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A THEORY OF UNSTAGGERED AIRFOIL CASCADES IN COMPRESSIBLE FLOW 
ROBERT A. SPUBE and H. JULIAN ALLEN 

SUMMARY 

By use of the methods of thin airfoil theory, which include 
effects of compressibility, relations are developed which permit 
the rapid determination of the pressure distribution over an 
unstaggered cascade of airfoils of a given profile, and the deter- 
mination of the profile shape necessary to yield a given pressure 
distribution for small chord/gap ratios. For incompressible 
flow the results of the theory are compared with available 
examples obtained by the more exact method of conformed trans- 
formation. Although the theory is developed for small chord/ 
gap ratios, these comparisons show that it may be extended to 
chord/gap ratios of order unity, at least for low-speed flows. 
Choking of cascades, a phenomenon of particular importance in 
compressor design, is considered. 

INTRODUCTION 

The wider use of gas turbines and other devices employing 
axial-flow compressors has increased the need for com- 
pressors with a high pressure rise per stage. In order to 
achieve this purpose it is necessary to use high velocity 
flows, thus increasing the possibility of losses through com- 
pression shock. A method is therefore desirable which will 
permit the design of compressor blades which have high 
critical compressibility speeds. This result can be accom- 
plished if a cascade of airfoils representing the flow can be de- 
signed to give a desirable airfoil-section pressure distribution. 

This report attacks a portion of the problem by finding the 
relation between the profile shape and pressure distribution 
over airfoils arranged in an unstaggered cascade through the 
use of the approximate methods of thin airfoil theory origi- 
nally presented by Glauert in reference 1 and further de- 
veloped by the NACA in reference 2. The flow over an 
airfoil in cascade is related to that over a single airfoil in a 
free stream. The problem of finding the pressure distribu- 
tion over an airfoil in cascade or the shape of an airfoil in 
cascade to give a required pressure distribution then reduces 
to the analogous problem for a single airfoil, which can be 
solved by known methods. 

The analysis involves the assumption that the gap between 
airfoils is large compared to the chord length. In particular, 
expressions relating the characteristics of a cascade airfoil to 
those of a free airfoil are expanded in a power series in c/g, 
where c is the chord and g the perpendicular distance between 
airfoil chord lines in the cascade, and powers of c/g higher 

than the second are neglected, 
used are foimd in Appendix A. 

Definitions of the symbols 

THEORY 

Consider an infinite unstaggered cascade of identical two- 
dimensional airfoils, as represented in figure 1. The config- 
uration is specified by the chord/gap ratio c/g, the camber- 
line shape and thickness distribution of the individual 
airfoils. For an individual airfoil, the incident velocity is 
T'with a corresponding density of p and angle of attack a'. 

FI'"UEE I.—Schematic diagram of cascade. 

The pressure distribution on a typical cascade airfoil will 
be compared with that which would be obtained over a 
single airfoil of the same shape in a stream of velocity Y and 
density p. The angle of attack a of the single airfoil will not, 
in general, be the same as the angle of attack a of the 
airfoil in cascade, and an expression relating the two angles 
will be given. In the analysis to follow, primes will be used 
to designate properties of the cascade airfoil. 

AERODYNAMIC CHARACTERISTICS OF A CASCADE AIRFOIL OF A  GIVEN 
PROFILE SHAPE 

Effect of camber.—The chordwise lift distribution for the 
free airfoil is given by the Kutta-Joukowski relation 

dL=      dT 
dx dx (1) 
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where L is lift per unit span, T is the vorticity per unit span, 
and x is the chordwise distance from the leading edge to the 
to the point in question. The lift-distribution coefficient P 
is then defined as 

p=\ dL=2 dT 
q dx    V dx (2) 

In Appendix B, it is .shown that the stream velocity at 
the cascade airfoil is uniform so that the lift distribution 
for the cascade airfoil may be expressed as 

diy= ydT_ 
dx dx (3) 

and  the lift-distribution coefficient of the cascade airfoil 
referred to the dynamic pressure q is 

p*==ldE=2dT^ 
q dx     V dx 

From equations (2) and (4), 

V \ dx    dx 

(4) 

(5) 

It is now desirable to express equation (5) in a more con- 
venient form. It is assumed that the vorticity distributions 
of the free and cascade airfoils, respectively, may be rep- 
resented by the following series (references 1 and 2): 

dT 
§-"( 1 

A0 cot „ 0+XM» sm n® 

d^_ 
dx cot^Ö+Z^4-»' sin nd '-=2V(A0' 

The new parameter 6 is related to x by the equation 

(6) 

2=2 (1 —COS 6) (7) 

Equation (5) then becomes 

P*-P=4 r^y _^4o) cot | e+it(Än'-An) sin no] (8) 

The coefficients in equation (8) will now be evaluated by 
considering the conditions of flow at the airfoil boundaries. 
Let v and v' be the vertical components of velocity induced, 
respectively, by the free airfoil and a particular cascade 
airfoil, and let Av be the vertical component of velocity 
induced by the other airfoils of the cascade. For small 
angles of attack, in order that the flow be tangent at the 
surfaces, the slope dyjdx of the airfoil camber line (which is 
the same for both free and cascade airfoils) must be given 
by the following relations: 

dyc       ,v 

dx—a+V+V) 

(9) 

