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Abstract

The energy and momentum relaxation of the components of

a non-equlpartition gas mixture 1s considered. For the case
where each component of the mi:tture has a Maxwelliau distribu-
tion at a temperature Ti’ with the peculiar velocity 1n the
Maxwellian measured relative to the specles diffusion velocilty,
Uy» and a "diffusion” Mach number not too large, the results
have a particularly simple form. The calculations were

carried out for the hard sphere, Coulomb, and Maxwell force
laws of interaction. It is also noted how these results may
be used to construct approximate kinetic model equatlions for

the case of hard sphere and Coulomb interaction, in a manner

similar to that proposed by Sirovich.1
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Introduction

Ag Grad has previously noted,2 when a gas mixture 1s far
from equilibriuni, under certain conditions, there may be
three epochs, or time scales, of relaxation to thermodynamic
equilibrium.3 First, the lighter specles come into equill-
ibrium with themselves, then the heavier specles equllibrate,
and finally, through cross collisions, the various components
of the mixture come into equilibrium with one another. This
final relaxation to thermodynamic equillibrium 1s characterized
by an equipartition time, and it 1s chlefly the relaxation on
this time scale that shall be discussed below. It should be
noted that this description of epochal relaxation is only
qualitative, in that the individual distribution functions
will not exactly preserve a Maxwelllian shape during the final
relaxation to thermodynamic equilibrium. However, the fact
that the individual distribution functions are not exactly
Maxwellian should have but slight influence on the velocity
and temperature moments, as is indicated by the Maxwell force
law., In this case, the moments may be obtalned without know-
ledge of thz form of the distributlion func"cions.1 tor tne
hard sphere and Coulomb force saws consildered below, although
Maxwelllans are used to facllitate the integration of the
Boltzmann cross collision integral, 1t is not expected, in the

light of the results for the Maxwell law of force, that any

non-pathological deviations from Maxwellian would produce
significant differences in the moments .f velocity and

4 temperature.
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Various physical situations may be 1magined in which there

is not equipartition of energy between the components of the

gas mixture. Perhaps the simpiest example would be 1n the

mixing of two low density gas streams, initially at different
temperatures and velocities. Another situation of non-equipartition
and subsequent relaxation to thermodynamic equilibrium might

occur as follows. If an arc Jét 1s expanded through a hyper-

sonic nozzle, space charge conslderations dictate that the

ion and electron veloclties at the exlit plane of the nozzle

wlll be the same. However, to achieve this final velocity,

. the electrons, having a much smaller mass than the heavier

particles present, will have to give up much less of thelr
random translational energy, and hence thelr exit temperature
will be higher than the lon exit temperature.u’5
‘Non-equipartition in a gas mixture also occurs. when an
electric fileld 1s put upon an ionized gas, e.g., a noble gas
seeded with an easlly ionized substance. Since the electrons,
due to their extremely small mass, will lose but a small fraction
of the energy gained from the fleld upon collision with heavier
particles, the electric field becomes a mechanlism for prefer-
entlally putting energy into the electrcns. Thils 1is the case
when the mixture components possess no lnternal degrees of
freedom, and inelastic collislons due to the presence of
easlly exclted rotational degrees of freedom are absent. Most

collisions 1n a range of paraméters pertinent to MHD power

-3-




generation will be elastic for the situaticn described here.

It has been shown, furthermore, that the electrons may be
adequately represented by a Maxwelllan distribution with a
temperature significantly higher than the gas temperature.6
This accounts for the phenomenon of "non-equilibrium" ion-
ization, important for a certain type of MHD generator
under present consideration.7’8
The exchange of energy between the non-equilibrium
components of a gas mixture has been discussed in well known

9 10 for the case of

results of Spitzer, and Chandrasekhar
Coulomb interaction, and Cravath, AL for the case of hard
spheres. From considerations of scattering probability in

the 1imit of short range forces, Boulegue, et. al.,12 T. Kihara

14 have obilalned a general

and Y. Midzunol3 and E. Desloge
expression foé the exchange of energy between two gases that
have Maxwelllan distributions at different temperatures.

