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WIND TUNNEL INTERFERENCE OX WINGS, BODIES
AND AIRSCREWS

- By H. Grauvert, F.RS.

Communicated by the Director of Scientific Rescarch,
Air Ministry

Reporis and Memoranda No. 1566

13th Seplember, 1933

1. Generet Introduction.—It is well known that the aerodynamic
force experienced by a body may be seriously modified by the
proximity of another body, even when there is no direct contact.
The study of such interference is an important branch of aero-
dynamics, but in the first place it is necessary to know the behaviour
of the body apart from any interference. The most convenient
method of experiment is to investigate the behaviour of a model
in the artificial stream of a wind tunnel, and the limited extent of
this stream, bounded either by the rigid walls of a closed type of
wind tunnel or by the free surface of an open jet, inevitably leads
to some constraint of the flow and to some interference on the
behaviour of the model. This interference could be minimised
by using very small models, but it is desirable for many reasons
that the model should be as large as possible. The study of wind
tunnel interference is therefore of great importance, since some
interference is inevitable, and an accurate knowledge of this inter-
ference will justify the use of larger models than would otherwise
be permissible.

The general nature of the interference can be appreciated most
readily by considering the conditions in a closed wunnel. If a large
body is placed in the stream, the first and most obvious constraint
imposed by the rigid walls of the tunnel is that the stream is unable
to expand laterally as freely as it would in an unlimited fluid, and
in consequence that the velocity of flow past the body is increased,
leading to an intensification of the forces experienced by the body.
Another choking constraint of a different character arises if there
is a wake of reduced or increased velocity behind the body, as
occurs respectively with a bluff body or an airscrew. The necessity
of maintaining continuity of flow in the tunnel then implies that
the velocity and pressure of the stream surrounding the wake
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will differ from the undisturbed values far in front of the body,
and this cange of pressure reacts back to cause a change in the
force experienced by the body. The interference experienced by
a lifting body, such as a wing, is of a different character. The
lift of a wing is associated with a general downward movement
of the air behind the wing, and the constmint of the tunnel walls
on this downwash modifies the behaviour and aeredynamic character-
istics of the wing, Finally a “fourth type of interference occurs
if there is a gradient of static pressure down the stream of the
wind tunnel.  This pressure gradient arises owing to the development
of the frictional boundary layer of reduced velocity along the walls
of the tunne), which leads to an increase of velocity and a decrease
of pressure along the axis of the tunnel. Any body is therefore
tested in a slightly convergent stream, and experiences an increased
drag owing to the drop of static pressure from nose to tail.

These various interference effects in a closed tunnel, together
with the corresponding effects in a free jet, will be discussed in
detail for difiercnt types of body, which can be grouped conveniently
under the headings of wings, symmetrical bodics and airscrews,
but before procceding to this analysis it is desirable to consider
the precise nature of the boundary conditions, and the limitations
of the theoretical treatment of the subject.

The pressure gradient correction will be reserved for special
consideration in Section 19 of Part 3, since it is important only
for bodies of low drag and may be neglected in the consideration
of wings and airscrews. Morcover, the pressure gradient, which
is due in a closed tunnel to the development of the frictional boundary
layer along the walls and to leakage through the walls, can be
eliminated by designing the wind tunnel with a slight expansion
in the direction of the stream, and is sensibly zero 1n a free jet.
The discussion of the other types of tunnel interference is based
on the conception of an ideal stream without any pressure gradient
along its axis, and negle~'s both the boundary layer along the
walls of a closed tunnel and the analogous disturbed region at the
boundary of a free jet where the stream mingles with and draws
along some of the surrounding air,

The boundary condition at any wall of a closed tunncl is expressed
precisely by the condition that the normal component of the fluid
velocity must be zero, The corresponding condition for a free
jet is that the pressure at the boundary must have a constane value,
cqual to the pressure of the surrounding air, but it is in practice
impossible to use this exact condition in the analysis owing to the
distortion of the shape of the jet caused by the presence of a body
in the stream. The approximation is theréfore adopted of applying
this condition of constarit pressare at the undisturbed position
of the boundary of the i-t. As an additional approximation, which
Is of the same order of accuracy as the previous one, it is assumed
that the disturbance to the tunnel velocity V at the boundary
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of the jet is small. 3 («, v, 1) arc the components of the Jisturbance,

the pressure p at the boundary of the jet is obtained fiom Bemoulli's
equation as -

P=to+teoVi—lo{(V4 w4t wy
=p—poVu—jo(+vr+uwy., .. .. (L))

first order of the disturbance the csmdit_iogl of constant
;’rlgsstuoren;s siﬁp\y that 1 is constant, But « is evidently zero lf]:;:
in front of the body in the undisturbed stream, .and hcnlcc " lg::it
be zero at all points of the boundary.  This implies that :1 e we_f my;
potential ¢, which represents the change of flow fron'l u;‘ um_}oo!c
undisturbed stream, must have a constant value over the w ‘ed
boundary of the free jet, and the boundary conditions assum
in the analysis are now simply :—

2
Closed tunnel 5% =0 (L2

Free jet ¢ = constant

ndary ‘condition for a closed tunnel is vxact and precise,
exce’lgltef?)(x)-uanyr{ffccts due to the frictional boundary layer._alox:%
the walls. The boundary con:ijititonb&:{ a ﬁ::i% xeetoflst ;g;i::u\‘llxxn
i lied at the undisturbed positi e ary
ggg’b:see’(?go: I:?u: assumption of small disturbing velm:mes‘.i t’l‘herfi
is also one other point in which the treatment of a clos,e1 ‘::\xl‘;
is more precise than that of a free jet. A closed 'tumtl_e “\: forz
extends for a considerable length with constant eross-sec lonf :m e
and behind the model, whereas a free jet usually lssucswrl na
closed cylindrical mouth immediately in front of tl_nedx:ll ¢! one
is received into a collector at a moderate distance bChiml ic m : ..(;
Thus the conditions differ appreciably from those of the on«t(gi trlee
jet, envisaged in the analytical treatment of the sub)ecit, f“: ultli-
validity of the theoretical interference corrections must res
mately on experimental confirmation of their accuracy.

PART 1
Wings, Three Dimensions

2. General discussion,—The method of analysing the_in(grf;re‘mt:g
ex'pcl.'icnced by a wing in a closed funncl or in a free jet is lle:) o
Prandtlt. The nature of the bo\mdm{y Condll(l]Q?.S r:‘\:(iot:xi 1{;2): ; -

) i e regarding these conditio h
mate assumptions made regarding the conditions for 2 free job
i ious in the developmen
have been discussed previously in Seetion 1, bu! o jent
is it i e wther assumptions
of the analysis it is necessary to make some fu umptions
i ; ving, itselt. The lift of the wing is
regarding the flow past the wing i K e o rond the wang,
intimately related to the circulation of the ound the wins:
i t the wing can be regarded as a group of | ) e
:gnl:x; fflclfmg its spg:m. In general the lift and circulation have
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their maximum values at the certre of the wing and fall off gradually
to zero at the wing tips. This Iateral decrease of circulation from
the centre of the wing outwards is accompanied by the creation of
frce trailing vortices which spring trom the trailing cdge of the
wing and pass down stream. These trailing vortices are deflected
downwards with the general downwash behind the wing, and,
since a vortex sheet is unstable, they ultimately rolt up into two
vorfices somewhat inboard of the wing tips. In the development
of aerofoil theory, however, these effects are ignored and the trailing
vortices are assumcd to lic along straight lines passing downstream
from the wing. This same assumption is made in the analysis of
wind tunnel interlerence, and the analysis is therefore strictly
applicable only to lightly loaded wings .

The problem of a wing in a small tunnel involves motion in
three dimensions, but Prandtl! has shown that it can conveniently
r be reduced to 2 problem in two dimensions only, when the wing

is regarded as a lifting line extending from wing tip to wing tip.

Considering first the flow past the wing in an unlimited fluid and

taking the x co-ordinate downstream, the velocity potential, duc

to the wing and additional to that of the undisturbed stream, is

' of the form
L

¢=f(y,z)+F(z:,y,z) 2.1)

where the first function represents the velocity potential in the
transverse plane containing the wing and the second function
changes sign with ». Since ¢ must be zero far in front of the wing,
it follol“s that far behind the wing the velocity potential will have
the value

$o=22 .. . . e o 22

Turning now to the problem of a wing in a free jet, the interference
due to the limited extent of the stream will be represented by the
addition of a term ¢’ to the velocity potential, which must satisfy
the conditions that ¢’ is finite at all points in the limited stream
and that (¢ + 4') must be zero at all points ot the boundary.
It follows that ¢’ can be divided into two terms of the same form
as ¢, and that its value in the uvitimate wake will be double its
i value at the corresponding point in the transverse plane containing
the wing. The interference experienced by the wing depends solely
on the flow in this transverse plane, and hence as a convenient
method of analysis it suffices to analyse the flow in a fransverse .
planc of the distant wake, which is simply a two-dimensional pro-
blem, and to deduce that the interference expericnced by the wing
is half that which occurs in the distant wake. A similar argument
can be applied to the problem of a closed wind tunnel where the
boundary condition is now

- A——— vy

- . .
it i i i to that of two-
and it is again possible to reduce the problem 2
dimcnsionalg(zllow in a transverse plane of the distant wake.

The interference due to the limited extent of the stream will
in gel;xeml modily the distribution of kft across the span of the
wing and in an exact analysis of the problem it would be necessary
to take due account of this effect. This aspect of the prt?_i.)lerr.l is
discussed in Section 7 below, but unless the span of the wing is a
very large fraction of the width of the tunnel the resulting change
of fift distribution is very small and may be neglected  Generally
it suffices {0 assume that the lift is distributed elliptically acg?js
the span, as on 2 wing of eftiptic plan form, and often it is possible
to proceed to the even simpler approximation of uniform distribution
of Lift across the span of the wing. When the span of the wing 13
a very small fraction of the width of the t\}nncl, the form assume
for the lift distribution is quite immatepal_and it then suffices
to assume that the total lift force of the wing 15 concentrated at tl;e
centre of its span and to calculate the interfecence at this single
point. This type of solution will subsequently be referred to as
that applicable to small wings.

3. Method ~of images—The conception of images, as used in
aerodynamical {;roble?ns, can be appreciated by cons_xdcnn%‘a f.esw
simple examples, If two aeroplancs are flying hon'zon'ta ly ‘51 e
by side there will evidently be no flow across the vertica pax‘\:‘_
of symmetry midway between the aeropianes, and '(hl.S plane cou
be replaced by a rigid wall without altering the flow in a.ny‘\va){i
Thus the problem of an acroplane fiying parallel to a vent\ca \\::(xl
can be solved by introducing the image aeraplane on tl}c 0 herl side
of the wall and by considering the new problem of the two ae&og anes
flying side by side. Similarly the interference experience ‘y .:\r;
acropiane flying close to the ground can be solved by mtr?l( usm?
the inverted image acroplane below the ground. This method ot
introducing the appropriate image or set of images tol rcpfre;en.
the constraint of the boundary of the stream 1S capable o b}rcry
wide application, and is the method used for analysing most problems
of wind tunnel interference. - " :

e discussion of Section 2 has shown that the pw‘em v
theTi}:\tcrferencc expenenced by a wing in a closcfl }?ngnl‘qr in
=~ a free jet can be solved by considering the transverse | o:w ‘\r: 3
section of the distant wake. In this planc the wing 15 Tepresente
solely by the system of its trailing vortices, which mw-‘ 2:’91"3""‘
as point vortices and extend along a line of l_cngthde\q\‘m to the
span of the wing, and the problem to be solved is the \.t;.f‘n\?l\i\i.l?n‘
of the flow which must be superimposed on that due to b\ w :]on.m:?
in order to satisfy the appropriate condition at the _(mm lar}‘_o
the stream. In the simple assumption of a wing of uniformloading

cortex sy ise merely two point
.Y across the span the vortex systems comprise 1 . ;
a—ﬁ o = ° . 23) -’ . vortices of equal and opposite strengths at a distance apart equal
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to the span of the wing. More generally any wing can be repr

by a distribution of such pairs of v'}:)rtit}:::s cftcnding ?xgr(e)in:;g
whole span, and hence thic problem of a wing with any type of lift
distribution across its span can be derived from the simpler problem
of a uniformly loaded wing by a process of integration.

The method of images can be used directly when the cross-sectio
of the boundary of the stream is rectangular g; circular, and so?xcﬁonxsl,
for some other forms can be derived from these primary solutions
by means of suitable conformal transformations. ‘The form of
image required in a single rectilinear boundary is illustrated in
Fig. 1. The image of a single vortex in a rigid rectilincar boundary
is an cqual vortex of opposite sign (Fig. la), since this pair of
vortices will by symmetry give zero normal velocity at the boundary.
Each vortex will give the same component of velocity paratlel
to the boundary, and hence the condition of zero flow along a free
boundary can be obtained by reversing the sign of the image (Fig. 1b),
anfl vortex and image have now the same sign. Thus the image
system for a free boundary can be derived from that for a rigid
boundary by reversing the sign of the images. The image system
of a uniformly loaded wing in the presence of a rigid vertical wall
is shown in Fig. Ic, and the corresponding system for a_ horizontal
boundary in Fig. 1d. Here, and generally throughout the report,
it is assumed that the span of the wing is horizontal. The image
in the vertical wall is a replica of the wing itsclf, but the image
in the horizontal wall is an inverted wing. By applying the funda-
mental conceptions illustrated in Fig. 1 it is possible to build up
the image system required for a pair of walls or for any rectangular
boundary. These problems usually involve infinite series of images
and examples of such systems will be discussed later in the repozt.

. A circular boundary (Fig. 2) can also be represented quite
simply by ‘he method of images. )Considering first aprigld boungary,
the image of a point vortex of strength K at any point A is an
equal and opposite point vortex at the inverse point A’. The
stream function y at any point P due to these two point vortices
is simply
_E AT
¥ =78 37

since the complex potential function of a point vortex of str
i ( ) ) K {3 ength
K and anti-clockwise rotation at the pointl:z(: is ¢

$o+ iy = — o log (z--z) 1)

Now if P is a point of the circular bound. ia
and OPA’ are similar, and hence Y. the tiiangles OAP

AP OP
AP =O0A ™ const.

o st e W
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which proves that the circular boundary is & streamline of the flow
and may therefore be regarded as a rigid boundary.

By analogy with the problem of a rectilincar boundary we
might anticipate that the same image could be used for a free
boundary if the sign of the image were reversed.  The velocity
potentia: of the vortex at A and of an equal image at A’ is, apart
from the addition of any arbitrary constant,

$= %(RAP + RA'P)

* and since
RA’P = AOP + OPA’
= AOP 4 OAP

“we obtain

¢=%—i(z+0—a)

where @ denotes the angular position of the radius OP. Thus the
velocity poteatial of the vortex and its image is not constant along
the c..cumicrence of the circle and the necessary condition for a
free boundary is not satisfied. If, however, we introduce a second
vortex of equal and opposite strength at any other point inside
the circle, the velocity potential of this second vortex and its image
will be of the form

K
p=—5G+0-F

and on addition to the previous expression the variable term 0
disappears. Thus the necessary condition for a free boundary is
satisfied by a pair of vortices anywhere inside the circle and by
ihe corresponding images. Since the vortices representing a wing
always occur in pairs of this kind, the method of images can be
used for a free circular boundary. The imoge system is identical,
except for the change of sign of the vorticity, with the system for a
rigid boundary.

A wing with uniform distribution of lift across its span is repre-
sented by a pair of vortices at its tips, and any form of lift distribution
can be represented by a system of pairs of vortices distributed
along the span of the wing. Thus the conditions for any arbitrary
distributicn of lift can be derived by intcgration from the simpler
condition of & wing with uniform distribution of lift across its span.
In general the lift distribution is symmietrical about the centre
of the wing. Take the origin C at the centre of the wing and the
axis Ox to starboard along the span. If I'is the circulation at uny
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_and by virtue of equation (3.4)

.8

point x of the wing, the strength of the trailing vortex springing
‘from an element dx of the wing is simply

ar

K=-— ‘_i; dx.. (32)

and the lift of the wing is

L=I:‘9Vde 3.3)

With uniform loading we obtain simply a pair of trailing vortices
of strength - I and the lift of the wing is

L=2,VTD (34)

" Occasionally it is convenicnt to assume that the span of the wing

is extremely small, or in other words that the lift is concentrated
at the centre of the wing, The pair of vortices then join to form
a doublet of strength

p=2T

L
k= 35)

For future reference it may be noted that the complex velocity
potential of a doublet, which is the limit of a positive vortex at
x = sand a negative vortex at x = — s, is

(38)

p = B
o 7¢+“P"2',‘z .
4. Interference flow.—The transverse flow in a plane, normal to
the direction of motion and far behind a wing moving in an unlimited
fluid, is that due to the system of trailing vortices, and the calculation
of this flow is the basis of the standard theory of the induced drag

of a wing. When the stream is limited by rigid or free boundaries
““there is a constraint of the flow and the change in the induced

velocity at any point of the sheet of point vortices is a measure of
the interference experienced by the wing due to the tunnel constraint.
In these problems where the necessary boundary condition can be
satisfied by the introduction of a set of images, the tunnel interference
can be calculated as the effect of the induced velocities of this
set of images.

Consider, as an example, a wing with uniform lift distribution
across its span, lying along a diameter of a closed circular tunnel

* of radius a (Fig. 3). Take the origin of coordinates at the centre

of the wing and of the tunnel, the x axis along the span and the
¥ axis normal to it. There will be two trailing vortices, one of
strength K at the point A(x = s) and the other of strength —K at

. of the tunnel.