Appendix B gives the vertical components of velocity 
induced by the vorticity and source-sink distributions which 
represent the airfoils of a cascade. For simplicity, the 
following symbols are used: 

"48 g2 

x=yi—I\P 

(Bll) 

(B4) 

where M is the Mach number of the undisturbed stream. 
The velocity components calculated in Appendix B are 

•An+y^An. cos nd 
) 

y=X (-Ao' + JZA/ COS Tlö) 

(B5> 

(B6) 

and neglecting terms involving o- to the second and higher 
powers 

^=-2| KA0'+^Ai')-(2A0
>+A,') cos 6}     (B25) 

Substituting  these relations in  equations   (9),   there  is 
obtained 

=a+X ( — A0+^2An cos nd dye. 
dx 

^=a'+\ (-Ä/ + ZM»' cos no) 

-2^[(A0'+^A/)-(2A0'+A1') cos 6} 

(10) 

Since equations (1Q) are equal trigonometric series, the 
coefficients of cos nd can be equated: 

a-\A0=a'-\A0
,-2^ (A0'+LW) 

\Al = \Al
,+2^(.2A0' + Al') 

Ao=Ao 
(11) 

An=A»'(n?±l) 

From the first of equations (11), it is seen that the quan- 
tity (A0'—A0) depends on the angle of attack a of the free 
airfoil.    This angle may be arbitrarily defined so that 

A'-A=0 (12) 

Combining equations (11) and (12), the following relations 
are obtained: 

yl„'-Ao=0 

and 

Al'-Al = -2^(2A0' + Al') 

A2'-A2=0 

An'-An=0 (n^l) 

(13) 

-a=2- (A»>+±A2>) (14) 
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Making use of equations (13), equation (14) may also be 
written as follows: 

r/      a     2^(A0+lA2) 

From equations (8) and (13), there is obtained 

P*-P=-8 f, (2Aa' + Al') sin 8 
A" 

(15) 

(16) 

Changing to the unprimed coefficients with the use of equa- 
tions (13), and neglecting terms in a2, the expression becomes 

P*-P=-S^2 (2^0-Mi) sin 0 (17) 

It should not be interpreted from equations (16) and (17) 
that Ai' and At are equal. Equation (17) is the result of 
•dropping terms in <r and not of equating A\ and Ax. The 
difference between ^4/ and Ai to the order <r is still given 
by equations (13). 

The section lift coefficient for the free airfoil is 

<-J>G (18) 

Substituting from equations (2), (6). and (7) and performing 
the integration, one obtains 

ci=ir{2Ati+Al) 

Similarly, the quarter-chord moment coefficient is 

."-JHK) <!M<*-*> 

(19) 

(20) 

From equations (19) and (20) it follows that 

9 A  -L- A  —— 

AQ i -^ A% — ^— ( C/-(-4cm(.,4 I 
(21) 

With use of equations (21), equations (15) and  (17)  then 
become 

a- — a=^(Cj+4c„ elij 

and 

P*—P=- 8<rc,  .    . 
sin e 

xX2 

16g-C; 

" xX2   \' c 0-1) 

(22) 

(23) 

(24) 

Effect of thickness.—From Appendix B, the horizontal 
velocity at an airfoil in cascade is greater than that at a 
single airfoil bythe amount Au, which is given by the relation 

Au_A<r 
(B24) 

The quantity A is a function of airfoil thickness given by 
equation (B20) and tabulated for various airfoils in table I, 
which has been taken from reference 3. 

The increment of velocity given by equation (B24) can be 
added to the velocity of the undisturbed stream Vi to give the 
true incident velocity V: 

From equations (B24) and (25), 

V, 
7=1" 

Ao; 
"X3 

(25) 

(26) 

The density px far ahead of the cascade is given by the 
following equation, derived for isentropic flow: 

Pi~- A^*m->Y 
where y is the ratio of specific heat at constant pressure to 
that at constant volume. Using the binomial expansion and 
neglecting terms containing powers of [{Vi/V)1—1] higher 
than the first, there is obtained to the order of a 

P\    -,  , Ao-Af2 

(27) 

The ratio of the dynamic pressure g at the center of pres- 
sure to the dynamic pressure qt far ahead of the airfoil is then 
found to be 

|=l + 2^ (28) 

where 
A/2 

£=1-^ (29) 

The lift-distribution coefficient P' referred to the dynamic 
pressure <& is given by 

P' = -i   P* 
2i 

(30) 

The cascade section lift coefficient is 

Ci '-MfHJX?)      (3I) 

Substituting equations (24) and (28) in equation (31) and 
performing the integration, there is obtained, neglecting 
terms in <r, 

"'-"—^C1-^) (32) 

Equation (32) gives the relation between the lift coefficient 
of a cascade airfoil at angle of attack a' and that of a single 
airfoil at angle of attack a.. The relation between a' and a is 
given by equation (22). 

The Mach number M' must now be related to the Mach 
number M for the corresponding single airfoil. The velocity 
of sound at is related to a by 

ai = -tl -ji a (33) 
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.58 

y- •1 M2 

[($)"-] 
which becomes, using equation (26)       .. . 

