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TECHNICAL NOTE NO • 1728 

SHEAR LAG IN .AXIAI.LY LOADED P.ANEIS 

By Paul Kuhn and James P. Peterson 

The method of calculating shear-lag effects in arla.lly loaded panels 
by means of the previously developed concept of the "substitute singl&'­
stringer panel 11 is simpli:f'ied by an empirical expression for the width of 
the substitute panel which eliminates the need for successive approxima­
tions. For simple types of single-stringer panels~ a theory not dependent 
on the assumption of in:f'inite transverse sti:f'fness is developed that can 
be used to estimate the effect of transverse sti:f'fness on the stresses in 
practical panels. strain measurements on five panels indicate that the 
theory should be adequate for design purposes and that the effect of 
transverse sti:f':f'ness may be appreciable. 

INTRODUCTION 

Tne problem of introducing concentrated forces at one end of a 
longitudinally stiffened panel is a .~Jndamental one in the shear-lag 
theory and has been treated by a number of authors. The solutions 
obtained by standard method.s of analysis are quite cumbersome even for 
panels of constant cross section~ and most of them are not applicable 
to the practical case of panels vith arbitrarily variable cross section. 
Moreover~ almost all these solutions are based on the assumption of 
in:f'inite transverse sti:f':f'ness of the panel; this assumption leads to 
the result that the maximum shear stress is in:f'inite when there are no 
discrete stringers attached to the sheet~ a result "Which is so much in 
error as to be useless to the stress analyst. For a finite number of 
stringers~ the error becomes finite but is still appreciable in the usual 
range of stringer numbers. 

In an effort to provide a practical method of shear-lag analysis~ 
an approximate 11 substitute single-stringer method 11 was presented in 
reference 1. Although this method is also based on the assumption of 
in:f'inite transverse stif:f'ness~ it does not give in:f'inite shear stresses 
as the mathematically more rigorous method.s do; in fact~ the agreement 
between this theory and early tests was :tound to be fairly good (refer­
ence 2). Further study of the problem indicated~ however~ that some 
investigation of the in:f'luence of finite transverse sti:f':f'ness was 
desirable. The results of this investigation are presented in this 
paper. 
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Reference l describes a successive-approximation method for locating 
the substitute single stringer. Tn view of the approximate nature of the 
method_, however, successive approxi:ma.tions appear to be an unwarranted 
complication. A "one-etep" method is therefore developed to locate the 
substitute stringer. Although th:Ls subject is theoretically not directly 
related to that of finite transverse stiffness, it. was found necessary to 
investigate the two subjects simultaneously, because the for:m:ulas 
developed rest partly on an ampirical basis_, and in tests the two problems 
cannot be separated entirely. 

The reference material, particularly that of a theoretical nature_, is 
scattered among a number of papers. Tn order to eliminate the necessity 
that the reader refer to all these papers, the present investigation 
incorporates a general discussion of the approximate method and of the 
relevant features of the rigorous methods. 

SYMBOLS 

A area_, square inches 

E Ymmg1 s modulus_, pounds per square inch 

G shear modulus_, pounds per square inch 

K.2 Gt 
-c = EbAr, 

p 

b 

n 

t 

X 

external load on half :panel, pounds 

half-width of single-stringer :panel_, inches 

transverse distance ±":rom centroid of flange to common centroid 
of stringers in half-panel 

transverse distance from flange to substitute single stringer 

number of stringers in half panel 

sheet thickness, inches (without subscript denotes Shear carrying 
sheet) 

distance from tip of panel_, inches 
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cr direct stress, ~ounds ~er square inch 

T shear stress, ~ounds ~er square inch 

Subscri~ts: 

F f'lange 

L longitudinal or stringer 

R chordwise rib 

S denotes substitute ~anel 

T total 

0 denotes station at ti~ (x = 0) 

C denotes centroid of' stringer material 

. , 
Theory of' sinsJ-e-stringer panel of' inf'inite transverse stif'f'ness.-

The single-stringer ~anel as visualized in the simplif'ied shear-lag 
theory consists of' two f'la.nges F (f'ig. l(a)), a stringer L, a connecting 
sheet ca~able of' develo~ing only shear stresses, and a system of' transverse 
ribs. The ribs are assumed to be inf'initely closely spaced; if' they are 
also assumed to have inf'inite axial stif'f'ness, they do not enter into the 
theory explicitly and will theref'ore not be show.n in the f'igures. Through­
out this ~a~er, .synnn.etry about the longitudinal axis is assumed to exist 
so that :the analysis can be conf'ined to the half'--pan.el. 