9

B(x = —s). Theimage vortices occur at the inverse points and are
~ K at"A’ (v =a?[s) and K at B’ (v = — a?[s). At any point of
the line AB there is an upward induced velocity due to the images,

of magnitude
1 1
——x s

s s

K. _2a*

T %n at < skt
and at the midpoint O we have simply
Ks

nat

U=

PI=

@1

Vo =

This expression represents the induced velocity in the wake and is
double that experienced by the wing itself. Alse the lift of the
wing is
+L=2pVK
and hence the induced velocity at the centre of the wing is
Ks L

J7a* = dmatov

The induced velocity varies across the span of the wing and
would also be modified if due allowance were made for the actual
lift distribution of the wing, but this simple example serves to
illustrate the nature of the tunnel interference and the form of
the results. The induced velocity is proportional to the lift of
the wing and inversely proportional to the area of cross-section
In a closed tunnel a wing usually experiences an
upwash and in consequence, at a given angle of incidence relative
to the undisturbed stream, the lift of the wing is increased anq its
line of action is inclined forwards. It is however more convenient
“to make the comparison of free and constrained conditions on the
basis of equal lift in the tunnel and 1n free tlow. _Thus n general,
at a given value of the lift coefficient, the angle of incidence and the
drag coeflicient in a closed vunnel will be lower than in free flow.
In an open jet the sign of the interference is changed, and the
measured angle of incidence and drag coefficient are too high.

(42)

Vg =

Throughout the subsequent analysis, unless otherwise stated,
the following notation and conventions will be used. The origin O
will be at the centre of the wing, which in turn will in general be
assumed to be at the centre of the tunnel. The axis of x will be
taken along the span to starboard and the axis of y upwards in the
direction of the observed lift force. The upward induced velocity
at any point of the wing will be denoted by v. This velocity is
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- ; -, . Thus & represents the magnitude of the tunnel constraint and in
exactly half that calculated from the image vortices of the wake, general, as will be seen later, & may be taken to be the value of 3
and may be obtained disectly by using a facter 4 instead of 2z in calculated on the assumption of clliptic distribution of lift actoss
the standard hydrodynamical formula ) the span of the wing. The value of 4 is usually positive for a closed
_i K tunnel and negative for a fiee jot.
];q " 2ar 5. Closed tunnels and free jels.~ The discu?sion of the two previous
a3 . RPUCTIR . . sections has shown that the image systems for any wing in a closed
;‘t}‘cf,lé*ﬁ“ﬁﬂ,‘,"&fﬁ:ﬁfﬁi’,’,s’i’oﬁﬁlanﬂ,‘fi?,f‘ ce 7 from 2 point vortex of circular tunnel and for the s:um"wing in the same poiition in a free
) ’ i circular jet are identical except for & change of sign of all the image
Due to the upward induced velocity v the ‘ine of action of ! vortices,]and hence thatc{ht‘l iulercrcnccgexpcti:nced by the wir%g
the lift force on the clement of wing is inclined forwards by the is of the same magnitude but of opposite sign in the two types of
angle ¢/V, and hence the reduction of drag in the tunnel or the wind tunnel. This simple relationship is a special proparty of the
correction which must be applicd to the observed value is circular cross-stction, but it is possible to cdstnblisli an .steresting
gencral theorem?$ for small wings in any wind tunnel.
v
AD = j VdL . . . {43) Consider any shape of tunnel, as shown in Fig. 4, and any
position of the wing. Take the origin of co-ordinates at the centre
The correctivn to the angle of incidence strictly involves a twisting of the wing, with Ox along the span and Oy in the direction of the
of the wing in order {c maintain the same distribution of lift across lift. The velocity field duc to a very small wing in this position
tlie span in the tunnel as in frce air, but this twisting can be ncglected is that duc to a doublet of stiength p at O, directed along the
in general and the correction to the angle of incidence’ may be negative hranch of the y axis, and the complex potential function
taken to be of the flow is
s _n plyeiY) -
Be=f[daL ... .. .. @4 ptip=so="00 o o 6D
. . . . Now consider a closed boundary and assume the region outside
Il? Srdgr dt° gbtalm_‘a‘ nox}ifl;)mcnsxonal drgpr%ser;tatlon of the the boundary to be filled with Huid at rest. The rigid boundary
Tesults the induced velocity v will be expressed in the form can then be replaced by a vortex sheet of strength 4 per unit length,
v L S A such _that the normal velocity at any point of _tl_xe l_:oundary, due
VEIGR=ch - 49 to (tlh:SS vortex sheet alnd to the «lul;bl'ct :;)t tll(ci ongm,d is f7.clro. If 65-
and dn are respectively elentent~ of the boundary and of the inwar
where C is the area of cross-section of the tunnel. The value of 5 niormal at any point P of the boundary, the normal component
will in general be a function of xfs, and its mean value, weighted of the velocity due to the doublet is
according to the distribution of lift across the span, is ,
. _o(ae (e 52
NETEN L=g5los:) " ~5\amn) - 0 B2
i=pfuil . . . we o ,
Also if -R is the distance of any oiler point Q of the boundary from
The values of 3 and % can be calculated in different ways, f;l:md if (n, R)bdcnztes'thc .uln'ni:k l)'a‘l\u,d\ PQ and the normal at P,
depending on the assumptions made regarding the lift distribution ¢ necessary boundary candition 15
and on the approximations made regarding the system of images. ko N ‘=
The corrections to the observed values of the angle of incidence and jrg, sin (u, Ryds =g, . I R
drag cocfficient will be expressed as— ] .
g . The interference experivnced by the wing due to the constraint
. Cda=dxk, - . .. .. (A7) of the boundary is the compoenent of the velocity due to the vortex
c sheet parallel to the axis of v, aud this velocity is
and k
‘ s vee = [omcos0ds o L L G
Bhp=3dzhk® .. .. .. (49 i ~ .
T S ] o SR A
- - ‘ | *
. v |
i -< . - e ]
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Consider next a tunnel of the same shape with a free boundary,
on which the necessary boundary condition is that the velocity
potential ¢ has a constant value or that the tangential component
of the velocity is zero, Let the small wing still be situated at the
origir O, but rotate it through a right angle so that its span lies
along Oy and its lift is in the direction Ox. The complex potential
function of the flow due to the wing is then -

. % — 1
prip= L = 2E=H . (65

and the tangential component of the velocity at P due to the wing is
N 2 W
%= (27:7) == 2_.1_7-2) 58)

The necessary boundary condition can be satisfied by assuming
along the boundary a distribution of sources of strength m: per unit
length such that the angential component of the velocity at the
boundary due to *hese sources exactly balances that due to the wing.
The necessary condition is

I%sin(n,R)ds:q, e e 67

and the corresponding interference experienced by the wing is the
velocity

%= -I%’cos 0ds.. .. . . (5.8)
A comparison of corresponding pairs of equations for the rigid
and free boundaries indicates that

ey e
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the same wing in closed tunncl of breadth 4 and height 5. The
theorem is strictly true for very small wings only, but it will also be
~ approximately tgue for wings of moderate size.

6. Circular tunnels—The formulae for the interference ex-
perienced by a wing in a circular tunnel are due to Prandtlt and
have been expressed-in concise forms by Rosenhead!®, The system
of images required to represent the constraint of the boundary,
whether of the closed or free type, has been discussed in some
detail in Section 3, and it has becn demonstrated that the interfer-
ence experienced by any wing in a free circular jet is identicat,
except for a change of sign, with that experienced by the same wing
in a closed circular tunnel of the same diameter,” It will suffice,
therefore, to consider the conditions in a closed tunnel.

The image system for a wing with uniform distribution of lift
across its span is shown in Fig. 3, and the normal induced velocity
at any point of the wing is

o 1
v=Xla— + 7 l salK
4z S =% Iy + =z

= 2z (at - 5%

sx
A-e i;’« o
o T .. .. e .. . .. 6.1)
b=a
we have
sK

il o) 62)

=—, c . . )
e qf =~ ;; . which indicates that the induced velocity has its minimum value at
"= the centre of the wing and increases outwards along the span.
and hence that Remembering that
= —v . .. .. .. .. (5.9) L =259 VK
Thus it has been proved that the interference on a very small wing or
in a tunnel with a free boundary is of the same magnitude, but of VSk,=2sK
opposite sign, as that on the same wing, rotated through a right . .
angle, in a tunnel of the same shape with a rigid boundary. In the expression for the coeflicient 5 of the induced velocity, dufined
practical applications the wing is generally situated at the centre by equation (4.5), becomes .
of the tunnel, and the tunnel itself is symmetrical in shape about 1
the co-ordinate axes (c.g., rectangle or ellipse). The general theorem =l — g1 "
then states that the interference on a small wing at the centre of an _‘{,
open symmetrical tunnel, of breadth & parallel to the span and of ¥ . .
height 7, is of the same magnitude but of opposite sign as that on ] ; = I+ 840 . . . (63
T » S ~ A
) y i ]
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} and the mean value of this coefficient taken across the span of the and we obtain -
i wing is ’:lF sin? 0 40 -
! '_!I‘ d¢ 1= %) T= ¢ sin®0
n= t o'l ) . .
= [ s — 1] 0
= Lig it 28 ), T—Femto
: = ngt TFa=nr"32
Lol ln . (64 wE Lo :
=ladgeagshan) o . 69 ot inally
In order to proceed to the calculation of the interfercnce ex- 7= ,2_:? {((1 = g2t =1}
perienced by a wing with elliptic distribution of lift across its span,
i it is necessary to replace sin the formula (6.2) by a current co-ordinate _1 14 3...5 " 3 o @
o to take =g(1+FE+g8+Ge o) o 6D
K = ar dx The denominator of the cocfficicnt of &¢ was given incotrectly as
= Tdx, H 128 in Prandtl’s original ert and has been repeated in other
1 ginal pap
k : lati d the wing, and to integrate with papers. The error was corrected by Rosenhead™.
: where T is the circulation round the wing, The mean value of ol i
‘ : : it n across the span, weighted according to
respect to #, from 0tos. The circulation I'isof the form the elliptic distribution of Lift, is

r'= ro‘/slsl-"‘—' U ()|

and the lift of the wing is now
L=["oV Ddy=FseVT,
-3

or
VSkymGsTy oo ee e e e (6.6)

3 Thus for a wing with elliptic lording
s Toat2,2dx,
- v= f 0 25C (8 — 222,%) A/52 — %2
and converting to the non-dimensional system
1f &2 dé;
n= ,-',L G-y VvE—§

&

-4 4fstex?
na-J:n — dx

L S —
and after integration

.1 3 5 175
= p 4 R0 G o 8 )

Numerical values of the coefficient 7 for uniform and for elliptic
loading, deduced from ke formulae (6.4) and (6.8), are given in
Tabie 1, and it appears that the increase of 7 with the span of
the wing is more rapid for uniform than for elliptic loading. The
subsequent discussion of Section 7 indicates that in general the
value of 4, required in the correction formulae (4.7) and (4.5}, should
be taken to be the value of % derived from the assumption of elliptic

' (6.9)

TABLE 1

Values of 3 in a closed cireular tunnel

I s e -
; - TN T

This integral can be evaluated by means of thejsubstitutions Span/Diamoter A e 02 04 06 0.8
g =1Lsinb Elliptic loading  ..{ 0-250 | 0-250 | 0-251 | 0.256 | 0.273
- LT ' Uniform loading ..} 0-250 0-250 0252 0261 0-296
=tan 0 . — = .
'ﬂ'-'—'-——-w-‘-«. - e T T
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*in the analysis of the results,

loading, since the lift distiibution of a wing of conventional planform
usuaidy approximates to the clliptical form. TFig. 5 shows the
variation of ¢ with the ratio of the wing span to the tunnel diameter,
and the broken curve shows the values which would be deduced
from the assumption of uniform loading. TFor a small wing ¢ has
the value €250, and an examination of Table 1 or Fig. 5 indicates
that the adoption of values of 8, based on the assumption of uniform
loading, will lead to errors of the same magnitude as the simpler
assumption of tha value 0-250 appropriate to small wings.

As regards the accuracy required in the determination of the
value of ¢ in the cors.ction formulae, it may be noted that the
value of the ratio S/C is usually less than 0-1 and that a value of 0-2
may be regarded as an extrzme upper limit. Even in this extreme
case an error of 0-025 in the value of & produces errors of only
0-15 deg. in the angle of incidence and 0-0012 in the drag coefficient
at a lift coefficient of 0-5. Ir general it will suffice to know the '
value of & with an accuracy of -:0:025, and more accurate values
are required only for “nusually large values of the ratio S/C or of
the lift coefficient of the wing. On this basis the value of 48 fora
closed circular tunnel can be taken to be 0:250, as for a small wing,
unless the span or area of the wing 1s unduly large.

Experitmental checks on the theoretical correction formulac
have been obtained in both closed tunnels and free jets. Higgins?
tested two series ot wings in a closed circular tunnel. The wings
of the first series were of constant chord and varying span, so that
the tunnel constraint was obtained only as a small modification
to the conection for aspect ratio, but the second series comprised
.three wings of aspect ratio 6, tested at the same value of the Reynolds
number, and thus gave a direct measure of the tunnel constraint,
After trying several empirical corrections with Lttle success, Higgins
concluded that the theoretical formulae gave the best results.
The largest valuc of the span-diameter ratio in these tests was 0-6,
and the correction formulae for small wings (8 = 0-250) were used

oy v

————

Experiments in a free jet have been made at Gottingen$, using a :
series of five rectangular wings of the same aerofoil section and of
the same aspect ratio. The span-diameter ratio ranged from 0 27
to 0 80 and the tests were made at a constant value of the Reynolds
number, The observea polar curves (drag against lift) of the five
wings showed systematic differences, but after correction for the
tunnel constraunt, using the values of J§ appropriate to the span-
diamcter ratio for cach wing, all the results fell on a single curve
vith the exception of those fur the largest wing, where the theoretical
formula appeared to underestimate the correction slightly. The
hft curves (lift against incidence) showed similar characteristics,
but the final agreeinent was not quite so good and the theoretical
formula appears to underestimate slightly the necessary correction

-~

even for moderate values of the span-diameter ratio. This width of the tunnel.
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discrepancy is ascribed to the influcnce of a gencral curvature of the
jet, due to the lift of the wing, which is cquivalent to a reduction
of the effective camber of .se wing section,

These conclusions are confirmed by some experiments of Knight
and Harris®® with three wings of aspect ratio 5 and of span-diameter
ratio 0:45, 0:60 and 0:75 respectively. The experiments were
made in a free circular jet ut a constant value of the Reynolds
number, and, instead of correcting the results to free wir conditions
by means of the theoretical formulae, the observed values were
analysed to deduce the appropriate value of § for zach wing.

TABLE 2
Free Circular Jet ’
Span/Diameter . . s l 0:45 0:60 0:75
Theoretical .. . . . 0-252 0-256 0:266
From drag coeflicient . . 0-250 0:254 0:284
From angle of incidence 0:254 0.264 0354

Values of ¢, ignoring the negative sign appropriate to a frc2 jet,
are given in Table 2, and it will be seen that they fully confirm the
conclusions drawn from the earlier experiments at Gottingea.
In view, pO\\'ever, of the previous remarks regarding the accuracy
required in the value of 4, it appears that the deviation from tha
theoretical values does not become appreciable until the span of the
wing exceeds two-thirds of the diameter of tie tunnel,

