with no body or obstruction
in the stream, since its value depends in part on any leakage of so that the body of thicknes I is replaced by an equivalent circle
air through cracks in the w%,alls or through openings essential to of diameter I VA/. The disturbance of the flow casued by the body
the conduct of experiments. It is important that the pressure at a large distance from itself is then given by the equation
gradient should be measured with these openings adjusted as during
the test of the body. No pressure gradient is to be anticipated = VtI
in a free jet, though the same method of correction will apply if 4z
such a pressure gradient does occur, and the pressure gradient Returning now to the problem of a symmetrical body in a
can be eliminated in a closed tunnel by giving the boundary wals Closed channel, each image of the infinite series is replaced by thea small angle of divergence down stream. equivalent circle and the induced velocity due to this system ofThe detailed analysis of the pressure gradient correction will images is calculated as follows. The image at distance i h from the
be deferied to Section 19. The other two types of interference body gives the induced velocity
will be considered in conjunction, firstly for the relatively simple AV 2
problem of two-dimensional motion and then for the more general =
condition of three-dimensional motion.

17. Two dinncnsions.-Consider a symmetrical body, whose and the total induced velocity is therefore
maxinmum thickness is t and whose length or chord is c, lying along AVO I ; 1 (!) V
the axis of a closed channel of breadth I as shownm in Fig. 24. Clearly U1 -9- 7 = T 2h . .. (17.04
the nece-,ary bound,.ry conditions will be satisfied if we assume an
infinite column of such bc lies, spaced at intervals h apart, and the The interference experienced by a symmetrical body in a free
interference experienced by the body can be calculated as the .jet of breadth h can be calculated in a similar manner. The onlyinduced velocity of this system of images. In this calculation we modification of the analysis is that the images are now alternately
may assume the ideal conditions of a perfect fluid and can express negative and positive, and hence
the complex potential of the flow past the body in an unlimited V (- a t
stream in the form u----V - - - = -- " fh V .. (17.05)

w= VZ + ' 1  A2 +_(17.01)
z z2 . . 7 In each case the body experiences an effective velocity (V+u1)

The first term of this expression represents the uniform stream of and its drag in the channel may be expected to vary as the square11 of this velocity. Thus Vve ,iaay write
velocity V, and the remaining terms represent the distortion of
the flow caused by the body. At a large distance from the body it IV(i,)2

"-4 will suffice to retain only the first of these terms, since the others - = j1 ../..........(17.06)
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and the ratio of the drag in the wind tunnel to its value in an valid in all practical applications. It is generally possible to estimate
unlimited stream is the value of A with sufficient accuracy by interpolation between the

D curves of Fig. 25. If a more reliable value of A is required and if
--- 1 +. **17.07) the theoretical flow past tile body is known, the'complex potential

function should be expressed in the fori (17.01) and the value of
Also, since higher powers of t/h have been neglected in the analysis, A deduced by means of equation (17.03). Alternatively, if the
we can adopt the simpler formla actual pressure distribution round the body has been determined

experimentally, the value of the velocity q at the surface can be

D calculated by means of Bernoulli's equation and the effective
S- 2.( ...... (17.0) doublet strength of the body can then be derived by evaluating theintegral

In these formulae A is a non.dimensional factor depending onlyg
on the shape of the body, whilst -r depends on the nature of the 1, f 2qyds
boundaries of the stream. We have

32 or
Rigidwalls, = =0.82 4 - q yds=12 .. .. (17.09) -=. .. (17.11)

Free jet, T-f 041 where the integral is taken along tile upper surface of the body

from leading to triling edge.
This method of analysing the problem of the interference

experienced by a symmetrical body in a channel is due to Lock , On comparing their theoretical formulae with the experimental
who has also calculated the values of the factor I for thc following evidence available, both Fage" and Lock34 found it necessary to
four shapes of body:- introduce an empirical factor K, since the observed tunnel inter-

(1) Joukowski section, with cusp at trailing edge. ference was greater than that predicted by the theory. The value