Z\=r[l + (7-l)M'|f] 

Hence equation (33) becomes, to the order of a 

7-1 M' AcA 

(34) 

(35) 

and so 

M'=^= .Yi V 
Vja, 

Using equations (26) and (35) then 

±M 

M'=[l- 
Aff 

ixir M 

where 

M=l+(^)itf' 

(36) 

(37) 

Determination of pressure coefficient.—The following co- 
efficients are useful in expressing the pressure on an airfoil 
surface: 

St- ß-Pi: p    Pi-P (38) 

where pt is the local static pressure on the surface of the air- 
foil, and H, p, and q are, respectively, the total head, static 
pressure, and dynamic pressure of the undisturbed stream. 
The variation of H with Mach number, assuming that the 
ratio of specific heats is 1.4, is given (reference 4) by the 
equations 

H=p + q(l + r,) \ 

t , M* , M* ,  M'", { (39) 1+17=1 + - 40 ' 1600 

From these equations, 

St=l+7,-Pt C40) 

A graph of t\ as a function of Mach number is given in 
figure 2. The subscript I in equations (38) and (40) will be 
replaced by U, L, or / to denote, respectively, the upper 
aud lower surfaces of an airfoil and the surface of its sym- 
metrical base profile. 

According to reference 5, the velocity Vf along the base 
profile of a single airfoil is given for incompressible flow by 
the expression 

vT Pf- 
.vr-PH-vi-Ps 

(41) 

where the pressure coefficients are referred to q.    That is, 

p  =.Pazzl- p -_PL~P; p -Pf-P 
v        1    '   L       <Z    '    f       2 

and p is the static pressure of the stream corresponding to q. 

.24 

.BO 

l.tz 
I 
5 

.08 

.04 

O .2 .4 .6 .8 
Mach number, Af 

FIGURE 2.—Compressibility factor, n, as a function of Mach number. 

I.O 

The velocity V/ along the base profile of the airfoil in a 
cascade in terms of Vis simply 

so that 

V/_V, 
v~v 

vr=p7=vr^p; "(12) 

since the cascade base-profile pressure coefficient P* is 
referred to the dynamic pressure q and to the static pressure 
p rather than to the corresponding quantities in the un- 
disturbed stream. Analysis (reference 3) shows that equa- 
tion (42) holds also for compressible flow, to an approxima- 
tion of the same order of magnitude as others already made. 

The upper- and lower-surface pressure coefficients referred 
to q are from reference 5. 

Pu* 

Pz.*=l- 

(i-pf*+\p*y 

(i-p,*-\p*y 
'        l-F/* 

(43) 

Although equations (43) were derived for incompressible 
flow, it can be shown that they are applicable in the case of 
flow in a compressible stream. 
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The coefficients Pv* and PL* can be converted into the 
coefficients Pv' and PL' referred to q\ (the dynamic pressure 
in the undisturbed stream) and the corresponding static 
pressure by means of the following equations, which are 
based on equations (28) and (40): 

sa*= =1- <-y- -Pu* 
"* 

sL*= =1- -v- _PL* 

SB'= 
2i 

Oy ' •=su> !(l + 2 

SL' = 
2i 

sL* = sL> '(l+2 
A«rA 

Pu'= = 1- rV • -SB' 

PL'= = 1- -SL' 

(44) 

when t\' is the value corresponding to ~\1' given bv equation 
(36). 

DETERMINATION OF  PRESSURE DISTRIBUTION FOR  A  GIVEN  PROFILE 
SHAPE IN CASCADE 

A method can now be outlined for finding the pressure 
distribution over an airfoil of given profile in an unstaggered 
cascade. It will be assumed at the outset that the Mach 
number M' of the approaching air is known and that the 
desired lift coefficient c{ of each of the cascade airfoils is 
given. 

1. The Mach number of the corresponding free airfoil, M, 
is determined from equation (36) to a first order in a- as 

wherein 

ff-48 y 

X=Vl-(Af')2 

=i+^ air 

(45) 

(Bll) 

(46) 

(47) 

and A may be obtained from table I or from equation (B20). 
2. The lift  coefficient of the corresponding free airfoil, 

Ci, is found from equation (32) by neglecting second-order 
terms in cr as 

c,= c,Tl+S(l-|-Ayi (48) 

wherein £ is given by equation (29). 
For the given airfoil the quarter-chord pitching moment 

c»(/4 and the angle of attack a corresponding to the lift 
coefficient Ci will be known and the angle of attack for the 
airfoil in cascade a   (degrees) can be found from 

--  o     °" a'= a+ 57.3 -^ (Ci+4c„e;t) (22) 

3. P—PL—Pu for compressible flow at the Mach number 
M is found for the single airfoil at the lift coefficient ct. 
Preferably an experimental pressure distribution at the 
appropriate Mach number and at approximately the same 

Reynolds number should be used but a theoretical distribu- 
tion (e. g., by references 2, 6, 7, or 8) modified by the Glauert- 
Prandtl or Karman-Tsien rule (references 9 and 10) is 
satisfactory. 

4. P* is found from equation (24). 

16trc,     x 
a-X2 ~V (-!) 

5. yl— Pf* is calculated from the free airfoil pressure 
distribution from equations (41) and (42) 

.'!-/>/= VI-P/= vi^iv-fVw5: (49) 

6. (1— Pf*) and P* are combined to give (1— Pv*) and 
(1 —Pi*) from equations (43) 

1-P„* = 
(l-P,* + ±P*)1 

1-Pf* 

(,1-Pf*— Ap*)2 

\-Pf* 

(43) 

7. The cascade pressure coefficients Pt>' and VL' are then 
found by means of equations (44): 

Sa*=l-Pa*+V 

SS = 1-PL 

P0'=l-Sa' + n' 

P/=l-SL'+v' 

(44) 

where -q and 17' corresponding to M and M', respectively, are 
found from figure 2. 