. 7. Effect of lift distribution.—The interference experienced by a
wing in a wind tunnel depends not only on the shape and size of the
tunnel, but also on the type of distribution of hift acioss the span of
the wing. In his original paper Prandtl! tricd tue alternative
assumptions of uniform and elliptic distributions, and found that
the first term of the series for & had the same value in both cases.
The results for a wing with uniform or with elliptic loading in a
circular tunncl are given by equations (6.4) and (6.8) respectively.
The first terms, which are identical, represent the interforence which
would be deduced from the assumption of a small wing with the
total lift concentrated at its mid-point, and the subscquent terms
tepresent the effect of the finite span of the wing, differing avcording
tc the assumed lift distribution. Thus in order to obtain a finst
appiovimation to the interference it suffices to comsider 4 small
wing and to calculate the inducud velocity at its midpoint. This
conclusion has also been verified for plane boundaries?, urd it
apeears that the first approximation is sufficiently accurate for
most purposes unless the wing span exceeds 60 per cent. of the
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In the discussion of circular tunnels results were derived for ! 8. Plane walls.—Throughout the subsequent discussion it will
wings of any span with uniform or with clliptic loading, but this be assumed that the span of the wing is horizontal and that its lift
method of pruceeding to a more accurate estimate of the tunnel is directed upwards. As explained previously in Scction 3, a single
interference is not strictly sound. The analysis compares two 2 vertical wall at the side of a wing then represents the condition
wings with the same loading in free air and in the tunnel, but in of two acroplanes flying side by side, and a single horizontal wall
fact the induced velocity varivs across the span of the wing, as below the wing represents the condition of an acroplane flying close
shown by equation (6.7), and hence an untwisted wing in free to the ground. These problems, which have their own importance,
air must be twisted in the tunnel in order to maintain the same will be examined here as an introduction to the problem of a
lift distribution, whereas the practical problem is the determination rectangular wind tunnel, and as a second step it is convenient to
of the change of the characteristics of the same wing in free air and censider the effect of two walls, vertical or horizontal, on opposite
in the tunnel. The cffcct of the twist necessary to maintain the sides of the wing. Since, however, the results have no practical
same lift distribution appears to be of the same order of magnitude value in connection with tunnel interference, it will suffice to consider
as the correction to the tunncl interference due to the variation of the problem of small wings only. The lift of the wing is concentrated
the induced velocity across the span of the wing, and hence it is at its mid-point and the flow indaced by the wing is that of a doublet
necessary to consider the change of the lift distribution in passing of strength ;
from the tunnel to free air conditions. . L
p=- =VSk, 8.1)
The exact solution of this problem in a circular tunnel has 3 . 9 . .
been obtained by the present author!® and independently by as given previously in equation (3.5). In the figures representing
Miillikan?s, The method of analysis adopted by both authors the system of images, appropriate to any given boundaries, it will
was to express the lift distribution by a suitable Fourier series with then be convenient to represent the wing or an identice! iznage by
unknown cocflicients, to calculate the corresponding induced a plus sign and to represent an inverted image of the wing by a
velocity at any point of the wing, and then to determine the co- negative sign. This representation gives a clear picture of the
efficients of the series to satisfy the conditions imposed by the shape system of images requited in any problem. .
of the wing. From this analysis it appeared that there is surprisingly The image system for a small wing midway between two rigid
little distortion of the lift distribution of an elliptic wing due to the vertical walls at a distance & apart is shown in Fig. 6. The images
tunnel constraint, even when the span of the wing was equal to are identical with the wing itself and comprise two infinite series
the diameter of the tunnel, and that the modification to Prandtl’s extending to the right and to the left respectively. The distance
formula (6.8) for the interference expeorienced by a wing with of any image from the wing is mb, where  may have any integral
clliptic loading was negligibly small. The application of the analysis value. The induced velocity at the wing due to one of the images
to a rectangular wing!® led to similar conclusions, and it appears Is
therefore that the interference formulae derived from the assumption v= P
olfl elliptic distribution of lift are sufficiently accurate for wings of T 4xmrh
elliptic and rectangular plan forms, whereas formulae derived : sl . :
from the assumption of uniform distribution of lift may be definitely gg t’&i’;ﬁ :\h:u;ozl induced velocity, representing the constraint of
misleading, . § B _ap
In view of this analysis and of the conclusions drawn from it, T damthr T 1282
the interference experienced by any wing in a tunnel of any shape or . -
will be derived either as a first approximation on the assumption v_=a$ A = 0-262 S B 82
of a small wing with the total lift concentrated at its mid point, Vo2 et Y et . 2)
or as a closer approximation on the assumption of a wing of finite If there were only one wall at a distance 3b from the centre of the
span with clliptic distribution of lift. This course should lead to wing, the interference would be simply
reliable estimates of the tunnel interference experienced by wings
of any shape or size, though some reconsideration may be necessary v = E -
if the span of the wing is unduly large since, for example, the lift - 4 .
distribution on a rectangular wing must tend towards the uniform ' or . .l s s :
type in a closed rectanguiar tunnel when the span is nearly equal - v _ 15, _ aaen
to the breadth of the tunnel. VERRA=000g A e 83
A — ot e - e - hnd » ) e —— -’
by R . !
' <> B i
4 / = . - - ‘
{ ‘ =
/ ' , T i T
\ 3 Lot
’ - « - P
! ©
- - —




s o ek d . T
| o—
e N
{
i !
] '
. !L - - ‘
Y= o :
; _ \
[ o -
‘ ) ;
t . .
* | _
L ) !
-+ ————— ] ' - -
4 » . T
| L
I 20 ; 21
i Thus the interference caused by 1 Is is 3-29 ti i igi i
oot sil;-glc t‘c““?usc by the two walls is 3-29 times that the interference of rigid vertical walls is of the same magnitude
" < as that of frec horizontal boundarics, as may be seen from the pairs
h the rigid walls are replaced by free boundarics, the image of equations (3.2) and (3.8), or (3.4) and (36). The analysis also
system remains tl_nc same as in Fig. 6, except that alternate images suggests that vertical rigid walls or horizontal free boundarics
: are of opp osite sign. The interference velocity then beco.aes 1 produce the greatest interference, but the interference of a rectangular
! : - . . - - tunnel cannot be derived in any simple manner by adding the cffects
] , v=2% (=) T ;_J:z of the vertical and horizontal boundaries. Indeed the results for
. o 1 ' 24 b the vertical and horizontal boundaries themselves show that the
‘ interference due to two boundaries bears no simple relationship
R R 0131 S . 64 to that due to a single wall.
VET =T R -
whilst that d . L. 9. Rectangular tunnels.—The int xperi
hat due to a single free boundary is sitnply small wing in a closed rcctangfﬂalr t?xrrf\?iro.fln?asc‘\:aple(:ﬁz&ccﬁl bsyth?:
q v 1s b = 0:08 S . present author?*3 and the analysis for a wing of finite span with
v k=~ B b (8.5) ll:;l’fl?m or ;vxthd leliptic distribution of lift has been developed
and tho i . o y Terazawa® and Rosenhead®!.  Other types of rectangular tunnel,
and ti,;e;n:ﬁ;ftcg,:lccdcﬁuscd. by the two free boundaries is only with some sides rigid and other sides free, have beexgt considered
5¢ yqsmglc free boundary. by Theodorsen!* and Rosenhead??, the analysis being limited to
‘The problem of horizontal boundarics above and below the :ihe problem of small wings. It will be convenient here to discuss
: wing, at a distance / apart can be treated in a similar manner. The r;t :]l:e D T P o for i
- images are of alternate sign for rigid boundaries and the interference and hen to consider the modifications necessary to allow for the
experienced by the ving 1s finite span of the wing.
v =S S Th i i
v_2 S, oS e system of images required to represent the constraint
i VB RS ik 86  _ _ _ . of a closed rectangular tunncl%f height & :\I:ld breadth bcisn Z}r::?n
whilst 2 single horizontal wall gives in Fig. 7. The array comprises alternate rows of positive and
s nfcgatwc images, and this system satisfies the necessary condition
v _ 1S, oo S . of zero normal velocity on all the rectangular boundaries. This
V=mmh ke 8.7) flefgr(clsc?t:lx)tx?n is \{)altxd for a wing of finite span with any symmetrical
When the rigid walls aro replaced ) ) istribution, but in the analysis of the problem of small wings
o 1 el Wik the i TS neomnes wocy doate e e« be sy doie o snth
two boundaries is T =V
p=VSk,
v o n S i i
Y=-Z 2 by = —0-262 ;‘?‘z B 88) in accordance with the cquation (3.5). The induced velocity at the
. : wing, due to a positive image at the point (mb, nh), is
and a single fre¢ boundary gives 252 ht
pom2b—nt
v 1 S V= 4 th o iy
- V=i by =— 0-030,%}:,‘ (89) 4 (m3b2+ n2h?)?
Several interesting gonclusions can be drawn from an examination and hence the total induced velocity experienced by the wing is
of these formulae, Tirstly, an acroplane flying above the ground VSk, 2 & 25 — n2hi?
experiences, according to equation (8.7), an upward induced velocity ! n=—=t ¥ L(-) Ul il
}vhlch rlc)iluc'est tl}c drag at a given value of the lift, and a similar dr ca e (62 21y
avourable interfurence is experienced by two 1 A i i
side by side,  Anothor point tI:)enoticc s ¥l a t“:\ c?xe;:gca?smnr}igg Also the interference factor 8 is defined by the equation
) to free beundaries docs not simply change the sign of the interference, v S
; but, in accordance with the general theorem established in Section 5, v v= ¢ c by (0.01)
e R ;
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where C is the tunnel area b, and the expression for 8 in a closed
rectangular tunnel is therefore
e kb 2% o m3bt — a2
Ch=5 .% .52‘3( ) (SR e
The summation extends over all positive and negative integral
values of m and » excluding the pair (0.0). The =luation of
this double summation® leads to the expression

o[l L § BI°
61—2.17.{244-2'11_*_4,, . .. . (902
where
Y
A=3
Aq:g-ﬂl

This expression is suitable for numerical calculation, except wiien
A is very small, since g is very small and only the first few terms
of the scries need be retained. The validity of the expression
has ‘been confirmed by Rosenhead™, who derived it as the limiting
form of his solution for a wing of finite span. An alternative form,
suitable for small values of 4, can be derived in a similar manner

and is
1, 8 (2p—1)r?
"1=7;_'!'{2—4+§ u;—__—,%;—} o oo (909

where

y = e-nlh

The discussion of the numerical results derived from these formulae
will be postponed until the analysis has been developed for some
other types of rectangular tunnel.
. The results for a closed rectangular tunnel are of great practical
importance owing to the existence of many tunnels of this type,
but some other types are of interest and illustrate the effect of
different boundary conditions. ‘Theodorsen!® has considered the
following five types of rectangular tunnel :

1) closed tunnel,

2) free jet,

(3) rigid floor and roof, free sides,

(4) rigid sides, frec floor and roof,

(5) rigid floor, other boundaries free.
The systems of images corresponding to these different boundary
conditions are shown in Figs. 7 and §; and call for no special comment,
They agree with Theodorsen’s diagrams except for type (5), where
his (siystcm is in error* and fails to satisfy the necessary boundary
conditions.

* This crror has been corrected in the version of Theodorsen’s report
published in the N.A.C.A. annual volume {1932),
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‘Dircct‘evaluation of the interference factors for these different
types of iunnel is unnecessary, since it is possible to establish
several interesting relationships between the different types of
tunncl and to express all the interference factors in terms of the
values of ariy one type. This analysic depends on the application
of the general theorem established in Section 5, which states that
the interference experienced by a small wing at the centre of a
closed rectangular tunnel of height & and breadth & is of the same
magnitude but opposite sign as that on the same wing in a free
rectangular jet of height b and breadth 4. From this general theorem
it follows at once that

o,(1)=—al<711) e e e e

yThe general theorem also remains valid if the boundary is
partly free and partly rigid, and hence

(9.04)

b =0 (%) o e e e (909)
i .
N 3, ()= — ¢ (%) e e (9.06)

In particular

(1) =48,(1) =0
and thus the interference on a small wing in a square tunnel of
type (3) or of type (4) is zero,

Some further general relationships can be established by super-
imposing two of the image systems. e consider simply the doubly
infinite array of doublets and jgnore the boundary conditions
after combining any two systems. By combining types (1) and (3)
we obtain a new system of type (1) of double strength and double
breadth. Hence

, v, (h,B) + s (1,B) = 20, (h,25)

and remembering, from cquation (9.01), that 8 is proportional to

the product of the velocity v and the tunnel arca C, we obtain

(A + & (M =434 o o {8.07)

This equation serves to determine the values of & in terms of the
known values of 4;. - .

Similarly by combining the systems (1) and (f) we obtain a

new system of type (4) of double strength and double height, and

hence
N+ 3 (H=28,(21 .. . .. (9.98)
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can be deduced from this last equation in conjunction with the
previous equation (9.06). We have

) =8, 2N — 5, ()

- 1 1
=u(3) - ()
1
=4 (2"7)
and hence

O (M) =6, (2)

. 1 9.09
if hia=4 (9.09)
This result is a useful check on the numerical values of 4, and implies
also that the minimum value of 8, occurs when b = 4/2i. This
minimum value of 8, is 0-238,

. Finally as regards the tunnel of type (5), we note that the
effect of a pair of rows (+ #, cancels out exactly if # is odd. Therc
remain only the even rows which form a system of type (3) of
double height, and hence

1 -
() = 5% (24) .. . . (9.10)
By means of these equations it is possible to derive values of
all the interference factors from the known values of §,, or more

conveniently from those of 8, owing to the form of equation (9.08).

The interference factor in each type of tunnel can be expressed

formally by the double summation

kb 2 2 . m2bt — a2
iz ..Z“'o .zo:o N Ty

where 7 is %1 according as the particular image is positive or

6= ©.11)

negative. In particular
Ji= (=1
ja= (=1 ’ .
3 = (=1
Ja=1

but there is no simple expression for j;. Dircct summation of the
expression (9.11) for tunnels of types (2) and (3), by the method
used in the original investigation3 of type (1), presents no difficulties,
but the application of the same method to the tunnel of type (4)
leads to anomalous results since different values arc obtained
according as the summation is made first with respect to 2 or with

duc to inadequate convergence of the series and Theodorsen's
results!? for type (4), obtained by this method, are incorrect.

Rosenhead® has examined the problem of these five types of
tunnel by writing down the appropriate complex potential functions
for a wing of finite span and uniform loading in terms of elliptic
functions and by proceeding then to the limit of zero span. In
particular the resulting expressions for the interference factor in

. atunnel of type (4) are
. 1 @0 20 1
3, = 22 {— - 5,2 q,,} -3 ©.12)
and
2 (1 8 pro 1
o._--i{ﬁ-ll_,—,,gﬁ ©.19)
where
g= e~
y = el

Rosenhead’s results are consistent with the various relationships,
established previously, connecting the interference factors in the
five different types of tunnel. Numerical values of the interference
factors are given in Table 3 and the corresponding curves,

: T~ " TABLE 3
Values of & in rectangular tunnels
b | bm 8 8, 3 & d
4 1/4 1-047 —0-524 ~0-524 0:797 —0-524
2 1/2 | 0-524 —0-274 ~0-230 0274 —0262
4/3 | 34 0-351 —0-239 —0-112 0:096 —0-187
1 1 0-274 —0-274 0 0 —0-125
2/3 | 3f2 0-239 —0:393 0-154 ~0- 143 ~0:036
1/2 2 0274 —0-524 0-250 ~0-274 0
1/4 4 0-524 —1:047 0:524 0797 0-125

plotted against the ratio of breadth to height of the tunnel, are
shown in Fig. 9. The important practical range is from a square
tunnel to a duplex tunnel whose breadth is double the height. In
this range the interference in a free jet is numerically greater than
that in a closed tunnel, and the interference can be further reduced

. by using one of the types of tunnel with some free and some ngd
boundaries. This conclusion must, however, be accepted with
caution since it has been established for small wings only and may
require modification when duc allowance is made for the fimte

~  span of the wing.
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The detailed analysis for a wing of finite span has been developed the factor in the sccond term involving Bessel functions are given
as yet only for a closed rectangular tunncl.  Terazawa® first obtained in Table 5. When ¢ is 2ero the expression (9.15) reduces to the
the solution for a wing with uniform distribution of lift across its span. previous expression (9.02) and hence this more detailed andlysis
Rosenhead!! repeated this analysis, obtaining his results in a very
different mathematical form, and also developed the corresponding TABLE 5
analysis for a wing with clliptic distribution of lift across the span. .
Neither author gives detailed numerical results and their formulae : Ty =)
are very inconvenient for numerical computation, but they have been Values of {-—'—-
reduced to more suitable forms by the present author™ and numerical ax )
results have been derived for square and duplex tunnels, The
general formulae are quoted below, but for the detailed analysis ® {L(m)}' . {],(xx) 2
in terms of clliptic functions the reader is referred to Rosenhead’s £ T3
paper. .
Writing 1 0-250 0-6 0-095
2s 0-1 0-244 0.7 0-064
o=3 . 02 0-227 0-8 0-033
0-3 0-200 0-9 0-020
h " 04 0-167 1:0 0-008
A= - . 0-5 0-130 1-2 0-000
= ¢-nk - . sn
s g=et . serves fo check the validity of the summation of the doubly infinite
where s is the semi-span of the wing, the value of & deduced from serics in the earlier analysis for small wings,
the assumption of uniform loading is d II‘Iumcrical values derived from these formulae for square and
1 o 0 pgP [sinapo\? - duplex tunnels are given in Tabie 6, and are exhibiled graphically
V) = 5108 g H 200 8 7w e (©.14) - in Fig. 10, where the full curves refer to elliptic and the broken
. ] - _ . curves to uniform loading. The differences between the results
and it can easily be verified that the expression tends to the previous derived from the two types of loading is far less than that in a
form (9.02) as o tends to zero. The formula deduced from the circular tunnel as given in Table 1 of Section 6, and 1 Fig. 5. Indeed,
more reliable assumption of elliptic distribution of lift across the until the wing span exceeds 60 per cent. of the tunnel width na
span of the wing is of the more complex form s%llmrc_ tunnel or 80 per cent. in a duplex tunnel, there is no appreci-
. o pg® (], (apo))? able difference between the two sets of results. The increase of the
8(E) = AF(0) + 8= Zl‘. itse {—-n 5o . .. (9.15) B B B
where Jj is the Bessel function of the first order and F(q)} is a TABLE 6
complex power series in ¢ whose numerical values are given in . ,
Table 4. In order to assist any further calculalions, values of Values of 8 in closed reclangulor lusinels
TABLE 4 *  Square (b = h) Duplex (b = 2h)
Values of F(a) 2sfo 4(U) 4(E) ) )
4 | F(o) 4 F(o) 0-274 0274 0274 0274
i 0-2 0-276 0-275 0-254 0238
0-4 0-284 0-281 0-214 0225
0-2618 0.5 0280 0-5 0-292 0+286 0-197 0208
0-1 0-2624 0-6 0-290 0-6 0-305 0-295 0-185 0194
0-2 02645 0-7 0-304 0-7 0-326 0-307 0-181 0-185
0-3 0-2679 0-8 0-325 0-8 0-362 0:327 0-188 0-183
. 0-4 I, 0-2730 0:9 0-358 09 0435 0-359 0-219 0189
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interference factor & with the span of the wing in a square tunnel
is similar to that in a circular tunnel, but in the duplex tunnel
there is an important decrease, leading to a minimum value of 0-182,
which is 33 per cent. below the value_for a small wing, when the
wing span is 77 per cent. of the breadth of the tunnel. Since the
span of a wing usually lics between 40 per cent. and 60 per cent.
of the breadth of the tunnel this feature is important, and the
apphication of the interference factor derived from the consideration
of a small wing would overestimate the appropriate corzection for
tunnel constraint. This result shows that the values of 4, deduced
from the consideration of small wings, give only a first approximation
to the correction required by a wing of finite span, and that con-
clusions concerning the relative merits of different types of tunnel
must be accepted with caution until the effect of finite span has been
investigated.

