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IiTTKODUCTION 

The motion of a projectile under water is a matter of 
considerable complexity about which there is comparatively- 
little precise information although new evidence i-s steadily 
accumulating as a result of controlled tests at experimental 
establishments.  In the present paoer the approach to the 
problem is theoretical, an attempt being made to develop 
the dynamical equations sufficiently to reveal the salient 
features of the motion and check existing evidence. 
Approximate equations are formulated which, after reduction 
to non-dimensional form and simplification by the neglect 
of gravity forces, are solved in a particular case which 
has been studied experimentally.  In the absence of precise 
data on hydrodynamic forces and moments.:, tentative estimates 
of these have had to be made.  It is hoped that, with a 
greater body of fundamental evidence it will subsequently 
prove possible, using the theory, to make reasonably accurate 
forecasts of the performance of particular designs. 
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1.  The Equations of Motion 

Let P, Pig. If be the position of the centre of gravity 
of the projectile ^t any inctant ^nd EP the path traversed 
from entry.  liefer the system to axes tangential and normal 
to the trajectory with origin P.  Let 

* = angle of entry relative to horizontal. 

)6 = slope of trajectory rel-tive to horizontal. 

0 = pitch upwards of projectile relative to trajectory. 

V = velocity of projectile ...long path. 

q = total angular velocity of projectile  =  • - 9 

m = mass of projectile. 

g = acceleration of ^r-vity 

B = moment of inertia of projectile in pitch about 
centre oi gravity. 

k = radius of gyration in pitch about centre of gravity. 

•v = overall length of projectile. 

S = representative, area, e.g. area of base of conical 
nose of projectile. 

s -- distance along trajectory from entry. 

<r = B/| 

L = hydrodyn.:.mic lift normal to trajectory. 

I) = hydrodynamic draf; along trajectory. 

M = hydrodynamio nose-up pitching moment. 
GL = lift coefficient in rectilinear {notion.at fixed 

incidence and apeed. 

Op = drag coefficient in rectilinear motion .it fixed 
incidence and speed. 

c
m = moment coefficient in reotilinear motion at fixed 

incidence and speed* 

z = coefficient oi lift deriving, from angular velocity 
in pitch. 

m
Ci = damning derivative in pitch. 

P   = density of water. 

Öf = m/SLr*'  a relative density coefficient. 

^1» %•?_>  K^ • 'added mass' coefficients (acceleration 
derivatives) 

W     m     Iff »/.# - = Proude number. 

-% 
o 44* 
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The equations of motion are 

mVj^- = - D + mg sin i> 

r2dc Vtf- - L + mg cos ^ (1) 

Bq = If 

ffe may write approximately 

rCLV 

L    =    K2mV2^- + i-SfV0zqq  + JfSfV2CL 

M    =     -K-jBq  + iSj>v£2mqq   + ^SfV2f Cm     j 

.. (2) 

The first term on the right hand side of each equation (2) 
is the part of the force or moment arising from acceleration, 
while the last term is the drag, lift or moment in rectilinear 
motion at constant speed and incidence.  The terms containing 
z„ and mQ represent a force and a. moment arising from the 
velocity of rotation q.      AS defined _;bovs, Zq and fflq are non- 
dimensional 

The equations (1) may now be written 

(1 + %)*£ ££• =-£spcD + ff ein b 

(1 + K2)m|^ = -iSfCL + Sf cos i  - *SfBqi^ -.. (3) 

(1 + K-j)Bq = $Sff26cm  + iSfV^Vq 

vTrite s = <r^ 

/«• = m/S^ 

F = V2/g 

B = mk2 

so that 0" expresses the path length in multiples of the 
projectile length, A* is a measure of the relative density of 
the projec.ilo, and F is tue Froudo number. 

The equations (') ) then become 

(l +%$$$•  -    -J^PD • J-sin rf j 
( j 

(1 *K2#» -^C^+j^cös *5  ~2^^>       (4) 

^^3^^ = 2^^n+2^)V4 ! 

iMMI 
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i 
Again, since q = $ - 9 = »J*-^~ ^) 

and since F = V2/g* 

i. dF = £ dV 
P dO-   V d<7" 

Making these substitutions in the equations (4) and using 
a dash to denote differentiation with respect to 0~ , we obtain 
finally 

i(l + Ki)^"    =    - ^JOD+    i-sin  i> \ 

(1  + K2)^  = - ^jCL + 1 cos  ^ - Izq(ö'.fi| 
»^ 

• (5) 

a + K3xe"-y5 + |4a+K3)|. i(|)mq«?'V) =2^(|)2cm 
•_ ._» 

The equations (5) ire in non-dimensional form. 

