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A THEORY OF UNSTAGGERED AIRFOIL CASCADES IN COMPRESSIBLE FLOW

By RoserT A. SprRR and H. JULIAN ALLEX

SUMDMARY

By use of the methods of thin airfoil theory, which include
effects of compressibility, relations are dereloped which permit
the rapid determination of the pressure distribution orver an
unstaggered cascade of airfoils of a giren profile, and the deter-
mination of the profile shape necessary to yield a given pressure
distribution for small churdlgap ratios. For incompressible
flow the results of the theory are compared with available
examples obtained by the more exact method of conformal trans-
formation. Although the theory is dereloped for small chordf
gap ratios, these comparisons show that it may be extended fo
chordlgap ratios of order unity, at least for lou-speed flows.
(hoking of caseades, a phenomenon of particular importanee in
compressor design, is considered.

INTRODUCTION

The wider use of gas turbines and other devices employing
axial-flow compressors has Increased the need for com-
pressors with a high pressure rise per stage. In order to
achieve this purpose it is necessary to use high wvelocity
flows, thus increasing the possibility of losses through com-
pression shock. A method is therefore desirable which will
permit the design of compressor blades which have high
critical compressibility speeds. This result can be accom-
plished if a cascade of airfoils representing the flow can be de-
signed to give a desirable airfoil-section pressure distribution.

This report attacks a portion of the problem by finding the
relation between the profile shape and pressure distribution
over airfoils arranged in an unstaggered cascade through the
use of the approximate methods of thin airfoil theory origi-
nally presented by Glauert in reference 1 and further de-
veloped by the NACA in reference 2. The flow over an
airfoll in cascade is related to that over a single airfoil in a
free stream. The problem of finding the pressure distribu-
tion over an airfoil in cascade or the shape of an airfoil in
cascade to give a required pressure distribution then reduces
to the analogous problem for 2 single airfoil, which can be
solved by known methods.

The analysis involves the assumption that the gap between
airfolls is large compared to the chord length. In particular,
expressions relating the characteristics of a cascade airfoil to
those of a free airfoil are expanded in a power series in ¢/g,
where ¢ is the chord and g the perpendicular distance between
airfoil chord lines in the cascade, and powers of ¢/g higher

than the second are neglected. Definitions oi the symbols
used are found in Appendix A.

THEORY

Consider an infinite unstaggered cascade of identical two-
dimensional airfoils, as represented in figure 1. The config-
uration is specified by the chord/gap ratio ¢/g, the eamber-
line shape and thickness distribution of the individual
airfoils. For an individual airfoil, the incident velocity is
1" with a corresponding density of p and angle of attack «'.
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FIoTRE 1.—~Schematic diagram of coscade.

The pressure distribution on a typical cascade airfoil will
be compared with that which would be obtained over 2
single airfoll of the same shape in a stream of velocity V and
density p. The angle of attack « of the single airfoil will not,

in general, be the same as the angle of attack «’ of the
airfoil in cascade, and an expression relating the two angles
will be given. In the analysis to follow, primes will be used

to designate properties of the caseade airfoil.

AERODYNAMIC CHARACTERISTICS OF A CASCADE AIRFOIL OF A GIVEN
PROFILE SHAPE

Effect of camber.—The chordwise lift distribution for the
free airfoil is given by the Kutta-Joukowskl relation
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where L is lift per unit span, I' is the vorticity per unit span,
and z is the chordwise distance from the leading edge to the
to the point in question. The lift-distribution coefficient P
is then defined as

2
=t (2

In Appendix B, it is shown that the stream velocity at
the cascade airfoil is uniform so that the lift distribution
for the cascade airfoil may be expressed as

dL’ ar’
roamlir - @)

and the hft-distribution coeflicient of the cascade airfoil
referred to the dynamic pressure ¢ is

1dL 2 d17
P~ TV G )
From cquations (2) and (4),
2 /dT’ dT
_P=V E_d—x) %)

It is now desirable to express equation (5) in a more con-
venient form. It is assumed that the vorticity distributions
of the free and cascade airfoils, respectively, may be rep-
resented by the following series (references 1 and 2):

%5—2V<A0 cot = 6—} ZA sin na)
dr" (6)
—2V (AO cot —B—E—ZAn sin nG)I
The new parameter ¢ is related to z by the equation
¢
r=5 {(1—cos 6) (7)

Equation (5) then beccomes
P*—P=4 l:(AO’ —45) cot % 0+ (A, —4,) sin ne] (8)
=1

The ecoefficients in cquation (8) will now be evaluated by
considering the conditions of flow at the airfoil boundaries.
Let v and v* be the vertical components of velocity induced,
respectively, by the free airfoil and a particular cascade
girfoil, and let Av be the vertical component of wvelocity
induced by the other airfoils of the cascade. For small
angles of attack, in order that thc flow be tangent at the
surfaces, the slope dy./dz of the airfoil camber line (which is
the same for both free and cascade airfoils) must be given
by the following relations:

9)
(ffyc AT

Appendix B gives the vertical components of wveloecity
induced by the vorticity and source-sink distributions which
represent the airfoils of a cascade. For simplicity, the
following symbols are used:

(5]
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A=+/1—A1* (B4)

where Af is the Maeh number of the undisturbed stream.
The velocity components calculated in Appendix B are

T’f,:)\ <-A0+iAn cos 716) (B5)
n=1

Bn (A4 3344 cos no) (B6)
n=1

and neglecting terms involving ¢ to the second and higher
powers
Ap
T=—23

Substituting these relations in equations (9), there is
obtained

‘ff_yc__a_;_)\( Aﬁ—ZA cos n6>

[(A0’+—A2’)—(2A0'+Al’) cos 8]  (B25)

-~

%=a'+7\ <—A0’+%Z=1A,,’ cos ne) S (10}

~ 2§ [(Af+54x)— A+ 4) cos ]

4

Since cquations (10) are cqual trigonometric series, the
coeflicients of cos n8 can be equated:

-

a—NAg=a'—2A,/—2 = (Ag +‘é‘f12/)
Adi=Ad+25 Z (24, +A))
- (11)
A2=A21
An=An'(n¢l) -

From the first of equations (11), it is seen that the quan-
tity (Ao’ —As) depends on the angle of attack o« of the free
airfoil. This angle may be arbitrarily defined so that

AOI_A():O (12)

Combining equations (11) and (12}, the following rclations
are obtained:

A —A=0 h

A[=—2 (2£10 +A1 )
Ay — A= Y (13)
A —A,=0 (1) )

and

a'——a=2%<z§0’+§ A;) (14)
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Making use of equations (13), equation (14) may also be
written as follows:

1
o — a=2 ‘X’(AQ+§ Ag) (15)
From equations (8) and (13), there is obtained
P*—P=—38 g (24’ + A, sin (16)

Changing to the unprimed coefficients with the use of equa-
tions (13), and neglecting terms in ¢2, the expression becomes

P*—P=-—8§ 7\—“; (2454 24;) sin 6 (17)

It should not be interpreted from equations (16) and (17)
that ;" and A4; are equal. Equation (17) is the result of
dropping terms in ¢* and not of equating A;* and A;. The
difference between A, and .4; to the order ¢ is still given
by equations (13).

The section lift coefficient for the free airfoil is

c,=ﬁ ' Pd @) (18)

Substituting from equations (2), (6), and (7) and performing
the integration, ome obtains

Similarly, the quarter-chord moment coefficient is

= [ P(3-E)a(2)=-F—d0 @)

From equations (19) and (20) it follows that

2.4+ A, =2
T
(21)
Ao+ A2 <Cl na 4C'mc )
With use of equations (21), equations (15) and (17) then
become

a’—az;% <C;—'[— 4Cm,;l4> (22)
and
P*—P— —8“)\"“; sin 6 (23)

=L 2D e

Effect of thickness.—From Appendix B, the horizontal
velocity at an airfoil in cascade is greater than that at a
single airfoil by the amount A, which is given by the relation

Au_ Ac

T3 (B24)

The quantity A is a function of airfoil thickness given by
equation (B20) and tabulated for various airfoils in table I,
which has been taken from reference 3.

The increment of velocity given by equation (B24) can be
added to the velocity of the undisturbed stream V) to give the
true incident velocity V-

V=T11+Au (25)
From equations (B24) and (25),

Vi A
T=1—3%7 (26)

The density p; far ahead of the cascade is given by the
following equation, derived for isentropic flow:

1
T\ 17—1
{1 #) -1
where v is the ratio of specific heat at constant pressure to
that at constant volume. Using the binomiel expansion and
neglecting terms containing powers of [(V/V)2—1] higher
than the first, there is obtained to the order of ¢

Aclf? -
1T 6)\3 (21}

The ratio of the dynamic pressure ¢ at the center of pres-
sure to the dynamic pressure ¢; far ahead of the airfoil is then
found to be

@28)

2 149
(Zi 1 T & }\3
where
A2
f=1—= {29)

The lift-distribution coefficient P’ referred to the dynamic
pressure ¢; is given by

P'=§l P (30)

The cascade section lift coefficient is

w-[raQrifire@)

Substituting equations (24) and (28) in equation (31) and
performing the integration, there is obtained, neglecting

terms in o7,
EA
Cz,—(.'z=— UCL (1_ ) (32)

Equation (32) gives the relation between the lift coefficient
of a cascade airfoil at angle of attack «” and that of a single
airfoil at angle of attack «. The relation between o’ and a is
given by equation (22).