For a ~anel of' constant cross section, the equations of equilibrium 
of' the elements (f'ig. l(b)) yield the relations 

If' the transverse stif'f'ness is inf'inite, the incremental shear stress 
caused by the dif'f'erence between OF .and or, is 

dT = - ~ (O)r - crr,) dx 

(1) 

(2) 

Dif'f'erentiation of' expression (2) and substitution into it of'. the values 
f'or dCJ":F and dar, f'rom equation (1) gives the dif'f'erential equation 

d2T az:;- :K2T = 0 (3) 
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where 

(4) 

For the :present :purpose~ attention may be confined to inf'ini tely long 
:panels. The solution of' equation ( 3) is then 

T - PK AL e-K:x: 
- t Air (5) 

A simple solution may also be obtained f'or a :panel in "Which the flange is 
tapered so as to maintain constant flange stress (f'ig. 2(a)). The 
equilibrium equations are then- (f'ig. 2(b)) 

(6) 

Relation (2) still applies and the dif'f'erential equation f'or this case 
takes again the f'orm of' equation (3) with Rt 2 substituted f'or x:2, 
"Where 

(7) 

The solution is 

(8) 

"Where AF
0 

denotes the cross-sectional area of' the flange at the tip. 

The cross-sectional area AF necessary to maintain OF constant~ 

obtained by substituting equation (8) ~to equation (6) and integrating, 
is 

(9) 

If' AF
0 

< Ar,, a constant value of' OF cannot be obtained. 

Ri orous thee of' the liillltistr · r el of' infinite transverse 
stiffness.- For an idealized :panel similar to that Shawn in figure l a) 
but having several stringers, relations corres:pond1ng to equations (l) 
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and (2) can be -w;ri tten f'or each bay. For a panel such as that shmm in 
figure 3 (two stringers in the half' -:panel)_, the result is a set of' two 
simultaneous dif'f'erential equations 

5 

(10) 

'Where the coefficients K are simi 1 ar in form to the coefficient K 
given in equation (4) except that they involve the width of' the individual 
sheet bay and the areas of' the adjacent stringers. The solution may be 
written in the form 

(ll) 
' 

T 2 = c3e~lx + C4e~ 

The constants can be determined by standard methods without dif':f'iculty _, 
but the rather cumbersome f'or:mulas are not of' sufficient interest to be 
given herein. An equivalent solution may be found in reference 3 in 
slightly different form- (the dif':f'erential equations are written f'or the 
stringer forces instead of' the shear stresses). 

For ~anels with more stringers (say 3 to 10 in the half-panel)_, 
the standard. methods :f'or determining the constants became very cumbersome_, 
and mathematical refinements are desirable. A large amount of' work on 
this subject has been done_, chiefly in England • Reference 4 is 
representative of' the results obtained and was used as basis f'or the 
comparative calculations to be shmm subsequently herein. The stresses 
are obtained by smmning a number of' terms of' an in.fini te series after 
the coefficients f'or these series have been obtained by solving a 
transcendental equation :f'or each coefficient; the computations are quite 
lengthy_, particularly f'or points near the tip of' the panel 'Where the 
convergence is slow. 

