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Abstract 

The energy and momentum relaxation of the components of 

a non-equipartltion gas mixture is considered. For the case 

where each component of the mixture has a Maxwellian distribu- 

tion at a temperature T., with the peculiar velocity in the 

Maxwellian measured relative to the species diffusion velocity, 

U,, and a "diffusion" Mach number not too large, the results 

have a particularly simple form. The calculations were 

carried out for the hard sphere, Coulomb, and Maxwell force 

laws of interaction. It is also noted how these results may 

be used to construct approximate kinetic model equations for 

the case of hard sphere and Coulomb interaction, in a manner 

similar to that proposed by Sirovich. 

_1_ 
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Introduction 
o 

As Grad has previously noted," when a gas mixture is far 

from equilibrium, under certain conditions, there may be 

three epochs, or time scales, of relaxation to thermodynamic 

equilibrium.3 First, the lighter species come into equil- 

ibrium with themselves, then the heavier species equilibrate, 

and finally, through cross collisions, the various components 

of the mixture come into equilibrium with one another. This 

final relaxation to thermodynamic equilibrium is characterized 

by an equipartition time, and it is chiefly the relaxation on 

this time scale that shall be discussed below. It should be 

noted that this description of epochal relaxation is only 

qualitative, in that the Individual distribution functions 

will not exactly preserve a Maxwellian shape during the final 

relaxation to thermodynamic equilibrium. However, the fact 

that the individual distribution functions are not exactly 

Maxwellian should have but slight influence on the velocity 

and temperature moments, as is indicated by the Maxwell force 

law. In this case, the moments may be obtained without know- 

ledge of ths form of the distribution functions.  *'or the 

hard sphere and Coulomb force jaws considered below, although 

Maxwellians are used to facilitate the integration of the 

Boltsmann cross collision integral, it is not expected, in the 

light of the results for the Maxwell law of force, that any 

non-pathological devjations from Maxwellian would produce 

significant differences In the moments of velocity and 

temperature. 
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Various physical situations may be imagined in which there 

is not equipartition of energy between the components of the 

gas mixture. Perhaps the simplest example would be in the 

mixing of two low density gas streams, initially at different 

temperatures and velocities. Another situation of non-equipartition 

and subsequent relaxation to thermodynamic equilibrium might 

occur as follows. If an arc Jet is expanded through a hyper- 

sonic nozzle, space charge considerations dictate that the 

ion and electron velocities at the exit plane of the nozzle 

will be the same. However, to achieve this final velocity, 

the electrons, having a much smaller mass than the heavier 

particles present, will have to give up much less of their 

random translational energy, and hence their exit temperature 

will be higher than the ion exit temperature. iJ 

Non-equipartition in a gas mixture also occurs, when an 

electric field is put upon an ionized gas, e.g., a noble gas 

seeded with an easily ionized substance. Since the electrons, 

due to their extremely small mass, will lose but a small fraction 

of the energy gained from the field upon collision with heavier 

particles, the electric field becomes a mechanism for prefer- 

entially putting energy into the electrons. This is the case 

when the mixture components possess no internal degrees of 

freedom, and inelastic collisions due to the presence of 

easily excited rotational degrees of freedom are absent. Most 

collisions in a range of parameters pertinent to MHD power 

-3- 
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generation will be elastic for the situation described here. 

It has been shown, furthermore, that the electrons may be 

adequately represented by a Maxwellian distribution with a 

temperature significantly higher than the gas temperature. 

This accounts for the phenomenon of "non-equilibrium" ion- 

ization, important for a certain type of MHD generator 
7 8 

under present consideration.'' 

The exchange of energy between the non-equilibrium 

components of a gas mixture has been discussed in well known 
q 10 

results of Spitzer, 3  and Chandrasekhar  for the case of 

Coulomb interaction, and Cravath,   for the case of hard 

spheres. From considerations of scattering probability in 

12 the limit of short range forces, Boulegue, et. al.,  T. Kihara 

and Y. Midzuno J and E. Desloge  have obtained a general 

expression for the exchange of energy between two gases that 

have Maxwellian distributions at different temperatures. 