These results are usefully given by an integral of a function
containing the total momentum cross section, and such that the
integrand depends only upon the magnitude of the relative
velocity. The derivation from the Boltzmann equation directly
has been done by T. Kihar315 and, using an individual moment
approach, independently extended by this author to include
momentum as well as energy differences. For one limiting

condition, that of a small diffusion Mach number, which is

discussed below, the energy and momentum relaxation equations

e




take on a particularly simple form with clear physical

significance. Further, the relaxation coefficlents permit

the construction of approximate kinetic models for the

situation when the distribution functlons remain approximately

Maxwellian during the approach to thermodynamlic equilibrium.
In the following, 1t shall be assumed that the peculiar

velocity in each Maxwelllan shall be taken with reference to

the macroscopic velocity of each component, thus providing

a more flexible result than that presented by the lowest

order evaluatlion of the energy exchange integral in Kolodner's

NYU report.16 This report also contains the results of
Boulegue, et. al.:,L2 Desloge,14 and Kihara15. Everett,17 more

recently, has used the 13 moment method of Gradi® with the

Hermite polynomlal expansion containing a peculiar veloclty
relative to the individual macroscoplc component velocitiles
rather than relative to the mass averaged veloclty. This was
done to obtaln closed MHD equations for the case of the Coulomb
interaction.

Jnergy and Momentum Transfer between Maxwellian Gases

Consider the final epoch of relaxatlion, assuming that
each component of the gas mixture has a Maxwellian distribution

at a temperature Ti’ and that the pecullar velocity c in

i’
each Maxwelllan 1is measured wlth respect to the macroscopic

LY WL A

T

diffusion veloclty U,, of the ith component. The 1th distrib-

4
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ution function 1s taken to be,

AT
5= Ee7)C / (1)
Vez g+
It is assumed that the spatlally homogeneous Boltzmann
equation provides an adequate kinetlc description of the
relaxation of the 1th distribution function to thermodynamic
equilibrium.* By the above assumptions, only cross colllsions

appear. The following notation is standard and is taken from

Chapman and Cowling.19
3 . < (/L L <)k cq)dh dY
7= g, WS b Rk e (2)

where n 1s the number of species in the mixture. It is
assumed that the scattering function K., (g, k'g) depends
only on the magnitude of the relative veloclty g, and upon
the scattering angle determined by k:g, where k is the unit
arsidal vector in the plane of scattering. This is naturally
the case for a spherically symmetric potential. By consldering
the apsidal unit vector k, it will be seen that the subsequent
angular Integrations may be completed more convenilently than
by using the more conventional scattering angle.

Multiplying equation 2 by mlci/é and integrating over all
veloclties ylelds,

* In a future note, the effect of recombination in slowing
up the relaxation process shall be discussed.
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2 (3mAT)= & e U A ) hpdbdeder

which, by a standard transformatior may be written as,

But, from momentum conservation, and from the dynamics
of an elastic collision between particles of species 1
and specles i,

C;L—clt = .__q______..__g,[g.rm + G, (e )] b_h

(/"1 +M1/,“) 5)

Since the scattering function depends only upon the mag-
nitude of the relatlve veloclity g and the component of ¥k
parallel to the relative velocity, a transformation of
integration variables from dg_dgi to quq5 1s appropriate.

1
Thus, equation 4 becomes,

oy $/2
2 }w’”,/bT = & 2¢,m,) ~”,m; ]
ot ( 2 ') iz (177‘6.)3“(/”7,7‘/”14)‘ (7; 7;‘)3”- X ( )

—A(3-av)=A g+ ,;&._,.‘;—9-
gje (30 o, +§‘C,L/m 4/1-141) }‘_/q_ h/4 a’/w/(,l a/%




Merely by completing the square, the 2] integral may be

evaluated, leaving one odd term which vanishes by symmetry,

and 3 _ o 2(/”', .4474'> ~e, v,
—;(% 4,7:) g (274) ‘m'(,m o 7_”’"‘7‘)5/1 X
vt -ay)* (7)
555 [g&/m,/rnd(r T) 90U(rm+/m4),m r] "hh . u’ﬁa'%