When the number of' stringers becOII18s very large_, the most convenient 
method of' approach is to assume that the stringers are spread out into 

- ---- -- ---·------ ------·----~--
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a "stringer sheet" of uniform thickness; the set of simultaneous ordinary 
differential equations is then replaced by a partial differential equation. 
This problem was solved by investigators in several countries during 
the war years, with results -which are either strictly equivalent or else 
differ only in minor details. The solution given .in reference 5 is 
used in the present paper because the reference is readily available and 
contains :more numerically computed cases than the others. The stringer­
sheet solution may be used -as an approximation for panels with a finite 
number of stringers. The stress in a given stringer is taken as equal 
to the stress in the correspond1ng fiber (or "elemental stringer") of the 
stringer sheet; the shear stress in a sheet bay between two stringers may 
be similarly taken as the shear stress in the stringer sheet along a line 
correspond1ng to the middle of the sheet bay. In regions -where the 
shear stress .changes rapidly' in the chord-wise direction, somewhat better 
results are obtained by integr-ating the shear stress in the stringer 
sheet between two lines correspond1ng to the stringers bounding the 
sheet bay in question. Gr-aphs and formulas based on these methods are 
given in reference 6, and comparisons made by British investigators show 
that there is fairly close agr-eement with the results obtained by 
solving sets of simultaneous differential equations like equations (10) 
-when the number of stringers in the half--panel is as low aa five. 

Very few attempts have been made to extend any of these mathematical 
methods to panels with va.r~able cross section, and the computational 
labor involved is too large to consider them as practical methods for 
general use. 

The substitute single-stringer method of a.na.lyzing :mu.J.tistringer 
panels.- In practice, the flanges of :multistringer panels are strongly 
tapered in order to reduce the weight. Because the more rigorous 
methods of analyzing :multistringer panels discussed in the preceding 
section cannot deal with panels of arbitrarily variable section without 
excessive labor, if at all, a simplified method was developed and presented 
in reference l. ~e basic idea in this method is that the designer need 
not know all the details of the stress distribution in the panel. He 
needs to lrnow primarily two i tem.s: the max1nnun shear stress, because it 
determines the sheet ·thickness required, and the shear flow along the 
flange, because it determines the rivet design; in addition, he must be 
able to compute the flange stress in order to insure that the flange is 
not tapered too rapidly. This information can be obtained with a fair 
degr-ee of accuracy by analyzing a simplified "substitute panel" that is 
identical with the actual panel except that all the stringers contained 
in the half-width are combined into a single stringer. The chord wise 
location of this substitute stringer had to be established by theoretical 
or experimental data. 

The procedure given in reference l was as follows. In first approxi­
mation, the substitute stringer is located at the common centroid of the 
stringers Which it replaces. The analysis of the "substitute single­
stringer panel" gives a first approximation for the chordwise average 
of the stringer stresses at all stations along the span. The chordwise 
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distribution of these stresses is then computed by use of an assum.ed 
simple law of distribq.tion. The chordwise location of the centroid of 
the stringer forces is next calculated a.D.a. used as second approx.l.mation 
for the location of the substitute stringer, and the process is repeated, 
if necessary, until the changes become negligible. 

Test results showed reasonable agr-eement with those calculated by 
the foregoing prOcedure; however, because of the approximate nature of 
the method, the use of successive appro:x:ima.tions appears sOID.e"Wha.t 
unjustified. A procedure "Will therefore be developed later in this 
paper for establishing the location of the substitute stringer directly. 

The substitute single-stringer panel with arbitrary variation of 
cross section along the span can be an.alyzed by means of the recurrence 
formula given in reference 7. One item should be noted that is not 
covered in this reference. The elementary solution is def+ned as that 
giving the normal stressee 

. p p 
0]-=G = =-

L ~+~ AT 

Now, if AF or AL (or both) vary along the span, the "elementary 

flange force 11 (the flange force given by the elementary theory) 

and the (total) "elementary stri:D.ger force" 

(ll) 

will also vary along the span. For Btatic equilibrium, this variation 
calls for 11elementa.ry shear flows" 

These elementary shear flows !III.l.St be added to those aris1ng from the 
x-forces of the shear-lag analysis made according to reference 7. 