In general, the coefficients CL» CD, Cm are functions of 
the incidence $  and of the dimensionlesti ratios R, i? ^nd 4 
where 

R is the iieynolds Number = ^y- 

U is the Cavitation Number = (Pn-PcVsfV" 

M  is the Kinematic (Viscosity of water 
(6) 

m is the static pressure at the depth of 
the projectile. 

PQ is the pressure in the cavity behind 
the projectile 

2.  Approximations to the Equations of Motion 

In many cases of interest in underwater ballistics, the 
speed of the projectile, at any rate during the earlier stages 
of the motion, is sufficiently hitih for the fcrav.itational 
forces to be "negligible in comparison with the hydrodynamic 
ones.  When this is so, the terms 1 sin 4  ^nd i °os i    in 
equations (5) ^.i'e negligible compared with jj(,Cn ^nd oXlPL •   In 
what follows we shall suppose this so. 

Elimination of F and i  from the third equation (5 ) by 
means/ 

!-»-v.»»i»ai*^jm:>7W«SB»^ 
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meant* of the first two gives 

n trn%"" r?i °D ~ -ü 
I
F> ^J*' r + ij-i-^.a _ i 

v3" 3 """"•- ~  2/* 

).  .tpplioation to the motion of § symmetrical projectile in 
the phase prior to touch-down of the t .il on the cavity 
wall. 

• (7) 

It is clear that in this case the lift and moment coeffic- 
ients are odd functions of 8 , while the drag coefficient is an 
even function.  We may, therefore, write 

CD - 

C 

a0
6> -t  a-^3 + a2#5 + ... 

b0  + b-jf
2 + b,#4 + ...  [, .. (8) 

'm = 0, + c/; + ofij  + ... 

.Yhere a0, bp, c0 etc. ure functions of the parameters (6). 
We will suppose that, for the displacements occurring in the 
motion, the series (8) are sufficiently closely represented by 
their first terms, so that 

ao0 

(9) 
= c 0* 

and furthermore that a0> b0, co may be assumed constant. 

We will furthermore suppose, in the interests of formal 
simplicity, that the multipliers involving Kji K2 ind K3 are 
absorbed into the re&ptctive coefficients CD, CJ, or zq, cm 0 
mq, to which they may be regarded as corrections 

The equations (5) and (7) now become 
1/ 

or 

¥•'•  _ _ b0 

p   7^ 

6" ^o-to-Q^'-^fW^ •$««) 

(10) 

il+ty*- ^x|)2cJö- oj 
From the last equation  it follows that  stability of the 

motion requires 

b0    -   (g)  «q    >0 

*qj  + IZfr " zq)(^"co <  °      J 

(12) 

m •OR MB« 
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The equations (2) may be written 

I = K^fi + iS/V*(a£ + z&) 

q& is the velocity, normal to the path, of a point on "the 
projectile distant •& from the centre of gravity, and so qC/V 
represents the angle of attack which the incident water makes 
with the surface element at distance £ from the centre of 
gravity by virtue of the rotational velocity q.  Thus, if h« 
be the distance of the centre of pressure on the nose from the 
centre of gravity, the nose is effectively at an incidence 
&  - 1~° to "toe stream and the lift on it is therefore, 

It follows that 
h0 

ho and similarly, mq = - •—• c0 

The third equation (10) is thus 

(12) 

....   (13) 6"    +±[*o-%+#&tf0'-^[&°h° + 2^l)2a°]°=0 

The equations  (10) and  (1?) are linear equations with 
ponstant coefficients and may be directly integrated.      The 
first equation gives 

F   = F0e-bo*7^ 

or   V    =   Y^oltfi.r,****/*?*    (14) 

The seoond and third equations are independent of V, from 
which it follows that the trajectory and attitude of the pro- 
jebtile are independent of the entry velocity except in so far 
as the drag, lift and moment coefficients depend on speed. 
That they do, in faot, vary with the latter, owing to the 
.variation in the degree of cavitation with speed, is one reason 
why the actual trajectory depends on the entrance velocity. , 
The other important influence is gravity. 