DETERMINATION OF PROFILE SHAPE FROM A GIVEN PRESSURE 
DISTRIBUTION IN CASCADE 

The procedure for obtaining the profile shape for a given 
pressure distribution in cascade involves a process which 
is essentially the reverse of that just outlined. First the 
required pressure distribution is drawn. The initial choice 
must be made skillfully with reliance on experimental pres- 
sure distributions so that the distribution chosen shall 
correspond or nearly correspond to that obtainable with a 
real airfoil. From the chosen distribution the coefficients 
Ci and Cmc;i' are determined by graphical or numerical 
integration and the pressure coefficients Pv' and PL' are 
read off at selected points. The method then consists of 
the   following   steps: 

1. The Mach number M is determined from 

M-\} ' X3 AT (45) 
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2. Pv* and PL* are found by applying equations (44) in 
reverse order, neglecting terms involving a to the second and 
higher powers. 

Su'^i + n'-Pu' 

SL'=1+V'-PL 

SL*= (   1 — 2 -r-j-  ) SL 

Pa*=l + V-Sv* 

PL*=l+n-SL* 

(50) 

where rj' and rj correspond to M' and M.    (See fig. 2.) 
3. (1—Pf) is found by means of the following equations, 

which are readily obtained from equations (49): 

Vi=F^.-Vra7=Vl"Pp*tVl"P'* (49) 

The base profile should now be checked to see if it satisfies 
the closing condition given in reference 2. If the assumed 
pressure distribution does not correspond to a closed shape, 
it must be modified so that it does.    (See reference 2.) 

4. The single-airfoil lift-distribution coefficient P is found 
from the relations 

P* = PL*-PV* (51) 

5. The final upper- and lower-pressure coefficients are 
calculated by means of the following equations from equa- 
tion (43): 

,2^ 

U— -L  p 

PL=I- 

I-Pf 

I-Pf-Jp 
I-Pf 

(53) 

6. The angle of attack of the single airfoil is then given 
in degrees by 

«=«'-57.3-=-(^' + 4^0 (54) 

THE CHOKING OF CASCADES 

which is a modification of equation (22). 
7. The problem of finding a profile shape which will have 

a given pressure distribution in cascade has now been re- 
duced to the analogous problem for a single airfoil. It is 
now possible to calculate the corresponding incompressible- 
flow pressure distribution by the method of reference 10, or 
simply by multiplying Pv and PL by -Jl—AP. An airfoil 
shape can be designed to give this pressure distribution by 
the method of reference 2. In the application of this 
method, it is generally necessary to make some changes in 
the pressure distribution, as previously noted, in order to 
make it correspond to a possible distribution for an actual 
airfoil. If the initial distribution has been well chosen, 
however, the changes will be minor. 

In the compressible adiabatic flow of a fluid in an elemen- 
tary stream tube of varying area ^.4;, the mass flow must be 
constant so that the logarithmic derivative 

dpij_dVi , dAi 
Pi 

must vanish.    Now the density pi and the velocity V, are 
related to the pressure pt by Bernoulli's equation. 

dpK_ 
Pi 

dpt   dP,_ 
dpi    pi 

•V.dV, 

The quantity dpi/dpi is, of course, the square of the velocity 
of sound so that Bernoulli's equation may be written 

dpi VdV, 
pi at 

M? , dVt 

V, 

where  Mx  is   the  local  Mach  number.    Combining   this 
expression with that of the logarithmic derivative then 

(1- 
w,v dV,_   dAi 

~Mi~) ~rr——T~ W li •n-i 

From this relation it is seen that for a subsonic flow the 
area must decrease for a velocity increase, while at supersonic 
speeds the area must increase for a. velocity increase. Wien 
the Mach number is unity, then dA=0, so that sound speed 
is only attained where the area is a minimum. 

Considering the flow through the cascade of figure 1 as 
essentially unidimensional, then it is apparent that if the 
flow past the plane bb attains sonic speed, the mass flow 
through the cascade cannot be further increased and the 
cascade flow may be said to be "choked." Of course, the 
flow through a cascade is not unidimensional, but experi- 
ence with the similar phenomena of choking in wind tunnels 
has indicated that the assumption of unidimensionality of 
flow yields calculated choking Mach numbers in good agree- 
ment with experiment. 

For a unidimensional flow it is shown in reference 3 that 
the ratio of the free area of the undisturbed stream A to the 
minimum flow area Am is related to the choking Mach 
number of the free stream Mch by 

Am   Mch L 
7-1 
7 + 1 

(MJ 1)] (55) 

For the approaching stream which will pass between any two 
airfoils of the cascades the free cross-sectional area is 

A=g cos a' 

while the minimum area between the two airfoils is 

Am=g—t=g(l--) 

A     cos a' 
and hence 

An 
(56) 

where t is the maximum thickness of an airfoil. 
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Properly the thickness of the boundary layers on each 
surface of the airfoil should be added to the geometric 
thickness to obtain an effective thickness tt. Using this 
value with equations (55) and (56) and a value of j (for air) 
of 1.4 then 

Mch cos a' 

9 
( 

5+AL, 
(57) 

A practical estimate of the choking Mach number may be 
found by assuming the angle of attack to be so smaU that 
cos a' ^ 1 and that the effective thickness is the geometric 
thickness. With these assumptions, values of the thickness/ 
gap ratio as a function of the choking Alack number are 
given in figure 3. 