I 

Wh~n the area AF (or AL) varies along the span by steps, 

(l2) 

formula (l2) would give an infinite shear flow that acts, however, only 
over an infinites1mally small distance along the span; the elementary 
shear force is ther~fore mathematically Indeterminate. Physical 
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consideration of the problem suggests that the step-curve of area varia­
tion should be replaced by a continuous curve for the purpose of ~valuating 
formula (l2). If the steps are close together, or small, a fair curve 
may be dra-wn to represent the "effective" Variation of area. If the 
steps are not close together and are large the "effective" curve will 
undoubtedly not be fair (though continuous) but there is neither theory 
nor experimental evidence .available at present to serve as a guide in 
estillla.ting this curve. It "Will be advisable, therefore, to avoid this 
uncertainty by avoiding a large step close to the tip of the panel, 
'Where the shear stress is a ma:ximum. The elementary shear flow in a 
panel with constant-stress flaD.ge and a ratio ~ /AL equal to unity 
constitutes 25 percent" of the total shear flow; ~e problem of estimating 

the effective value of ~ (~) ~at the tip is therefore of some 
importance. 

The ma:ximum shear stress probably always occurs in the sheet bay 
adjacent to the flange; consequently, for design purposes, there is no 
apparent need for finding the chordwise distribution of the shear 
stresses. The maximum stringer stress may be either the uniform stress 
existing at a large distance from the tip of the panel or a local peak 
close to the tip in the first stringer. If this local peak should be 
of design interest, the stringer stresses in the tip region can be 
estimated by the procedure for chordwise distribution given in reference 1. 

Theory of slllgle-£tringer panel with finite transverse stiffness.­
The substitute single-£tringer method of analyzing nrultistringer panels, 
based on the theory of the single-£tringer panel of infinite transverse 
stiffness, has been applied quite successf'ully to a nuniber of test 
panels (references l, 2, and other data). This fact suggested that the 
substitute single-£tringer method might also be used to develop an 
approx:iina.te theory for panels "With finite transverse stiffness. 

The panel is again visualized as in figure l(a). The axial stiffness 
of the ribs is now assmned to be finite; Because the ribs are assumed 
to be infinitely closely spaced_, they may be considered as forming a 
rib sheet; the thickness ~ of this sheet defines the erlensional 

stiffness of the ribs. (The rib sheet has, of course, zero longitudinal 
and shear stiffness). At the tip, a special rib of cross-sectional 
area AR is assmned to exist (fig. 4(a), "Where the ribs are shown a 
finite distance apart for practical reasons). 

A rib away from the tip is loaded by the difference in the shear 
flows to either side of it (fig. 4(c)); these differences are small and 
practically vanish at some distance from the tip. The tip rib however, 
is loaded by the full shear flow existing at the tip (fig. 4(b)) and 
is, therefore, relatively heavily strained. The effect of finite 
transverse stiffness may consequently be expected to be chiefly a tip 
effect, and a theory developed for long panels should be adequate for 
most practical needs. 
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The shear stress T may be considered as. made up of' two parts 

T = Tl + -rll 

where the part T 1 is due to the longi tua 1nal strains (f'lange and 
stringer strains) and the part T 1 1 is due to the transverse strains 
(rib strains). The equilibrium equations (l) written f'or the panel 
with inf'inite transverse stif'f'ness remain unchanged, but equation (2) 
must be changed to read 

d-r
1 

G ( ) dx =-Eb ct:F-crr. 

(l3) 

(l4) 

As mentioned bef'ore, any elemental rib is loaded by the dif'f'erence 
between the shear f'lows to either side of' it (f'ig. 4(c)). Since the 
shear f'lows are constant between the f'lange and the stringer~ the rib 
stress increases linearly f'rom zero at the f'lange to a max1mmn at the 
stringer. For convenience, let DR designate the average stress in a 
rib; the rib stress at the stringer is then 2<r:a. The equilibrium 
equation f'or a rib then yields the expression 

The total extension of' a rib is therefore 

The derivative of' this extension def'ines a shear strain along the 
f'lange (f'ig. 4(d)) 

d~ 
i =- dx 

(l5) 