Experimental checks on the theoretical formulae for the inter-
ference in rectangular tunnels have been obtained by Cowley and
Jones® and by Knight and Harnst®, Cowley and Jones tested a
biplane, formed of two 1dentical rectangular wings of aspect ratio 6
and of 3 ft. span, in 4 ft. and 7 ft. closed square tunnels, and found
satisfactory agrecment betieen the two sets of results after correction
for tunnel interference according to the theoretical formulac for
small wings (6 = 0-274). These cxperimental results have been
corrected agam using the values of & correspunding lo the as aal
span of the biplane, i.e. 0-315 in the 4 ft. tunnel and 0-282 in the
7 ft. tunnel. The uncorrected and corrected polar curves are shown
in Fig. 11, and it will be scen that the correction for tunnel inter-
ference has brought the two discordant observed curves into almost
exact agreement. The correction of the angle of incidence is shown
in Fig. 12 and is also very satisfactory, though not quite so good
as that of the drag coefficient. It is remarkablc that the theoretical
formulae, which are developed on the basis of small lift forces,
should give satisfactory agreement throughout the whole range
up to and including the stall of the wing.

Knight and Harris!® used three wings of aspect ratio 5 with
span-breadth ratios of 0:45, 0-60 and 0 75 respectively. The
experiments were made in a free rectangular jet of breadth-height
ratio 4/2 at a constant value of the Reynolds number, and the
observed values were analysed to deduce the appropriate value of 8
for each wing. Values of 4, ignoring the negative sign appropriate

to a free jet, are given in Table 7. Ignoring the one discordant
value, it would appear that the value of 8 is slightly greater than 0-40
and that there is no systematic variation with the span of the wing.
Now the value of & for a small wing in this tunnel would be estimated
to be 0-369, being the same as that in a closed rectangular tunnel
of breadth-height ratio 1/4/2. Moreover, in such a closed {unnel
we should expect some rise of the cocfficient & with the span of the
wing in the light of results given in Table 6 and Fig. 10. On the
whole, thercx'qre, the value of & deduced from the experiments
appears to be in general agreement with the theoretical calculations.

10. Elliptic tunncls.—Closed tunnels can be constructed with any
shape of cross-section, but if a free jet is used it is advisable to
avoid any comers and the cross-section usually has a circular or
oval form. The circular tunnel, for which detailed results have
already been obtained, is only a partizular case of the more general
type of elliptic tunnel, and a knowledge of the interference in
rectangular and elliptic {unnels will suffice to give a reasonably
reliable estimate of the interference in any type of oval tunnel,
The interference esperienced by a small wing in an elliptic tunnel
has been calculated by the present author’s, and the analysis for
a ving with uniform loading has been developed by Sanuki and
Tani'” and for a wing with elliptic loading by Rosenhead!?. Before
discussing these results, however, it is proposed to establish an
important theorem!® concerning a wing with elliptic loading in an
elliptic tunnel whose foci are situated at the wing tips.

In general it is desirable that the interference factor shall be
small, in order to avoid unduly large corrections to the observed
results, but the magnitude of these corrections inevitably rises wih
the size of the wing since it 1s actually proportional to 65, Another
Important point is the variation of the induced velocity across the
span of the wing, which leads to a distortion of the lift distribution.
It has been shown in Section 7 that this effect is unimportant 1n a
circular tunnel, but it would nevertheless be a very desirable quality
ofa wind tunnel if it gave uniform induced velocity across the span
of the wing. This criterion, rather than the magnitude of the
:nterfcl:rencc factor 8 really defines the optimum shape of a wind
unnel.

.. Now consider a wing with clliptic distribution of lift across
its span. The flow in a transverse section of the distant wake is
that due to a straight line, of length equal to the span of the wing,

TABLE 7 moving downwards with a constant velocity w, and the complex
Rectangular et potential function of this flow is
; $tip=iw(z—1/22=5) .. .. .. (1001
gl;:ﬂmlb(ﬁ:g‘gm meient’ g:jgo 8:3?2 g:zgo where s is the semi-span of the wing, Thus
From angle of incidence .. .. 0-G02 0-402 0-444 . .. 2 .
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o Thus in the closed tunnel
and at any point of the line itself o a—b
4 wx v a
“=F e and in the frec jet
w’ a—>b
jv=—v 7=""3
n where the upper and lower signs of the expression for # correspond Finally, since )
to the upper and lower sides of the linc. w Sk,
Consider next the flow represented by the complex potential V™ 2ast
function the values of the interference factor in the two tunnels are
$tip=iw—w)z—iwfzt—st .. .. .. (10.02) , b (1004
s This will give the same tangential component of the velocity as 2@ty v W
before on both sides of the line and hence the same intensity of for the closed tunnel, and
the trailing vortices represented by the line, but there is now a a i
uniform interference velocity d=— ZaTH . .. (10.05)

v=1

Thus the complex potential function (10.02) satisfies the condition

of giving uniform interference across the span of the wing, and it

remains to examine the conditions under which this flow will arise,
Putting

z=scosh{ (10.03)

the complex potential function (10.02) becomes
& + iy = ¢ { (w — w’) cosh & — wsinh &} s cos
~ {{w — w") sinh § — wcosh £} ssin g
Now the stream function ¢ is constant over the boundary of a
closed funnel, and hence the flow represented by the complex

potential function (10.02} will occur in the closed elliptic tunncl
defined by the cquation

wsinh & = (w — w') cosh ¢

Similarly the velocity potential ¢ is constant over the boundary of
a free jet, and the shape of the jet is defined by the condition

wcosh & = (w — ') sinh &

In each case the boundary is represented by a definite value of the ] N i )
parameter £, and is therefore an ellipse. with foci at the tips of the Brcz«;th/hcxght . 3 -0 (1)-;13 :.l’-gg_ L;-Zm \:'033
o f-ax ipse 2 $, . e . . 225 . 83
wing. The semi-axes of the ellipse are ! 0 i tumnet Saso| SoS| dasf Lo} 1-d
a==scosh § dlfree jet) .. —0-250 | ~0+300 | —0-333 | —0:357 | —0-375
. b==ssinh § - -
uf - he ) :
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for the free jet.. The condition of uniform interference across the
span of the wing is satisfied in any elliptic tunnel, with rigid or free
boundary, if the wing extends between the foci of the ellipse and if
the lift is distributed elliptically across its span. The condition
will cleo be eotichied annrovimedcly for u scudangular wing ol the
same span, and the optimum shape of tunnel for testing a large
wing therefore appears to be one which satisfies this confocal
property for the largest span of wing to be used. Since the cross-
sectional area C of the tunnel is determined by the wind speed
required and by the power available for operating the tunnel, the
shape of the tunnel is uniquely determined by the two equations

“'—b”“’} e e (1008

qab=C

The tunnel may have a rigid or a frec boundary, but the inter-
ference is smaller in the closed tunnel. Numerical values of the
interference factor arc given in Table 8 and are shown as cutves
in Fig. 13, the negative sign for the free jet being omitted in the
figure. Values of sfa/ab are included in the table to show the
ratio of the span of the wing to the diametcr of the citcle of the
same area as the ellipse.
TABLE 8

Confocal elliptic lunnels
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Turning next to the problem of a small wing at the centre of
any elliptic tunnel, it has been shown by the present author'® that
the problem can be reduced to one of a doubly infinite array of
doublets, such as occurs in the problem of rectangular tunnels,
by means of the transformation

z=csin{.. {10.07)

The boundary of the ellipse is taken to be 7 = 0 and the semi-axes
are then .

a = ccosh 0

b=csinh 0
It is necessary to consider in turn the conditions when the span of
the wing lies along the major or along the minor axis of the ellipse,
but the results for a free jet can be derived directly from those
for a closed tunnel by interchanging the axes of the cllipse and
by changing the sign of the interference factor.  The resulting
formulac are as follows. Writing

g=c¥

7 = 120
the interference factor, when the span lies along the major axis of ¢
closed elliptic tunnel, is

) ® (2h — 1) g2-2
' = sinh 0 cosh 0 ZI': g——'}?}%—

1., t 1 a®(2p— 1)t
= gsinh 0c05110{2—;—%2+§_‘-;-§ n'(_Pl—::rT)t:‘—} (10.08)

where the alternative values are suitable for large and small values
of 0 respectively. Similarly, when the span lies along the minor
axis of a closed clliptic tunnel, there are the two corresponding
expressions

®© (08 — 1} g%t
0 2:, Qfl.__l)_g_p_.

&, = sinh 0 cosh =

1 . ”2 1 ﬂ’ o 9 ,2;\
= 7 sinh 0 cosh 0 im-, -5t RET i ,,p} (10.09)
These expressions are rather complex, but in practice it suffices
almost invariably to retain only the first term of the exponential
series, and, unless the ellipse approaches very closely to a circle,
the formulac appropriate to small values of 0 should be used.
Numerical values derived from these formulac are given in Table
9 and are shown as curves in Fig. 14, the full curve corresponding
to the closed tunnel and the broken curve to the free jet, but without
the appropriate negative sign, The interference is least in a broad
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closed tunnel or in a narrow free jet, and the minimum value occurs
when the major axis is approximately 1-35 times the minor axis.
Indeed the results are similar to those already obtained for rect-
angular tunnels, but the values of the interference factor are slightly
lower in an elliptic than in a rectangular tunnel for equal values of
the matio of breadth to height. In general the span of the wing
will be along the major axis of the ellipse and the interference is
then less in a closed tunnel than in a free jet.

TABLE 9
Closed elliptic tunnels

1-000 | 1-280
0-250 § 0-231

0-305
0-686

0:558
0-388

0-781

Breadth/hcight. .
é 0-292

The interference experienced by a wing with uniform distribution
of lift across its span has been determined by Sanuki and Tanil?,
The span of the wing is assumed to lie along the major axis of the
ellipse and the solution is obtained by expressing the stream function
of the flow by suitable infinite series. Results are given for closed
tunnels and for free jets. The more important solution for a wing
with eiliptic distribuiivn f hii across its span has been obtamed
by Rosenhead!? in terms of elliptic functions. Tlie resulting for-
mulae are very complex, but numerical values of § have been
calculated by Rosenhead for closed tunnels and for free jets, and
are reproduced here in Tables 10 and 11. In these tables the span

TABLE 10
Closed elliptic tunnels
Breadthfheight, 12 | 2f3 1 3f2 2.
fmo 0427 | 0331 | o0-250 | o0.231 | o0.25¢
0-2 0-438 0:334 0-250 ~0-228 0-245
04 0-485 ' 0.344 0-250 | o0-221 0-222
0-6 v.u67 | 0-250 0212 | 0-1%6
08 0-427 0-250 0-204 0-176
1-0 0250 | o0-200 | 0-167

of the wing is expressed as a fraction of the distance {2¢) between
the foci of the ellipse. When the breadth of the cllipse caceeds
its hc{ght, the ratio of the span of the wing to the breadth of the
tunnel is
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34 ..
and when tic height of the cllipse exceeds the breadth the corres- TABLE 12
ponding formula is Oval jet
s_s .
- AR YNA T (10.11) Spanfbreadth .. .. 0-45 0-60 0-75
. . From angle of incidence 0498 0-386 0-388
where @ and b are the semi-axes of the ellipse. The results for a ¥rom drag coefficient 0-340 0:320 0:328
circular tunnel are not revealed by these tables, since the span of Calculated . 0-298 0-290 0-300
:he “}nlg is z(l:ro for all Yalu(;zs %f sfc. Full results for the circular
unnel have, however, alrea cen given in Secti . : i i
Rosehhead’s val s Y s " & .m 'cctlon 6 11. Downwash and tailselting—Hitherto the analysis has been
the absci wead’s valucs of § are also shown in Tigs. 15 and 16, where confined to the problem of the interference experienced by a wing
ie abscissa is the ratio of the span of the wing to the breadth of in a wind tunnel, though the experimental work of Cowley and Jones®,
. illustrated in Figs. 11 and 12, indicates that the results of the
TABLE 11 analysis can also be applied successfully to a biplane system. If,
FEree cllistic however, the complete model of an acroplane is tested in a wind
ree clliplic jels e . . s
tunnel, it is evident that the interference experienced by thcf tallplal:xe,
; situated some distance behind the wings, may differ from that
Breadth/height. I 12 w ! 32 I 2 experienced by the wings themselves. In other words, there will be
s - an interference on the angle of downwash behind the wings and on
2=0 —0:254 | —0-231 | -~0:250 { —0-331 | —0-427 the tailsetting reqaired to trim the aeroplane. Let ¢, be the induced
0-2 —0:265 3 —0 234 | —0-250 | —0-328 | —0-416 angle of upwash expericnced by the wings, and let £, be the additional
04 —0:311 | —0-244 | —0:250 | —0-321 | —0-892 angle of upwash in the ncighbourhood of the tailplane of a model
o —0-267 | —0-250 | —0-312 | —0.365 aeroplane. As a consequence of this interference the downwash
.10 2 To-2%0 :8:383 e angle ¢ and the tailsetting 7y to trim the acroplanc at a given value
- N of the lift coefficient will be measured smaller in a wind tunnel
than in free air and will require the corrections
the tunnel. In a closed tunnel the value of § increases with the
span of the wing when the breadth of the tunne! is less than the Be= e+ & } .. (11.1)
gelght_, butldccrcalses in the more usual condition with the span of Apr=¢&;
he wing along the major axis of the ellipse. These results are i ive:
similar to those obtained previously for rgctangular tunnels and The lift °§u}‘l° acroplangcmny be aﬁsm_xm:l(‘i t? be given wholly by the
shown in Fig. 10. The corresponding values of 4 in a free ciliptic wings, and thus ¢, can be expressed In the form
jet are shown in Fig, 16, and it will be noticed that the numerical S
:raluc lsd 6 never decreases to the same extent as in the closed g=d8gh .. . (1.2
unnels. .
No experimental checks Crsal L where 8 is the interference factor whose value, in different types
are av;il%l but K“':c on the vah_xe“? £ 8 by elliptic wind tunncls of wind tunnel, has been considered in the previous sections. it
¢, but Knight and Harris!® have obtained results in : . m s :
tw 1 jets witl i-ci i . is now necessazy to determine the additional interference ¢, in the
wo oval jets with semi circular ends, the ratios of breadth to height ichbourhood of the tailplane of an aeroplane
being respectively 4/Z and 2. Sanuki and Tani!? have made an nelgh P ¢ Pl e
approximate theoretical calculation of the value of 8 to be expected - The problem of this additional interference in a closed rectangular
in the first of these two tunnels and the comparison with the values wind tunnel has been considered by Glauert and Hartshon® who
deduced from an analysis of the experimental results is given in have obtained the solution on the assumption that the distance of the
Table 12, where the negative sign appropriate to a free jet is ignored. tailplane behind the wing is of the same order of magnitude as the
The calculated valucs, which are based on the assumption of uniform semi-span of the wing, and that the dimensions of the wing itself
distribution of lift across the span of the wing, are in fair agrcement are small compared with those of the tunnel. The solution therefore
with the values deduced from the drag cocfficients, whilst the corresponds to the conditions assumed for small wings in the carlier
amalysis of the angles of incidence leads to rather higher values analysis.
os noticed previously for circular tunnels,
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The systems of images used to represent the constraint of the
boundaries of a rectangular tunnel have previously been considered
only in relationship to the two-dimensional problem of a transverse
section of the wake behind a wing, but it can casily be seen that
this method of images is equally valid for the three-dimensional
problem of the whole tunnel. Thus, for example, if two identical
-aeroplanes ave flying side by side, there will be no flow across the
vertical plane midway between thenr and this plane can be replaced
by a rigid boundary without modifying the flow in any way. In fact
all the systems of images, used in the discussion of different types
of rectangular tunnels, remain valid for the three-dimensional
problem, but a positive image must now be interpreted as a system
identical with the wing itselt, including both the circulation round
the wing and the accompanying system of trailing vortices.