05 

I 
0 
u 
0 o 

5 
5./ 

O 

0 

.5 .7 .8 .9 
Choking Mach number, AfCh 

1.0 

FIGI'EE 3.—Choking Mach number as a  funetiOD   of the ratio of airfoil  thickness to 
cascade gap. 

It is shown in reference 3 that there exists another pos- 
sibility that choking may occur in the wake of the airfoils 
for very thin profiles as the result of the action of viscosity. 
In most cases this type of choking will not be of practical 
importance. 

DISCUSSION 

In order to check the accuracy of the equations which have 
been developed, pressure distributions for incompressible 
Sow have been calculated at three lift coefficients for an un- 
staggered cascade of NACA 4412 airfoils. These cases were 
chosen to permit comparison with those which have been 
determined in reference 11 by the method of conformal 
transformation. The chord/gap ratio in all cases is 1.03 
and the lift coefficients considered are 0, 0.5, and 1.0. This 
comparison subjects the approximate theory of this report 
to a rather severe test, since the analysis has been developed 
on the basis of a small chord/gap ratio. The comparison 
with reference 11 indicates the agreement is good as may be 
seen in figures 4, 5, and 6. The single-airfoil pressure 
distributions, as obtained by conformal transformation in 
reference 11, are shown in the figures for the same lift 
coefficients as for the cascade airfoils. (In Appendix C 
the calculations to obtain the pressure distribution of figure 

-z 

< 

{£-,/ 
O 

' Cascade airfoil by method of this report 
•Cascade  airfoil by method of reference II 
 Lone  airfoil (from reference /1) 

2o 40       _    60 eo 
Chordwt'se station, percent c 

IOO 

FTGUBE 4.—Pressure distribution for NACA Ü12 airfoil alone and in cascade for -=1.03 and 

c:'=0. 
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-3r 

Cascade airfoil by method of this  report 
Cascade airfoil by method  of reference II- 

 Lone airfoil (from reference II) 

20 40 60 80 
Chordwise station, percent c 

100 

FIGURE 5.—Pressure distmbution for NACA 4412 airfoil alone and in cascade for -="1.03  arid 

«'=0.5. 

6 are given in detail. Table II gives all the necessary com- 
putations and serves to demonstrate the simplicity of the 
method.) It is evident from the figures that one effect of 
cascading airfoils is to impose a "negative camber in- 
fluence" on the pressure distributions as the lift coefficient is 
increased. Accordingly, for airfoils for use in cascade the 
camber must be exaggerated if a certain desired camber 
effect on the pressure distribution is to- be obtained. It is 
of interest to note that the calculated angles of attack are 
also in reasonably good agreement as may be seen in the 
following tabulation: 

ei' 

Airfoil in cascade Airfoil alone 

a' (from ref- 
erence 11) 

a' (method of 
report) a 

0 
. 5 

1.0 

-5.9° 
+ 1.8° 
+ 9.7° 

' -6.0° 
+ 2. 3° 

+10. 4° 

-4.3° 
-. 1° 

+ 4.0° 

-2 

scadt 
rscade 
ne air 

? airfoil by 
airfoil   by 

-foil (from 

method  of this  repor 
method  of reference 
reference II) 

t 

\ — 
-- Cc 
— Lo 

1 O \Pv 
1 \\ 

1 \> 

N 

*»_ • K 
ä 

^ 
Px. 

if 
3 N 

If 

20 40 60 80 
Chordwise station, percent c 

IOO 

FIGURE 6.—Pressure distribution for NACA 4412 sirfoil alone and In cascade fur r-1.03 and 

ci'=1.0 

Unfortunately no pressure distributions over unstaggered 
cascades at high airspeeds could be found so that the validity 
of the compressibility corrections developed in this report 
could not be determined. They have been developed, how- 
ever, in much the same way as the compressibility corrections 
of reference 3, which have been found to be in good agree- 
ment with experiment. It is clear, however, that as the 
Mach number is increased the accuracy of the calculations 
will diminish unless the chord/gap ratio is simultaneously 
decreased. This will be particularly true as the choking 
Mach number is approached. 

One matter of interest concerns the effect of compressi- 
bility on the lift-curve slope of a cascade of NACA 4412 
airfoils having chord/gap ratios of 0 (i. e., lone airfoil), 0.5, 
and 1.0 which is shown in figure 7. It is seen that the 
importance of the interference effects of the airfoils in cas- 
cade increase so rapidly with Mach number that, contrary 
to the usual expectation, a decrease in lift-curve slope with 
Mach number is indicated for high solidities. 

An examination of the equations for the choking of cas- 
cades indicates that care must be exercised with an unstag- 
gered cascade to keep the airfoil thickness small for high 
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FIGURE 7.—Effect of compressibility on lift-carve slope for NAC A 4412 airfoil in cascade. 

solidities if relatively high free-stream Mach numbers are 
employed. Even for the cascade considered in figures 4, 5, 
and 6, for example, the choking Mach number as obtained 
from figure 3 is only about 0.64 based on the geometric 
thickness of the airfoils. 