4.  Estimation of the numerical values of the coeffioientein 
particular cases. 

The calculation of the values of ao, bo dn<* co in ^ny 
particular case is difficult.  Birkhoff and others (1), using 
a hypothesis originating from Newton, have suggested that the 
forces may be estimated by supposing the excess pressure at 
any point of the wetted surface to be -jfttf per. unit area, whare 
Viv is the component of forward spoed normal to the surface. 
This hypothesis iB known to give values of the force-coeffic- 
ients of the right order in certain cases capable of exaot 
solution, e.g. flat plate and sphere, but it results in zero 
pitching moment on the flat plate at any incidence, which is 
contrary to fact.  Applied to a right circular cone of semi- 
angle P   and bace S with axis inclined at *  to the undisturbed 
flow/ 

4 

•^-'•.'.»vt-^Ä. 
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flow,  Birkhoff's hypothesis gives 

CL • sin:9(cos2/3 + ±»ln2«Kl + 5cos2/g)] 

CD  = oos^sin^^ f 2. tan^cot2^ J 

Cm = |l Bta2$[oos2/$ - | f£ sin2/«] 

(15) 

where h0 is the distance of the centre of pressure from the 
centre of gravity and h. is the height of thu cone.  The centre 
of pressure is distant i-h from the base of the cone. 

Thus, neglectih^ K]_, K2 and K5, we have 

a0 = cos2/3 

b0 = sin
2/? 

h„ 
°o  = TT IOOBTI ~ f- IT" sin 

1 
ä/3'J 

(16) 

In the above, the wetted -rea has been taken a8 the surface 
of the cone.  It may be noted that with a sharp nosed cone, 
breakaway of the flow in pure cavitated flow cannot occur before 
the base edge, whatever the Cavitation Number, for the curvature 
of the streamlines away from the face, were breakaway to occur 
earlier, would imply a lower pressure within the fluid than at 
the surface of breakaway. 

5. Particular case  of the theory. 

For a cone  of semi-angle  ;0° the relations  (16) give 

a0 = 0.5 

b0 = 0.25 

r-     - h° f-i- - 1  h 1 
(17) 

The  following values apply to a model  of a cylindrical 
rocket projectile with a  60°  conical nose  tested  at  Glen ITruin. 

Weight O.766 lb. 

Dia.  of base  of cone 0.75  ins. 

£ •    9.4 ins. 

k =    2.58 ins. 

Centre  of gravity 3.93  ins from nose 

Thus 

2JU.   •    10.2 
e 

I 

(£/lc)2  = 13.28 
I 
1 

I 
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i 
I: 

h = O.65  ins 

*o = 3.fa ina. 

°o = 0.27 

\ 
= -O.19 

\ 
= -0.1 

(18) 

The equations  (10) and  (13) become 

v = v <r0-0245 *" "j 
$   =     -0.0481^+0.0184^' \       .    (19) 

0" + 0.1590'   - O053Ö   =    0      j 

The negative tenn in the last of these equations shows that 
the motion is unstable ov/in^ to the treat preponderance of the 
term in c0 

(20) 

The solution for & has the form 

9  ^eP-52"- + Be-o.679er      

where *i and B are to be determined. 

6.  Initial Conditions. 

Suppose that the entry conditions can be regarded as 
equivalent to a nose impulse I normal to the;«path.  This will 
produce instantaneously an angular velocity &> and a. transverse 
velocity wj where 

B0O = Ih, 0 . 

m "o = I 

The  sidew^yj velocity results  in - negative  niton &o where 

ft   .   -*Ja   =   -i 
Vo niV0 

accompanied by a reduction in d> equal to  - 60 ,   <f>  -Ö remaining 
unchanged. 

Again   Go    = iho/B    =    I^o/mlc 

so that 
60  =  (l/mVo)(0/k)2ho/f     =    5.08I/mV0 in  the  particular 

example above 

Then 

A + B = -l/mV0 

O.52.1 - O.679B = 5.08l/mV0 

J 
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< 

mVr * - C).b73e0-52<r-4.b7^
0-b79<r]i/ 

and 

0» -   [l.909e°*52<r + •i.±12t-°'bl^ll/x* 

The following values are  obtained 

T^ble I 

(21) 

or 0 ^mVo" ' mV0 ^"mVo 

0 -1 5.080 -5.504 

l 3.806 4.819 6.306 

2 9.102 6.214 2.393 

3 16.853 9.490 1.232 

4 29.054 15.470 0.704 

Suppose, for example, that 0 a 5«5° when <T= 4, i.e when 
the projectile has travelled lour lengths from the Instant of 
entry of  the  centre  of gravity 

Then    l/aV0    =   0.003304 

The angular velocity jr*     is then 0.005V 

The velocity has fallen to 0.907V0,  00 that lor an entry 
velocity V0 = 300 ft/sec, V = 272  and the angular velocity 
relative to the trajectory  is 17-75 radiant* per second. 