The Mach number 3f" must now be related to the Mach
number 1/ for the corresponding single airfoil. The velocity
of sound a, is related to a by

al=\’/§;(l (33)
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For isentropic flow

_ Y=l Yl 2_
Ti_Tgl——:?—eM[ V) 1]}

which becomes, using equation (26)

Ac

T1=T|:1—{—(fy—1) M (34)
Hence equation (33) becomes, to the order of ¢

a1=(1 +1§—1 M %\‘;) a (35)
and so
K= VN a

ﬂf =a1 ‘V a—lﬂ[

Using equations (26) and (35) then

M’=<1 —‘%’ u> A (36)

where

u=1+(7§1) Y ﬁsf)

Determination of pressure coefficient.—The following co-
efficients are useful in expressing the pressure on an airfoil
surface:

g~ 70 Pttt | (38)

where p; is the local static pressure on the surface of the air-
foil, and H, p, and ¢ are, respectively, the total head, static
pressure, and dynamic pressure of the undisturbed stream,
The variation of H with Mach number, assuming that the
ratio of specific lieats is 1.4, is given (reference 4) by the
equations : : ' oo

H=p+q(1+n) }
M2 Mt M (39)
b=l 35 Tis00 - -
From these equations,
=1+97—P; (40)

A graph of 5 as a function of Mach number is given in
figure 2. The subscript / in equations (38) and (40) will be
replaced by U, L, or f to denote, respectively, the upper
aud lower surfaces of an airfoil and the surface of its sym-
metrical base profile.

According to reference 5, the velocity Vi, along the base
profile of a single airfoil is given for incompressible flow by
the expression

V. ey AJ1=Py+-+1—P,
,szvfl_szx U2 A A

where the pressure coefficients arc referred to ¢, That is,

PU:PUQ—P; PL=PL'Q—29; szpfq_'p

and p is the static pressure of the stream corresponding to ¢.
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FIeURE 2.—Compressibility factor, », as a function of Mach number.

The velocity 17/ along the base profile of the airfoil in a
cascade in terms of 177 is simply
Vi_V;
TV

so that

VI=PF=+1-P; (42)
since tle cascade base-profile pressure cocflicient P,* is
referred to the dynamic pressure ¢ and to the static pressure
p rather than to the corresponding quantities in the un-
disturbed stream. Analysis (reference 3) shows that cqua-
tion (42) holds also for compressible flow, to an approxima-
tion of the same order of magnitude as others already made.

The upper- and lower-surface pressure cocfficients referred
to ¢ are from reference 5.

P L
PU 1 1_‘Pf*
: (43)
(1_Pf*_z I)*>
Pit=l—"——_px

Altliough equations (43) were derived for incompressible
flow, it can be sliown that they are applicable in the case of
flow in a compressible stream.
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The coefficients Pp* and P.* can be converted into the
coefficients Py" and P’ referred to ¢; (the dynamie pressure
in the undisturbed stream) and the corresponding static
pressure by means of the following equations, which are
based on equations (28) and (40):

SU*=1+77_PU*
SL*=1'L‘7]—P e

S QSU _SU (1 -+ L&GE
) (44)
QS,,*—S <1+9“75
PU =1 7 _SU o
PL —1 i _‘SL

J/

when 7’ is the value corresponding to 14/ given by equation
(36).

DETERMINATION OF PRESSURE DISTRIBUTION FOR A GIVEN PROFILE
SHAPE IN CASCADE

A method can now be outlined for finding the pressure
distribution over an airfoil of given profile in an unstaggered
cascade. It will be assumed at the outset that the Mach
number 3’ of the approaching air is known and that the
desired lift coefficient ¢,/ of each of the ecascade airfoils is
given.

1. The Mach number of the corresponding free airfoil, M,
is determined from equation (36) to a first order in ¢ as

11_(1 +37 y) A (45)
wherein
=% (%) (B11)
A=+y1— @312 (46)
p=1+771 @A (47)

and A may be obtained from table I or from equation (B20).
2. The Lft coefficient of the corresponding free airfoil,
¢;, is found from equation (32) by neglecting second-order

terms in ¢ as
er=¢/ [1—1—}\2 1——.&)] (48)

wherein £ is given by equation (29).

For the given airfoil the quarter-chord pitching moment
¢m.u and the angle of attack « corresponding to the lift
coefficient ¢; will be known and the angle of attack for the
airfoil in cascade &’ (degrees) can be found from

o' =a+57.3 = (ert-4em,,) (22)

3. P=P,— Py for compressible flow at the Mach number
Af is found for the single airfoil at the lift coefficient e;.
Preferably an experimental pressure distribution at the
appropriate Mach number and at approximately the same

Reynolds number should be used but a theoretical distribu-

tion (e. g., by references 2, 6, 7, or 8) modified by the Glauert-

Prandt]l or Karman-Tsien rule (references 9 and 10) is

satisfactory. )
4. P*is found from equation (24).