(2) Modified Joukowski section, with finite angle at trailing of K was only slightly greater than unity for a thin streamline
ed. obody but became very large for bluff bodies. The need of such an

edge. empirical correction has been ascribed by the present author37 to

(3) Ellipse. the neglect of another type of tunnel constraint which arises owing

(4) Rankine oval, the form due to a source and sink at a finite to the existence of a wake of reduced velocity, particularly behind
distance apart. a bluff body. The nature of this constraint can be appreciated

most readily by considering the case of a flat plate with discontinuous
A simple formula for the factor A is obtained only in the case of flow and with a wake of fluid at rest as shown in Fig. 27. In order

the ellipse, I. .vhich to maintain continuity of flow the velocity W outside the %ake
1 C (17.101 must exceed the tunnel velocity V, and hence the pressure in the
2""it) wake is reduced by tile constraint of the tunnel walls. This reduced

pressure acting on the rear of the plate gives an increased drag,
The values of ,as ea function f, te fienes iro eas, for the four whose magnitude depends mainly on the ratio of the width of the
types of body are shown in Fig. 25. The values increase with the wake to the width of the channel. The theoretical results for this
fineness ratio and with the bluffness of the body, and all four ceirves problem of a flat plate in a closed channel are summarised in
pass through the point corresponding to a circle. The shapes of the Table 19, and an inspection of the last two columns of this table
four types of body are shown in Fig. 26. indicates that the drag of the plate in the channel is sensibly the

Lock 3l has also compared his approximate results for the same as that of the plate in an unlimited stream of velocity W.
Rankine ovals with some more accurate calculations by Fage3 3, and
he concludes that the error of the approximate results is less than
0.5 per cent. if the fineness ratio is less than 5, and for greater
fineness ratios if the length of the body is less than the breadth of the
channel. The approximate formulae should therefore remain
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from the curve, are given in Table 20. The bodies, used in theTABLE 19 experimental investigation, were three Joukowski sections, a

lat Plat, disconthitous flow Rankine oval, an ellipse, a circle and a flat plate. It is perhaps

11h I I0441 h TABLE 20

_l__l___ 0"4(h -) Values of 71

0 0 0-44 0.44 c/t 0 1 20.061 0-233 0-75 0-75 1~ 0 1 2 0 3 61 8'. 100
0:102 0,300 0,90 0.90 0
0.149 0.363 1.09 1.08
0-201 0.423 1:34 1.32
0'443 0'636 3"44 3.32 rather surprising that all the values of qj should lie on a single curve,

since it would be anticipated that a bluff body, such as an ellipse
o: oval, would give a higher value of il than a Joukowski section

Actually, a bluff body does not give this type of discontinuous of the same fineness ratio. The experimental evidence is, however,
flow, but develops a periodic eddying wake of reduced velocity, rather scanty, and the value of tj depends on the small difference
It seems probable, however, that there will be a tunnel constraint of between two observed drag coefficients. The single curve neverthe-
the form less represents the experimental evidence which was obtained with

t \-( special care, and. any deviation of the value of tj from this curve
D ( D1 - (17.12) for different shapes of body may be expected to be negligible in

practice. Fig. 29 shows a comparison between the observed drag
where t,1 is the effective width of the wake as regards this type of of a Joukowski section of fineness ratio 3 and the curve predicted
tunnel interference. This correction is additional to the induced by means of the formula (17.13) using the values ). = 1-77 and
velocity correction considered previously, and although the corret. tj= 0 17. The wake correction to a flat plate normal to the stream,
method of combining the two corrections is uncertain, it is suggested as given by this method of analysis, agrees closely with that derived
that the most suitable formula for representing the total tunnel in another investigation30 by considering the behaviour of the
interfererce on a symmetrical body is vortex street behind the body in a channel of finite breadth.

D -- T+ h) ( - .. (7,of 18. Three dinensions.-The interference experienced by a body

"" of revolution with its axis along the central axis of a wind tunnel
is of the same nature as in the two-dimensional problem. In a free

To a first approximation the wake correction in proportional to t/h jet the interference can be estimated by calculating the induced
and the induced velocity correction to (t/1h)2. Moreover, we may velocity of the appropriate image system which satisfies the necessary
anticipate that the wake correction will be most important for boundary conditior and in a closed tunnel there is an additional
bluff bodies, which create wide wakes, and that the induced velocity interference due to the choking action of the wake behind the body.
coi.-cction will be most important for bodies of high finvnisS ratio, No new features arise in the problem, but the analysis becomes far
for which the value of ). is large. Finally, it is important to remember more complex than in the simpler problem of two-dimensional
that the wake correction occurs only in a closed channel and that motion.
it is essentially zero iii a free jet. The problem of the induced velocity experienced by the body

The empirical factor K, introduced by Fage and Lock, was has been considered by LockU, who expresses this induced velocity
necessary owing to the omiss:on of the second factor of the formula in the form
(17.13) in their analysis. In this latter formula there is still an Q h3or
empirical factor ;1, since our knowledge of the conditions behind . (18.1)
a body is insufficient for any calculation of the effective width of V . .
the wake. Values of this factor il have been derived by an analysis 2  where C is the cross-sectional area of the tunnel, S is the maximum
of the available experimental evidence, and were found to lie on . cross-sectional area of the body, T is a factor depending on the
single curve when plotted against the fineness ratio of the body.shpofteunladtentrefte uoryadisaacr
This curve is reproduced in Fig. 28, and numerical valurs, taken shape of the tunnel and the nature of the bounoary, aid ). is a factor