(l6) 

The shear strain decreases linearly along the rib to zero at the stringer. 
The theory of' the singl~ringer panel used herein, however~ requires 
the assumption that the shear stress if?_ constant along the rib; the 
average value (l/2) of' the shear strain is therefore used to calculate 
the part of' the shear stress caused by transverse straina as 

(l7) 

- - - --- --- ~ - -------~~-~ ----~-----------
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Differentiating twice, and letting 

(18) 

yields 

(19) 

Differentiation of expression (14) gives 

which can be transformed with the aid of the equilibrium. equations (1) 
into 

where K has the same meaning as given before in fornru.la ( 4). If 
equations (19) and (20) are added and the defining expression (13) is 
introduced, a slight rearrangement of' terms gives the differential 
equation 

(20) 

(21) 

This equation reduces to equation (3) for the :panel with infinite transverse 
stiffness if it is multiplied. through by a. and t:R is then increased 
indefinitely. 

The solution of the dif'ferential equation for the infinitely long 
panel is 

(22) 

Where the constants K are defined by 

(23) 
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(24) 

Because #a. is often small, the computation of' K2 may give trouble 
'When the slide rule is used; the dif'f'iculty may be avoided by using the 
approxilnation 

The constants c1 and c2 are determined f'rom the boundary 
conditions. One condition is, at :x: = 0, 

and 

or.= 0 

(25) 

Tne other condition is that the strain in the tip rib :must be equal to 
the strain in the adjacent edge of' the rib sheet, or the strain in the 
adjacent elemental rib. The strain in the tip rib (f'ig. 4(b)) is 
given by the expression 

OR Tobt 
E ------%- E - 2A# 

and the strain in the adjacent elemental rib is obtained by mod 1.f'ying 
expression (16) as 

E"R- = _ ~ (dT) 
~'V 2EtR d:x: 0 

vTith these boundary conditions, and with the auxiliary pa.ra:m.eters 

(26) 
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the constants are f'ound. to be 

(27) 

(28) 

For an inf'initeJ.y stif'f' tip rib (~~ oo), the expressions simplify to 

01 = -'YC2 

When there is no tip rib (An = 0), 

/=l 

and consequently T 0 = 0, as it must be because no shear stress can 

exist along a f'ree edge. 

(29) 

(30) 

(3l) 

Inspection of' the derivation shows that the formulas are applicable 
to a panel with a constant-stress f'lange if' ~ is understood. to be AFo 

in the expression f'9r J3 and K is replaced by Kt. If' the sheet 

carries discrete transverse stif'f'eners of' area Atr and pitch d, the 

thickness of' the rib sheet lies between the limits 

(32) 

The upper limit applies when the sheet is not buckled, the lower limit 
when the sheet is f'ully buckled. For a buckled sheet, the value of' G 
must also be reduced. Because the effect of' f'inite transverse stif'f'ness 
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is localized near the tip:~ transverse stif'f'eners should probably be 
disregarded unless their pitch d is less than 1jK1 • 

13 

Location of' substitute stringer established by comparison with 
"rigorous" methods.- The location of' the substitute single stringer may 
be defined by the expression · 

(33) 

'Where f' is a factor less than unity". In an att~t to establish this 
factor on a theoretical basis;, comparative calculations were made f'or a 
number of multistringer panels as follows. Three types of panels were 
selected;, each type ha-ving two;, six;, or infinitely :ma.ny stringers in 
the half'-:width. For each type;, panels of' two proportions were selected;, 
one panel in which the flange area AF was a fraction of' the total 

stringer area AL and one panel in "Which AF was a multiple of ~· 
The ratios ~/AL chosen were not the same f'or all types of panels 
because available results were used "Whenever possible. For each of' the 
six panels thus selected;, the shear stress along the edge was computed 
by a "rigorous" method (infinite transverse stif'f'ness being assumed) 
and again by the substitute single-stringer method for three assumed 
values of the factor f'. The shear stress was chosen as. a basis of' com­
parison in preference to the flange stress because it is a more sensitive 
criterion. (The flange stress is kno-wn from elementary statics at 
both ends of' the panel; consequently:~ no theory can err very much on the 
flange stress.) 