Vi(-9)

5. ¥1—P/* is calculated from the free airfoil pressure

P*=P_1666;

distribution from equations (41) and (42)

VI—Py++1-P,
2

“

‘\!1 —Pf*= '\'!1 —Pf= (49)

6. (1—P,*) and P* are combined to gi\;e (1—Pyp*) and
(1—P.*) from equations (43)

-~

(L— P+ 3P
1= Py =t
S (43)
(1— P ~3P¥)?
1—Py*=
L l_Pf*

7

7. The cascade pressure coefficients P’ and P, are then
found by means of equations (44):

SU*=1—PU*+77 h

=1_PL*+77

Su’=<1+2“5> Sy

S < dA&(TE) SL
Py'=1—-8u"+7
Pr=1-S/+v )

v

(44)

where 7 and 7’ corresponding to .M and 1/’, respectively, are
found from figure 2.

DETERMINATION OF PROFILE SHAPE FROM A GIVEN PRESSURE
DISTRIBUTION IN CASCADE

The procedure for obtaining the profile shape for a given
pressure distribution in caseade involves a process which
is essentially the reverse of that just outlined. First the
required pressure distribution is drawn. The initial choice
must be made skillfully with reliance on experimental pres-
sure distributions so that the distribution chosen shall
correspond or nearly correspond to that obtainable with a
real airfoil. From the chosen distribution the coefficients
¢/’ and ¢m,,’ are determined by graphical or numerical
integration and the pressure coeflicients Py’ and P, are
read off at selected points. The method then consists of
the following steps:

1. The Mach number 1/ is determined from

M:(H%;{' ﬂ) ar (45)
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2. Py* and P.* are found by applying equations (44) in
reverse order, neglecting terms involving ¢ to the second and
higher powers.

o

U,=1+n1_PU,
Sy =1+ —Pu'

95
q
%

Il
P
-
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q\
e

(50

=1+49—

where 9 and n correspond to A" and A, (See fig. 2.)
3. (1—P,) is found by nieans of the following equations,
whiel: are readily obtained from equations (49):

\fl_PU*‘f‘W/l—PL (49)

..r

V1—P/=+1—PF=

The base profile should now be checked to see if it satisfies
the elosing condition given in reference 2. If the assumed
pressure distribution does not correspond to a closed shape,
it must be modified so that it does. (See reference 2.)
4. The single-airfoil lift-distribution coefficient P is found
from the relations
P*=P *—Py* (51)

P P*—{—lﬁw‘\/%(l—%) (52)

5. The final upper- and lower-pressure coefficients are
calculated by mieans of the following equations from equa-

tion (43):
(1—Pf+ P)
T 1—-P,

6. The angle of attack of the single airfoil is then given
in degrees by

a=a’'—57. 3 — (c; +4Cm,,") (54)

which is a modification of equation (22).

7. The problem of finding a profile shape which will have
a given pressure distribution in cascade has now been re-
duced to the analogous problem for a single airfoil. It is
now possible to caleulate the corresponding incompressible-
flow pressure distribution by the niethod of reference 10, or
simply by multiplying Py and P, by +v1—2372. An airfoil
shape ean be designed to give this pressure distribution by
the method of reference 2. In the application of this
method, it is generally necessary to make some changes in
the pressure distribution, as previously noted, in order to
make it correspond 1o a possible distribution for an actual
airfoil, If the initial distribution has been well chosen,
however, the changes will be minor.
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THE CHOKING OF CASCADES

In the compressible adiabatic flow of a fluid in an elemen-
tary stream tube of varying area 4, the mass flow must be
constant so that the logarithimic derivative

dpt_{_dvt_l_%f_i_z

must vanish. Now the density p; and the velocity 17 are
related to the pressure p; by Bernoulli’s equation.

—VidV,

dpz ‘épzxdm
121 I

The quantity dp./dp: is, of course, the square of the velocity
of sound so that Bernoulll’s equation may be written

dp;___V;dV;_ AL
E_ al =—M 'Vz

where Af; is the local Mach number. Combining this
expression with that of the logarithmie derivative then

dt Vi d(lz
(1—=07) 7,

From this relation it is seen that for a subsonie flow the
area must decrease for a velocity increase, while at supersonie
speeds the area must increase for a velocity inerease. Yhen
the Mach number is unity, then dA=0, so that sound speed
is only attained where the area is a minimumn.

Considering the flow through the casecade of figure 1 as
essentially unidimensional, then it is apparent that if the
flow past the plane &0 atiains sonic speed, the mass flow
through the cascade cannot be further increased and the
caseade flow may be said to be “choked.” Of course, tho
flow through a cascade is not unidimensional, but experi-
enee with the similar phenomena of choking in wind tunncls
has indicated that the assumption of unidimensionality of
flow yields calculated choking Mach numbers in good agree-
ment with experiment.

For a unidimensional flow it is showu in reference 3 that
the ratio of the free area of the undisturbed stream A Lo the
minimum flow area A, is related to the choking Mach
number of the free streain 14, by

For the approaching stream which will pass between any two
airfoils of the cascades the free cross-sectional areca is

A=g cos o'
while the minimum area between the two airfoils is

¢
Anmg—tmg (1-1)
g g g

and henee

l%:cosotz (56)
g

where 't is the masimum thickness of an airfoil,
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Properly the thickness of the boundary layers on each
surface of the airfoil should be added to the geometric
thickness to obtain an effective thickness £, Using this
value with equations (55) and (56) and a value of v (for air)
of 1.4 then

f_ M cos o .
5—1_ :5_{__3‘[‘:)‘2)3 (5[)
%=

A practical estimate of the choking Mach number may be
found by assuming the angle of attack to be so small that
cos o’ =~ 1 and that the effective thickness is the geometric
thickness. With these assumptions, values of the thickness/
gap ratio as a function of the choking Mach number are
given in figure 3.