The dk Integratlon may also be done, in principle, for

a spherically symmetric scat®*ering function, K Conslder

11°
the following laboratory reference system, in which g is
fixed parallel to _93 during the dk integration. See

figure 1. Thus k= k + k, . From the cholce of coordinates

in figure 1, £3°8%8, 8;08=87'E = 0, and

(8)
§ L gthumm, o (7T + G aldobe (s )T, [ dd

——

wow ()b dheu b = ((Ches )y by = o db

-

and _éq, = .-;'—' 3—

Thus the bracketed term and the dk integral of equation
7 become,
!
g, (Ti=7) + §e8U Lmymon ) o7, ] (9)
Shll }ru(s-)g‘—-k)dﬁ' 1

............

1

[

i

|

0° ¢ R 4

ey Sellg oy ‘}_-.‘_L._‘ P | s " PP R S SR ] ";.;' = A




T T T S N T T T T T T W T R N T R S T T RS UV e T = fin ot i)

In order to establish contact with the more common
angular form of the scattering function, consider the dynamics
of a4 binary interaction as 1llustrated by figure 2. From

2

figure 1, k= eocosel s @and k™= 00829' . In figure 2, it
- o

4 .
_Z’_'%E’__’ and therefore, 00529 = sin29/a=

I'd
is seen that &
:él(l - cos® ). It should also be noted that K., (g, k-g)dh=
sd‘il(s,G )d ) , wherefl 1s the 50lid angle of scattering.
Thus,

S‘v:/fq(g-,g‘b)a’.‘l—’-1’-33("""“9)0;4"5/9””2 5%30;,(3)
(10)

where G"m(g) is the conventional total cross section for

momentum transfer. Equation 7 may now be written as,

- 512
2/3 = S (m ) e, o
(Tt 7)= e (274 )75 (o, o) (i T, » o, 7)1
- 11
oo -/f(%”ay) LY _ ( )
S e On 3[ g om, i (T 7 )+ 9.4_(_}(,7,1. ", ) o T 10/9.

—o®
The vectur Integration dg may be reduced to a scalar integration

over the magnitude of g, by agaln choosing an appropriate
spherical coordinate system as shown in figure 3. It is
perhaps most convenient to consider the two integrails of

equation 11 separately.

Vid
o ~l((9’-4g)‘ s ) a0 ~k(3';407 Ve e'&f_‘)dvmw e
Lwe, g;’ q .—]5 =] 2.7750 ¢ 07,,3 J‘b S-”/‘ of (Loweo) =

(12)
am (& ~4(gt+a0%)

2o (e Gna’ Sivh(249a0)dg

From figure 3, e;- 41U = U, g=g sinwcosy + e sin®siny +

2
e,cosw , and

-3
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& g‘lz #qdv cosh(294qu)~ 51 231140)10/3

v trau
.;7‘(4.(_{.*4_({) S e alg*
ﬁ‘ldus o

Substituting equations 12 and 13 into equation 11, one

obtains, Sre
(2 i7)e & AT
‘5’2’({./‘1, N -~ i

72 (¢ 174,) (-, o, )“l(/m/, 7..,‘ -, 7/.)4‘.-'1

e (T=T) (P I
[ /'rav\ S e (,;;45 s//v/;(zjkdu)dj

o

(14)

trau’)
+ ./, (4U4v) S”e"“f’f o 3‘119”0(,054125#@%s)/n’.<291fllui]c/3]

2 k4t

Taking the total energy moment of the Boltzmann equation,
l.e., flow energy plus random translational energy, a similar
calculation to the one above yields,

3 / Ut Z T, ');/L/,V 2
—:——-( *2:/”14-'7; +1-/’7,.m7/ ’) = é’ 4 7 . Z i g

o2 /re (.2‘”4-—)3/1(%/*"”’4')L(/’"/7; "””4'7;);‘/1

X

M;‘44)7/(7,.o"7; ® -/T( zfaut)
[ A )5 e "t s 3’51~h(ae'jau)r/3 (15)

o

= ® _x( “rav') . .
+ & mx?i:ﬁzméﬁ)'dgj e Y o“Mj[ijaUCOSA(Z/rjAU)-S/II/h(Z/rjdu)jd/j]
U