I1 ~- - i.
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depending on the shape, of the body. The definition of A is such Lock3' has calculated the values of,2A for two shapes of body, the
that in the image systvrns a body of maximum diameter Iis replaced Rankine ovoid and the spheroid, and these results are shio-nm in
by an equivalent sphere of diamctcr IA113. Fig. 30 against the fineness ratio of the body. The value of A can

The boundary conditions for a rectangular tunnel or jet can be derived from any body, round which the theoretical flow is
be represented by the introduction of a doubly infinite set of images, known, by conside-ang the velocity on the axis of symmetry at a
and each of these images can be regarded approximately as a great distanc(. from the body, wvhich is of the !ormn ,
doublet of strength It, where It A/1 3  (18.3)

- A 3 V..............(1.2)where r is the distance from the body. Alternatively, if the velocity
For a closed rec tangular tunnel all the doublets are of the same q along the surface of the body can be deduced from the observed
sign and they occur at the points (nib, ish) where b and h are the pressure distribution, the value of A can be deduced by evaluating
sides of the tunnel and (ni, )t) are any pair of positive or negative the integral
integers. The induced velocity due to one of these image doublets f qyd
is J2Y3

U 1 -4.~(~j~ b 2 or
4, t1 2+ It2 112)31........(18.2)124 q d (8)and the total induced velocity is obtained by the double summation f JV .......... 184

of this expression for all positive and negative integral values
of n; and is, excluding the pair (0, 0). For a free jet the signs of where the integral is taken along any generator of the body from
the doublets alternate in both rows and columns, and the expression nose to tail.
(18.2) receives a factor (-1)mtn. Lock 34 has evaluated these ,-, ~ ~ .. * m. ' *~t,;u*.a ie
summations for closed and free square tunnels, and for a cluse'Th wd; ---. 4.y.!. - asgie
duplex tunnel (b -2J;), and the resulting values of the factor X by equation (18. 1) must be increased, as in two-dimensional motion, p
are given in Table 21 below, by a term representing the effect of the wake behind the body.

The analysis for a circular tunnel is even more complex. Lamb~o Corresponding to the formula (17.13) for two-dimensional motion, we
has considered the interference experienced by a Rankine ovoid, have in the more general case of three-dimensional motion
which is the body formed by a source and sink at a finite distanceD /2
apart, in a closed circular tunnel, and Lock"' has developed a - + TA 1-1(85
similar analytical treatment for a free jet. The series of Bessel Do f (C) i2 (1 - C . (8
functions which occur in this analysis have been reduced to a form where j2' is an empirical factor representing the effective size of the
more suitable for numerical computation by WVatson 35, and thewae
values of r deduced from this analysis are included in Table 21. The
values of T for square and circular tunnels are not very different, The experimental results on two streamline bodies have been
and the value of r in a free jet is approximately one quarter of that analysed by Lock and Johansen3" to check the theoretical predictiun
in the corresponding closed tunnel. of the tunnel constraint as given by the induced velocity it,. This

analysis was difficult owing to the small values of the drag coefficient,
TABLE 21 owing to the existence of an important pressure gradient correction,

Valise of rand owing to the difficulty of maintaining the same conditions in the
____________________________________of______ boundary layer of the body under different experimental conditions.

The experiments do not therefore provide a very reliable check on the
Shape of tunnel. Closed tutinel. Ree jet. accuracy of the calculated induced velocity, but it is noticeable

___________________________________I_ that Lock and Johiansen did not find it necessary to introduce any

Circle . 0 *7D7 -0:206 empirical factor X, as in the analysis of the experinicsnts in two-
Square . . 0.809 -0 238 dimensional motion. It would appear therefore that the wake
Duplex . . 1-03 correction was unimportant. This result is due partly to the fact

__________________________________________________that the wake can contract in two directions and will therefore

'1 a
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be relatively less important than in two-dimensional motion. In pressure gradient. Tile analysis of the pressure distributionsthe absence of more reliable information we may assume that, round two bodies of the same shape but of different size was infor a given fineness ratio, satisfactory agreement with this formula for the tunnel interference.

t) =.1 (18.6) 1 1 T'
Tilelargst .. ud . .L319. Pressure gradient.-The origin of ihc pressure gradient