.3

/

-

Ratio of ajrvoil thickness to cascade gaop, /g

N

N

™

[~

S Lo

% & 7 8
Choking Moch nurmber, M,

FI1GURE 3.—Choking Mack number as a function of the ratio of airfoil thickmess to
cascade gap.

It is shown in reference 3 that there exists another pos-
sibility that choking may occur in the wake of the airfoils
for very thin profiles as the result of the action of viscosity.
In most cases this type of choking will not be of practical
importance.

DISCUSSION

In order to check the accuracy of the equations which have
been developed, pressure distributions for incompressible
flow have been calculated at three lift coefficients for an un-
staggered cascade of NACA 4412 airfoils. These cases were

chosen to permit comparison with those which have been
determined in reference 11 by the method of conformal
transformation. The chord/gap ratio in all cases is 1.03
and the lift coefficients considered are 0, 0.5, and 1.0. This
comparison subjects the approximate theory of this report
to a rather severe test, since the analysis has been developed
on the basis of a small chord/gap ratio. The comparison
with reference 11 indicates the agreement is good as may be
seen in figures 4, 5, and 6. The single-airfoil pressure
distributions, as obtained by conformal transformation in
reference 11, are shown in the figures for the same lift
coefficients as for the cascade airfoils. (In Appendix C
the ealculations to obtain the pressure distribution of figure
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FIGURE 4.—Pressure distribution for NACA 4412 airfoil alone and in caseade for §=1.{)3 and
e'=0.
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Cascode agirfoil by mefhod of this report
e m = Coscade oirfoil by method of reference H-—
—-~Lone airfoil (from reference /) |
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FIGURE 5.—Pressure distrubution for NACA 4412 airfoil alone and in cascade for §=l.@3 and
c'=0.5.

6 are given in detail. Table II gives all the necessary com-
putations and serves to demonstrate the simplicity of the
method.) It is evident from the figures that one cffect of
cascading airfoils is to impose a ‘negative camber in-
fluence’” on the pressure distributions as the lift coefficient is
increased. Accordingly, for airfoils for use in cascade the
camber must be exaggerated if a certain desired camber
effect on the pressure distribution is to be obtained. It is
of interest to note that the caleulated angles of attack are
also in reasonably good agrecment as may be seen in the
following tabulation:

Airfoil in cascade Airfoil alone

F
| o’ (from ref- | «’ (method of

erence 11) | report) @
0 —5, 9° T —6.0° | —4, 3°
.5 +1. 8° +2. 3° —. 1°
1.0 +9.7° +10. 4° +4,.0°

]
———— Cagscade oirfoil by method of this report
~-=-=-- Cascade oirfoil by method of reference I —
W\ —-~— Lone airfoil (from reference !l
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¥i1GURE 6.—Pressure distribution for NACA 4412 airfoil alone and [n cascade fur He L.03 and
c’=1.0

Unfortunately no pressure distributions over unstaggered
cascades at high airspeeds could be found so that the validity
of the compressibility corrections devcloped in this report
could not be determined. They have been developed, how-
ever, in much the same way as the compressibility corrections
of reference 3, which have been found to be in good agree-
ment with experiment. It is clear, however, that as the
Mach number is increased the accuracy of the caleulations
will diminish unless the chord/gap ratio is simultancously
decreased. This will be particularly true as the choking
Mach number is approached.

One matter of interest concerns the effect of compressi-
bility on the lift-curve slope of a cascade of NACA 4412
airfoils having chord/gap ratios of 0 (i. ¢c., lonc airfoil), 0.5,
and 1.0 which is shown in figure 7. It is seen that the
importance of the interference cffects of the airfoils in cas-
cade increase so rapidly with Mach number that, contrary
to the usual expectation, a dccrease in lift-curve slope with
Mach numnber is indicated for high solidities.

An examination of the equations for the choking of cas-
cades indicates that carc must be exercised with an unstag-
gered cascade to keep the airfoil thickness small for high
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FIcURE 7.~—Effect of compressibility on lift~curve slope for NAC A $412 alrfoil in cascade.

solidities if relatively high free-stream Mach numbers are
employed. Even for the cascade considered in figures 4, 5,
and 6, for example, the choking NMach number as obtained

from figure 3 is only about 0.64 based on the geometric.

thickness of the airfoils.