These results are usefully givsn by an integral of a function 

containing the total momentum cross section, and such that the 

integrand depends only upon the magnitude of the relative 

velocity. The derivation from the Boltzmann equation directly 

has been done by T. Kihara -J and, using an individual moment 

approach, independently extended by this author to include 

momentum as well as energy differences. For one limiting 

condition, that of a small diffusion Mach number, which is 

discussed below, the energy and momentum relaxation equations 

-4- 
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take on a particularly simple form with clear physical 

significance. Further, the relaxation coefficients permit 

the construction of approximate kinetic models for the 

situation when the distribution functions remain approximately 

Maxwellian during the approach to thermodynamic equilibrium. 

In the following, it shall be assumed that the peculiar 

velocity in each Maxwellian shall be taken with reference to 

the macroscopic velocity of each component, thus providing 

a more flexible result than that presented by the lowest 

order evaluation of the energy exchange integral in Kolodner's 
i fi 

NYU report.   This report also contains the results of 

12       14 15 17 Boulegue, et. al., Desloge,  and Kihara  . Everett,  more 
1 o 

recently, has used the 13 moment method of Grad  with the 

Hermite polynomial expansion containing a peculiar velocity 

relative to the individual macroscopic component velocities 

rather than relative to the mass averaged velocity. This was 

done to obtain closed MHD equations for the case of the Coulomb 

interaction. 

Energy and Momentum Transfer between Maxwellian Gases 

Consider the final epoch of relaxation, assuming that 

each component of the gas mixture has a Maxwellian distribution 

at a temperature T., and that the peculiar velocity c,, in 

each Maxwellian is measured with respect to the macroscopic 

diffusion velocity U., of the ith component. The ith distrib- 

-5- 
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ution function Is taken to be, 

£' ^'{j&rz)C' (i) 

V; 2 £, «■"£>; 

It Is assumed that the spatially homogeneous Boltzmann 

equation provides an adequate kinetic description of the 

relaxation of the ith distribution function to thermodynamic 

equilibrium.  By the above assumptions, only cross collisions 

vj appear. The following notation is standard and is taken from 
19 Chapman and Cowling. ■* 

$£ = jf Jj < v*; -*, f«•> **•<J»± • §'^^ (2) 

where n Is the number of species in the mixture, it is 

assumed that the scattering function K,i(g_, k*g_) depends 

only on the magnitude of the relative velocity g, and upon 

the scattering angle determined by k*£, where k is the unit 

apsidal vector in the plane of scattering. This is naturally 

the case for a spherically symmetric potential. By considering 

the apsidal unit vector k, it will be seen that the subsequent 

angular Integrations may be completed more conveniently than 

by using the more conventional scattering angle. 
• 2 Multiplying equation 2 by m-.CT/2 and integrating over all 

velocities yields, 

* In a future note, the effect of recombination in slowing 
up the relaxation process shall be discussed. 
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which, by a standard transformation may be written as, 

£(f*,U) -- i^ Äi gc< V)f, i/r,,^«4, ^    (4) 

But, from momentum conservation, and from the dynamics 

of an elastic collision between particles of species 1 

and species i, 

\ 
>; Since the scattering function depends only upon the mag- 

■> nitude of the relative velocity g and the component of V 
o    _ ~~ 

parallel to the relative velocity, a transformation of 

integration variables from dc_-.dc. to dc_ d__ is appropriate. 

Thus, equation 4 becomes, 

H*»,KJ,)*Z *■<*«<>-"<) <«.»<     x (6) 

n    TT^771-       n, «■ —_w. + -' ^V  .  /m/y 

where 

aü. » _^ -<4 

•7- 
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Merely by completing the square, the c_. Integral may be 

evaluated, leaving one odd term which vanishes by symmetry, 

an°  3   / 3       LT\        2     & ("»/*"*)    "**">. 

rrr   ->*($-<W)L (7) 

i)Je C H "W ft -i) ♦ $äUi<»,+'>»4)'»>,7;]:kLk,4 JA J$ 

The dk integration may also be done, in principle, for 

a spherically symmetric scattering function, K,.. Consider 

the following laboratory reference system, in which ^ is 

fixed parallel to e__ during the dk integration. See 

figure 1. Thus k » k,+ k. . Prom the choice of coordinates 

in figure 1, e-.geg, e.2*^
= -i"£ * °* and 

i L §■ §- 'W/ ""1( ^ ~"T') *5Ü ' ^'rV * "*') "***' T> )}'•--  ^' <' ^ - = 

(8) 
^ [ j*L\ *«, ^„ < K - rt) +$L»*U'b:( <»>< <"*>, K ^ i *„■ <■/.£ 

Now u ^ ^4* J^n ~ {{(h?M + ha» )cJkj. Jit   -  j A;« */jt 

and  ^# - A* S. 