For the two-stringer panel, equations (10) were set up and solved; 
f'or the six-stringer :panel;, the method of' reference 4 was used;, and;, 
f'or the stringer sheet, the method of' reference 5. 

The results are sho:wn in figure 5. For the two-stringer panel 
with a small flange (f'ig. 5(a));, f = 0.7 gives a very close approxima­
tion (within a fraction of' a percen:t); with the large flange (f'ig. 5(b)) :~ 
the error is about 4 percent, the substitute single-stringer method 
giving the higher shear stress. For the six-stringer panel with a 
small flange (f'ig. 5(c)) :~ f = 0.5 gives the best approximation;, and the 
inspection of' the curves indicates that the agreement could'be improved 
by use of a smaller value- of f'. For the six-stringer panel with a 
large flange (fig. 5(d));, f' = 0.5 gives the best approximation f'or the 
max1nmm shear stress;, although not the best one f'or the stress at some 
distance away from the tip. 

For the stringer sheet;, the rigorous theory gives an infinite shear 
stress at the tip. By the substitut~ single-stringer.method, this value 
cannot be obtained if' a reasonable approximation to the rigorous shear 
stresses at finite distances away from the tip is also to be obtained. 
The single-strD:Ber method in which a finite value of' the factor f is 

/ 

-~-------------~--~-~------~~~ 
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used. is capable only of' approximating the rigorous shear stresses over a 
certain region away f'rom the tip (f'igs. 5(e) and. 5(f')) and. yields then 
f'ini te values of' maximum shear stress. If' the in:f'ini te shear stress of' 
the rigorous theory were to be obtained. by the single-stringer theory, 
it would. be necessary to make the factor f' equal to zero. 

Tlie results may be. summarized. as follows: In order to achieve the 
best possible agreement between the maximum shear stress calculated. by 
the substitute single-stringer theory and. that calculated. by the rigorous 
theories based. on the assumption of' in:f'ini te transverse stif'f'ness, the 
factor f should be taken as about 0. 7 f'or two-stringer panels and. 
should. be progressively decreased. to zero as the number of' stringers 
goes to in:f'inity. 

Ta.e preceding comparisons are essentially of' academic rather than 
practical interest. Actual panels have only finite transverse stif'f'ness, 
and the factor f' would. therefore be determined. best by comparisons 
with rigorous theories based. on ·the assumption·of' finite transverse 
stif'f'ness ~i.hich would. eliminate the d.if'f'iculty of' dealing wlth the 
in:f'inite shear stresses encountered. in the limiting case of' in:f'initely 
m.a.ny stringers. Unfortunately, the only theories available (references 8 
and. 9) require laborious calculations, a.nd experimental checks would. 
still be desirable because simplif'ying assumptions. are mad.e even in 
these theories. For these reasons, further work on the theoretical 
determination of' the factor f' was abandoned. in f'avor of' a direct 
empirical determination. 

Empirical location of' substitute stringers and. verif'ication of' 
theory f'or finite transverse stiffness.- For the empirical determination 
of' the factor f', shear strain measurements alongsi.d.e the flanges of' 
three panels of' constant section and. two panels of' variable section 
were used.. The constant- section panels are shown in figure 6. Panel A 
had been tested previously (reference 2). Panel B was built to the 
same nominal dimensions as panel A, except that the heavy tip rib was 
replaced. by a very light rib. The rigorous theory bas"':l·i on the asB"ump-­
tion of' inf'inite transverse stif'f'ness indicates that the number of' 
stringers in these panels is suf'f'icient to be considered. as "large," 
in the sense that the stress distribution does not di~f'er appreciably 
f'rom that in a panel with an inf'inite nmnber of' stringers, the main 
difference being the finite value of' the peak shear stress. However, 
panel C was built in order to obtain a direct check f'or this limltin~ 
case. The shear stresses in the sheet were measured with Tu.cke:tm18D. 
optical strain gages placed. as close to the f'l.anges as the gage length 
of' 2 inches would. permit. 