The existence of a boundary layer on the airfoil surfaces
would, of course, increase the effective thickness which would
reduce the choking Mach number. When the pressure
gradients are strongly adverse, as in the case of the airfoil
of figure 6, the boundary-layer growth will be increased and
its effect on the choking Mach number will be more pro-
nounced. The proper choice of camber consistent with the
design lift will serve to reduce the sharp pressure peak,
thereby improving the critical as well as the choking Mach
number.

AMES AERONATUTICAL LABORATORY, _
NaTioNnal Apvisory COMMITTEE FOR AERONAUTICS,
MorreTrT Fiewp, Canir., September, 1947.



APPENDIX A

LIST OF SYMBOLS

The following symbols are used through this report:

GQHWOJ‘SQQLQ

Av

T?

Ye
Y.

velocity of sound

Fourier coefficients (See equation (7).)

Fourier coefficients (See equation (B14).)

airfoil chord

section lift coefficient

section guarter-chord-moment coefficient

distance perpendicular to chord between airfoils in
cascade

total head

lift per unit span

Mach number

choking Mach number

static pressure

without subseript, local lift at any chord station in
coeflicient form; with subscript, local pressure co-
efficient (See equation (38).)

dynamic pressure

source strength

radial distance in polar coordinates

local pressure coefficient (See equation (38).)

maximum airfoil thickness

absolute temperature

horizontal component of velocity

vertical component of velocity

total induced wvertical velocity at the airfoil under
consideration due to the other airfoils in the cas-
cade

velocity

coordinate of points on chord line as measured from
leading edge

ordinate of mean camber line

ordinate of base profile

angle of attack

560

Y

DI I

>

@ cs"-k.qt..(c--

ratio of specific licat al constant pressure to speeific
heat at constant volume (e,/c,)
circulation per unit span

120

compressibility correction factor

compressibility factor (Sce equation (39) and fig. 2.)

angular coordinate of points on chord line (See
equation (7).)

compressibility correction factor ({/T—A371%)

factor depending upon shape of base profile (Sce
equation (B20) and table 1.)

compressibility correction factor (H—fyglf A "")
mass density
2 L7
factor depending upon solidity of cascade <Z§ §§>
inelination of the radius r to a line normal to the air-
foil chord (See fig. 1.) _
polar angle in polar coordinates (positive counter-

clockwise)
SUPERSCRIPTS

used to distinguish properties of caseade airfoil

denotes ecaseade airfoil characteristics as coeflicients
referred to dynamic pressure of incident stream al
center of pressure

SUBSCRIPTS

denotes values in stream far ahead of cascade (exeept
when used to indicate & numbered Fourier coeflicient)

denotes loeal conditions at point iu fQuid

denotes values on lower surface of airfoil

denotes values on upper surface of airfoil

refers to base profile

denotes a velocity induced by a vortex

denotes a veloeity induced by a source or sink



APPENDIX B

VELOCITY COMPONENTS INDUCED BY AIRFOILS IN CASCADE

For incompressible flow over a single airfoil, the vertical
velocity (perpendicular to the chord) indueed at the point on
the chord z, by its own vortieity distribution is

dar
L‘_i ]'L‘ ‘d—xdl‘
_.?T.’ n L—Xp

(B1)

To obtain the veloeity for compressible flow, the factor

V1—A12 .
IV EISTEE? (E3)
must be applied to the right-hand side of equation (B1) as
is shown in reference 9. Here J/ is the Mach number of the
undisturbed stream and & is the angle between the stream
direction and a line drawn from the vortex to the point in
question. For a single airfoil @ is always elose to 0° or 180°
and the induced velocity in a compressible stream is ap-

proximately
dr dr

IR Iy P N T 33
2r Jo T—Xo 2n 0 T—%
where
A=+1-011 (B4)

Equation (B3) can be integrated by substituting for dT'/dx
and for z the following:

ar . 1 e
T—21 (Ao cot 36+334, sin ne) 6)
¢
r=g (1—cos8) (7

The details of the integration are given in reference 2, page 4.
The resulting expression is
J =\ (— A #i}rl cos né (B5)
V . <4077 ] n
The vertical veloeity at a point on the chord of an airfoil
in cascade is made up of three parts. These are (1) the
velocity " induced by its own vortices, (2) the velocity A,
induced by the vortices of the remaining airfoils of the
caseade, and (3) the velocity Ay, induced by the sources and

sinks of the remaining airfoils.
By analogy with equation (B5):

Fmn(—ad+ >4’ cos ne) (B6)

The vertical velocity induced by the vorticity distribution
of the other airfoils is given by the expression

dr’ .
1757 de ST Tmy 13 -
A= lf <1—M? cos® 7 )d“' (B7)

The summation is over the remaining airfoils of the cascade.
The angle 7 is measured clockwise between the vertical and

a line from the vortex to the point in question, as indicated

m figure 1. The factor in parentheses is that necessary to

give the correct result for compressible flow. It is derived
from the factor (B2) with use of the relation sin ®=—cos 7