Thus the bracketed term and the dk integral of equation 

7 become, 

I 
-8- 
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In order to establish contact with the more common 

angular form of the scattering function, consider the dynamics 

of a binary interaction as illustrated by figure 2. Prom 
•       ?     2 * 

figure 1, k^e^cos© , and k = cos Q   . In figure 2, It 
s      7T *Q 2 '      2 

is seen that &  * —? , and therefore, cos 0 ■= sin 6>/2 = 

g(l - cos© ). It should also be noted that K (g, k.gJc/4" 

g<5^1(g,0 )cal-/}. * where-il is the solid angle of scattering. 

Thus, 

^,^(^4'^hr^{^0'^9)a;^v&)0/Ji Ei^ij) 
(10) 

where (Pi(g) is the conventional total cross section for 

momentum transfer. Equation 7 niay now be written as, 

-&(■£"'*■ ''"  Sa ( 2/r-4.)>/4 (,**, **HV)A (^r, ♦/«,£)r/t * 
„/M* (H) 

) e         °S 3*• 3 "*'m*(Ti ~>i ^* 9-'6■^'W/ */&'>)/n,<r> 1 ^$ 
The vector integration dg may be reduced to a scalar integration 

over the magnitude of g, by again choosing an appropriate 

spherical coordinate system as shown in figure 3. It is 

perhaps most convenient to consider the two integrals of 

rr/i 
equation 11 separately. 

^5 4ii7le r»3^il r -"■/< 

(12) 

Prom figure 3,  e„.dU= U,  g_= e_ sinu>cosy? +    e_sin<^ sin/ t 

e_^costJ    , and 

-9. 
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(13) 

Substituting equations 12 and 13 into equation 11, one 

obtains, j>t 

Sill"* >) ~ TrZ    (iWi ,m, +,y>v4f\sm,,Tt * ^ 7jf''1    * 

t. „,,*■ 

I    **Q, }" (14) 

Taking the total energy moment of the Boltzmann equation, 

i.e., flow energy plus random translational energy, a similar 

calculation to the one above yields, 

r.) 
S'/z. 

[■ 
,oo 

/^4^ )o 
& ^ 5  SiHtZt'CjtiOcI^ (15) 

.1 ...i 

In the limit 4JJ-*0, for a two component gas mixture, 

equations 14 and 15 reduce to, 

5t       C^JS^W^/c^H       (l6) 

•10- 
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12 
This is the expression obtained by Boulegue, et. al.  , 

Midzuno,1^ Kihara,1^ and Desloge.1  The calculation for 

the momentum transfer between the species of the mixture 

results in, 

0 <%,$ )2*'JAU L>0Sfrii4j4u)-SlNht*iry4u)]Ja i 
Thus, equations 14 and 17 describe the energy and momentum 

relaxation of a gas mixture to thermodynamic equilibrium 

under the restriction that the individual distribution functions 

do not depart too far from a Maxwellian during the relaxation 

process. The conditions under which this is approximately 

correct are discussed below. 

Energy and Momentum Relaxation for Specific Cross Sections 

In order that the results of the preceeding section be 

made useful, it is necessary to evaluate the integrals in 

equations 14 and 17, at least for certain cases of specific 

interest. This is done for Maxwell, Coulomb, and hard sphere 

interactions, and, for convenience, the results are restricted 

to a two component gas. 