The existence of a boundary layer on the airfoil surfaces 
would, of course, increase the effective thickness which would 
reduce the choking Mach number. TVhen the pressure 
gradients are strongly adverse, as in the case of the airfoil 
of figure 6. the boundary-layer growth will be increased and 
its effect on the choking Mach number will be more pro- 
nounced. The proper choice of camber consistent with the 
design lift will serve to reduce the sharp pressure peak, 
thereby improving the critical as well as the choking Mach 
number. 

AMES AERONAUTICAL LABORATORY, 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

MOFFETT FIELD, CALIF., September, 1947. 



APPENDIX A 
LIST OF SYMBOLS 

The following symbols are used through this report: 
a 
An 

Bn 

c 

c 

9 
cli 

H 
L 
M 
Mch 

V 
P 

9 
Q 
r 
S 
t 
T 
u 
v 
Av 

velocity of sound 
Fourier coefficients (See equation (7).) 
Fourier coefficients (See equation (Bl4).) 
airfoil chord 
section lift coefficient 
section quarter-chord-moment coefficient 
distance perpendicular to chord between airfoils in 

cascade 
total head 
lift per unit span 
Mach number 
choking Mach number 
static pressure 
without subscript, local lift at any chord station in 

coefficient form; with subscript, local pressure co- 
efficient (See equation (38).) 

dynamic pressure 
source strength 
radial distance in polar coordinates 
local pressure coefficient (See equation (38).) 
maximum airfoil thickness 
absolute temperature 
horizontal component of velocity 
vertical component of velocity 
total induced vertical velocity at the airfoil under 

consideration clue to the other airfoils in the cas- 
cade 

velocity 
coordinate of points on chord line as measured from 

leading edge 
ordinate of mean camberJine 
ordinate of base profile 
angle of attack 
560 

y       ratio of specific heat at constant pressure to specific 
heat at constant volume (cpjct) 

r       circulation per unit span 
/     M2\ 

£       compressibility correction factor I 1 —=- ) 

rj       compressibility factor (See equation (39) and fig, 2.) 
9       angular   coordinate   of  points   on   chord   line    (See 

equation (7).) 
compressibility correction factor (-^1—M2) 
factor  depending  upon  shape  of  base  profile   (See 

equation (B20) and table I.) 

compressibility correction factor ( 1H—„— M'2) 

mass density 

factor depending upon solidity of cascade ( .„- -j 

inclination of the radius r to a. line normal to the air- 
foil chord (See fig. 1.) 

polar angle in polar coordinates (positive counter- 
clockwise) 

SUPERSCRIPTS 

'        used to distinguish properties of cascade airfoil 
'•'        denotes cascade airfoil characteristics as  coefficients 

referred to dynamic pressure of incident stream at 
center of pressure 

SUBSCRIPTS 

1 denotes values in stream far ahead of cascade (except 
when used to indicate a numbered Fourier coefficient) 

I denotes local conditions at point in fluid 
L denotes values on lower surface of airfoil 
U denotes values on upper surface of airfoil 
/ refers to base profile 
v denotes a velocity induced by a vortex 
s denotes a velocity induced by a source or sink 

X 

A 

P 

$ 



APPENDIX B 
VELOCITY COMPONENTS INDUCED BY ÄIRFOILS IN CASCADE 

For incompressible flow over a single airfoil, the vertical 
velocity (perpendicular to the chord) induced at the point on 
the chord Xa by its own vorticity distribution is 

dT , 
-j-dx 

i=J_ t'c dx 
2xJo X—XQ 

(Bl) 

To obtain the velocity for compressible flow, the factor 

Jl-M* 
l-it/2sin2$ (B2) 

must be applied to the right-hand side of equation (Bl) as 
is shown in reference 9. Here M is the Mach number of the 
undisturbed stream and $ is the angle between the stream 
direction and a line drawn from the vortex to the point in 
question. For a single airfoil <£ is always close to 0° or 180° 
and the induced velocity in a compressible stream is ap- 
proximately 

dT , dT 
.VI 

where 

-M*C'dxdx
=\ Ccdxdx (B3) 

2a-     Jo x—Xo    2xJo x—x0 

\=^'1-M2 (B4) 

Equation (B3) can be integrated by substituting for dTfdx 
and for x the following: 

^=2V(A* cot ^+f>iB sin no) 

X=-K (1 —COSI 

(6) 

(7) 

The details of the integration are given in reference 2, page 4. 
The resulting expression is 

v 
V = X ( —Aa-T-y^A. COS 710 ) 

\ n = l / 
(B5) 

The vertical velocity at a point on the chord of an airfoil 
in cascade is made up of three parts. These are (1) the 
velocity v' induced by its own vortices, (2) the velocity Acs 

induced by the vortices of the remaining airfoils of the 
cascade, and (3) the velocity Avs induced by the sources and 
sinks of the remaining airfoils. 