Tne largest body used by Lock and Johansen bad a fineness ratio 3 along the axis of a closed wind tunnel has bden discussed previouslyand a cross-sectional area 0' oiC, and on the basis ol the formulae in Section 16, and it is now necessary to consider the magnitude(18.5) and (186) the wake correction to the drag would be only of tile force experienced by a body due to this pressure gradient.
035 per cent. which is quite negligible. Thus we may accept these The existencefomiulae as giving a sufficiently reliable estimate of the tunnel Te byPneof this pressure gradient drag was realised at an early
interference due to induced velocity and w,-ake constraint, remembering onte by Pannell and Campbllte, and after some discussion Pannell,that the wake constraint is absent in a free jet and negligible for a Jones and Pll adopted, as tle correction to be applied to thegoodstremlie boy i a cose tunel.observed drag, tile horizontal buoyancy of the body, which is thegood streamline body in a closed tunnel. product of the volume of the body and the pressure gradient. The

Lock and Johansen5I, during the course of their analysis of fact that this horizontal buoyancy is only an approximation to thethe experimental results on two streamline bodies, also considered true pressure gradient drag was demonstrated by Munk' s m a briefthe effect of the tunnel constraint on the pressure distribution note at the end of a paper dealing with some miscellaneous aero.round a body. The total drag of the bodies did not provide a dynamic problems. Munk's analysis showed that the pressure
suitable test of the theoretical formulae for tunnel interference gradient drag was equal to the product of the pressure gradientowing to the sensitivity of the frictional drag to changes in the and a certain effective volume, which was greater than the actualnature of the flow in the boundary layer, whereas the pressure volume by an amount which increased as the fineness ratio of the
distribution is not seriously modified by these changes. On the body decreased. Tie problem has been discussed in greater detail
assumption that a body subjected to a velocity V in a wind tunnel more recently by Taylor 32 and the present authorh obehaves in the same manner is in an unlimited stream of velocity ho pred
(V+u 1), the appropriate correction to the observed pressure p gradicia diag, 1 t:t 4u oi tile a(Auai volume of tile boy ant 01 tile
any point of the body appears to be volume corresponding to the virtual mass 6f the body in accelerated

P, =P + 1 f { + hi)2 - V2} . .. (18.7)moton along its axis,
where p, is the corresponding pressure in the unlimited stream. The truth of this general proposition can be established bvasimple physical argment without entering into the details of
This formula gives the correct stagnation pressure at the nose of time mathematical analysis. A body in a closed wind tunnel is
the body, and equal values for the integrated drag in the wind te toat ic h is Aeray in ahe in tunnlistunnel and in the unlimited stream. If the pressures are expressed subjected to a flow which is accelerating in the direction of motion

non-imesionllyby he frnilaeand the consequent variation of static pressure isnon-dimensionally by thle formulae
P keV' dp dV

S -v L ... (19.01)

the formula for the tunnel interference becomes The body, subjected to this pressure gradient, experiences a hori-
zontal buoyancy which is equivalent to a drag force

- - (v 'T- 1\ . . (1.8 DI -AL
or approximately dx

or = ka + !- (x - 2k) (18.9) where A is tle volume of the body, but in addition the body has tile

acceleration d- or V ±V relative to the surrounding fluid and hece
During the course of the analysis Lock and Johansen found that dd d r

this correction to tile local pressure was more important than that experiences an additional drag force
due to the pressure gradient, which will be considered in Section 19, , dVwhereas the correction to the total drag wa due mainly to the Dd eA V - A'dp

i\ -
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whcre QA' is the virtual mass of the body for accekratcd motion and hence, according to the equation (19.03), the drag of the body is
along its axis. Thus the total drag of the body die to the pressure -V2

gradient of the stream is D
D = - (A + A') --- =-_A"dd .. (19.02) Now the velocity along tihe axis due to thle source is

VR

This is the general result which was established by Taylor32 by =
a detailed mathematical analysis of the problem. R+x

The value of the virtual volume A' can be determined by the and hence the pressure gradient in the neighbourhood of the body
standard methods of hydrodynamics, when the theoretical flow is
round the body is known, but the following simple method of dp dV 0V2
analysis has the advantage of expressing the virtual volume in - = - eV - -=g

tcrms of the coefficient A, introduced in the earlier analysis in the

formula for the induced velocity experienced by a body. The Thus the drag of the body is
problem of a body in a slightly divergent flow is equivalent to that
of the body in the presence of a source at a large distance in front D -2At LP (19.04)
of the body as shown in Fig. 31. The resultant force on the combined 2 . .
system of body and source is essentially zero, and hence the force and, by comparison with the fundamental formula (19.02), the
on the body is equal and opposite to the force on the source. But effective area of the body required in the formula for the pressure
the force on a source of strength ni, subjected to a velocity u, is gradient correction is

and hence the drag of the body in the slightly divergent strean is A" = 6. . ... .... ...... (19.05)