A. The Maxwell Force Law 

For any inverse force law the cross section may be 

expressed as a product of a function of relative velocity and 

20 of certain parameters of the interaction.   Specifically, 

for the Maxwell law of force, the cross section is inversely 

-11- 
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proportional to the relative velocity, and 

•!« ^■""^'XZnl   3~' (18) 

where B.,p is the constant of proportionality in the force 

law. Substituting the cross section as given above into 

equation 14, it is noted that both resulting Integrands are 

even. Therefore, the integrals are equal to one half the same 

integral from -«*> to +*°  . This permits a change of 

variables to symmetrize the Gaussian without effecting 

either limit, and the integration may be carried out 

directly to yield, after some manipulation, 

JtK<- ' l,>*if + ""?u  1    (^,/r^t; p      *   J 

The momentum relaxation is given by, 

2. (/» /n u,) - ^ rr (£*> '^i & >) x/», vi(-?zl> 4H        (20) 

As is well known, for the Maxwellian force law, the relaxation 
a. 

times are constant. The coefficients of 4U and 4 U 

differ somewhat from those given by Sirovich , who obtained 

14 them from Kolodner,  possible due to the fact that Kolodner's 

expansion was in a Maxwellian with reference to a mean 

velocity. 

•12- 
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B. Hard Sphere Interaction 

In the case of hard spheres, 0%  - ^ ( ^ */\) 

where r, and rQ are the effective radii of particles involved 

in the collision. For this situation, it is no longer possible 

to complete the integrals of equations 14 and 17 in a simple 

form. By changing the variable to symmetrize the Gaussian, 

the lower limit of the Integral becomes dependent upon AH, 

and the results can only be expressed in terms of the derivative 

of the error integral with respect to a parameter. A more 

useful, symmetric form for the case of the hard sphere, how- 

ever, may be obtained by direct expansion of the sihh and 

cosh that appear in equations 14 and 17. Due to the factor 

-Ka2 e ^ , convergence is assured. Thus, for the hard sphere 

interaction, the integrals of equation 14 are, 

9 (21) 

p 
Now let the dimensionless parameter KdU become small. This 

was hot done in the evaluation of each integral separately, 
2 

since the K4 U contribution from the first integral combines 

with the second integral to yield a convenient form. For the 

.13. 



2 
hard sphere interaction, in the limit of small K£U , the 

energy relaxation is given by, 

a_ (JL «-. 4.7,) »  1££1E±1 {"*,"»*') ".«i {r,+rl)
l('n,7Z+'»*Z) 

[2 4.(71-7;) ^^u^j (22) 

and the momentum relaxation by, 

It 3 (. /^ * -^«.r (23) 

For the casedJI-»0, equation 22 is the result previously 
9 

obtained by Cravath. 

Equations 22 and 23 are not exact, although their forms 
2 

are quite convenient. They hold only for K4 U small, but 

*"'-$«;, «;- ^ (24) 

where C, and C2 are the speeds of sound respectively in each 

mixture component. Thus, Md is essentially a diffusion Mach 

number. In order that equations 22 and 23 be valid, the 

diffusion Mach number must not be larger than approximately 
2 

• 3, so that Md*.l. This will be true for many cases of 

interest, (in equation 24, %     is the ratio of specific heats.) 

-14- 
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C. The Coulomb Interaction 

Assuming the cross section^ to to that associated with 

the Coulomb interaction (cut off at the Debye length) for 
21 

a singly ionized species, one obtains, 

<% * e?l«A ppy^)* (25) 

where   J[ 5 /2 /7'( £c £ £ /g') 
i/t 

x7 "* 

With the cross section given by equation 25, the 

hyperbolic sines and cosines of equations 14 and 17 are ex- 

panded as in the hard sphere case, and only after regrouping 

the contributions from the first and second Integrals is 

the parameter K/JU2 allowed to become small. In this limit, 

the results are, for energy relaxation, 

(26) 

and for momentum relaxation, 

Br-  (/*,"*, U,   )    " i/^L /*,)   A ^  £  ^^ ( ^ ^"») ^     (27) 
3 (iTTtf- (A-j^s-tr,)3"- 
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It should be noted that, subject to the restrictions 

discussed above, the momentum and energy moments for all 

the cases here considered, acquire a particularly simple form. 