Tests were also available on two panels with tapered ~langes and 
a amall Dllil!ber of stringers (f'ig. 7). These panels d.if'fered mainly in 
that panel D had flanges machined. f'rom one piece, while- the f'langes of 
panel E were built up. 

,\ 
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Preliminary calculations for the constant-section test panels were 
made as follow·s. Three values of the factor f (the same three that 
were used "for the comparisons in figure 5) were chosen. For the resulting 
substitute single-stringer panels, the shear stresses were calculated 

' on the assumption of infinite as well as finite transVerse stif'fness with 
the theory developed herein. 

Preliminary calculations for the tapered-flange panels D and E were 
slightly more involved. The first step was the calculation of shear stresses 
based on the assumption of infinite transverse stiffness by means of the 
recurrence formula and expression (l2). A "reference panel" was then 
introduced that was si:milar to the actual one exceilt that, starting just 
beyond the tip, taper was incorporated into the flange in such a manner as 
to give constant flange stress. For this reference panel, shear stresses Tl 
were calculated on the assumption of infinite transverse stiffness and 
stresses T 2 on the assumption of finite stiffness. TQ.e ratio T 2 /T 1 was 

then used to corr~ct the shear s~esses calculated in the first step. 
This method was justified by the facts that the flanges had roughly constant 
stress and that the correction factors did not dif'fer greatly from unity. 

Inspection of figures 8(a), 8(b), and 8(c) shows that even though 
the factor f is varied over quite a wide range (from 0.5 to 0.9), the 
curves contract into a rather narrow band at some distance from the tip; 
they fan out only in the tip region. The choice of the factor must 

. therefore be based chiefly on comparisons between experimental and 
calculated stresses in the tip regions, a procedure "Which is also desirable 
because the largest stresses exist in the tip region. Some consideration 
should be given, of course, to the stresses in the remainder of the 
panels. 

The preliminary comparisons showed that a factor f = 0.7 gave 
fair results for all five J?anels, although three different stringer 
numbers were represented tn = 7 for panels A and B, n = co for 
panel C, n = 3 for panels D and E). On the other hand, the com­
parisons with rigorous theories shown in figure 5 indicated that the 
factor should increase with decreasing stringer number, and for a (half) 
panel wl th a single stringer i the factor should logically be equal to 
unity, because the substitute panel should be identical with the actual 
one in this limiting case. (The "actual" panel referred to is, of 
course, an idealized one in which the sheet ca..""Ties only shear. ) Closer 
comparisons between the curves for f = 0. 7 and the experimental results 
indicated that the agreement could be improved somewhat by making f 
variable in agreement with these considerations. The test data are 
inadequate to establish f as a function of n with a high degree of 
accuracy, particularly when n is very small (n = 3 or 2). Fortunately, 
the calculations indicate that the results are not sensitive to changes 
in f, and panels with very few stringers are of little practical 
interest. As a tentative solution, the expression 

f = 0.65 + 0.35 
n 

(34) 



16 NACA TN No. 1728 

was chosen after consideration was given to such differences as existed 
between the test results· and the preliminary curves based on f = 0. 7 • 
.(some judgment should be used wen the ratio of stringer area to normal­
stress-bearing sheet area is very much less than in the test panels. If 
a very small stringer were attached ·at the center line of panel C;, the 
stress obviously would change very little;, and n should be taken as 
infinity rather than unity in expression (34).) 