By considering each image in turn it is possible to write down an
exnression, involving doubly infinite summation, for the induced
vefocity at any point of the tunnel. The analysis is simplified
if the span of the wing is small compared with the dimensions
of the tunnel, and if the induced velocity is calculated only at a point
of the central axis of the tunnel at a small distance / behind the
wing. The expression for the excess of the induced angle of upwash
at this point over the value at the wing itself, is then

ISk @ S m2h2 — 22 fi2
&y = T;_% _% (=) T ¥ s ..
No simple expression for this doubly infinite sum can be obtained
and it is necessary to evaluate the sum numerically for each shape
of tunnel. The results are expressed conveniently in the form

%=y£h e e e e e (104

(11.3)

and numerical values for the two most important types of closed
rectangular tunnel are given in Table 13, The expression for
&, in a free rectangular jet is identical with (11.3) except that the
factor (—1)» is changed {o (—1)=. Unfortunately, however, there
is no simple conncction between the results in closed tunnels and
free jets, such as occurs in the casc of the interference experienced
by the wing itself, but the numerical value of & for a free square
jet is included in the table. It will be noticcd that this value is
numerically smaller than that in a closed square tunnel. These
values refer only to small wings and may need modification when
due allowance is made for the actual span of the wings. The value
of 8, which dcfines the interference on the wing itsclf, varies with
the span of the wing in a closed tunnel as shown m Fig. 10, and there
will probably be a sympathctic variation of the valuc of &'. Values
of the ratio of &' to ¢ have therefore been included in Table 13 and,
failing more definite information, these values may be used to
determine the appropriate value of &, in any particular problem.
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TABLE 13
Rcclangular‘tmmels‘

Type. I b/h I 8’ I 8'[é
Closed tunnel .. . ] .10 0-480 175
Closed tunnel . .. o] o240 0-585 2-13
Free jet . . . | - 140 —0-407 1-48

An attempt to derive a formula for the interference on the
angle of downwash in a circular tunnel has been made by Seiferth?®
but unfortunately there is no simple image system which represents
accurately the conditions of this three-dimensional problem. the
vortex images of the two-dimensional problem of a transverse
section of the wake can be extended forwards parallel to the trailing
vortices of the wing as far as the transverse plane through the
wing itself, but it is not possible to complete the image system
in any simple manper by transverse vortices wiach will satisfy the
necessary boundary conditions. Seiferth’s formula represents
merely the effect of these longitudinal image vortices and is therefore
incorrect in principle. Morcover his expression is of the form

, IsS
2’=6 E’:'(—:kb

where a is the radius of the tunnel and s is the semi-span of the
wing. This formula contains the fourth power of the lincar dimensions
of the tunnel in the denominator, whereas the previous formula

* (11.4) for a rectangular tunnel contains only the third power of

these dimensions, Thus Seiferth’s formula appears also to be
incorrect in form. Indeed we may anticipate that the interference
in a circular tunnel will not differ greatly from that in a square
tunnel of corresponding size. The interference on the wing itself is

g = 0-250 %kL
in a circular tunnel, and
S

& = 0-274 (—:' kb

in a square tunnel. These expressions give equal values if the side
of the square is 0-925 times the diameter of the circle. If v.e assume
that the intesference on the angle of downwash will also have equal
values in the two tunnels, the formula for this interference in a
circular tunnel becomes

q=N%h S { 1)
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where d is the diameter of the tunnel, and the numerical value of
¢’ does not differ by more than 1 per cent. from that appropriate
to a square tunnel. In the absence of a true solution of the problem
in a circular tunnel, it is suggested therefore that the interference
on the angle of downwash and tailsetting may be estimated approxi-
mately from the formula (11.5) using the same value of &' as in a
square tunnel. 4 i

{

Experimental confirmation of the accuracy of the -formulac
for the interference on the angle of downwash and tailsetting in a
closed square tunnel has been obtained by Glauert and Hartshorn¢
by testing a complete model aeroplanc in a 4 ft. and in a 7 ft.
tunnel. The uncorrected and the corrected results are shown in

. Figs. 17 and 18, and it will be seen that the application of the

theoretical corrections for tunnel interference has brought the
discordant observed results of the two tunnels into excellent
agreement.

12, Maximum lift coefficicnt~The preceding analysis of the
interference experienced by a wing in any type of wind tunnel has
been developed on the basis and principles of modern aerofoil
theory, which is essentially an approximate theory suitable for
small lift forces. The experimental results, which have been obtained
as checks on the theoretical formulae, have however shown that
the analysis remains valid over a wider range than might have been
anticipated and that in fact.it may be applied with confidence
throughout the usual working range of a wing. On the other hand
the analysis gives no direct indication whether there is a tunnel
constraint of the maximum lift coefficient of a wing, and it is in
fact incapable of giving an exact answer to this question, though
it is possible to deduce some conclusions regarding the general
nature of this interference,

Consider first an untwisted wing of elliptic plan’ form in an
infinite fluid. The downward induced velocity, due tc the system of
trailing vortices, has a constant value across the span of the wing,
and each section of the wing operates at the same effective angle
of incidence. . Hence we may anticipate that every section will

~reach its critical angle simultaneously and that the maximun. Jift
coefficient of the elliptic wing will be sensibly the same 23 that
of the atrofoil section in two-dimensional motion. Considering
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increase in the value of the maximum lift coefficient. Similarly
there will tend to be a decrease of the maximum lift coefficient
in a free jet. The tunnel construint on the distribution of lift across
the span of a wing is, however, known to be small unless the span
of the wing is a large fraction of the breadth of the tunnel, and we
may, therefore, anticipate only a small interference on the maximum
lift coleﬂ‘xcient of a wing, depending mainly on the breadth of the
tunnel.

Another type of interference on the maximum lift coefficient
may occur if the chord of the wing is large. Consider, for simplicity,
a single horizontal boundary above the wing. The wing and its
image will then form a divergent passage, which will tend to cause
a breakdown of the flow over the upper surface of the wing and
hence a reduction of the value of the maximum lift coefficient.
This second type of interference will depend mainly on the ratio of
the chord of the wing to the height of the tunnel.

It is not possible to estimate the magnitude of these interference
effects, since they depend on the stability of the flow over the upper
surface of the wing near the critical angle of incidence. It is necessary
to tum to experimental results, but here again it is difficult to obtain
a reliable answer owing to the variation of the maximum lift
coefficient of a wing with the scale of the test and with the turbulence
uf ilic wind stream. Results obtained in different wind tunnels er at
different values of the Reynolds number are, thercfore, of littie
value in this connection, but there are available a few series of
experimental results from which it is possible to deduce some
tentative empirical conclusions.

A detailed investigation of the tunnel interfercnce on the
maximum lift coefficient of rectangular wings has been made by
Bradfield, Clark and Fairthorne®. The main series of cxperiments
was made in a closed 7 it. wind tunnel, inside which smaller tunnels
were constructed by the usc of false floors and sides. Thus it was
possible to test a wing in tunnels of different size and shape whilst
maintaining the same value of the Reynolds number and the same

TABLE 14
Maximum lift cocfficient in closed tunnels

next a wing of rectangular plan form, the downward induced velocity .. , _— \E
_ isleast at the centre of the wing and increases outwards towards the bT"““e"h g",\('ﬂ'ﬁ‘ﬁ) (é";c"gé"h‘;\.) (g"x\'jé in) (51;'§< '&';ﬁ,,
“tips. Thus the centre of the wing stalls first and the maximum Jift
coefficient of the rectangular wing will tend to be lower than that
of an clliptic wing of the same acrofoil section, Now in a closed 7 7 0-415 0511 0-653 0-898 -
wind tunncl a wing experiences an upward induced velocity, due '4/ gl 8:::‘7‘3 g:g,‘,g
to the constraint of the tunnel walls, which is least at the centre . 5 i 0926
) s : ¢ ¢ 4 i . 0443 0528 0-682 26
of the wing and increases outwards towards the tips. This inter- 3 7 0-934
ference will therefore tend to counteract in part the ordinary induced 3 3 0545 0-938
¥ mtsmf_;t rectangular wing, and we may anticipate a corresponding
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degree of turbulence of the wind stream. The experimental results
for four rectangular wings of aspect ratio 6 are summarised in
Table 14, each value being the mean of the results obtained at
wind speeds of 60 and 80 ft.jsec. It will be noticed that the value
of the maximun lift coefficient increases as the size of the tunnel
decreases, and that the effect is due mainly to the breadth of the
tunnel vhilst changes of the leight of the tunael produce only small
effccts in general. In TFig. 19 the values of the maximum lift
coeflicient have been plotted against the ratio (S/b%) of the area
of the wing to the squarc of the breadth of the tunnel. The points
for each wing lie on a set of straight lincs of approximately the
same slope and to a close approximation it is possible to write for
all wings which give widely different values of the maximum lift
coefficient,

.

——— o

A &y, (max) = 0-38?1 e . (12.1)

The maximum error due to the use of this simple formula appears
to be of the order of -£0:005 in the value of the maximum lift

tested in a 4 ft. and in a 7 ft. tunnel. A check test on one of the
wings in a small tunnel, constructed inside the 7 ft. tunnel, suggested
that there wac no imperiant differonce in the effective turbnlenc.,
of the two tunnels, and the results may therefore be accepted as
giving a fair measure of the tunnel interference. These results
are collected in Table 15 and it appears that the mean increment
of the maximum lift coefficient is 0-12, whereas the empirical
formula (12.1) would have suggested a value of 0-024 only. Thus
there appears to be an increased tunnel interference on the maximum
lift coeflicient of a slotted wing, but there are unfortunately no
rcsu}ts available for a more detailed analysis of this rather peculiar
result,

- The four wings of Table 14 have also been tested in a S ft. free
jet® but the results cannot be accepted as reliable determinations
] of the {unnel interference owing to possible differences of the
tarbulence of the stream. The aerofoil section A is however

TABLE 15
Maximum lift cocfficient of slotled wings in closed kinnels

coefficient.
s The same authors® quote results for a group of slotted wings

Slotted Wing. l 4 {t. tunrel. 7 {t. tunnel.
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known to be insensitive to changes of Reynolds number, and hence

is also probably insensitive’ to changes of turbulence, and the
values of the maximum lift coeflicient of this wing are as follows :—

5 ft. free jet . 0-492
Freeair .. .. 0-500

The free air value was estimaed from the tests in the scries of closed
tunncls, and there appears to be a small decrease of the maximum
lift coefficient in the free jet. Some other experimental results,
obtained by Prandtlt by testing a series of rectangular wings of
aspect ratio 5 and of section Gottingen 359, are given in Table 16.
These results show very little change of the maximum lift coefficient.
There is a slight increase with the size of the wing, but the Jarger

wings were tested at lower wind speeds in order to maintain a-

constant value of the Reynolds number, and this change of wind
speed may have been accompanied by a change of turbulence.

TABLE 16

Maximum Lift coefficient in a free jeb

s|IcC .. . 0:018 0-040 0-072 0-112 0-162
Az, (max.) . 0-560 0-558 0-567 | 0569 0-
1

The evidence regarding the maximum lift coefficient of a wing in a
free jet is inconclu.ive, but the interference undoubtedly is very
small and may be neglected except for unusually large wings.

PART 2

Wings, Two Dimensions

13, Induced curvature of the flon.—The preceding discussion and
analysis have been devoted to the problem of a wing of finite span
in a wind tunnel, and it is now necessary to consider the nature of
the interference when the wing stretches across the whole breadth
of the tunnel. If, for example, a wing strefches from wail to wall
of a closed rectangular tunnel there will be no system of trailing
vortices, apart from any minor effects due to the boundary layer
along the wall of the tunnel, and the preceding miethod of analysis
would suggest that the wing experiences no interference. There is,

RAF6 .. .« « . 0-94 0-80 however, a constraint of the flow imposed by the roof and floor
Afrscrew3 ., .. .. 1:08 0-92 of the tunricl, and it is necessary to develop a method of estimating
Anaees s oo oo ggg the magnitude of this constraint, The failure of thclprccedx;lg
LA, . . . . . . : ive indicati is i ¢ i3 to the
R.A.F.28 (I v . . amalysis to give any indication of this interference is due to t
o A-F28 (larger slat I 0985 0-865 underlying assumption that a wing may be replaced by a lifting
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line or bound vortex along its span. Consequently the formulae
for the interference are really independent of the chord of the wing
and the appearance of the wing area S in a formula of the type

Aa= ¢ % kb
is due solely to the definition of the lift coefficient. The formulae

for the corrections to the angle of incidence and drag may be
written in the alternative forms

L
fo=dgw
and
LS
AD = 4 (w

where & depends on the shape and nature of the wind tunncl, on the
ratio of the span of the wing to the breadth of the tunnel, and on
the distribution of lift across the span of the wing, It is evident
that these formulae are quite independent of the chord and area of
the wing, and their validity has been fully justified by the experi-
wental results available. This result is due to thie fact that the chord
of a wing of finite span will in general be only a small fraction of the
height of the tunnel, but, when we turn to the problem of a wing
stretehing across the whole breadth of the tunnel, the chord of the
wing will tend to be larger and, in order to obtain reliable estimates
of the interference cxperienced by the wing, it is necessary to
consider the finite extension of the chord.

The problem to be considered is one of flow in two dimensions
only, since the flow may be assumed to be the same in all plancs
normal to the span of the wing. Exact solutions of the problem
have been obtained for thin symmetrical acrofoil sections, but it
is more instructive to consider in the first place an approximate
method of solution which reveals more clearly the nature of the
interference due to the tunnel. Consider a closed tunnel of height %
with parailel rigid boundaries above and below the wing. The
toundary conditions are satisfied exactly Dy the introduction of an
infinite column of images above and below the wing, the images
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The effect of a pair of similar images at equal distances above and
below the point O will cancel out exactly and there is no resultant
induced velocity due to the series of images appropriate to a closed
tunnel or to a free jet. We note, however, that the induced flow
at O due to the point vortex at C is curved; there is an upward
induced velocity in front of O and a downward induced velocity
behind O, and this curvature of 4he induced flow is in the same
sense whether the inducing vortex is above or below the wing.
Thus the wing at O is situated in a curved flow, and this curvature
of the flow will modify the force experienced by the wing. Thus a
symmetrical wing at zero angle of incidence would give zero lift
in an unlimited stream, but in order to obtain zero lift in the induced
curved flow it would be necessary to increase the camber of the wing
in accordance with the curvature of the flow. Actually the lift
of a given wing will be reduced by an amount corresponding to an
effective reduction of camber of this magnitude. It is convenient
in the first place to calculate this curvature correction due to a
single direct image of the wing, which is in effect the problem of
biplane wings of infinite span as considered by the present author?2,
The correction in"a closed tunnel or free jet can then be derived
by a simple process of summation over all the images.

Referring to Fig. 20, if w is the downward induced velocity at
a point P of the wing at a distance » behind O, the radius of curvature
R of the streamlir}es is given by the equation

V_du
R~ dx

and the relationship between the camber and radius of a circular
arcis

Y=8Rr

Thus -the effective reduction of camber of the wing due to the
induced flowis

G

L

xing alternately inverted and dircct replicas of the wing itself. ¢ dw
Similarly the conditions in a free jet may be represented v, an Y=gy . (13.01)
infinite column of images identical with the wing. -
In order to appreciate the nature of the interference due to Also the induced velocity at the point P is
these images it is convenient to consider the effect of a single dircct
image as illustrated in Fig. 20. Consider first the effect of a point w e I_S _x . (15.02)
vortex of strength K at the point C. The induced velocity at a 2 h* + x* )
point O al height / above C is wholly horizontal and of megnitude
X and hence
%= 5= dv K h?—x?
L o h ;i? = 2—’; m . (1303)
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As a fiest approximation we may assume the chord of the wing

to be very small and may represent the wing by a concentrated
point vortex of strength K, where

K=k .. . o7 . (1304

On this basis we put x = 0 in the equations for the induced velocity
and camber, The iuduced velocity is zero, but there is an effective
reduction of camber of magnitude

1 fe\? =
Y= m 7; "'L . “e .o . (1303)
In a free jet we shall obtain

1 /¢\t, &1 w fc\2
=g ;7) kn’?,rz=4—s(z) ke

and in a closed channel

1 /c\* K(—-1p LN EAN

7=§&(Z) hE g = —'975'(7;) ks
There results were given by Prandtl! in his original paper on wind
tunnel interference and have been reproduced by other writers, but
the approximation is in fact too crude and is not a true representation
of the effective camber to the order (c/h)2. The discrepancy arises
from the fact that the correction to the camber must be applied
with reference to the mid point of the wing, whereas the point
vortex representing the circulation round the wing must be placed
at the centre of pressure, which is the centroid of the bound vortices
distributed along the chord of the wing.

Proceeding to this closer approximation, let 0 be the centre of
pressure coefficient of the wing, related to the coefficient of the
moment about the lcadix}g edge by the equation

km = 0 kL
The coordinate of the midpoint of the wing is then
%= (05— 0)

and jn accordance with the previous equations (13.02) and (13.04)
zh/(]:)normnl induced velocity at this point, to the order of accuracy
cfh)?, is .

V /c\?
w=1§;"<7;> (0'5-0)]@

2
=ZY;<§) ok 2%) . . .. (1306)

No correction is required to the expression (13.05) for the effective
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equation (13.03) would lead to a term of order (¢/h) This closer
analysis of the problem shows that the total interference due to the
curvatuce of the flow comprises the effective change of camber
(13.05) and a change of the effective angle of incidence corresponding
to the induced velocity (13.06).

Now the characteristics of a circular arc aerofoil of camber p
are given by the equations

k= (a+2)
and .
F.
ko= =gk —5y
Compann, the wing subjected to interference with the same wing

in an unlinated stream, the increase of the moment coeflicient due
to the effective reduction of camber is

1 /c\2
b=k () =5 (5) ki
and the slope of the moment curve is
dka 1 1/¢\?
m::—--;{l—-g(;.;)} v (13.07)

Similarly the increase of the angle of incidence, necessary to maintain
the same value of the lift coefficient, is

a--a(j)::%—+2y
- 8‘_”<§)' By +dk) .. .. (13.08)

or alternatively the decrease of the lift coefficient at the same angle of
incidence is
¢

b= b=} (z)’ Gh 4480 .. .. (1509)
Finally the moment coefficient of an acrofoil in an unlimited stream
can be written in the form
bon=p— %kx.
and this relationship can be used as an approximation in the ex-

pressions for the corrections to the angle of incidence and lift
coefficient, which then become -

a-—-a(f):é—z(;‘)z(k,‘—‘lp) e e (13.00)
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and . .
. ¢
k() ~ B =%<T.) (ot 20 oo e (81D
In general p is small compared with &y, and it is zero for a
symmetrical section.  The correction to the angle of incidence ot tift
coefficient is then double the value which would be deduced by the
first approximation duc to the effective camber (13.05), ignoring
the induced velocity at the centre of the wing (13.06). The formulac
{13.07) to (13.11) give the offect of a single image, identical with
the wing itself, but the interference due to the infinite columns
of images representing a free jet or closed tunnel can be derived
quite simply vy multiplying the expressions for the interference by
anappropriate factor. This factor is 733 for a free jet and —~n3j6iora
closed tunnel. In particular the lift at a given angle of incidence
is decreased in a free jet and increased in closed tunnel.