For energy, 

*t(l     J     r£  
L 2    J      (28) 

and for momentum, 

he^'Ui) = ~ ^AU (29) 

where Tg   and T^     are the relaxation coefficients for energy 

and momentum, respectively, which correspond to the molecular 

force laws evaluated above. For all cases, the ratio of 

T/n / ?a is given by, 

£/£ = a 
/ + /m,J/*u, (32) 

If there is a great disparity between the masses of the 

two particles undergoing an interaction, as, for example, in 

the scattering of an electron by an ion, it Is clear that the 

energy of the electron will relax more slowly than the 

momentum. This Is merely due to the fact that the electrons 

exchange little energy In interacting with a heavy particle, 

but their momentum can be changed considerably in rm  encounter 

with a heavj/ -or.stiele. 

-16- 
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Equipartition Relaxation Times 

Perhaps the most appropriate measure of the time 

required for the system to approach thermodynamic equil- 

ibrium is the equipartition time. This is the time required 

for both diffusion velocity and temperature differences to 

become negligible. The equations for the relaxation of 

temperature and velocity differences, for a two component 

mixture, may be written in a convenient form as follows, 

^ITi-V = - «£[(r.-T,ML ,M) . f^O'^-^J (33) 

'zWt-ii) ---«^^^(p^.){y,-y.) m 

where *^ is the coefficient of [£l(7l'7'*) + ~£ C^L-U,) 1    ±n 

equations 19, 22, and 26, for the Maxwell, hard sphere, and 

Coulomb force laws, respectively. To an order of magnitude, 

the temperature equilibration time is given by 

'/%      = «eik ~7*,) (35) 

and the velocity equilibration time by, 

t/r . ^/=(^^t ^^J(—^ J (36) 

It should be noted that these times, for the situation 

where«x^ depends upon temperature, are not e-folding times of 

-17- 
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the relaxation of temperature and velocity differences. Thus, 

they can, at best, give an order of magnitude estimate of the 

times required to reach thermodynamic equilibrium. The ratio 

of these two times is given by, 

(37) 
T ( / +  22UL W I + <?U™J- ) {r    x        ( / * ■??*-; )[ I      /nt ^->x I 

For the case where n » nn,  this ratio b&comes, 
12 

|^ -   (/* jsl^lf^j (38) 

which illustrates once more how the mass effect tends to 

lengthen the time required for temperature differences to 

become small as compared with the time required for velocity 

differences to become small. 

Separability of Time Scales in the Relaxation Process 

j In order that the energy and momentum relaxation processes 

' be described by equations 14 and 17, it is necessary for the 
4 

J individual Maxwellians only approximately to retain their 
i 
j shapes during the approach to thermodynamic equilibrium. i 
< (This is perhaps indicated by the Maxwell molecule, where the 

' momentum and energy moments are independent of the shape of 

'I the distribution function.) Even though the distribution 

x functions might become somewhat non-Maxwellian during the relax- 

,i ,        ation process, as, for example, cross collisions causing the 
,i 
«i 
•i tail of the distribution function of the lower temperature 
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component to be overpopulated with higher energy particles, 

this should have but slight effect upon the moment equations 

themselves. 

It should be noted that the mathematical criteria have 

not yet been given for those conditions under which one 

component of a gas mixture, initially having a Maxwell distrib- 

ution, but not in equilibrium with the other components of 

the mixture, will relax to thermal equilibrium while retaining 

22 its Maxwell shape. D.I. Osipov  has recently shown that 

for a slightly ionized gas, with the heavy particles at one 

fixed temperature, if a Fokker-Plank type equation describes 

the neutral-electron interaction with a Maxwell force law,then, 

if the electron distribution function is initially Maxwellian, 

it will remain so during the relaxation process. Acting as 

reviewer for this paper, Schüler has pointed out that it is 

not clear if a Fokker-Plank equation is applicable in describing 

the relaxation of a light gas in a sea of constant temperature 

heavy particles, since the average momentum transfer to the 

electrons is certainly not small. 

The question of whether an initial Maxwellian will remain 

such during relaxation, is intimately connected with the 

validity of the epochal description of relaxation. Although 

the deeper mathematical aspects of this question remain 

unknown, it would seem that a useful order of magnitude criterion 

in determining the range of validity of a qualitative epochal 

relaxation is to be found in the ratio of the self relaxation 

time to the equipartition time. The self relaxation time measures 
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the effect of self collisions in bringing the individual distrib- 

ution functions toward a local Maxwellian, and if this time 

is much smaller than the equipartition time, the distribution 

functions will remain essentially Maxwellian during the third 

phase of relaxation. This is schematically shown in figure 

4. 