D = emit .In three-dimensional motion the same method of analysis can be

where i is the velocity at the source due to the presence of the used with the following slight modifications. The strengths of the
body. Also, if the source is at a large distance R from the body, doublet and source are respectively
the influence of the body is the same as that of a doublet of strength
p directed towards the source. p = At3 VP4

To proceed further with the analysis it is necessary to consider and
separately the motion in two and in three dimensions. In two- tit 4n R2 V
dimensional motion, according to the analysis of Section 17, the
body can be replaced by an equivalent circle of diameter t,/2, The velocity experienced by the source, due to the presence of the
where I is the maximum width of the body and A is a factor depending body, is now
on the shape of the body. The corresponding strength of the
doubl(t is = t R

;=2 V and the drag of the body is

whilst the strength of the source will be D = - ; 13

nt = 2r RV
'he .velocity experienced by the source, due to the presence of the whilst the pressure gradient in the neighbourhood of the body in
body, is three-dimensional motion is

=L - dP 2V
2tdR 2  dx R

-;J
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Thus finall the drag of the body is whilst the corresponding approximation in three dimensions isAD -- P (.9.06) 1 .4A

...... .. .. .. .. .. .. .. (19.10)
and the effective volume required in the formula for the pressure By comparison with the true values for an ellipse and a spheroid,gradient correction is it appears that this approximation is more accurate in three thanin two dimensions. These approximate formulae should be used onlyS(19.07) when more reliable values are not available.

The effect of the pressure gradient in a wind tunnel cn the
The determination of the coefficient A. has bccn considered pressure distribution round a body has also been considered by Lockpreviously and values for some types of body are given in Figs. 25 and Iohansen e, who have expressed the correction in the fornand 30. In particular for an ellipse we have, according to equation P = I

(17.10), 2 .X_ .......... (19.11)
where c is the length of the body and Y is a function of positionover the surface of tile body, depending on the shape of the body.whilst the area of the ellipse is This correction must be added to the observed pressure to obtainthe correspondingpressur in a uniform stream. Lock and Johansen
calculated the vaues of Y for a spheroid from the exact solutionA 2 d of the flow past the body in a convergent stream, and the curvesA of 'Y against the coordinate x/c measured along the axis of theHence frons equation (19.05), phcroid from its nose for two values of the fineness ratio are shouo( ) rn Pig. 32. Whcn the body is not a spheroid they sugesst that zhcs e

All= A I + (19.08) same values of Y may be used as a first approximation to estimatethe correction to the pressure distribution over the body.
Thus the ratio of the effective area A" to the actual area A increases In the experiments analysed by Lock and Johansen the correctionas the fineness ratio of the ellipse decreases. For thin streamline to the local pressures due to the pressure gradient is less than thatbodies the effective area A" will be only sliehtly greater than the due to the induced velocity as discussed in Section IS, though theactual area A, but the ratio of these two areas increases to 2.0 for a correction to the total drag is due mainly to the pressure gradient.circle. Similar results can be derived in three dimensions, and in As regards the usual magnitude of the pressure gradient in aparticular the effective volume of a sphere is 1.5 times the actual closed wind tunnel, it has already been explained that the drop ofvolume. pressure along the axis of the tunnel is due partly to the development

of the boundary layer along the walls and partly to the leakage ofAlternatively the equations (19.05) and (19.07), which give air into the tunnel through crck; or opnings in the wals. For athe relationship bctwccn the cocfficicnt A and t. effective area square tunnel of side h it is convenient to express the pressureor volume of the body in two and three dimensions respectively,
can be used to determine the values 6f .when the virtual mass of di i e,tile body is known. As the fineness ratio of a body increases the d k 2
ratio of A" to A tends to unity, and therefore as a first rough approxi- dx - h............ .9.12)mation for streamline bodies of high fineness ratio we may take The value of the non-dimensional coefficient k for a tunnel with

A" - A air-tight walls is then of the order 0.00S, and rises to 0.020 for a-- tunnel with a moderate amount of leakage through ihe walls.
Consequently tihe first approximation to the value of A in two The pressure gradient can be eliminated by giving a small angle ofdimensions is divergence to the walls, but its value must be determined speciallydime n s A in any experiment where the correction due to the pressure gradientJ2 in(19.09) may be important.