In the 1limit AU»0, for a two component gas mixture,

equations 14 and 15 reduce to,

/22 0 T

K
%(%/@47,) 3 9/’/‘(/;77/ ). 4172 (T=T)) 56 30,;,
CRITE )Y Erm, v o) (o T v T, )

§
j 45 (16)

Ed

-10-
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This is the expression obtained by Boulegue, et. al.lz,

14

Midzuno,13 Kihara,15 and Desloge. The calculation for

the momentum transfer between the specles of the mixture

results in, o
’

o ;7“41‘2 74 ‘)j SN i AU
-9'(/”,/"’,_(4’,) - a— = 32
o2 It QSRR )Y Y om wom Y(o T e, T

(17)
_H(q+aut) :
S“’e 419+ A ﬁ"zu»jau COsh(14940) = smhttfrjl!v)]Jj

@
Thus, equations 14 and 17 describe the energy and momentum
relaxation of a gas mixture to thermodynamic equilibrium

under the restriction that the individual distribution functions
do not depart too far from a Maxwelllan during the relaxation
process. The conditlons under which this 1is approximately

correct are discussed below.

Energy and Momentum Relaxatlon for Specific Cross Sections

In order that the results of the preceeding section be
made useful, it 1s necessary to evaluate the integrals in

equations 14 and 17, at least for certain cases of specific

R, o

Interest. This 1s done for Maxwell, Coulomb, and hard sphere
interactlons, and, for convenlence, the results are restricted

to a two component gas.

A. The Maxwell Force Iaw

L N N e E Y _ ¥ ]

For any inverse force law the cross section may be
expressed as8 a product of a function of relative velocity and
t of certain parameters of the interaction.zo Specifically,

for the Maxwell law of force, the cross section is inversely

4
5 -11-
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proportional to the relative velocity, and

- P 7 8, 7 -{
7 = 277‘('924)[( i, + /) u] g

G
/

N (18)
where 312 is the constant of proportionality in the force

law. Substituting the cross section as given above into
equation 14, it is noted that both resulting integrands are
even. Therefore, the integrals are equal to one half the same
integral from =e0 to +° . This permits a change of
variables to symmetrize the Gaussian without effecting

either limit, and the integration may be carried out

directly to yleld, after some manipulation,

SN B IR

o . /m/ﬂvB 17/ 1) 47 ) L
2 (2mAT)" ‘f”‘[wi-—#—ﬂj {9237, ”.‘[-34(72'7;)*31"’-‘4‘/ (19)

The momentum relaxation is given by,

/7

2 .
/;7/,'//,{,5122) 49 (20)

B 2]
(7 Ur) = 27T (L2 b
- ' R R

el

As 1s well known, for the Maxwzllian force law, the relaxaticn

NNICRMR |

2

times are constant. The coefficients of 4U and A(Jl

~

Pl ';_‘E{

differ somewhat from those given by Sirovichl, who obtained

them from Kolodner,14 possible due to the fact that Kolodner's

expansion was in a Maxwellian with reference to a mean

velocity.




.....

B. Hard Sphere Interaction
' 2
In the case of hard spheres, 74 ~ T +r)

- where ry and r, are the effective radil of particles involved

2
in the collision. For this situation, 1t 18 no longer possible
to complete the integrals of equations 14 and 17 in a simple
form. By changing the varlable to symmetrize the Gaussian,

the lower 1limit of the integral becor.es dependent upon 41,

and the results can only be expressed in terms of the derivative
of the error integral with respect to a parameter. A more
useful, symmetric form for the case of the hard sphere, how-
ever, may be obtained by direct expansion of the sihh and

cosh that appear in equations 14 and 17. Due to the factor
-e'ng, convergence 1s assured. Thus, for the hard sphere

interaction, the integrals of equation 14 are,

© <49 aV’) ¢ J
m, 7 (7-7) (e Ssmh(zjrrau) . # e T, () (40 Q)
0 (At +AU*)
S € J 3‘[24’74(/905‘(2/r3011)—S/ﬂ/h(?./(jau)_]clj =
o