Since rp=(mgfecos ) and tan r,={&—x,)/mg so that

:r—:ro

=)
V() “(x )

the preceding equation may be written

and

COS Tp=——F————

T—Iy
mg

el

Expanding the term in brackets in a power series in (x—z,)
/mg, neglecting terms involving the cube and higher powers,
and noting that

po =} S ¢ dT |dx

T m=1J0 myg

© 1 ’172
2=

there is obtained
T [° dF’
oo

(:r To)dx (B9

If equations (6) and (7) are substituted into equation (B9)
and the indicated integration is performed,-there is finally
obtained

%=_2 I:(An"l‘o Ay )— (24 +4,") cos 6} (B10)

where

(B11)

]

q
H‘*II

&l
Q%

It is interesting to note that equation (B10} can be more
directly obtained by replacing each of the airfoils of the
cascade by a single vortex. The important point in such a
derivation is the proper chordwise location of this vortex at
the airfoil center of pressure.

In a manner similar to that in which equation (B10) was
obtained it is possible to show that neglecting terms involving
(x—x0)/mg to the third and higher powers,

Ay,
7 =0 (B12)
In Appendix B of reference 3 the velocity components in-

duced by a source at the origin are given as follows: The
veloeity component perpendicular to the stream Az, is

@ [V1I—=AL (sin @)
27r| 1—A[’sin? &

o
(&2
—
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and the induced velocity component parallel to the stream
Ay, is

Q €0s fI>.
o7 [\/1::1’12 (1—A1? sin? cp)]

where @ is the mass flow divided by the free-stream density.

The vertical velocity induced by the source-sink distribu-
tions of the remaining airfoils of the cascade can then be
expressed as -

- 1—A1? eos? o,

Av;———l mz= (e dQ) [dx [\/T—_Aﬁ (c0S Tr)

T m=iJo I'm

and the corresponding horizontal mduced velocity is, after
noting that cos ®=—sin 7,

sin 7,

. |m=e CdQ /dCL‘ :|
Mo=—r gfo 7a [fl—Mz(l—Mcos =l b

dQ’

where o dr is the source strength over an element of chord

dz of the easeade airfoil. Substituting for r, and ecos 7, and
sin 7, as before, expanding, and neglecting the third and
higher power of (z—up)/mg, there is obtained

Avy=0

(Z 4
6_)?52, . dg (x—xy) dx

(B13)
Atly=—

. e e 4@,
The source-sink distribution Fy 18 10w expressed by the
following series:

(%,_.=QV(BO’ cot & 9+iBn’ sin né) (B_14)
X . 2 n=1

On substitution of equation (B14) the integral in equation
(B13) can be evaluated, obtaining, analagously with equa-
tions (B10) and (B12):

=0 (B15) .
and
A’lle ;o 1 ’ 7 ’
v "[(Bo +§ By'Y—(2By’+B,") cos 6] B16)
Since the airfoil must be a closed figure, it follows that
, (ZQ dx=0Q B17)

By substitution of equation (B14} in equation (B17), there is
obtained

(B18)
so that

A S 4 4
¥ =5 (2B+By)
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From thin airfoil theory (reference 2) it can be shown that

’ (16 (" y. (ﬁ)
2Bo+32_wf0 /g (2

where y, is the ordinate of the base profile as measured from
the axis of symmetry in terms of the airfoil chord at the cor-
responding x station.

In the problem of determining the wall interference in a
two-dimensional wind tunnel, an evaluation of the influence
of the image base profiles yields an identical result if the
limitations of thin airfoil theory are presumed. Lock (dis-
cussed in reference 3) has evaluated the image base profile
effects as regards wall interference in the incompressible case
for profiles not necessarily thin and has found that (in the
notation of this report)

s e [T o

is a more precise value to replace 2B)" 4By, where s is the
base-profile pressure cocfficient in incompressible flow,
Values of A computed by equation (B20) for various airfoils
are given in table I which was taken from reference 3.
Accordingly, as in reference 3, this value is used in this report
so that the velocity increment due to the effect of sourees and
sinks becomes

B16)

Aty Ao
VN

It should be noted that properly Lock’s result for incom-
pressible flow is

(B21)

%?- Ao B22)

However, the expression for 17 is

V=V,"+Au

so it follows that
7 Au
v=1-7

Thus for incompressible flow
Aus _Au
—V-—Ac <1 1

which to the first order in ¢ is still equation (B22) so that
equation (B21) for oompxess&blc flow follows. From: equa-
tions (B12) and (B"l) it is clear that the influence at the
position of one airfoil of the cascade due to all other airfoils
of the cascade is simply that promoted by the souree-sink
system

(B23)

9%‘:%’ _ B24)

Moreover, because Av, (equation (B13)) is zero, it follows
from equation (B10)

%/L',:_Q %[(A",_l—%) Ay")— 2o+ 4y") cos 0:’



APPENDIX C

SAMPLE PRESSURE-DISTRIBUTION CALCULATION

Table I gives all the necessary calculations to arrive at the
cascade pressure distribution shown in figure 6. It was
desired to obtain the pressure distribution for a cascade of
NACA 4412 airfoils given the values ¢;/=1.0 and ¢/g=1.03
for comparison with the distribution calculated by the method
of conformal transformation given in reference 11.