(19.0 9
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airscrew then either operates in the vortex ring state with flow through

PART 4 %ie disk opposed to the general stream, or develops a turbulentwake differing essentially from a conventional slipstream. There
Airscrcws is no satisfactory method of correcting results obtained in a closed

20. GL~wral Discussion.-The interference experienced by an wind tunnel in these extreme conditions of operation of an airscrew,
aircr\ iui a wind tunnel resembles that part ot the interferene. - and the experimental evidence suggests that the tunnel constraint
experienced by a symmetrical body which is due to the existelice may be large O. In a free jet the tunnel constraint on these extreme
of a uake of reduced velocity behind a body. An airscrew, when conditions of operation of an airscrew is also unknoin, but it is
giving a positive thrust, creates a wake or slipstream of increased probably small. The subsequent analysis and discussion Mdll be
velocity. If the flow is confined between the rigid walls of a closed confined to the usual operating conditions at a positive rate of
tunnel, the condition of continuity of flow leads to a reduced velocity advance when the airscrew develops a positive thrust and a con-
and increased pressure oi the fluid surrounding the wake, and these ventional slipstream.
modified conditions behind the airserew react back to change the
relationship between the thrnst and rate of advance of the airscrew In practice, airscrew operates in conjunction with a body,
for a given rate of rotation. In a free jet, on the other hand, the jet either as a tractor or as a pusher. The problem of the tunnel inter-
surrounding the slipstream can contract in order to maintain the ference then becomes more complex since the constraint is due
same velocity and pressure as in the undisturbed stream in front partly to the airscrew and partly to the body. Frequently tbe
of the airscrew, and there is no appreciable tunnel interference on igy is so small that its contribution to tre tunnel constraint may be
the behaviour of the airscrew. ored, but when the body is large it is necessary to rely on certain

empirical methods of correcting for the tunnel constraint.Tile existenc of a tunnel constraint on the behaviour of an

airscrew in a closed tunnel was appreciated at an early date by
Bramwell, Relf and Bryant 3 S, who determined an empirical 21. Closed vind tinnels.nThe theoretical method of calculating
equivalent free airspeed. corresponding to the observed speed in thf .h. i-.forference e r-.t )I nn -a closed wind tunnel
wind tunnel far in front of the airscrew, by companng the thro ,t is due to Wood anid Harris0 , and the resulting equations have been
of the airscrew in the wind tunnel with the thrust measured on a reduced to a form more suitable for numerical computation by the
whirling arm. A theoretical formula for this equivalent free airspeed present author 2. The fundamental basis of the method is to replace
was later derived by Wood and Harris 0 . The validity of this the airscrew by an actuator disk, as in the classical momentum theory
theoretical formula and the absence of any appreciable interference of an airscrew, to ignore the rotation of the slipstream due to the
on the behaviour of airscrews of moderate size in a free jet have been torque of the airscrew, and to consider the flow in the distant wake
checked by special experiments which are discussed in Section 22. as modified by the constraint of the tunnel walls. The flow is then
A discussion of these experimental results and of the whole problem of the type illustrated in Fig. 33, where V is the tunnel velocity
of wind tunnel interference on airscrews is also the subject of a far in front of tho airscrew, u is the velocity through the airscrew
report by Glauert and Lock. disk and ut is the slipstream velocity, whilst to and w, are the

The use of an equivalent free airspeed to represent the tunnel corresponding velocities of the flow surrounding the slipstream.
interfere-nce is valid only when the airscro is operating at a positive The next step in the argument depends cn the fact that the thrust

inteferece s vaid nly henthe irsrew s Oeratiiggiven by the bladezi of am aiew, at a g'iveni rate of rotatioin,rate of advance or when It is acting as a windmill with a slipstream
of conventional type but reduced velocity. There are, however, depends only on tile velocity it through the disk. Thus in an
some states of operation of an airsrew which cannot be treated unlimited stream the airscrew will give the same thrust T as in
in this manner. In particular the static condition (zero rate of the wind tunnel if the velocity through the disk has the same value,
advance) cannot be reproducedin a closed wind tunnel, sitce the but this condition will in general correspond to an equivalent free

airspeed V' which differs from the tunnel velocity N. The problem
airscrew itself will induce a flow through the tunnel. This same to be considered is therefore the determination of the equivalent
difficulty will arise to a smaller degree even in ain open jet tunnel with free airseed s correore to dyger ition n t ilend
a closed return circui' but results obtained in a free jet are probably free airspeed V' corresponding to any given conditions in the wind
more reliable than those obtained in a closed tunnel. The only tunnel.
satisfactory method of determining the static thrust of an airscrew Now if A is the disk area of the airscrew, the conditions in
is, however, to conduct the experiment in a large room. an unlimited streatn are determined by the well known equation