The corresponding initial path deflection and angular 
velocity are 0.19° and  0.43  radians per becond. 

The mean of these angular velocities in pitch  is 12.09 
radians per second,  a value  in good agreement with observation. 

The radius  of curvature,  R,   of the path is 

jds 
M 1 —^ rr 

a0*  + i„& 
C22) 

Instantaneous values of the radius of curvature in feet 
for the particular conditions above are quoted in Table II. 
The radius of curvature ranges from. -I666 ft. at <T =  0 to 213 ft, 
at O" = 4 and changes sign at an infinite value when 0* = 0.5s 
when the path is instantaneously straight. 

7 •  Motion subsequent to contact 01 the tail .vita the cavity 
wall. 

vfhen the tail of the projectile touches down on tne cavity 
wall, nev hydrociynamic forces and moments are brought into play 
and the force and moment coefficients change their values. 

Let/ 

I 
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Let the equation of pitching, motion (10) prior to touch 
down of the tail be written 

0"  t PÖ'  - Q.Ö   = 0         (23) 

tfrite jr = 6 - *i, where »i is the incidence at which the 
tail first touches the cavity wall.  The above equation is 
then equivalent to 

f**  P/ -#f  * Oßt   (24) 

It is plausible to assume that, ior incidences greater 
than #i, the tail forces and momenta may be expressed as 
functions of •p •      The equation (23) then assumes the form 

/• * +iWf   - U +f)f   - U  +SA       (25) 
where j , /? and ]f are functions of r to be determined. 

In this second phase of the motion write 

CL = a/ -r CL 

CD = b°  + °»   (26) 

°m • °o  + Cm 
h0      ' 

Zq = - -^ a0 + Z(. 

mq  =  " jj-  °o + mq 

From equation (7) again simplified by the absorption of 
K]_, K2 and Ko into the coefficients, it follows that 

i •*[>-*-<f>2-J] 
• = (i)2 C^+^^H +c^) +(b° • ik)2^2c°}G^ • • • •(27} 

• (Jr{-<C0 + Igt + ^a0- Zq^/^Jj    / 
>2-f      f 2 i)   ^2/ i 

I 

Ref. 2 contains the results of experiments on the towing 
of cylinders in the seaplane tank at U.A.EI.  Lift, drag and 
moment were measured over a range of incidence and draught and 
the results plotted as functions of the draught at constant 
incidence and the incidence at constant draught.  Neither of 
these plots is representative of the conditions .vhen a pro- 
jectile penetrates its cavity wall, for then the draught and 
incidence are varying simultaneously.  Moreover, the cavity 
surface is not plane but curved, und is not stationary 
.relative to the centre of gravity.  For the existence of lift 
.on the nose implies the creation of downwards momentum in the 
'fluid.  This will result in an asymmetric cavity and a 
tendency for the cavity to move down as the nose goes up i.e. 
the cavity wall will tend to move down with the tail. 
Whatever/ 
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• 

I 

Whatever the law of variation of the tail forces and moments with 
incidence, it is unlikely that they can be regarded as linear 
functions of the tail incidence over any but an infinitesimal 
range of angular displacement. 

An application of Birkhoff's hypothesis leads to the 
conclusion that, for small degrees of immersion, and a fixed 
position of the cavity wall relative to the C.Ci., the lift at 
the tail should be proportional to(^/(j)C where 6 is the 
inclination of the axia of the projectile to the cavity wall. 
(See Fig. II). 

Furthermore, since € = €0 +xfi,  where C0 is the incidence 
lould be proportional to (g^^+^A- at first contact, the lift 3hould 

In the case of the pitcning moment, there is the 
complication that a leverage about the centre of c^avi 
varying with the- degree of immersion»is involved.  It 
however, that to a first approximation, the moment, li 
lift, should be proportional to ^   *£.  The drag, on 
hypothesis, is proportional to 6' and may, therefore, 
neglected compared with the lift. 