(21)
[ 9
~A 4V 2z AUL L .

e [,m,mz(Tl-n)(;{—, + & ‘rlr'" ) FT (s ) AU ,2,? , )]:
H —ﬁdUL Ppon 7u)3 X 3 T L L
G 3z (T ) [ AT = 24807) +2m 404 O ka0 |
E‘ 3 PN z
E ' Now let the dimensionless parameter K4 U2 become small. This

was not done in the evaluation of each integral separately,

since the K4 U2 contribution from the first integral combines

St e I 4

with the second Integral to yleld a convenient form. For the

X
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hard sphere interaction, in the 1imit of small KAU2, the

energy relaxation is given by,

2 (‘73‘ 'MM’T;) = /a?‘”") (,?’7 M‘) /"’/ a1y (1 er) (7, 7'"4"‘717)

3¢ 3 (M7 2 m)?

[ 24(R-T) 2" | (22)

and the momentum relaxation by,

/L /
PRI 1LY D RN AT R AP,
e = 3 ( ,0“‘1, + /”"L)z (23)

For the case 4J- 0, equation 22 1s the result previously
obtalned by Cravath.9
Equations 22 and 23 are not exact, although thelr forms

are qulte convenient. They hold only for K4 U2 small, but

2

L 2 AUL
av = .;:_Md , My

C-’.l + C:‘ (24)

L

where Cl and 02 are the speeds of sound respectively in each

mixture component. Thus, M, 1s essentlally a diffusion Mach

d
number. In order that equations 22 and 23 be valid, the
diffusion Mach number must not be larger than approximately
.3, 8o that Mg 2,1, This will be true for many cases of

interest. (In equation 24, ¥ 1s the ratio of specific heats.)

-1k~
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C. The Coulomb Interaction
Assuming the cross section fj to b2 that assoclated with
the Coulomb interaction (cut off at the Debye length) for

a singly ionized specles, one obtains,21

v g
g = e Al (o et
77 zo‘ (-, '7‘"1)"

(25)

3/

where A=z 27(E. 4% /)

72
v V/e

With the cross section glven by equation 25, the
hyperbclic sines and cosines of equations 14 and 17 are ex-
panded as in the hard sphere case, and only after regrouping
the contributions from the first and second integrals 1s

the parameter K4 U2 s1lowed to become small. In this limit,

the results are, for energy relaxation,

PR ¥
34 A7) = 2

>t 3 (2R TEEE (o, Tor T,
| (26)
l% L(T,-T,) + 272 Au"]
A
and for momentum relaxatlion,
3 p - (o, 4 “a 9 e_*,A/[ Y gk
q ?Z (/P’//m/.‘*_/l) ) (/ L’M/) 4,7 A ) '1) d.g (27)

3 (2 )y’ (om, T v m, T,)70
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It should be noted that, subject to the restricticns
discussed above, the momentum and energy moments for all
:; the cases here considered, acquire a particularly simple form.
3 For energy,

' , o 3,07 - m &
; 7)o LTt

b

r~

and for momentum,

322(/”’/-(//) = ,;:é“’ m,aY (29)
M

where 72 and 7}'., are the relaxation coefficients for energy
and r.omentum, respectively, which correspond to the molecular
force laws evaluated above. For all cases, the ratio of

7,1' / 7;: is given by,

P pp - 2
M/Z‘; / + [ (32)

If there is a great disparity between the masses of the
two particles undergoing an interaction, as, for example, in
the scattering of an electron by an lon, it is clear that thc
energy of the electron will relax more slowly than the
momentum. This 1s merely due to the fact that the electrons
exchange 1ittle energy in interacting with a heavy particle,
but thelr momentum can be changed considerably in n encounter

with a heavy wocticle.