Even greater difficulties arise in the determination of the
behaviour of an airscrew at low negative rates of advance. The T o2A0 (n - V') ........ (21.01)

- I



68 I69ITurin next to the conditioiis in a wind tunncl, as illustrated by and values of thc equivalent free airspeed derived from this simpleFig. 3,let C be thc cross-scctional area of the tunnel and S that formula do not differ by more than I per cent. from the accurateof the slipstream. Thecn the conditions for continuity of flow are values of Tablc 22 for the range of values of a and T given there.
atd S .  .  .  .  (21.02) TABLE 22

CV -S (C - S) w . .  (21.03)- ]Vilus of V'/V
Secondly the thrust per unit Area of the di is equal to the increase 0n a o t .0 1.u 2a 2fe 3a0
of total pressure head in thce slipstream, or t I r

T A (v,' -.w. ....... (21.04) a-0T05 0:991 0:986 0-981 0-978 0974 0:972
and thirdly, the increase of pressure far behind the airscrew is 0. to 0982 0971 0.963 0.955] 0.949 0.943

0.15 0.973 0.956 0.942 0.931 - 0.921 0.912
-(21.05) 020 0.964 0.940 - 0.922 0.906 0.893 0.882

0.25 0-955 0.924 0-899 0-881 0-805 0-851Finally the momentum equation for the whole flow in the wind 0.2 I I 0 - I9 I 0(_5 0._
tunnlel is It is possible to derive the approximate formula (21.09) directly
T-C(PI-O) =S ell,(", - V) - (C-S) w1 (V- wj) (21.06) in the following simple manner. In free air at a rate of advance V we
These equations suffice to give a complete solution of the problem have the equation
under consideration. Writing T JAC (ss' - VI)

T and hence
ad... (21.07 V V +2r ........ (21.10)

(21.08) S ts see +V I + Il+2r(2.1
.....................................

s U. 2U- 2/+-2T .. (21.11)

to define two non-dimensional quantities whose values are known in As a first approximation we cn assume that these two relationshipsany wind tunnel experiment, it is possible theoretically to eliminate remain true iawi n ssnel w he t the atio nhenthe ivequatitis S ",up w an (p - p) fom he frstsixremain true in a wind tunnel when the ratio a is small, and thnthe five quantities S, u, u1, w1 and (p1 - pbo) from the first six from the equation of continuity (21.03) we obtain
equations and to derive a relationship of the form

vI (C-s)(V- w3)=S(u-Vt )V =f (, a) or approximatuly

Actually, it is not possible to obtain a simple expression of this V - w= S uI- V Ta 7 "" 2form, and it is necessary to calculate the values of V'/V corresponding V C V -'- - 2- . (21.12)to chosen values of T and a by using certain subsidiary variables, by virtue of the equations (21.10) and (21.11). Finally, by analogy
Numerical values derived in this manner are given in Table 22 belowand are sho v graphically in Fig, 34. with other work on wind tunnel interference, we may assume thatthe effective velocity V' experienced by the airscrew in the wind

In general the ratio a of the disk area A to the tunnel area C is tunnel is the mean of ie velocities V and w,7 for before and behindsmall, and it is therefore legitimate to derive an approximate formula the airscrew. Thus we obtainby retaining only the first power ol a in the general solution. The v- V-
approxinmate formula obtained by Wood and 1Harris' O by this method -V (21.13)
is 2-/ -

= I . (21.09) which is identical with the approximate formula (21.09) derived
. 2%1+2r from the more detailed analysis of the problem.

I-, -. J. . -- - - ',-
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Before leaving this problem it is interesting to examine the systematic differences, except that tile values derived from the

value of the velocity to of the surrounding stream in the plane of 3 ft. airscrcw were slightly higher than those given by the other
the airscrew, since this velocity is occasionally used as tile basis of an three airscrews. This slight variation was ascribed by Durand to
empirical correction to tile wind tunnel observations. From the some slight error in shape of the 3 ft. airscrew. In another series
equation of continuity of experiments a 3 ft. airscrew was tested in a free jet whose diameter

(C - A) to = CV - A .. (21.14) wasreduced bysuccessive steps of 6in. from 51 to 4 ft. The observed
thrust and torque coefficients m the 51 it. and 5 ft jets were identical,

or approximately those in the 44 ft. jet were 2J per cent, higher and those in the