With forces and moments proportional to '/^•the o 
(24) is solvable only by successive approximation. S 
object of the present analysis is merely to illustrate 
salient features of the motion, we propose, in the abs 
definite evidence to the contrary, to assume that the 
and moment are proportional to /* over the small range 
variable occurring in the motion, and write 

further 
ty> 
is clear, 

ke the 
the same 
be 

quation 
ince the 
the 
ence of 
tail lift 
of this 

/ 

/ 
CD 

I 
Cm 

al 

= o (28) 

=  V   J 
. where the coefficients are, for convenience, based on the same 
area as that used in defining the nose coefficients. 

üince the tail is effectually at the incidence € + qh^/V 
where h^ is the distance of the centre, of pressure of the tail 
from the centre of gravity, and since V"L - "^1 , etc., it 
follows that **        °Y 

'       hi *q  -  - f <»1 
(29) 

The results (27) now become 

V  • '%f !(-f/ f^'-oci + alCo ) • 2^ ) - a-^j | . . . ( JO ) 

y =-(
2y

2(l,2!i(a°ci+dico) 

With/ 
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With on average v^lue for// , f , ? > ¥  reduce to constants 
and the equation (24) becomes integrabl- •  *hen the lift and 
moment are a&sumod proportional to a higher power of */>  than the 
first, f >*) ,   J are zero when fi  = 0 and increase steadily in 
numerical value with ^. 

Stability of the spätem id assured if P + £ > C and 
vi + <^ <• 0. ' These roplu.ee the conditions P > 0, ^ < 0  relevant 
before touch down of the tail.  The equilibrium incidence is 
determined by <M" -   ^'= 0.  If the equilibrium values he 
denoted $> and $   . 

*  - - SLtl  / . ±zl   (>1J 
Q    *>. + *l   >    9       a + ^ 

8.  Particular Example 

There are at present no reliable experimental results from 
which values of a2 and c^ can be estimated.  By way of example 
therefore a typical value will be selected for the equilibrium 
radius of curvature of the trajectory as observed in tests on 
models. 

v/e make the following assumptions 

(1) Jingle at touch down of tall on oavity wall#, = 5.5° 1 

(2) Equilibrium radius of curvature R = 65 ftj (32) 

(3) ox  m    J.ai * j 
(4) 4» • 0.42 

The last value  corresponds with a mean centre  of pressure 
of the  tail forces  one  sixth of the  total length from the 
trailing edge.      The third assumption results in I , <J!    ana   $ 
being proportional to a,.      ffith the numerical  raluea previously 
used (see  (18)) 

5   =    0.328a1 

*l   =--   -0.594a1     I   (33) 

§ =   -0.56^    j 

The radius of curvature is determined from the equation 
connecting p ^nd $ . V/hen the tail forces are present this 
becomes 

if   = - ±  [a05 
+ •/ + aq(*' - i

L)j   (34) 
where  z_  is the total derivative as given in (26) 

Than*,   j Jj |    -  | * ,   -    i^-läl?    ,     (35) 

Equation (35) replaces the previous equation (22) 

The/ 
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The equilibrium radius of curvature it, therefore 

R =  (2/«-z)£  (36; 

a0£ + a.^ 

Insertion of the Valuta of B  and $ as determined by (31) 
and (33) results in a quadratic equation for a^ in terms of R0, 
•fith the numerical values of (32) we obtain 

a1 = 3.36 

and by (31) 

• = 6.390 
(37) 

The following results may nov/ be deduced, 
/ 

°L 
/ 

= 3.36 

=  -1.41 

= 1.41 

1.99 

5   =  1.1 

"m - 

Zq = 
1 

*q = (38) 

)       =     -I.99 

y       =    -0.086 

The equation (25)  becomes 

^"     + 1.26^' + 1.64^  =    0.0217 

The motion is,  therefore,   stable, 

tfith the boundary conditions 

i* = 0 

(39) 

*/»'   = O.051       J 
\ (40) 

at^= 4, which correspond with the  terminal conditions  in the 
first phase   (see Table  I),  the  solution  is 

fi  = O.Ol56 + |o.037ainl.H5(ö--4)-O.O156 cosl.ll5(^-4)|«" , 

.      =[0.051 cos 1.115(^-4) -O.OO6 Binl.ll5(*- 4)j€"°,6;)(tfK~4)       J 

The incidence, therefore, oscillates about the steady 
value 6.39° with steadily decreasing amplitude, each oscill- 
ation being completed in 5*64 lengths travel. 