14. Free jets—In the preceding scction expressions have been
obtained for the interference on the characteristics of a wing in a
free jet or closed tunnel due to the induced curvature of the flow
in the neighbourhood of the wing. This is the only intesference ina
closed tunnel, but there is an additional type of interference in a
free jet owing to the downward deflection of the jet behind the
wing. The magnitude of this additional interference, which is in
fact far more important than that due to the curvature of the flow,
has been determined by Prandtl by considering the appropriate
system of images* and alternatively by considering the downward
momentum imparted to the jet®®, ‘The rate of mass flow in a j
of height h and breadth 3 is oVhb and the ultimate downward
velocity w, imparted to the jet by the Jift of the wing is therefore
determined by the equation

* evhbwor-" QV’bck,,
or

wy, ¢
v=ik
Now the jet approaches the wing Lorizontally, and the downward
induced velocity w experienced by the wing will b2 half the ultimate
downward velocity of the wake. Thus
w le¢
v=ikh
_ As a consequence of this downward velocity the angle of incidence
of the wing in the jet must be increased, in order to maintain the
same value of the lift ccefficient as in an unlimited stream, by the
amount

-
-
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. and the induced drag coefficient of the wing in the jet will be

1
kn-’-"-i';'kl“ ‘e e e e

(14.2)

Alternatively, at the sam inci i j i
Altermati st¥éam. the havee angle of incidence in the jet and in an

.l';,:::t(a—aev—-zx-%ﬁ,,) .

xne
=k, ()~ 3% b,
where a4 is the angle of zero lift of the wing, and thus

Ly ne
T -.1+-§—,; e e . o (143)

where L, is the lift in an unlimited st i ift i
free jet at the same angle of inciden\.esz.ream and L is the lift in the

Combining these downwash correcti

nbini . ! g ions to the characteristi

g}fl a \;mg in a free jet with the previous results for the effect'lg?

tee' 1tn uced curvature of the flow, the final formulae for the charac-
cistics of a wing in a free jet are as follows. At a definite value of

the lift i i inci
e i::eif:iclent, the necessary increase qf the angle of incidence

_ _1c n fc\?
o a([)~§-,-‘k,,+l~2<}-')(k,,+2p) o (144)
the increase oi thie drag coefficier: in the jet is
1¢
b=k()=53h O U 5]

to which it may be necessary to add 1 i i
change i the effective camber of tha g e e eresion o
the moment coefficient in the jet is © wing, and the expression for

1(, =2
k.=p—z{l—-}4(£)’}k; o e (148)

Alternatively, if the small correction d i i

. A _ ue to p in equat

;s neglected, the ratio of the lift of a wing in l;n unl‘il:xit:z?inst(:';‘z;ﬁ
o its lift in a frec jet at the same angle of incidence is

Ly nc , =t fc\? -
L= 1+-2-71+T2(l-l) . .

This equation applics strictly to wings of symmetrical section,

(147)

le¢ i
a=~all=z7thk .. .. .. (141 but will also be approximately 1 i o
N=3z5k (14.1) values of the I ftpcl:)eﬁici;nt. y true for all wings except at very small
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These formulac have been derived b imate method of n - :
hese formulae have been derived by an approximate method o e T . ! -
analysis suitable for small values of ¢/, but an exact solution for a ggg:lti‘&n:;l&cgfacg’r 5 ft""/b ;PI_’WPU#O 30‘3 closcd tunncl. At a
straight line acrofoil, corresponding in practice to a thin symmetrical incidence in the tunlccl {t cocflicient, the decrease of the angle of
section, has been obtained by Sasaki?3, The analysis is of 2 complex net1s
form, but Sasaki has given numcrical results for a range of values a(f) _ ® fe\? B4 2 ) .
of ¢/l and for an angle of incidence of 10 deg., corresponding to a —a=g\;) Cut2m) .o (15.0)
lift coefficient of 0-545 in an unlimited stream. These results are and the ion f L H
. reproduced in Table 17. Sasaki's results have been compared with expression for the moment coeflicient js
the approximate formula (14.3) by Karman?!. This comparison ‘ 2 1 a? fe\?
¢ is shown in Fig. 21, together with the curve of the second approxima- m=p—ril+3l5 } (15.2)
' tion (14.7) which includes the effect of the induced curvature of the : . . . .
l whilst there is no change of drag. Alematively, if the small
correction due to  in equation (15.1) is neglected, the ratio of the
BLE ' lift of 2 wing in an unlimited strcam to its lift in the tunnel at the
L TA 17 ‘ same angle of incidence is
Free et (a = 10° _ at fc\?
7 ) ( 2=1-5(; . (153
efh LiL, DL 2kpfhy? This relationship applies strictly to wings of symmetrical section,
but will also be approximately true for all wings except at very
5. R | o o small values of the lift coefficient.
. 0-051 0-924 0-0128 0-051 . Sasaki®? attempted to obtain an exact solution for a straight
0-128 0-826 0-0257 0-128 line aerofoil but his analysis.contains a mathematical error. The
0-260 0-650 0-0483 8-261 correct solution has been obtained by Rosenhead?s and his values
0:425 0:532 0-0619 -427 of LJL, are given in Table 18, For small and moderate values of
. the lift coefficient a single curve of L/L, can be drawn against cfk,
. L . . but separate curves are obtained for values of the lift coefficient
, flow. The agreement of this secona .pproximation with Sasaki's equal to or excceding 0-5. These curves are shown in Fig. 22
accurate results is very good for moderate values of ¢/h. Also the where each curve corresponds to a definite value of the lift co-
figure shows clearly that the interference is due mainly to the efficient inan unlimited stream. Inthe ordinary practical range, where
downward deflection of the jet behind the wing, but that the effect ¢fh docs not exceed 0-5 and the lift coefficient itself is not unduly
of the induced curvature of the flow is quite appreciable. The last high, it is sufficiently accurate to ignore these minor variations
column of Table 17 has been added to Sasaki’s table for comparisen
with the approximate formula (14.5) and it appears that this TABLE 18
formula gives an accurate estimate of the increased drag of a wing
A in a free jet. This comparison with Sasaki’s exact analysic of the Closed tuznel, valucs of LIL,
problem shows that the approximate formulae (14.4) to (14.7) are
sufficiently accurate for reasonable values of ¢//t, and the approximate L. 0-10 020 0.3 ]o-40 lo-50 Jo70 {0-90
N analysis has shown that the interference is due mainly to the down- h
ward deflection of the free jet behind the wing, and pastly to the
induced curvature of the flow past the wing. kz,us‘x)nasl(; : -833 :-g:g :8:3}(7; {-8662 :gg; Hgg Il-s';o
. . . . 062 | 1 . 085
. . 075 1-004 | 1-017 | 1-03S | 1-065 | 1-103 | 1-198 | 1307
15, Closed wind tunnels—In a closed tunnel, where the flow is 1-00 1-004 | 1-C15 | 1-040 | 1-069 | 1+109 { 1-215 { 1338
constrained by rigid parallel walls above and below the wing, there
is no general deflection of the strecam behind the wing, such as P . . .
e I s, amd A nrfcnc exprenced b5 e wing 1 e sl e of LiL gt ol spprprite fo sl
. ;'f:rilxll:g '},s tll:x!ucg(:e (:;iv::;"l])y“{ﬁc 2;:’;\“(::;2 ?ﬁ Sﬁ:ugg']s \:(:ul,n ttchr; in Fig 23 together with the approximate curve according to equativn
| -~ (15.3). The agreement is quite satisfactory, and the crror of the
: - e, A .
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approaimate formula dous not exceed 2 per cent. of the lift in the
range of ¢/ shown in this figurc, but for larger values of ¢/h it would
be advisable to use Rosenhead’s accurate curves.

A comparison of Figs. 21 and 23 shows that the interference
is far greater in a free jet than in a closed tunnel. Thus when
the chord of the wing is half the height of the tunnel, thie lift is
increased by 9% per cent. in a closed tunnel and is reduced by 43 per
cent. in a free jet. This large difference is due mainly to the down-
ward deflection of the free jet behind the wing, though the correction
due to the curvature of the flow in a free jet is also double that
in a closed tunnel. :

Throughout this analysis it has been assumed that the wing
is placed in the centre of the stream, but Rosenhead?® has also given
results for a wing whose mid point is at a distance 4 from the axis
of the stream. The method of images can also be used to determine
the interference due to the induced curvature of the stream in this
case, and the approximate formula for the lift is

L, a? fe\? L7 1
2= 1=%0) (=% -3) -
Esxperimental confirmation of all these theoretical formulac
for tannel interference is lacking at present, apart from some tests
at Gottingen®! where a series of acrofoils werce tested in a free jet
with the ends of the wings adjoining two vertical walls normal
to the span. According to the formula (14.5) the induced drag of the
wings should have been equal to that of a wing of aspect ratio 4.4,
whilst an analysis of the cxperimental results suggested an equivalent
aspect ratio of 4.1. This difference of 7 per cent. in the induced
drag is not unduly large, and it v .3 ascribed by Prandti®! to the
fact that 1.z free surface of the jet was curved instead of horizontal,
as assum<d in the theoretical analysis,

(15.4)

PART 3 i

Symmelrical Bodies

16. General discussion—The problem of the interference ex-
perienced by a body, on which the resultant force is a drag without
any cross-wind or lift component, differs noticeably from that of a
lifting wing. When consider’ng the behaviour of a wing in a wind
tunnel it is lcgitimate to base the analysis on the assumption of a
perfect fluid and to ignore the frictional drag on the surface of the
wing, but this coursc is no longer possible with symmetrical bodies
since their drag depends essentially on the departure from these
ideal conditions, The problem is, therefore, inevitably more complex,
a purcly theorctical solution of the problem is impossible, and it is
necessary to rely partly on empirical factors derived from the
analysis of appropriate experimental results.
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. The general nature of the interference experienced by a symmet-
rical body has been discussed briufly in Scction 1. The interfurence
is of a complex nature and it is convenient to consider in tum the
following three aspects of the problem :—

(1) The direct constraint of the boundary of the air stream
on the flow past the body.

(2) The additional constraint arising from the existence of a
wake of reduced velocity behind the body.

(3) The effect of a gradient of pressure along the axis of the
wind tunnel.

It is now necessary to consider these three clements of the
problem more precisely and to derive formulag for the magnitude
of the interference experienced by @ hody.

. The direct constraint duc to the boundary of the air stream
arises because rigid walls prevent free lateral expansion of the
flow past the body and because free boundaries impose the condition
of uniform pressire at the boundary. This type of constraint
would occur under the ideal conditions of a perfect fluid, and it is
possible to represent the boundary conditions by the introduction
of an appropriate system of images, similar to those used in the
problem of a lifting wing. Owing to the presence of these images
the body experiences an induced interference velocity, but the
drag of a body in a perfect fluid is zero and it will remain zero also
when subjected to this constraint. If, however, we pass to the
actual conditions, we may conclude, as a first approaimation, that
/ a body in a wind tunnel will experience an effective velocity which

is the algebraic sum of the undisturbed velocity and of this induced
velocity, and that the actual drag will be proportional to the square
of this effective velocity. Thus the estimate of this first type of
tunnel interference is based on the calculaticn of the induced velocity
due to the appropriate system of images in a perfect fluid. As in
the case of a wing, the induced velocity will really have different
values at different points of the body, but it will usually suftice to
caleulate the induced velocity at some typical paint and to assume
that the whole body is subjected to this modified velocity.

The second type of constraint, due to the wake uf reduced veludity
behind a body, is unimportant for a good streanidine body but is
the dominant factor for a bluff body. The existence of this wake
implies that the velocity outside the wake in a closed tunnel must
be higher than the mecan velocity in front of the budy in order
to maintain continuity of flow. Consequently the pressure of the
wake is reduced below its value in an unlimited strzam, and this
reduced pressure reacts back on the body to cause an inurwased
drag. This type of interference occurs only in a closed tunned und
is absent in a free jet where the whole jet can expand laterally
behind the body and so maintain the same pressure behind and in
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front of the body. Tt is possible to obtain theoretically an expression
for this constraint, but it is necessary to rely on experimental
results to determine an empirical factor owing to insufficient know-
ledge of the nature of the wake behind different types of body.

The third type of interference arises in practice owing to the
development of the boundary layer along the walls of a closed wind
tunnel, which leads to a gradual increase of velocity along the
axis of the tunnel. Any body is, therefore, tested in a slightly
convergent stream with a falling pressure gradient, and the body
expertences an increased drag owing to the drop of static pressure from
nose to tail.  This pressure gradient correction is most important for
good streamline bodies whose drag islow, and isrelatively unimportant
for bluff bodies of high drag. It is, therefore, legitimate to calculate
the magnitude of this correction from the ideal conditions of a
perfect fluid. The magnitude of the pressure gradient must be
measured in the wind tunnel itself, with no body or obstruction
in the stream, since its value depends in part on any leakage of
air through cracks in the walls or through openings cssential to
the conduct of caperiments. Tt is important that the pressure
gradient should be measured with thesc openings adjusted as during
the test of the body. No pressure gradient is to be anticipated
in a free jet, though the same method of correction will apply if
such a pressure gradient does occur, and the pressure gradient
can be ecliminated in a closed tunnel by giving the boundary walls
a small angle of divergence down stream.

The detailed analysis of the pressure gradient correction will
be deferfed to Section 19. The other two types of interference
will be considered in conjunction, firstly for the relatively simple
problem of two-dimensional motion and then for the more general
condition of three-dimensional motion,

17. Two dimensions—Consider a symmetrical body, whose
maximum thickness is # and whose length or chord is ¢, lying along
the axis of a closed channel of breadth 7 as skown in Fig. 24. Clearly
the necessary boundzry conditions will be satisfied if we assume an
infinite column of such be dies, spaced at intervals % apart, and the
interference expericnced by the body can be calculated as the
induced velocity of this system of images. In this calculation we
may assume the ideal conditions of a perfect fluid and can express
the complex potential of the flow past the body in an unlimited
stream in the form

w=vit Dy de g (17.01)
The first term of this expression represents the uniform stream of
velocity V, and the remaining terms represent the distortion of
the flow caused by the body. At a large distance from the body it
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will be relatively unimportant, and thus the disturbance of the
flow caused by any symmetrical body at a large distance from itself
can be represented by the single term

) Iz ‘e .

where p is the strength of a doublet, directed against the undisturbed
stream. Now a circular body of radius 4 is represented by a doublet
of strength 274V, and hence the approximation of representing the
interference of any body by a formula of the type (17.02) implies
that the body may be replaced by an equivalent circle of radius
A/Ay/V. It is convenient now to write
= 294, =g v
so that the body of thickness ¢ is replaced by an equivalent circle
of diameter ¢ 4/4. The disturbance of the flow casued by the body
at a large distance from itself is then given by the equation
ivie
w="g
Refuming now to the problem of a symmetrical body in a
closed channel, each image of the infinite series is replaced by the
equivalent circle and the induced velocity due to this system of

images is calculated as follows. The image at distance % from the
body gives the induced velocity

AVier

1= qnzj2

. {17.02)

(17.03)

%

and the total induced velocity is therefore
AVt o 1 at /1Nt .
h=gm I5=p (1:) a

. The interference experienced by a symmetrical body in a free
jet of breadth % can be calculated in a similar manner. The only
modification of the analysis is that the images are now alternately
negative and positive, and hence

_VEm (=1 arf1\2
w=g 3 S =R ()

In each case the body experiences an effective vélocity (V1)
and its drag in the channel may be expected to vary as the square
of this velocity. Thus we may write

(17.04)

(17.05)

' 1, £\?
will suffice to retain only the first of these terms, since the others . v =1 ;',) (17.06)
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and the ratio of the drag in the wind tunnel to its value in an valid in all practical applications. It is generally possible to estimate
g 8 Yy po
unlimited stream is the value of 2 with sufficient accuracy by interpolation between the
D \2)2 curves of Fig. 25. If a more reliable value of 2 is required and if
b= {1 + 72 (7‘> } .. . (17.07) the theoretical flow past the body is known, the'complex potential
° gux:ict(xlon sahott:ld be expressed in the form (17.01) and the value of
Iso, si i . £ ¢/h have be lected in the analysis, educed by means of equation (17.03). Alternatively, if the
A'so since higher powers o 1'1 rave been neglected In The anaiysts actual pressure distribution round the body has been determined
we can adopt the simpler formula . .
» experimentally, the value of the velocity ¢ at the surface can be
. D 14 22 t\? (17.08) calculated by means of Bernoulli’s equation and the effective
D, “\h : gic;ug.g} strength of the body can then be derived by evaluating the
inte
In these formulae A is a non-dimensional factor depending only ) '
on the shape of the body, whilst T depends on the nature of the p= f 2qyds
boundaries of the stream. We have -
a2 )| or
Rigidwalls,'r=ﬁ=0'822 _4 (g yds 7.1
' , (17.00) =zlVE (17.11)
N n
Free jet, t=— 5= = 0-411 i\_vheh:i t}:le integral lis taken along the upper surface of the body
. rom leading to trailing cdge.
This method of analysing the problem of the interference § to tratling cce
experienced by a symmetrical body in a channel is due to Lock®, On comparing their theoretical formulae with the experimental
who has also calcula(.cd the values of the factor 2 for the following evidence available, both Fage®® and Lock™ found it mecessary to
four shapes of body :— introduce an empirical factor K, since the observed tunnel inter-
(1) Joukowski scction, with cusp at trailing edge. fefre}xzcc was g;cat?r than that predicted by the theory. The value
. il . . . e 0 was only slightly greater than unity for a thin streamline
@ Mﬁlgﬁ;d Joukowski section, with finite angle at trailing body but became very large for bluff bodies. The need of such an
el empirical correction has been ascribed by the present author’? to
. (3) Ellipse. 4 the neglect of another type of tunnel constraint which arises owing
(4) Rankine oval, the form due to a source and sink at a finite : to the existence of a wake of reduced velocity, particularly behind
distance apart. l a bluff léoldyi) The nature of this constraint can be appreciated
. . . . most readily by considering the case of a flat plate with discontinuous
4 Alf."“Pl‘i f?m;‘fl? for the factor 2 is obtained only in the case of flow and with'a wake of fluid at rest as shown in Fig. 27. In order
1e ellipse, "0 vhich to maintain continuity of flow the velocity W outside the wake
Py 1 (1 4 (17.10) must exceed the tunnel velocity V, and hence the pressure in the
I\ T ) wake is reduced by the constraint of the tunnel walls. This reduced
. . pressure acting on the rear of the plate gives an increased drag,
The values of 2, as a function of the fineness satio cft, for the four whose magnitude depends mainly on the ratio of the width of the
types of body are shown in Fig. 25. The values increase with the wake 1o the width of {he cf .. The tI tical lts for this
fineness ratio and with the bluffness of the body, and all four cnrves rob(;cn(: olfc ;:wﬂatl olat::e i;m: “cclt;scd nc} ar‘ﬁ\oclic lc?: :fx;‘\l y i?rd in
pass through the point corresponding to a circle. The shapes of the %abl 19, and an i P tion of the ] :lt . i‘ ) fmt‘;r-? ct b,ll:
four types of body are shown n Fig. 26. Table 19, and an inspection of the last two columns of this table
indicates that the drag of the plate in the channel is sensibly the
Lock® has also compared his approximate resulls for the same as that of the plate in an unlimited stream of velocity W.
Rankine ovals with some more accurate calculations by Fage3, and - -
he concludes that tlie error of the approximate results is less than )
0-5 per cent. if the fincness ratio is less than 5, and for greater
fineness ratios if the length of the body is less than the breadth of the
. channel. The approximate formulac should therefore remain
(- - . S . LT
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TABLE 19 - .