To obtain an estimate of a self-collision time, consider 

once more the Boltzmann collision integral. This contains 

two part3, of which one represents the particles leaving an 

elemental volume of phase space, and the other represents the 

particles that enter this volume element in phase space. 

Thus, 

|£ , jjViy^^-^jf, 5<r^^i       (39) 

For conditions where the individual distribution functions are 

not far removed from a Maxwellian distribution, it is convenient 

to assume that the complicated emission term of the Boltzmann 

equation may be replaced by a Maxwellian divided by some 

appropriate relaxation time. Thus, the self collisions are 

approximated by the BGK model, ^ 

(40) 

where, 

ir"^t^iJk. 
(41) 
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and T may be velocity dependent. A general Integral expression 

for 7*  is developed below and evaluated for the hard sphere 

and Maxwell molecule. 

For a central force interaction, It may be shown that 

(<Ti$J-/l  z tfy 
S~i 

(42) 

where A depends upon the Integrated angular part of the cross 

section. Moreover,  y * 1 for hard spheres, and If * 0  for 

the Maxwell molecule. Since the BGK model is strictly appropriate 

only for departures from equilibrium that are not too great, 

the self collision time will be essentially given by allowing 

f, in equation 4l to be Maxwellian, and the collision time 

becomes, 

no       \^wKTt 

-a if      r / 
(43) 

Asuitable change of variables is indicated, 

*HTCT) lb-si 
n~A*c (W) 

With these simple transformations and a change to spherical 

coordinates, the angular integrations may be done, and equation 

43 becomes, 
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»"•'<. 
-X .r _>._/ 1KT?<'„0 (45) 

U £ K* *&) -<*-*> J^ie ^~*; H^ ^*J 

When jr> 1 is odd, the second integrand vanishes and the 

collision time may be most conveniently obtained. This is 

the case of the Maxwell molecule, when % -  0. Evaluating 

equation 45 for tf ■-  0, and taking the value of A from 

equation 18, one obtains, 

L  ^n, J r' 
' (46) 

where B-- is the proportionality constant of the Maxwell force 

law. The Maxwell self collision time is also independent of 

velocity. 

For the hard sphere interaction, f-l,  and the second 

integral of equation 45 introduces error functions. In this 

case, A*/P"(2r)2, and 

fa --(^T^(to>fc"**'j 
(Vr) 

-       I 
Pik) -- ±{ke^y 

where, , 

Since an average collision time shall be taken as the measure 

of self relaxation, the average particle speed shall be used 

is equation 47, I.e., £ = (i )"* and the mean collision time 
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for hard spheres is given by, 

r-,      .■  r //«.        a. 

X * 9.1,/E ( lhZ)   ,~{lr) 
(48) 

In the case of the Coulomb interaction, the self relax- 

ation time may best be obtained by an impulse approximation 

that takes into account the high probability of many small 

successive deflections. Using this criterion, Spitzer^ has 

given the estimate of the time required for self collisions to 

bring the ion and electron distribution functions to their 

own Maxwellians. This is, for a particle of average speed, 

r 
(49) 

3ummary of Relaxation Results 

Table 1 summarizes the energy, and momentum equipartition 

times, and the self-collisional relaxation times for a two 

component gas, subject to the restriction that the diffusion 

Mach number be small. In order that Grad's hypothesis 

concerning the three basic epochs of relaxation be approximately 

valid, it should be sufficient that each self relaxation time 

be smaller than the appropriate equipartition time. As can 

be seen, not only the mass ratio is of significance in describ- 

ing the criteria for epochal relaxation. Even for the Maxwell 

molecule, the density plays an important role. For example, 

if the number of particles of species 1 were much larger than 

that of species 2, self collisions among species 2 would be rare, 
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and it is not evident that the distribution function of 

species 2 would remain even approximately Maxwellian during 

the relaxation tothermodynamic equilibrium. This comment on 

the density ratio is equally applicable for the Coulomb and 

hard sphere force laws. Furthermore, for the Coulomb and 

hard sphere interactions, the temperature ratio of the interacting 

gases also has the effect, at least initially, of introducing 

a separation of time scales into the problem. Also, for a steady 

state two temperature situation, the temperature ratio as well 

as the mass ratio might prove useful in determining the expansion 

parameters of the system. A semi-quantitative estimate of the 

effects of temperature, density, and mass ratio on the scheme 

of relaxation to thermodynamic equilibrium may be obtained from 

table 1. 