~16-

Ay I Liofoh, it -80S 8 gl il B Gl M R A - Pt S e T RS Rt i = RS SR M- L a0y e Pl il S R . O R L




s e LR T AV TR TR TR AT v @ oow TR NE T W O TR O,
................ iy ! i S| W ’

Equipartition Relaxation Times

3-" Perhaps the most approprlate measure of the time

_‘ required for the system to approach thermodynamic equil-

E, . ibrium 1s the equipartition time. This 1s the time required
'\ for both diffusion velocity and temperature differences to

become negligible. The equations for the relaxation of

; temperature and veloclty differences, for a two component

X mixture, may be written in a convenlent form as follows,
.'i' : ; U)
.
N d (T,-T, :—u[ - +<Ut -,
". 7&( 2~ 7) (7. /ﬂ ) ( 7»17) (33)
o = ) = ~& ‘ bt Ueg =V
52 W) = = (5o, 53 () (Y2 )
%)
<
T
R where o{ 1s the coefficient of [%L(E'Z) *i:i (Ye ‘S/:)] in
i equations 19, 22, and 26, for the Maxwell, hard sphere, and
.t
! Coulomb force laws, respectively. To an order of magnitude,
the temperature equilibration time is given by
e / /
b / = - =
& /Zr’ “e( 7 T, (35)
- and the velocity equilibration time by,
> . ; P / Mg 7 My
.-:3 //7\‘: R e (A o o, )( ;_ ) (36)
o
;‘.-1
B%
L It should be noted that these times, for the situation

where . depends upon temperature, are not e-folding times of

T
e om ]

::7:g . =17-

PP YUY - ~ b . L Py




......................

...........

the relaxation of temperature and veloclty differences. Thus,
they can, at best, give an order of magnitude estimate of the
times required to reach thermodynamic equllibrium. The ratilo

of these two times 1s given by,

Ty . (e EBE )
7, — o (37)
¥
For the case where n1= N, s thils ratio hccomes,
7z - Z )l 5 (38)
5 T 91
whlew 1llustrates once more how the mass effect tends to
lengthen the time requlred for temperature differences to
become small as compared wlth the time required for veloclty
differences to become small.
Separability of Time Scales in the Relaxation Process
In order that the energy and momentum relaxation processes
g be described by equations 14 and 17, 1t 1s necessary for the
“

individual Maxwelllans only approximatély to retain their

L 'F
Tatalelal A

~ '
-

shapes during the approach to thermodynamlc equllibriun.

(This is perhaps indicated by the Maxwell molecule, where the
momentum and energy moments are independent of the shape of

the distribution function.) Even though the distribution
functions might become somewhat non-Maxwellian during the relax-
atlon process, as, for example, cross collisions causing the

tail of the dlstributlion function of the lower temperature

-18-
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component to be overpopulated with higher energy particles,
this should have but slight effect upon the moment equations
themselves. |

It should be noted that the mathematical criteria have
not yet been given for those condlitions under which one
component of a gas mixture, initially having a Maxwell distrib-
ution, but not in equilibrium with the other components of
the mixture, will relax to thermal equillbrium while retaining
1ts Maxwell shape. D.I. Osipov22 has recently shown that
for a slightly ionized gas, with the heavy particles at one
fixed temperature, 1f a Fokker-Plank type equaiion describes
the neutral-electron interaction with a Maxwelil force law,then,
if the electron distribution function is initially Maxwellilan,
it will remain so during the relaxation process. Acting as
reviewer for this paper, Schuler has pointed out that 1t 1s
not clizar if a Fokker-Plank equation 1s applicable in describing
the relaxation of a light gas in 2 sea of constant temperature
heavy particles, since the average momentum transfer to the
electrons 1s certainly not small.

The ouestlon of whether an 1Initlal Maxwellian will remain
such during »elaxatlon, 1s intimately connected with the
validity of %the epochal description of relaxation. Although

the deeper mathematical aspects of this question remain

unknown, it would seem that a useful order of magnitude criterion

e

«

) in determining the range of validity of a qualitative epochal

RN M

relaxation 1s to be found 1n the ratlio of the self relaxation

time to the equipartition time. The self relaxation time measures

-
iy ’_l o
PLNE AL W,
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af the effect of self collisions in bringing the individual distrib-

Y ution functions toward a local Maxwelllan, and if this time
:ﬁ?-‘ is ruch smaller than the equipartition time, the distribution
‘ functions will remain essentially Maxwellian during the third
N phése of relaxation. This 1s schematically shown in figure
;W To obtain an estimate of a self-collision time, consider
. once more the Boltzmann colllision integral. This contains
tzj two parts, of which one represents the particles leaving an
i% elemental volumg of phase space, and the other represents the
;: particles that enter this volume element in phase space.