The angular velocity is zero when 

</•  = n* + arc tan 8.572     (42) 

The radius of curvature at any instant may be determined 
from/ 

((41) 

•\ •' 
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I 
I 

from equation (35) and the inclination of the path to the 
horizontal by integration of (34) with the appropriate 
functional forms of 6 and 6'inserted. 

Typical values are „iven in Table II, in which o*denotes 
the number of lengths travelled from the instant of entry of 
the centre of gravity, 9  the incidence of the projectile to 
its path in decrees, 4  the inclination of the trajectory to 
the horizontal in degrees, R the radium of curvature of the 
path in feet and V/V0 the ratio of the instantaneous and initial 

There is thus an initial small refraction of the path, 
resulting from the assumption of an entry impulse, but the 
trajectory remains practically straight till touch down of the 
tail.  For *•> 10, 4  is sufficiently accurately obtained by 
assuming that the radius of curvature has the constant value 
65 ft.  The slope of the trajectory is then ,-üven very closely 
by 

4 =*+ 1.69 - 0.69c 

rfith/ 

degrees (43) 

rward si )eeds. 

T^BLJJ II 

er $ *-* R v/v0 Position 

0 -0.19 -O.I9 -1*66 1 Entry 

1.0 0.72 -0.20 2514 0.976 

2.0 1-74 -O.23 724 0.953 

3.0 3.19 -O.29 373 0.929 

4.0 5.50 -0.48 213 0.907 Touch down of tail 

4.1 5-78 -O.56 103.5 

4.2 6.04 -O.73 82.3 

4.3 6.27 -0.83 69.7 

4.5 6.65 -O.95 5V.2 0.90 

5.0 7.20 -I.46 43.2 

5-3 7.28 -1.80 41.8 0.88 Max. Incidence 
Min. n. 

6.0 7.02 -2.48 46.7 

7.0 6.40 -3.25 64.7 • 

8.12 6.25 -3.95 71.2 0.84 Min. Incidence , 
Max. R. 

10.94 6.41 -5.36 64.2 0.78 2nd Ma^L-. Incidence 

00 6.39 65.O Steady condition 

•v> 

WPWKÜB» &&>'•••••-.•**#**»'«; 
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tlith  this assumption the trajectory would bs horizontal at 
B" • 24.2 for an entry an^le  = 15°, and the aped ratio would 
then be 0.55 

The variations; of Q  and K with C arc- shewn graphically in 
?it. III. 

9 •  Equations of Aioiion in more , .aneral ca«e. 

•ta was mentioned earlier, tile trajectory in any actual 
case ii, modified by tne action of grarity and by variations of 
the hydrodynamic force and moment coeffvcioats with speed» 
If these effects _re included, the equations of notion (5) aI"e 
not directly integrable but are nevertheless suitable for 
mechanical integration on a machine ^uch as the Differential 
analyser.  The same is true of equation (25) when J • ^ and j 
are not constants. 

The principal part of the effect of gravity miy, however, be taloai 
into a30ount by including u term l/F in the second equation 
(5) in plaoe of the .era Vff cost^.  Since l/F inay be expressed 
as a function of cr- by means of the first equation! in whioh 
the term •L/p sin 4  is neglected, tfls equation»for 9    and f 
remain directly integrable. 

The equations (23) and (25) are modified by the addition 
of a term 

i:bn-(Mn,, h^*- 
ft 

(44) 
2/U L *  -  "V *o 

to the right hand side, »/here PD is the Froude Number at entry, 
The solutions for V  and 'T 

particular integral multiplied now contain the above term af> a 
by the factors. 

__J±  
b0

2 + b0^P - Ai
24 

     _ hi    (45) 

and 
b0

2 + b0/«(P + \)  -/.2(a + if) J 
respectively. • 

There is no longer an equilibrium radiu;. of curvature in 
the second phase, but a fictitious equilibrium radius may be 
defined as that which would be attained were .ravity absent« 

Ths solutions (^1) and (41) nave; been recalculated 
assuming the entry impulse to result in a pitch of 5*5° ** 
<T - 4 as before, and the fiotitious oquiliürium radius to be 
65 ft. 