V - w A i .- V • -4 ft. jet were 6 to- 7 per cent. higher than in the larger jets. From
C vthe results of these tests it may be concluded that the interference

and = C V , on an airserew in a free jet does not become appreciable until the
and hence diameter of the airscrew exceeds 60 lr cent. or perhaps even 70

w per cent. of the diameter of the jet. Thus for all practical purposes
v- I) .. .. (21.15) the interference experienced by an airscrew in a free jet may be

To the first order of T the value of this velocity w is equal to that The accuracy of the experimental results obtained in a free jet

of the equivalent free airspeed V' as given by equation (21.09) -but enables a check on the accuracy of tim e, formula for the equivalent

for larger values of r the tunnel interference will be over-estimated free airspeed in a closed tunnel to be obtained by comparing tests
if the velocity to is used instead of the equivalent free airspeed V'. ne sec e in a closed tunne aine by c rines

On the other hand this theoretical estimate of the velocity to is based on the same airsrew in a closed tunnel and in a free jet. Bramwell's

on te asumpton oexperimental resultsal, obtained in a closed tunnel and on a whirling
on the assumption of a unifo velocity of the stream outside the arm, are of little value as a real test of the correction formula owing
airsrew, whereas in fact the votmmthe tip of the to the smallness of the correction itself and to irregIllar 'cratterng
airscrew to the elaclt oi the tplneo The possibility of using ac ir e of the observed values of the thrust coefficient, but the magnitude
ments of the velocity in the plane of the airserewas a measure of th of the correction is reasonably consistent with the theoretical
equivalent free airspeed has been examined by Fage l who measured formula (21.09). A more suitable series of experiments was made
theradialdistributionofaxialvelocity in three planes adjacent to that by Townend and Warsap l who tested a metal airsrew of diameter
of-the airscrew disk. In a plane immediately behind the airscrew 3 ft. in a closed 7 ft. square tunnel for comparison wth American

the mean velocity outside the slipstream agreed approximately tests in a free jet. Unfortunately tifs series of experiments also

with the value of to given by the formula (21.15), but the velocity does not provide a critical test of the theoretical fo mula owing

was increasing from the edge of the slipstream outwards. Apart to the low thrust of the airserew and the low ratio of the disk area

from a drop on approaching the boundary layer along the walls to the tunnel area (0 145). The comparison is further complicated

of the wind tunnel, the velocity in each of the three planes of by a noticeable scale effect in the experimental results at different

observation appeared to be tending towards a common limiting rates of rotation of the ainrews. Over most of the range of adffance-

value, which agreed closely with the equivalent free airspeed given diameter ratio the intrerence correction was not mch greater than

by the formula (21.09). Consequently this experimental method the experimental errors, eut the athors conclude that the tests

of n ieasung the velocity distribution outside the disk of the air- show that the corrected results obtained from a 3 ft. airscrew in a
screw provides an alternative metod of estimating the magnitude 7 ft. dosed tunnel agree very closely with tests made in a free jet.
of the tunnel constraint. The theoretical formula (21.09) can, therefore, be accepted as gi-ing

the interference on an airscrew in a closed tunnel with suflicient
22. Free jets.-As explained previously in Section 20, it is to be accuracy for all practical purposes, whilst the interference it. a

expected that the tunnel constraint on an airserew in a free jet will free jet can be ignored completely.
be negligibly small since the stream surrounding the slipstream
can contract and thus maintain the same velocity and pressure as 23. Airscrcw and body.-When an airscrew is mounted in front
tle undisturbed stream in front of the airscrew. This conclusion, of a large body the tunnel constraint is due partly to the action of
has been confirmed experimentally by Durand"a. In one series of the airserew and partly to that of the body. No theoretical solution
experiments lie tested four airscrews of diameter 24, 3, 3 and of this complex problem has been obtained, but Fage"! has proposed
and 4 ft. respectively in a free jet of diameter 54 ft. The observcd the empirical method of measuring the radial distribution of velocity
values of the thrust coefficients of these four airscrews showed no outside the slipstream in planes adjacent to that of the airscrew
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72 73disk and lo detcrnining the common limiting value as described used for correcting the total drag of tile body, either as observedat the endof Section 21. The validity of this method of determining directly or derived by integration of the pressure distribution.thle equivalent free airspced Ihas been confincd by Lock and Complex experiments of this nature are not made frequently,ate an2' by some special experiments on a small airserew and body but further experimental work is clearly necessary before it will becombination in a 4 ft. and in a 7 ft. wind tunnel, and satisfactory possible to standardise appropriate .ethods of correction for theagreemnent was obtained both on effective thrust and on torque tunnel interference.when tile Observed values were corrected for the tunnel constraintby the use'of the equivalent free airspeed determined experimentallyfrom the 11 locity distribution. 
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