Flat plate, discontinuous flow

k3
h sfh kp 0 44(,‘ —
0 0 0:44 044
0-061 0-233 075 0-75
0-102 0-300 0:90 0:90
0+149 0-363 109 1-08 ,
0201 0-423 1-34 1-32
0-443 0:636 3-44 3-32

Actually, a bluff body doces not give this type of discontinuous
flow, but develops a periodic eddying wake of reduced velocity.
It seems probable, however, that there will be a tunnel constraint of

the form
1\~2
D=D, ( 1—-9 ﬁ) '

where 3¢ is the effective width of the wake as regards this type of
tunnel interference. This correction is additional to the induced
velocity correction considered previously, and although the correc
method of combining the two corrections is uncertain, it is suggested
that the most suitable formula for representing the total tunnel
interference on a symmetrical body is

(17.12)

D £\* 1\~2
170 = {l + 7 7;') } (l - nz) (17.13)
To a first approximation the wake correction in proportional to /i
and the induced velocity correction to (¢/h)2. Moreover, we may
anticipate that the wake correction will be most important for
bluff bodies, which create wide wakes, and that the induced velocity
correction will be most important for bodies of high fineness ratio,
for which the value of Aislarge. Finally, it is important to remember
that the wake correction occurs only in a closed channel and that
it is essentially zero in a free jet.

The empirical factor K, introduced by Fage and Lock, was
necessary owing to the omission of the second factor of the formula
(17.13) in their analysis. In this Jatter formula there is still an
empirical factor 5, since our knowledge of the conditions behind
a body is insufficient for any calculation of the effective width of
the wake. Values of this factor 5 have been derived by an analysis®?
of the available experimental cvidence, and were found to lic on a
single curve when plotted against the fineness ratio of the body.
This curve is repro.uced in Fig. 28, and numerical valucs, taken
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from the curve, are given in Table 20. The bodics, used in the
experimental investigation, were three Joukowski scctions, a
Rankine oval, an cllipse, a circle and a flat plate. It is perhaps

TABLE 20
Values of 9

cft
n

0 1
1-00 0-30

2 4 6 8
0-22 013 008 0:08

rather surprising that all the values of 7 should lic on a single curve,
since it would be anticipated that a bluff body, such as an ellipse
or oval, would give a higher value of 5 than a Joukowski section
of the same fineness ratio. The experimental evidence is, however,
rather scanty, and the value of 3 depends on the small difference
between two observed drag coefficients. The single curve neverthe-
less represents the experimental evidence which was obtained with
special care, and.any deviation of the value of 5 from this curve
for different shapes of body may be expected to be negligible in
practice. Fig, 29 shows a comparison between the observed drag
of a Joukowski section of fineness ratio 3 and the curve predicted
by means of the formula (17.13) using the values 2 =1-77 and
7 =0 17. The wake correction to a flat plate normal to the stream,
as given by this method of analysis, agrees closcly with that denved
in another investigation® by considering the behaviour of the
vortex street behind the body in a channel of finite breadth.

18. Tiree dimensions—The interference experienced by a body
of revolution with its axis along the central axis of a wind tunnel
is of the same nature as in the two-dimensional problem. In a free
jet the interference can be estimated by calculating the induced
velocity of the appropriate image system which satisfies the necessary
boundary conditior and in a closed tunnel there is an additional
interference duc to the choking action of the wake behind the body.
No new features arise in the problem, but the analysis becomes far
more complex than in the simpler problem of two-dimensional
motion,

The problem of the induced velocity experienced by the body
has been considered by Lock®!, who expresses this induced velocity

in the form
n_ g (3)"
v = T2 (-(-:> ..

where C is the cross-sectional area of the tunnel, S is the maximum
cross-scctional area of the body, 7 is a iactor depending on the
shape of the funnel and the nature of the bouncary, and 2 is a factor

(18.1)
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depending on the shape of the body. The definition of 4 is such
that in the image systems a body of maxitnum diameter ¢ is replaced
by an equivalent sphere of diameter 2213,

The boundary conditions for a rectangular tunnel or jet can
be represented by the introduction of a doubly infinite set of images,
and each of these images can be regarded approximately as a
doublet of strength g, where

p=§uav e e e . (182

For a closed rectangular tunnel all the doublets are of the same
sign and they occur at the points (mb, #h) where b and ) are the
sides of the tunnel and (m, ) are any pair of positive or negative
integers. The induced velocity due to onc of these image doublets
is

P A— (18.2)

17 4 (2 0% A n2 h3)32 :

and the total induced velocity is obtained by the double summation
of this expression for all positive and negative integral values
of m and #, excluding the pair (0, 0). For a free jet the signs of
the doublets alternate in both rows and columns, and the expression
(18.2) receives a factor (-1)==. Lock3! has cvaluated these
summations for closed and free square tunmneis, and for a close.
duplex tunnel (b = 24), and the resulting values of the factor =
ave given in Table 21 below.

The analysis for a circular tunnel is even more complex. Lamb??
has considered the interference experienced by a Rankine ovoid,
which is the Yody formed by a source and sink at a finite distance
apart, in a closed circular tunnel, and Lock3 has developed a
similar analytical treatment for a frec jet. The series of Bessel
functions which occur in this analysis have been reduced to a form
more suitable for numerical computation by Watson3s, and the
values of v deduced from this analysis are included in Table 21. The
values of ¢ for square and circular tunnels are not very different,
and the value of 7 in a frec jet is approximately one quarter of that
in the corresponding closed tunnel. .

TABLE 21

Values of v
Shape of tunnel. Closed tunnel. Free jet.
Circle . . 0-797 ~0-206
Square .. i 0-809 -—{)-238
Duplex .. . 1-03

§9

Lock3! has calculated the values of 4 for two shapes of body, the
Rankine ovoid and the spheroid, and these results are shown in
Fig. 30 against the fincness ratio of the body. The value of 4 can
be derived from any body, round which the theoretical flow is
known, by considering the velocity on the axis of symmetry at a
great distancc from the body, which is of the Zorm

,,=_J*_=_’l(£>°v | (183)

where 7 is the distance from the body. Altcmativciy,l if the velocity
¢ along the surface of the body can be deduced from the observed
pressure distribution, the value of 4 can be deduced by evaluating

the integral
= — [1ds
== .[ 2r
or

1.—_4]%”—:,15 e e (184)

where the integral is taken along any gencrator of the body from
nose to tail.

The copetraint ranrecented hey the [uduwd valodity «# as given
by equation (18- 1) must be increased, as in two-dimensional motion,
by a term representing the effect of the wake behind the body.
Corresponding to the formula (17.13) for two-dimensional motion, we
have in the more general case of three-dimensional motion

1% = {1 + 7 (2)3”}2 (1 -y %)'2 . (183)

where #' is an empirical factor representing the effective size of the
wake.

The experimental results on two streamline bodies have been
analysed by Lock and Johansen?® to check the theoretical predictivn
of the tunnel constraint as given by the induced velocity ;. This
analysis was difficult owing to the small values of the drag coefficient,
owing to the existence of an important pressure gradient correction,
and owing to the difficulty of maintaining the same conditions in the
boundary layer of the body under different experimental conditions.
The experiments do not therefore provide a very reliable check on the
accuracy of the calculated induced velocity, but it is noticeable
that Lock and Johansen did not find it nccessary to introduce any
empirical factor K, as in the analysis of the experiments in two-
dimensional motion. I would appear therefore that the wake
correction was unimportant. This resuit is due partly to the fact
that the wake can contract in two directions and will therefore
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be relatively less important than in two-dimensional motion. In
the absence of morc reliable information we may assume that,
for a given fineness ratio,
=9 .. .. e e .. .. (186)

The largest body used by Lock and Johansen had a fineness ratio 3
and a cross-sectional area 0-06C, and on the basis of the formulae
(18.5) and (18.6) the wake correction to the drag would be only
035 per cent. which is quite negligible. Thus we may accept these
formulae as giving a sufficiently reliable estimate of the tunnel
interference due tonduced velocity and wake constraint, remembering
that the wake constraint is absent in a free jet and negligible for a
good streamline body in a closcd tunnel.

Lock and Johansen3®, during the course of their analysis of
the experimental results on two streamline bodies, also considered
the cffect of the tunnel constraint on the pressure distribution
round a body. The total drag of the bodies did not provide a
suitable test of the thcoretical formulac for tunnel interference
owing to the sensitivity of the frictional drag to changes in the
nature of the flow in the boundary layer, whereas the pressure
distribution is not seriously modified by these changes. On the
assumption that a body subjected to a velocity V in a wind tunnel
behaves in the same manner as in an unlimited stream of velocitv
(V4u,), the appropriate correction to the observed pressure p ..
any point of the body appears to be

P=ptieVamr-vy . L (87
where $, is the corresponding pressurc in the unlimited stream.
This formula gives the correct stagnation pressure at the nose of
the body, and equal values for the irtegrated drag in the wind
tunnel and in the unlimited stream. If the pressures are expressed
non-dimensionally by the formulac

P =koVt . .

by =Fpo{V-tuy?
the formula for the tunnel interference becomes

1 Vo \t/1
kp=§_(v$ﬁ)(§_h) o (188

or approximately
Fo=h+3—2k) .. .. .. (189

During the course of the analysis Lock and Johansen found that
this correction to the local pressure was more important than that
due to the pressure gradient, which will be considered in Section 19,
whereas the correction to the total drag was due mainly to the
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pressure gradient. The analysis of the pressure distributions

round two bodies of the same shape but of different size wag u?

satisfactory agreement with this formula for the tunnel interference,
1t N

19. Pressure gradient—The origin of the ressure ¢ radient
along the axis of a closed wind tunnel has béen dirs’cusscd pr§\~iously
in Section 16, and it is now necessary to consider the magnitude
of the force experienced by a body due to this pressure gradient.
The existence of this pressure gradicnt drag was realised at an early
date by Pannell and Campbell2¢, and after some discussion Pannell,
Jones and Peli2? adopted, as the correction to be applied to the
abserved drag, the horizontal buoyancy of the body, which is the
product of the volume of the body and the pressure gradient. The
fact that this horizontal buoyancy is only an approximation to the
true pressure gradient drag was demonstrated by Munk?® mn a brief
note at the end of a paper dealing with some miscellancous acro.
dynamic problems. Munk’s analysis showed that the pressure
gradient drag was equal to the product of the pressure gradient
and a certain effective volume, which was greater than the actual
volume by an amount which increased as the fineness ratio of the
body decreased. The problem has been discussed in greater detail
more recently by Taylor32 and the present author3, who proved
that the 'eﬂ'cc_th volume of the body, as regards the pressure
graateni uiag, is te sum of the agtuai volume of the boady ana of the
volume corresponding to the virtual mass of the body in accelerated
motion along its axis.

The truth of this general proposition can be established by
a simple physical argument without entering into the details of
the mathematical amlysis, A body in a closed wind tunnel is
subjected to a flow which is accelerating in the direction of motion
and the consequent variation of static pressure is

ap av
HZE—V L .. (1900

The body, subjected to this pressure gradient, experienves a hori-
zontal buoyancy which is equivalent to a drag force

= dp
Dl—-—Aa}

where A is the volume of the body, but in addition the body has the

acceleration oV = relative to the surrounding fluid and hence
experiences an additional drag force

VR A
D, = oA VE;-—A i
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where g\’ is tlic virtual mass of the body for acculerated motion
along its axis. Thus the total drag of the body due to the pressure
gradient of the stream is

- WGP andp
D=—@+A)E=—AE .

‘This is the general result which was established by Taylor3? by
a detailed mathematical analysis of the problem.

(19.02)

The value of the virtual volume A’ can be determined by the
standard methods of hydrodynamics, when the theoretical flow
round the body is known, but the following simple method of
analysis has the advantage of expressing the virtual volume in
terms of the coefficient 2, introduced in the carlier analysis in the
formula for the induced velocity experienced by a body. The
problem of a body in a slightly divergent flow is equivalent to that
of the body in the presence of a source at a large distance in front
of the body as shown in Fig. 31. The resultant force on the combined
system of body and source is essentially zero, and hence the force
on the body is equal and opposite to the force on the source. But
the force on a source of strength m, subjected to a velocity u, is

X = — omu
and hence the drag of the body in the slightly divergent stream is
D = gmu - i (15.03)

where # is the velocity at the source due to the presence of the
body. Also, if the source is at a large distance R from the body,
the influence of the body is the same as that of a doublet of strength
p directed towards the source.

To proceed further with the analysis it is necessary to consider
separately the motion in two and in three dimensions. In two-
dimensional motion, according to the analysis of Section 17, the
body can be replaced by an cquivalent circle of diameter £4/4,
where ¢is the maximum width of the body and A is a factor depending
on the shape of the body. The corresponding strength of the
doublct is

= :.! 242
p=ty v
whilst the strength of the source will be
m = 23 RV

'l‘hc. velocity expertenced by the source, due to the presence of the
body, is

. 63
and hence, according to the equation (19.03), the drag of the body is

2
D= — % 3p2Y

2 R
Now the velocity along the axis due to the source is
v IR ' B
T R4-x

and hence the pressure gradient in the ncigﬁbourhood of the body
is .
dp av
Z=VE=%
Thus the drag of the body is
’ _m,,dp
D_—glﬂ% e s . . (19.09)

and, by comparison with the fundamentzl formula (19.02), the
effective area of the body required in the formula for the pressure
gradient correction is

AM=Fa0 L L L L (19.05)

In three-dimensional motion the same method of analysis can be
used with the following slight modifications. The strengthis of the
doublet and source are respectively

=Tap
;L—4llV

and
* m=4z R?V

The velocity expericnced by the source, due to the presence of the
body, is now

U
5 e
and the drag of the body is .
= _ % pe”?
D=-32%

whilst the pressure gradient in the neighbourhood of the body in
three-dimensional motion is

i
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! Thus final} the drug of the body is ; > !
hus fing ? 1e drag ¢ body whilst the corresponding approximation in three dimensions is
’ 7, sl 1 4A
D=—zir e (*9.06) A== L .. (1900)
} s . .
and the cffective volume required in the formula for the pressure By comparison with the true values for an cllipse and a spheroid,
radicnt correction is it appears that this approximation is more accurate in three than
4 . . .
: in two dimensions. These approximate formulac should be used only
s i A = % FYS .. .. . (19.07) when more reliable values are not available.
. ‘ . The %f.fctctbo{ the prcssurlc): gradient in a wind tunnel cn the
T . : pressure distribution round a body has also been considered by Lock
pr(:\'}-ilol::lsl(;c:tl(;lr(lln:rnazi:ll&nfo‘:'[S(;:ll](:: f;;gslc:&néoéy l;.z ;f,i?l i;or{TSilgs(irgg and Johansen®, who have expressed the correction in the form :
and 30. In particular for an cllipse we have, according to equation 3 = 1 v dp i
(17_10)' : P-—-i‘ 62;: . . .. .o .o (19.“)
bl % 14 ft) where ¢ is the length of the body and Y is a function of position
over the surface of the body, depending on the shape of the body. b
whilst the area of the ellipse is This correction must be added to the observed pressure to obtain
1 g P! the corresponding lpressurc in a uniform stream. Lock and Johansen
. n calculated the values of Y for a spheroid from the exact solution
# A= i of the flow past the body in a convergent stream, and the curves
of 'Y against the coordinate x/c measured along the axis of the
Hence from equation (19.05), splicroid from its nose for two values of the fineness ratio are shown
) in Iig. 32, When the body is not a spheroid they suggest that these '\
A" = A (1 + .f) (19.03) same values of Y may be used as a first approximation to estimate
¢ the correction to the pressure distribution over the body'.
. . " : In the experiments analysed by Lock and Johansen the correction
Thus the ratio of the effective area A to the actual area A increases pe ysed by hanse
as the fineness ratio of the ellipse decreases. For thin streamline :10 the local pressures due to the pressure gradient is less than that
bodies the effective area A" will be only slihtly greater than the ue 1o the induced velocity as discussed in Section 18, though the
actual area A, but the ratio of these two areas increases to 20 for a correction to the total drag is duc mainly to the pressure gradient.
circle.  Similar results can be derived in three dimensions, and in As regards the usual magnitude of the pressure gradient in a
particular the effective volume of a sphere is 1-5 times the actual closed wind tunnel, it has already been explained that the drop of
volume. p;es}furlc): alox‘;g th(; axis of the tunnel is due partly to the development
. . - . . of the boundary layer along the walls and partly to the leakage of
t“cArIctl?;?g't‘g‘lx(;? bg}g,cgg"?;?’?o '-‘(‘lsc)u?:) 3‘“;1n d(w;g?)(':ff‘cvc];it]; g:"g air into the tunnel through cracks or epenings in the walls, For o
or volume of the l;o'dy“in two ;;1‘(‘1 tl‘u:ec dimensions respectively, nggirc%tt?n?ﬁl ?f side /it is convenient to express the pressure
can be used to determine the values 6f 2 when the virtual mass of gr " the lorm P vz
the body is known. As the fineness ratio of a body increases the P =p 2 (19.12)
ratio of A” to A tends to unity, and therefore as a first rough approxi- dx h
mation for streamline bodies of high fineness ratio we may take The value of the non-dimensional coefficient % for a tunnel with
A" =A air-tight walls is then of the order 0-008, and rises to 0-020 for a
; B e 't;;nnel with a moderate amount of leakage through the walls,
- ximati lue of 2 in two he pressure gradient can be eliminated by giving a small angle of
gﬁgiﬁg;:;:s 3’ the first approximation to the value mw divergence to the walls, but its value must be determined specially
oA In any experiment where the correction due to the pressure gradient
A== e e e (1909) may be important. :
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PART 4
Adrscrews