By analogy with equation (B5): 

y=\ (-Ao'+JbA.' cos nd) (B6) 

The vertical velocity induced by the vorticity distribution 
of the other airfoils is given by the expression 

1    m = a>    (* 

V m=lJ0 
Ai>,= - 

dr   . 
dx 

sin TK ,       n — ^p    , 

, -^— U-M«C0B»J dX       ®V 

The summation is over the remaining airfoils of the cascade. 
The angle r is measured clockwise between the vertical and 

a line from the vortex to the point in question, as indicated 
in figure 1. The factor in parentheses is that necessary to 
give the correct result for compressible flow. It is derived 
from the factor (B2) with use of the relation sin #=— cos r. 
Since rm= (m#/cos T„) and tan Tm=(x—x0)/mg so that 

-xa 

sin 
mg 

V1 
\ rag ) 

and 

cos Tm= 

M- -x0 

mg 

the preceding equation may be written 

A<,=-XST— 
dT'ldx 

X—Xo 

mg 
mg 1    AP+(X~Xo)2 

\ mg ) _ 

dx      (B8) 

Expanding the term in brackets in a power series in (x—x0) 
[mg, neglecting terms involving the cube and higher powers, 
and noting that 

_2 en       1 _Z 

-Y m2~ 6 
there is obtained 

Av'=wJo^iX~X*)dx (B9) 

If equations (6) and (7) are substituted into equation (B9) 
and the indicated integration is performed,_there is finally 
obtained 

AD, 

where 

^'=-2 l^{A0'+^A1')-(2Aa'+A/) cos fl] (BIO) 

It is interesting to note that equation (BIO) can be more 
directly obtained by replacing each of the airfoils of the 
cascade by a single vortex. The important point in such a 
derivation is the proper chordwise location of this vortex at 
the airfoil center of pressure. 

In a manner similar to that in which equation (BIO) was 
obtained it is possible to show that neglecting terms involving 
(x—x0)fmg to the third and higher powers, 

Alt, 
~V 

=0 (B12) 

In Appendix B of reference 3 the velocity components in- 
duced by a source at the origin are given as follows: The 
velocity component perpendicular to the stream Ac, is 

Q r-y'l-M2 (sin$) 
2rr[_  1-it/2 sin2* ] 
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and the induced velocity component parallel to the stream 
Au, is 

2wr LVl- 
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From thin airfoil theory (reference 2) it can be shown that 

25°'+^=TXM!)   -    (B19> cos $ 
Mi (l-il/2sin2*) ] 

where Q is the mass flow divided by the free-stream density. 
The vertical velocity induced by the source-sink distribu- 

tions of the remaining airfoils of the. cascade can then be 
expressed as .:: 

A        -1.•^ fc dQ'ldx rVl-^2(cosrm)"I 
s~    *  ^Ju     rm    I 1-M2 cos2 rm J 

dx 

and the corresponding horizontal induced velocitj^ is, after 
noting that cos 3>= — sin rm, 

T m = lj0        7m       L"Vl" 

"Sin r„ 
-M2(l-M2.cos2rm)J 

cfa 

rf<2' where ^p- cfo is the source strength over an element of chord 

dx of the cascade airfoil. Substituting for rm and cos rm and 
sin Tm as before, expanding, and neglecting the third and 
higher power of (z—x^/mg, there is obtained 

A/),=0 

Aw, '   exyjo f (,-., *. (B13) 

The source-sink distribution 

following series'. 

is now expressed by the 

dx' 
2V(B0' cot i e+2]5n' sin nff) (B14) 

On substitution of equation (B14) the integral in equation 
(B13) can be evaluated, obtaining, analogously with equa- 
tions (BIO) and (B12): 

and 

Aw, 

Av, 
'Vs 

'•yz\(ßü'-\-^B2') 

(B15) 

•VBo'+'Bt') cos*]       (B16) 

Since the airfoil must be a closed figure, it follows that 

j; dx dx=0 (Bl7j 

By substitution of equation (B14) in equation (Bl7), there is 
obtained 

so that 
2B0' + Bl'=Q 

^s=J(2B0'+iV) 

(B18) 

where yt is the ordinate of the base profile as measured from 
the axis of symmetry in terms of the airfoil chord at the cor- 
responding x station. 

In the problem of determining the wall interference in a 
two-dimensional wind tunnel, an evaluation of the influence 
of the image base profiles yields an identical result if the 
limitations of thin airfoil theory are presumed. Lock (dis- 
cussed in reference 3) has evaluated the image base profile 
effects as regards wall interference in the incompressible case 
for profiles not necessarily thin and has found that (in the 
notation of this report) 

A=T1'W(I-P4I+(*)">0) **» 
is a more precise value to replace 2B0'-^Bi', where P/( is the 
base-profile pressure coefficient in incompressible flow. 
Values of A computed by equation (B20) for various airfoils 
are given in table I which was taken from reference 3. 
Accordingly, as in reference 3, this value is used in this report 
so that the velocity increment due to the effect of sources and 
sinks becomes 

A«s_Aff 
V~\3 (B21) 

It should be noted that properly Lock's result for incom- 
pressible flow is 

Au, 
= A<T (B22) 

However, the expression for V is 

V=VL+Au 

so it follows that 

Yi— i _M 
~V~l     V 

Thus for incompressible flow 

Aw, ( AM 

" V (B23) 

which to the first order in cr is still equation (B22) so that 
equation (B21) for compressible flow follows. From-equa- 
tions (Bl2) and (B21) it is clear that the influence at the 
position of one airfoil of the cascade due to all other airfoils 
of the cascade is simply that promoted by the source-sink 
system 

Au_Atr 
-B24) 

Moreover, because Ar, (equation (B13)) is zero, it follows 
from equation (BlO) 

Ai' 
V —n[w +\A2')-(2Aa'+Al') cosö ']    (B25) 



APPENDIX C 

SAMPLE PRESSURE-DISTRIBUTION CALCULATION 

Table II gives all the necessary calculations to arrive at the 
cascade pressure distribution shown in figure 6. It was 
desired to obtain the pressure distribution for a cascade of 
NACA 4412 airfoils given the values c/=1.0 and c[g=lM 
for comparison with the distribution calculated by the method 
of conformal transformation given in reference 11. 