Since the assumed flow is incompressible, then ¥, g, and &
are unity and 5 and %" are zero. From table I, A is 0.237.
The parameter ¢ is 0.220. The lLift coefficient for the
corresponding airfoil in free air is obtained from equation
(48} as 1.335. By potential theory, for the NACA 4412

airfoil the free-air angle of attack for ¢;,=1.335 is 6.8° and
Cr.: is —0.11 so that for the airfoil in cascade, by equation
(22), «’'=10.4°, o

Values of the pressure coefficient for the isolated airfoil
were calculated from the free-air values of reference 11 using
the method of reference 5.
determined and the P* was obtained from equation (24).
P* and 1—P/* (equal to 1—P,) were then combined by
equations (43) to give 1—Py* and 1—FP.*
pressure distribution was finally obtained using equations
(44).

TABLE I.—VALUES OF A FOR VARIOQOUS BASE PROFILES

i
3 ,_‘(l I
g <% .
= @ Zg o
< = NACA LOW-DRAG SECTIONS
> EZ i
o as | EQ
B 2E | %3 )
o] 2 & o B
H ] g {2 28| v » u o ¥ H # K w ¥ ¥ ¥
S z = Zz5 b [ “ a3 M “ = [ el a3 o] el
I T I - == - L S T - A A O - O I
~[w = = - 5 = <4 = = = < 8 3 3 k3 S
0.06 R 0.127 | _.___ Q. 111 0.125 0.119 0.124 ¢ 127 0.119 0. 107 0. 106 0.101 0.106 0.109 0.117 06.119
.09 0.236 . 196 0.155 8 ] 190 .183 . 189 195 .185 .159 157 .148 .158 .163 174 L1798
.12 .320 . 269 . 212 .237 .264 .253 .263 .21 -256 217 214 -201 . 215 .221 .236 .243
15 -403 345 .273 .305 _342 .326 L3341 .353 .330 .281 .278 257 .276 .283 .301 .31
.18 .43 .425 337 .3 .425 404 .424 439 408 .348 34 .316 .338 .348 .368 .379
.21 .58 -508 404 .45 .512 L4584 .511 .529 489 LT L415 .38 402 .414 .436 .450
.25 A .625 497 954 .632 . 536 .631 654 .02 .512 513 460 487 . 801 .526 L 543
.30 .864 .780 [N L R N P I P R em [ Y OO m—-
.35 1. (48 .45 67 [NV R (R . JURIIU S IR S, I [RUE R ——
.50 1.690 1,500 1,258 IR I T R R PUSIDUREE IO U [ SR e N
1.00 4000 4,000 PR S I S S - I [ TR R ——— R R

TABLE IIL—CALCULATION OF CASCADE PRESSURE DISTRIBUTION

[¢=0.220; A=0.237]

f
o] ® ® o] O] ® @ @ @ @ @ @
i—
lj
e
e o 5
. ) ~ /\|
Station Py P i ® e, O]
L ] —~= @ —'i‘- iy =
t = < <
e ~ 5 € & @ g 3 =) =
[ J < ! ~ = ) 4 .
@ o = o I 1 ] T K ¥
¥ H ® ‘I ‘b %s o 3 ~° =
& ~ 2lx R w 7] @ [ & ,
; .
0.025 —2.46 0.59 3.35 119 0.23 3.12 3.26 0.14 3.60 0.16 —2.60 0.8¢ =
.05 —2.17 .63 2.85 1.37 .33 2.52 2.62 .40 3.23 .44 -2.23 .56
.1 —1.57 .50 2.37 1.44 .45 1.92 2.56 .64 2.83 .7l -183 .29
.15 —1.69 44 2.13 1.43 .53 L39 2.3¢ T4 2.58 .82 —~1.58 .18
.2 —~1.55 .39 Lod 1.41 .60 1.34 2.16 .82 2.39 .90 —1.39 .10
.3 —1.32 .35 1.67 1.35 .63 .69 1.89 .50 2.09 100 —1.09 0
4 —1.12 .33 1.45 1.30 .73 72 1.68 .96 L86 1.06 —.8 | —.06
.5 -2 .29 L2l 124 .7 .46 148 1.02 1.64 L13 —6¢ | —.13
6 —.74 .27 1.0l 1.18 .73 .28 1.32 1.04 146 1.15 —46 | —.15
.7 —.56 .26 .82 L1L .63 14 118 104 130 1.15 ~.30 | =15
-8 —.33 .26 .64 103 .60 04 1.06 1.0L 117 1.12 —-17 | —12
oLe —.16 .24 41 .95 .45 —04 .93 .67 1.03 1.07 —03 | —.07
1.0 1.00 100 i 0 0 0 6 0 0 0 1.00 1.00
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The cascade )

From these pressures P was
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