_: Thus,
; o | /
& of - ([ #y'grdedt- 55 qrdeda

o
oA |
o For conditions where the individual distribution functions are
‘8 not far removed from a Maxwellian distribution, it is convenient
iﬁ to assume that the complicated emission term of the Boltzmann
;j equation may be replaced by a Maxwellian divided by some
}j appropriate relaxation time. Thus, the self collisions are
3} approximated by the BGK model,23
= 24 Mzh
’ : NF4 T (40)
zsé where,

(41)




and 7 may be velocity dependent. A general integral expression
for 7 is developed below and evaluated for the hard sphere
and Maxwell molecule.

For a central force interaction, it may be shown that
[ Sl
fmcj) dn =449 (42)

where A depends upon the Integrated angular part of the cross
section. Moreover, ¥ =1 for hard spheres, and ¥= 0 for

the Maxwell molecule. Since the BGK model is strictly appropriate
only for departﬁres from equllibrium that are not too great,

the self collision time will be essentlally given by allowing

fl in equation 41 to be Maxwelllan, and the collision time

becomes,

/
7y ‘1774.7‘) f ’c cfde. (43)

Asuitable change of varlables is indicated,
= s 72 C C/
2= (£75) 1&-¢
ﬁb LAT) c

With these slmple transformations and a change to spherical

(44)

coordinates, the angular integrations may be done, and equation

43 becomes,

-21-
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When ¥+ 1 1s odd, the second integrand vanishes and the
collision time may be most conveniently obtained. This is
the case of the Maxwell molecule, when &= 0. Evaluating
equation 45 for ¥ = 0, and taking the value of A from

equation 18, one obtains, ,
72
2 Bu
L = z27(.%22) ..u..L]
ant g,
! (46)

where B11 i1s the proportionality constant of the Maxwell force
law. The Maxwell self collision time is also independent of
velocity.

For the hard sphere interactlion, ¥=1, and the second

integral of equation 45 introduces error functions. In this

case, A=£7(2r)2, and

Aot

. ~re’
L r“/m(d) =
o : ) [2 c(ae =)

[

v
}‘- I‘ “

Cl
£

» $TAPCE) . PG g
2z =

where,

Pog) = 2 (SeVly

vy Jo

Since an average collision time shall be taken as the measure

of self relaxation, the average particle speed shall be used

e
&
. il
. L}
s
X
(3
E"':
»‘1‘
u

3\ 2
is equation 47, i.e., L o= (5:) and the mean collision time

L bt
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for hard spheres 1= given by,

. LT\t oyt
£ "3/52(;%:) A e

! | In the case of the Coulomb Interaction, the self relax-~
ation time may best be obtalned by an impulse approximation
that takes into account the high probability of many small
successlve deflections. Using thils criterion, Spitzer9 has
gilven the estimate of the time required for self collisions to
bring the lon and electron distribution functions to thelr
own Maxwelllans. This 1s, for a particle of average speed,

J o Somomednd

- — ——

7T e R

(49)
Summary of Relaxation Results
t Table 1 summarizes the energy, and momentum equlpartitlion

times, and the self-collisional relaxation times for a two
component gas, subject to the restriction that the diffusion
Mach number be small. In order that Grad's hypothesis
concerning the three basic epochs of relaxation be approximately
valid, 1t srould he sufficlent that cach self relaxalion time

be smaller than the appropriate equipartition time. As can

be seen, not only the mass ratio 1s of significance in describ-
ing the criteria for epochal relaxation. Even for the Maxwell
molecule, the density plays an Important role. For example,

if the aumber of particles of specles 1 were much larger than

that of species 2, self collisions among species 2 would be rare,
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and it 1s not evident that the distribution function of

species 2 would remain even approximately Maxwelllan during

the relaxation tothermodynamic egquilibrium. This comment on

the density ratio is equally applicable for the Coulomb and

hard sphere force laws. Furthermore, for the Coulomb and

hard sphere interactions, the temperature ratio of the interacting
gases also has the effect, at least initially, of introducing

a separation of time scales into the problem. Also, for a steady
state two temperature situation, the temperature ratio as well

as the mass ratio might prove useful in determining the expansion
parameters of the system. A semi-quantitative estimate of the
effects of temperature, density, and mass ratio on the scheme

of relaxation to thermodynamic equlilibrium may be obtained from
table i.