The value of l/mV0 becomes C.003,268 and equation (21) 
contains the additional term 

M.iW'+ 49.6«r0'6^. i^.A*0-04'^):- )10 (46) 

The nett effect  in the  phase  prior to touch-down of  the 
tail is therefore a modification of the  previous solution for 
1>J7 
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by the addition of th^ term 

(i8.032e0-52C"+i240bae-°-
6^<r-i26.4e0-049C")io-6 ... (47) 

The effect it> insignificant. 

The eolution for ^ , equation (41), becomes, to the sane 
order of accuracy. 

^ = 0.015b + [p.0^68sinl.ll5(C-'J-0.0161 cos 1.115(*'-4^"0'b5 

+  0.000,5516 0.049(«T- 4) (48) 

Once again, the change is insignificant in the important 
range of values of ** . 

The radius of curvature and inclination of the trajectory 
at any point may be obtained as before. 

10.  application to scale models. 

Suppose that the characteristics of an underwater projectile 
are studied by testing a geometrically similar model of correct 
inertial scaling,.  The values of (**  and k are then the same 
for the model as for the full bcala and, if the test be made at 
the same value of V  as applies to the full :;cale> the gravity 
forces will bear the same ratio to the hydrodynamic forces in 
both cases.  If the effects of the Reynolds <^nd Cavitation 
Numbers on the hydrodynamic forces can be neglected, the 
equations (5) determining the motion in the two c*sos will be 
identical and the trajeetories geometrically similar.  Purtner- 
more the attitudes at corresponding p ints and their space- 
rates of cftanüij in terms of ''"will lilcev.'ise be identical. 

If the velocities on full scale ^nd in tue modul test are • 
both sufficiently high foi gravity forces to bo negligible in 
the part of the motion under etudy, equality of Froude Number 
is of no significance and attention may be directed to the 
other parameters.  By v.hu.t has been ;'^id earlier, § 4, it 
appears unlikely that Javitaticn Number ie an important 
variable on 3harp-nosed cone-headed projeotiles in the phase 
prior to touch down of tho t^il on the cavity wall.  But 
although the edge of breakaway on the nose nay, in this., c&ae, 
be supposed independent of Cavitation Number, the extent of 
the cavity, and hence the conditions at the tail, will vary 
considerably with the latter.  bo long as the cavity remains 
open to the air, or approximately at atmospheric pressure, 
Froude scaling will result in equality of Cavitation Number 
since the pres ure difference PH - PC (öee (b)) will then be 
directly proportional to the depth. ' In general, however, 
unless the atmospheric pressure be reduced durinc, the model 
test, the Cavitation Number will be higher for the model than 
for tho full scale piojectilo and tin; cavity smaller relative 
.to tne model in consequence. 

Better agreement between model and full scale Cavitation 
Numbers is likely to be obtained ij.' the model tust la mode at 
a higher speed than Froude scaling would indicate, and this, has 
the beneficial effect of increasing the heynolds Number, although 
the discrepancy between model and full scale muet remain very 
large./ 
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large.  Reynolds Number is, however, unlikely to be of much 
significance. 

11. Conclusions. 

The theory developed in this paper can be regarded as 
only approximate, nevertheless the conclusions are in accord- 
ance with observation so far as the salient features of the 
motion of an underwater projectile in cavitated flow are 
concerned.  These are a preliminary phu.se, prior to touch 
down of the tail on the cavity wall, during wtiich the path 
remains practically straight, followed by a second phase, 
after touch down, in which the path rapidly assumes constant 
curvature while the projectile executes a heavily damped 
oscillation about a stable position of equilibrium.  In 
certain cases, the tail of the projectile has been observed 
to leave the cavity wall for a short space during the initial 
stages of this second phase which continue:- till the velocity 
has fallen sufficiently for the cavity to change radically or 
for gravity forces to become important. 

In the particular example of the paper, which related to 
an underwater rocket projectile having a fc>0° conical nose, 
the forces on the nose of the projectile were calculated on 
an approximate theory and the tail forces, were then deduced 
from assumptions based on the observation of actual trajectories. 
The computed notion was found to be in ^ood agreement with 
estimates from observation, and this enoourages the hope that 
with more detailed and systematic Information obtained from 
further experiments, it may be possible, at a later stage, to 
>ise the present theory to estimate the characteristics of an 
underwater projectile with Oood accuracy. 
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