Molecular Models 

For the situation in which the individual distribution 

functions are not too far from Maxwellian, the effect of cross 

collisions, to zeroth order, may be represented as occurring 

between two gases that have Maxwellian distributions. That 

is, for a smaller self collision than equipartitlon time, the 

non-Maxwelllan contribution to the relaxation of the distribution 

function will be zeroth order for self collisions, but higher 

order in the moments that describe cross collisions, i.e., 

the exchange of energy and momentum that leads to thermodynamic 

equilibrium. Thus, in the spirit of the kinetic models 
1 

proposed by Sirovich, one may write approximate kinetic 
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whose main virtue is in the fact that the correct conservation 

equations are obtained upon taking moments. The model equations 

may be written as, 

.4 (>* ££}(&-».)-£'1 (50) 

with a similar equation for the evolution of the distribution 

function for particles of species 2. It is also evident 

in comparing the magnitude of self to cross collisions, that 

the self colllsional time might be characterized, for example, 

by a hard sphere interaction, while the cross collision terms 

could be appropriate to a Maxwell force law. This might be 

the situation for neutral-neutral collisions for self-relaxation, 

and neutral-ion collisions for cross collisions. It should 

also be noted, that even though *VT_ may be appropriate to 

the Coulomb or hard sphere force laws, the phenomenon of thermal 

diffusion will not appear in this form of a model equation. 

Conclusions 

By taking moments of the Boltzmann equation for a mixture 

of gases, in the situation where the Individual distribution 

functions are Maxwellian at different temperatures In the 

frame of reference of the individual species diffusion velocities, 

general equations for the relaxation of energy and momentum 

have been obtained for an arbitrary cross section. The 
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Integrals In these equations have been evaluated for the 

Maxwell, Coulomb, and hard sphere force laws, and, In the 

limit of a small diffusion Mach number, the energy and momentum 

relaxation equations take on a particularly simple form, 

which might have been predicted from phenomenological consider- 

ations. The fact that, in actuality, the true form of the 

individual distribution functions become somewhat non-Maxwellian 

during the relaxation process should have little effect upon 

the moment equations. This is indicated by the Maxwell law 

of force, where the temperature and velocity moments can be 

obtained for an arbitrary distribution function. It is not 

expected that the Coulomb and hard sphere force laws should 

yield qualitatively different results. 

In order for an approximate epochal relaxation to occur, 

the effect of self collisions must drive any large departures 

from Maxwellian back toward a Maxwellian distribution on a 

faster time scale than the time required to establish equi- 

partition of energy. Thus, it was necessary to obtain an 

estimate of the self collision times, which for the Maxwell 

and hard sphere force laws, was found from the absorption 

term of the Boltzmann collision integral. These results are 

presented in table 1, with the relaxation times for equipartition 

of energy and momentum. These coefficients should be of use 

in determining the expansion parameters appropriate to obtaining 

transport coefficients for the steady state, non<-equipartition 

situation found in the two temperature, non-equilibrium MHD 
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generator. This problem is under current investigation. 

Further, the calculation of relaxation coefficients 

for the hard sphere and Coulomb force laws allows the detailed 

construction of approximate kinetic models. The use of these 

models, as has been mentioned elsewhere , greatly simplifies 

the Chapman-Enskog procedure for a gas mixture. 
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Figure 1. Vector Orientation for dk Integration 
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Figure 2.  Initial and Final Relative Velocity 
Vectors in Plane of Scattering 
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Figure 3. Vector Orientation for dg Integration 
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Figure 4.  Schematic Relaxation of a Two Component 
Non-Equlpartition Gas Mixture 
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