Molecular Models

For the situation in which the individual distribution
functions are not too far from Maxwellian, the effect of cross
collisions, to zeroth order, may be represented as occurring
between two gases that have Maxwellian distributions. That
is, for a smaller self collislion than equipartition time, the
non-Maxwellian contribution to the relaxation of the distribution
function will be zeroth order for self collisions, but higher
order in the moments that describe cross collisions, i.e.,
the exchange of erergy and momentum that leads to thermodynamic
equilibrium. Thus, in the spirit of the kinetic models

proposed by Sirovich,1 one may write approximate kinetic
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whose main virtue 1s in the fact that the correct conservation
equations are obtained upon taking moments. The model equations

may be written as,

) ' . 2 ot
Gho M L, /‘i,{ é%un--n)wfi”g e o) ( T )

| AT,
“L2é 7? /ﬂlijj
0
a (1 ) (Y -g)._c_,.] (50)
 3mir,

with a similar equation for the evolution of the distribution
function for particles of species 2. It 1s also evident
in comparing the magnitude of self to cross collisions, that
the self collisional time might be characterized, for example,
by a hard sphere interaction, while the cross collision terms

. could be appropriate to a Maxwell force law. This might be
the situation for neutral-neutral collisions for self-relaxation,
and neutral-ion collisions for cross collisions. It should
also be noted, that even though QCE may be appropriate to
the Coulomb or hard sphere force laws, the phenomenon of thermal
diffusion will not appear in this form of a model equation.

Conclusions

By taking moments of the Boltzmann equation for a mixture
of gases, in the situation where the individual distribution
functions are Maxwelllan at different temperatures in the
frame of reference of the individual species diffusion velocities,
general equations for the relaxatlion of energy and momentum

have been obtained for an arbil.rary cross section. The
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integrals in these equations have been evaluated for the
Maxwell, Coulomb, and hard sphere force laws, and, in the

1imit of a small diffusion Mach number, the energy and momentum
relaxatlion equations take on a partlcularly simple form,

which might have been predicted from phenomenological consider-
ations. The fact that, in actuality, the true form of the
individual distributlon functions become somewhat non-Maxwellian
during the relaxation process should have little effect upon
the moment equations. This is indicated by the Maxwell law

of force, where the temperature and velocity moments can be
obtalned for an arbitrary distribution function. It is not
expected that the Coulomb and hard sphere force laws should
yleld qualitatively different results.

In order for an approximate epochal relaxatlon to occur,
the effect of self collisions must drive any large departures
from Maxwellian back toward a Maxwelllan distribution on a
faster time scale than the time requlired to establish equi-
partition of energy. Thus, it was necessary to obtain an

estimate of the self collision times, which for the Maxwell

-and hard sphere force laws, was found from the absorption

term of the Boltzmann collision integral. These results are
presented in table 1, wlth the relaxation times for equipartition
of energy and momentum. These coefficients should be of use

in determining the expanslon parameters appropriate to obtaining
transport coefficlents for the steady state, non-equipartition

situation found in the two temperature, non-equilibrium MHD
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generator. This problem 1s under current investigation.
Further, the calculation of relaxation coefficients

for the hard sphere and Coulomb force laws allows the detalled

construction of approximate kinetic models. The use of these

models, as has been mentioned elsewherel, greatly simplifies

the Chapman-Enskog procedure for a gas mixture.
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Figure 2. 1Initial and Final R&lative Velocity
Vectors in Plane of Scattering
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Figure 4, Schematic Relaxation of a Two Component
Non-Equilpartition Gas Mixture