Since the assumed flow is incompressible, then X, y., and £ 
are unity and t\ and t\' are zero. From table I, A is 0.237. 
The parameter <x is 0.220. The lift coefficient for the 
corresponding airfoil in free air is obtained from equation 
(48) as  1.335.    By potential theory,  for the NACA 4412 

airfoil the free-air angle of attack for c£=1.335 is 6.8° and 
emC[i is —0.11 so that for the airfoil in cascade, by equation 
(22), a'=10.4°. 

Values of the pressure coefficient for the isolated airfoil 
were calculated from the free-air values of reference 11 using 
the method of reference 5. From these pressures P was 
determined and the P* was obtained from equation (24). 
P* and 1 — Pf* (equal to 1 — Pf) were then combined by 
equations (43) to give 1 — PU* and 1 — PL*. The cascade 
pressure distribution was finally obtained using equations 
(44). 

TABLE I.—VALUES OF X FOR VARIOUS BASE PROFILES 

Ö 3J, 
i 

•3 < 
H 
ro £2 

o2 NACA LOW-DRAG SECTIONS 
> 
O £4£ 

X 
X M 

< 

^ 
m o t>.<X X X X X X' X X X X X X X 
i—< 

o 
X X X X X X X X X X X X 

-!- 
3 o o o o o o o o o o o o 

PS Pn o o » o «3 3 ö s «5 

0.06 0.127 0.111 0.125 0.119 0.124 0.127 a. ii9 0.107 0.106 0.101 0.106 0.109 0.117 0.119 
.09 0.236 .196 Ö.I55 .172 .190 .183 .159 .195 .1S5 .159 .157 .143 .158 .163 .174 .178 
.12 .320 .269 .212 .237 .264 .253 .263 .271 .256 .217 .214 .201 .215 .221 .236 .243 
.15 .403 .345 .273 .305 .342 .326 .341 .353 .330 .281 .27S .257 .276 .283 .301 .311 
.18 .493 .425 .337 .376 .425 .404 .424 .439 .40S .343 .344 .316 .338 .343 .368 .379 
.21 .580 .503 .404 .450 .512 .4S4 .511 .529 .459 .417 .415 .378 .402 .414 .436 .450 
.25 .703 .625 .497 .554 .632 .596 .631 .654 .602 .512 .513 .460 .437 .501 .526 .543 
.30 .864 .780 .626 _ 
.35 1.049 .945 .767 
.50 1.690 1.50T 1.25S                           

1.00 4.000 4.0O0                   —...     

TABLE II.—CALCULATION OF CASCADE PRESSURE DISTRIBUTION OF FIGURE 6 (SEE APPENDIX C) 
[sr=0.22O; A=0.237I 

© ® ® ® © ® © ® ® ® ® ® ® 

A IJ, 
> 
-r O* 

3-^t f= 

Station Pa Pi [§ '«1 © ©  m © 

© 
~^ 

® 
I ® 

I 
© 

© b < b < 
® 

j 
© 

1 

© 
b 

21fc 

a 
i 

t 

03 

1 * T 
to 

1 I 

0. £ 

0.025 -2.46 0.39 3.35 L19 0.23 3.12 3.26 0.14 3.60 0.16 -2.60 0.84 
.05 -2.17 .63 2.85 1.37 .33 2.52 2.92 .40 3.23 .44 -2.23 .56 
.1 -1.S7 .50 2.37 1.44 .45 1.92 2.56 .64 2.83 .71 -1.S3 .29 
.15 -1.69 .44 2.13 1.43 .53 L59" 2.34 .74 2.58 .82 -1.58 .18 
.2 -1.55 .39 L94 1.41 .60 1.34 2.16    , .82 2.39 .90 -1.39 .10 
.3 -1.32 .35 1.67 1.35 .68 .99 1.89 .90 2.09 1.00 -L09 0 
.4 -1.12 .33 1.45 1.30 .73 .72 1.68 .96 L86 1.06 -.86 -.06 
.5 -.92 .29 L21 1.24 .75 .46 1.45 1.02 1.64 LI3 -.64 -.13 
.6 -.74 .27 L01 1.18 .73 .28 1.32 1.04 1.46 1.15 -.46 —.15 
. / -.56 .20 .82 tu .63 .14 1. IS 1.04 1.30 1.15 -.30 -.15 
.8 -.38 .26 .64 1.03 .60 .04 1.06 1.01 1.17 1.12 -.17 -.12 
.9 -.16 .24 .41 .95 .45 -.04 .93 .97 1.03 1.07 -.03 -.07 

1.0 1.00 1.00 0 0 0 0 0 0 Q 0 1.00 1.00 
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