20. Geperal Discussion—The nterference experienced by an
airscrew in a wind tunnel resembles that part ot the interference,
expericnced by a symmetrical body which is duc to the existence
of a wake of reduced velocity behind a body. An airscrew, when

. giving a positive thrust, creates a wake or slipstream of increased

velucity, If the flow is confined between the rigid walls of a closed
tunnel, the condition of continuity of flow leads to a reduced velocity
and increased pressure of the fluid surrounding the wake, and these
modified conditions behind the airscrew react back to change the
relationship between the thrust and rate of advance of the airscrew
for a given rate of rotation. In a free jet, on the other hand, the jet
surrounding the slipstream can contract in order to maintain the
same velocity and pressure as in the undisturbed stream in front
of the airscrew, and there is no appreciable tunnel interference on
the behaviour of the airscrew.

The existence of a tunnel constraint on the behaviour of an
airscrew in a closed tunnel was appreciated at an carly date by
Bramwell, Relf and Bryant3%, who determined an empirical
equivalent free airspeed. corresponding to the observed speed in ths
wind tunnel far i front of the airscrew, by comparmng the thrut
of the airscrew in the wind tunnel with the thrust measured on a
whirling arm. A theoretical formula for this equivalent free airspeed
was later derived by Wood and Harris®, The validity of this
theoretical formula and the absence of any appreciable interference
on the behaviour of airscrews of moderate size in a free jet have been
checked by special experiments which are discussed in Section 22.
A discussion of these experimental results and of the whole problem
of wind tunnel interference on airscrews is also the subject of a
report by Glauert and Lock®.

The use of an cquivalent free airspeed to represent the tunnel
interference is valid only when the airscrew is operating at a positive
rate of advance or when it is acting as a windmill with a slipstream
of conventional iype but reduced velocity. There are, however,
some states of operation of an airscrew which cannot be treated
in this manner. In particular the static condition (acro rate of
advance) cannot be reproduced_in a closed wind tunnel, since the
airscrew itsclf will induce a flow through the tunnel. This same
difficulty will arise to a smaller degree even in an open jet tunnel with
a closed return circui® but results obtained in a free jet are probably
more reliable than those obiained in a closed tunnel. The only
satisfactory method of determining the static thrust of an airscrew
is, however, to conduct the experiment in a large room.

Even greater difficulties arise in the determination of the

;
r
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airscrew then either operates in the vortex ring state with flow through
the disk opposed to the general stream, or develops a turbulent
wake differing essentially from a conventional slipstream. There
is no satisfactory method of correcting results obtained in a closed
wind tunnel in these extreme conditions of operation of an airscrew,

. and the experimeatal evidence suggests that the tunncl constraint

may be large!®. In a frec jet the tunncl constraint on these extreme
conditions of opcration of an airscrew is also unknown, but it is
probably small. The subsequent analysis and discussion will be
confined to the usual operating conditions at a positive rate of
advance when the airscrew develops a positive thrust and a con-
ventional slipstream.

. In practice, an airscrew operates in conjunction with a body,
either as a tractor or as a pusher. The problem of the tunnel inter-
ference then becomes more complex since the constraint is due
partly to_the airscrew and partly to the body. Frequently the
body is so small that its contribution to the tunnel constraint may be
ignored, but when the body is large it is necessary to rely on certain
empirical methods of correcting for the tunnel constraint.

21, Closed wind tunnels.—The theoretical method of calculating
the interference evnerisncad hy an airserew in a closed wind tunnel
is due to Wood and Harris®, and the resulting equations have been
reduced to a form more suitable for numerical computation by the
present author#2,  The fundamental basis of the method is to replace
the airscrew by an actuator disk, as in the classical momentum theory
of an airscrew, to ignore the rotation of the slipstream due to the
torque of the airscrew, and to consider the flow in the distant wake
as modified by the constraint of the tunnel walls. The flow is then
of the type illustrated in Fig. 33, where V is the tunnel velocity
far in front of the airscrew, # is the velocity through the airscrew
disk and #, is the slipstream velocity, whilst w and w, are the
corresponding velocities of the flow surrounding the slipstream.
The next step in the argument depends on the fact that the thrust
given by the blades of an ainscrew, al a given rale of rotation,
depends only on the velocity # through the disk. Thus in an
unlimited stream the airscrew will give the same thrust T as in
the wind tunnel if the velocity through the disk has the same value,
but this condition will in general correspond to an equivalent free
airspeed V’ which differs from the tunnel velocitv V. The problem
to be considered is therefore the determination of the equivalent
free ailxspccd V’ corresponding to any given conditions in the wind
tunnel. -

Now if A is the disk arca of the airscrew, the conditions in
an unlimited stream are determined by the well known equation

behaviour of an airscrew at low negative rates of advance. The T ==2A0u (1 — V') . . . < (2101
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Turning next to the conditions in a wind tunnel, as illustrated by
Fig. 33, let C be the cross-sectional arca of the tunnel and S that
of the slipstream. Then the conditions for continuity of flow are

An = Su, (21.02)

[RRE

s . e ve e
3

and
CV=Su; - (C—S)w, ' . . . {(21.03)°

Sccondly the thrust per unit area of the disk is equal to the increase
of total pressure head in the slipstream, or

T=}Ap (11y* — 1w, .. .
and thirdly, the increase of pressure far behind the airscrew is
h—tpo=1%eVi—w? .. oo e ae (2005)

Finally the momentum equation for the whole flow in the wind
tunnel is

T—=Cpy—2s) =S guty (11, = V) — (C ~ ) ow; (V — wy) (21.06)

These equations suffice to give a complete solution of the problem
under consideration. Writing ’

(21.04)

(21.07

T= A . o . .o .
oV

and
- A ) 7 B

a-_-'é- X ) e .o .

(21.08)

to define two non-dimensional quantitics whose values are known in
any wind tunnel experiment, it is possible theoretically to eliminate
the five quantities S, #, #,, w, and (p, — p,) from the first six
equations and to derive a relationship of the form

vl

v =/a

Actually, it is not possible to obtain a simple expression of this
form, and it is necessary to calculate the values of V//V corresponding
to chosen values of 7 and « by using certain subsidiary variables,
Numerical vatues derived in this manner are given in Table 22 below
and are shown graphically in Fig, 34.

In general the ratio a of the disk area A to the tunnel area C is i
small, and it is therefore legitimate to derive an approximate formula
by retaining only the first power of « in the gencral solution. The

.
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and values of the equivalent free airspeed derived from this simple
formula do not differ by more than 1 per cent. from the accurate
valucs of Table 22 for the range of values of a and = given there.
TABLE 22

*Valiees of V'[V .

T 05 10 | 15| 20 | 25 | 30
005 | 0-091 | 098 | 0981 | 0-978 | 0-974 | 0.972
*"0e10 | 0-952 | 0.971 | 0-963 | 0-955 | 0-949 | 0-943
015 | 0-973 | 095 | o0-942 | 0-981-| 0921 | 0-912
020 | 0964 | 0-940 | 0-922 | 0.906 | 0-893 | 0.882
025 | 0955 | 0-924 | 0-899 | 0-881 | 0-865 | 0-851

It is possible to derive the approximate formula (21.09) directly
in the following simple manner.  In free air at a rate of advance V we
have the equation_

T=fAg (3= VY
and hence -
= VT2t o0 oo e e (2L10)
Also JE
] §_u=ui-{iv=l+v1+2r @L11)
AU 24y 24/1+4 27

As a first approximation we can assume that these two relationships
remain true in a wind tunnel when the ratio a is small, and then
from the equation of continuity (21.03) we obtain

(C—8)(V—wy)= S, ~ V)
or approximalely
V—wy, S~V v
vV TC VYV T T+
by virtue of the equations (21.10) and (21.11). Finally, by analogy
with other work on wind tunnel interference, we may assume that
the effective velocity V’ experienced by the airscrew in the wind

tunnel is the mean of the velocities V and w, for before and behind
the airscrew.  Thus we obtain

(2L12)

~

)‘.\.__.. ——

. ; : : 1 Vv 1a e e e
approximate formula obtained by Wood and Harris® by this method ——— P 1 )
B . e v VoS itor
v =1 . ) {21.09) which is identical with the approximate formula (21.09) derived
v, 1427 oot from the more detailed analysis of the problem,
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Before leaving this problem it is interesting to cxamine the
value of the velocity w@ of the surrounding stream in the planc of
the airscrew, since this velocity is occasionally used as the basis of an
empirical correction to the wind tunncl observations. From the
equation of continuity

(C—A)w==CV — Au., o tes . . (2L14)
or approximately
Vow _Au-V ’ '
TVOECTY .
and hence
w @, o
-‘-,—_—1—2-(\/1-{-2:—1) . . (2L15)

To the first order of T the value of this velocity w is equal to that
of the equivalent free airspeed V' as given by equation (21.09) -but
for larger values of 1 the tunnel interference will be over-cstimated
if the velocity w is used instead of the equivalent free airspeed V.
On the other hand this theorctical estimate of the velocity @ is based
on the assumption of a uniform velocity of the stream outside the
airscrew, whereas in fact the velocity may vary from the tip of the
airscrew to the.walle of the tunnel  The possibility of using meacure.
ments of the velocity in the plane of the airscrew as a measure of the
equivalent free airspecd has been examined by Fage who measured
theradialdistribution of axial velocity in three planes adjacent to that
of-the airscrew disk. In a plane immediately behind the airscrew
the mean velocity outside the slipstream agreed approximately
with the value of w given by the formula (21.15), but the velocity
was increasing from the edge of the slipstrecam outwards.  Apart
from a drop on approaching the boundary layer along the walls
of the wind tunnel, the velocity in cach of the three planes of
observation appeared to be tending towards a common limiting
value, which agreed closely with the equivalent free airspeed given
by the formula (21.09). Conscquently this experimental method
of measuring the velocity distribution outside the disk of the air-
screw provides an alternative mettod of estimating the magnitude
of the tunnel constraint.

22, Free jels.~As cxplained previously in Scction 20, it is to be
expected that the tunnel constraint on an airscrew in a free jet will
be negligibly small since the stream surrounding the slipstream
can contract and thus maintain the same velocity and pressure as
the undisturbed stream in front of the airscrew. This conclusion,
has been confirmed experimentally by Durand®. In one series of
experiments he tested four airscrews of diameter 2%, 3, 3% and
and 4 ft. respectively in a free jet of diameter 5 ft. The obscrved
values of the thrust cocfficients of these four airscrews showed no

prapepe— i
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systematic differences, except that the values derived from the
3 ft, airscrew were slightly higher than those given by the other
three airscrews. This slight variation was ascribed by Durand to
some slight crror in shape of the 3 {t. airscrew. In another series
of experiments a 3 ft. airscrew was tested in a free jet whose diameter
was reduced by successive steps of 6 in. from 5}todft. The observed
thrust and torque cocfficients in the 5} ft.and 5 ft jets were identical,
those in the 4} ft. jet were 2} per cent. higher and those in the

- 4 ft, jet were 6 to-7 per cent. higher than in the larger jets. From

the results of these tests it may be concluded that the interference
on an airscrew in a free jet docs not become appreciable until the
diameter of the airscrew excecds 60 per cent. or perhaps even 70
per cent. of the diameter of the jet. Thus for all practical purposes
the interference experienced by an airscrew in a free jet may be
neglected.

The accuracy of the experimental results obtained in a free jet
enables a check on the accuracy of the formula for the equivalent
free airspeed in a closed tunnel to be obtained by comparing tests
on the same airscrew in a closed tunnel and in a free jet. Bramwell's
experimental results®, obtained in a closed tunnel and on a whirling
arm, are of little value as a real test of the correction formula owing
to the smallness of the corrcction itsclf and to irregulay scattering
of the observed values of the thrust coefficient, but the magnitude
of the correction is rcasonably consistent with the theoretical
formula (21.09). A more suitable series of experiments was made
by Townend and Warsap® who tested a metal airscrew of diameter
3'ft. in a closed 7 ft. squarc tunnel for comparison with American
tests in a free jet. Unfortunately this series of experiments also
does not provide a critical test of the theoretical fe.mula owing
to the low thrust of the airscrew and the low ratio of the disk area
to the tunnel area (0-145). The comparison is further complicated
by a noticeable scale effect in the experimental results at different
rates of rotation of the airscrews. Over most of the range of advance-
diameter mtio the interference correction was not much greater than
the experimental errors, hut the authors conclude that the tests
show that the corrected results obtained from a 3 ft. airscrew in a
7 ft. closed tunnel agree very closely with tests made in a free jet.
The theoretical formula (21.09) can, thercfore, be accepted as giving
the interference on an airscrew in a closed tunnel with sufficient
accuracy for all practical purposes, whilst the interference in a
free jet can be ignored completely.

23, Adirscrew and body.~When an airscrew is mounted in front
of a large body fhe tunnel constraint is due partly o the action of
the airscrew and partly to that of the body. No theoretical solution
of this complex problem has been obtained, but Fage® has proposed
the empirical method of measuring the radial distribution of velocity
outside the slipstream in planes adjacent to that of the airscrew
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disk and do detcrmining the common limiting value as described
at the endlot Section 21, The validity of this method of determining
the equivalent free aitspeed las been confimmed by Lock and
Bateman®? by some special experiments on a small airscrew and body
combination’in a 4 ft, and in a 7 ft. wind tunnel, and satisfactory
agreement! was obtained both on effective thrust and on torque
when the pbserved values were corrected for the tunnel constraint
by the usejof the equivalent frec airspeed determined experimentally
from the v.;clocity distribution,

The validity of this method of estimating the tunuel interference
on an airscrew and body combination would appear to depend
cssentiallyon the fact that the drag of the body is only a small
fraction of the thrust of the airscrew, and the problem would require
reconsideration under different conditions. © On the other hand
if a complete model acroplane with airscrew running s placed
in a wind tunnel, the airscrew and body will be so small that the
tunnel interference may be neglected.  The only important tunnel
constraint on a complete model aeroplane is that due to the Jift
of the wings, which has been fully considered in Part I, both as
regards the effect on the wings themselves and as regards the tail-
setting and angle of downwash. -

Lock and Johansents, in two reports dealing with the pressure

- distribution over a streamline body with tractor airscrew running,
have considered in some detail the very complex tunnel interference,

experienced by this combination. No really satisfactory solution

of the problem was possible, and it was necessary to use a variety

of empirical corrections. The principal sources of the tunnel

interference are the drop of static pressure gradient along the axis

of the tunnel, the constraint imposed on the airscrew which can be

represented by an equivalent free airspeed, and the constraint

imposed on the body owing to the constriction of the flow by the

walls of the tunnel.” To assist in the analysis, observations of the

static pressure were made at a distance of 1 {t, from the walls of the
tunnel in each state of operation of the airserew. The true pressuro

at any point of the body was then assumed to be the excess of the
observed pressure over the static pressure near the wall of the

tunnel in the same cross-section, since i1 an unlimited stream this
pressure would have the constant value of the atmospheric pressure,
The validity of this basis of correction is ver »* doubtful and requires
verification’ by means of experiments with differeat relative sizes
of body and airscrew. As an additional correction the effective
velocity experienced by the body as regards the pressure distribution,
was chosen to be that corresponding 1o the observed dynamic
bressure at the nose of the body. The equivalent free airspeed
experienced by the airserew was' defermined from obscrvations of
the velocity in the plane of the airscrew, as suggested by Fagett and
described ‘previously in Section 21, and this same velocity was
I T -
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used for correcting the total drag of the body, either as observed
directly or derived by integration of the pressure distribution,
Complex experiments “of this nature are not made frequently,
but further experimental work is clearly necessary before it will be
possible to standardise appropriate mctheds of correction for the
tunnel interference,
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