I 

Figures 8 and 9 show that the solid-line curves calculated with 
expression (34) agree quite well not only with the measured peak stresses;, 
but in general also with the measured stresses along the entire length of 
the curves. The highest measured stress in panel A (second test point 
from tip) is about 4 to 6 percent higher than the calculated stress, but 
comparison with the first point indicates the probability of a local 
irregularity or a test error. Of particular interest is the close agree­
ment between mea.sured and calcUlated stresses in panel B with the very 
light tip rib. The difference between the curves calculated for this 
panel on the assumption of either infinite or finite transverse stiffness 
is very marked and indicates that a shear-lag theory satisfactory over 
the entire range of design proportions cannot be obtained if the transverse 
stiffness is assumed to be infinite. Panel B has a lighter tip rib than 
is likely to be encountered in practice; however;, even on panels A and C, 
'Which have tip ribs considerably heavier than likely to be found in 
practice, tp.e effect of finite transverse stiffness on the peak shear 
stress is appreciable (of the order of 20 percent). 

Figure 8(d) shows the flange stresses in panel C. There is a 
surprisingly large variation of stress over the width of the flange, 
'Which is only l inch wide; the variation disappears at a distance from 
the tip equal to about 6 times the flange width. 

On panels D and E;, the calculated effect of finite transverse 
stiffness on the peak shear stresses was fairly small (figs. 9(a) and 9(b));, 
and the calculated stresses exceed the measured stresses nearest the 
panel tips by 4 percent and 10 percent;, respectively. The discrepancies 
can probably be attributed largely to a simplifying assumption implied 
in the theory. The transverse ribs have a finite bending stiffness within 
the plane of the panel; they are therefore capable of transferring some 
load from the flange to the stringers, and they restrain the shear 
deformation at the corners of the panels. This rib effect is neglected 
by the present theory; it was more important in panels .D and E than in 
the other panels because the ribs were stiffer by virtue of smaller 
length;, greater section;, or both. 

In the calculations shown for panels D and E;, the transverse ribs 
(other than the tip rib) were disregarded. Calculations were also made 
on the assumption that the material in these ribs was uniformly distributed 
spanwise to equal distances on either side from the actual location of 
each rib;, with the result that the value of ~ (thickness of "rib­
sheet") was greatly increased. On the other hand;, the value of AR was 
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decreased because a part of the material in the actual ti:p rib was 
assumed to be s:pread out to form the rib sheet in the outboard half of 
the ti:p bay. (This :procedure a:p:pears to be the most logical one and 
was also suggested in reference 9) • The increase in ~ and the 

decrease in AR counteracted each other, and the stresse~ calculated 

in this :manner were :practicaJ.ly identical with those shown in figures 9(a) 
and 9 (b) • In general, such close agreement between the two methods ·of 
calculation cannot be ex:pected. Because the first transverse rib lies 
at a station where the shear transfer is largely com:pleted the first 
method of calculation (the ribs being entirely disregarded) is :probably o 

more ap:pro:priate. If the :pitch of the ribs were, say, 5 inches or less 
rather than 2l inches, the second method would seem more a:p:pl:'o:priate. 

Figures 9(c) and 9(d) show the flange stresses in :panels D and E. 
The measured stresses shown are those on the to:p surfaces; the "feather 
edge" of each stra:p carries only a low stress because the first rivet is 
not stiff enough to transmit the full load to the stra:p. Investigation 
of this "shear-lag effect" within the pack on other panels has shown that 
the average stress in the pack agrees well with t_he calculated stress; 
the deficiency of str~ss in the outermost stra:ps is compensated by an 
excess in the innermost stra:ps which has been found to be as high as 
30 :percent in :packs of somewhat simi 1 ar :proportions. 

CONCLOBIONS 

The method of calculating shear-lag effects in axially loaded :panels 
by msans of the :previously develo:ped conce:pt of the substitute single­
stringer :panel; is i:mproved in two res:pects: 

(a) The width of the substitute :panel is calculated by an empirical 
formula Which eliminates the successive approximation procedure used 
:previously. 

(b) A method for taking into account finite transverse stiffness 
is introduced. 

Test results on three panels of constant section having a "large" 
number of stringers agreed within 4 :percent with the calculations. On 
two :panels with ta:pered flanges having only 3 stringers in the half-:panel, 
the calculated peak shear stresses exceeded the measured values by 
4 percent and 10 percent, respectively. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., August 16, 1948 

··- -·- ---~--~-- ----~--· ---------~ -~-------- --- -· 
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