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INTRODUCTION §

1

l The motion of a projectile under water is & matter of -

I considerable complexity about which there is comparatively 4

i little precise information although new evidence ic steadily i

3 accumulating as a result of controlled tests at experimental |
establishments In the present pascr the approach to the

problem is thebretical, an attempt being mede to develop
: the dynaemical equuations sufficiently to reveal the salient
4 features of the motion and check existing evidence.
Approximate equations aro formulated which, after reduction
: to non-dimensional form and simplification by the neglect
' of gravity forces, are solved in a particular case which
hasg been gtudied experimentally. In the absence of precise
data on hydrodynamic forces and momente, tentative estimates
‘of these have had to be made. It is hored that, with a
greater body of fundamental evidence it will subsequently
prove possible, using the theory, to make reasonably accurate
forecasts of the performence of particular designs.
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1. The Eguations of iMotion

Let P, Pig. 1, be the position of the centre of gravity
of the progect1lb at any inctent cnd EP the path traversed
from entry. Tiefer the system to axes tungential and normal
to the trajectory with origin P. Let

®« = angle of entry relutive to horizontal.

$f = slope.of trajectory relative to horizontal.

€@ - ypitch upwards of projectile rclative to trajectory.

V = vclocity of projectile clong path.

q = total cngular velocity of projectile = é-$

m = mass of projectile.

g = acccleration of zravity

B = moment of inertia of nrojeetile in pitch about
centre of gravity.

k = redius of gyration in piteh about- centre of gravity.

&.
1

overall length of projecctile.

S = representative crea, e.g. area of base of conical
nosc of nrojcetile.
8 = distance along trajectory from entry.
a - S/\‘y
L = hydrodynzmic 1lift normal to trajectory.
D = hydrodynemic drag along trajectory.
M = hydrodynamic nose-up pitching moment.
CL = 1ift cocfficient in rectilinear mction. dt fixed
incidencc and speed.
Cp = drag coefficieat in rectiline.r motion at fixed
1 incidence and Spced.
! : Cm = moment coefficient in ructillnchr motion at fixcd
¥ incidence and spced.
Zq = coefficient of 1lift deriving from angular velocity
in pitch.
mq = damping derivative in pitch.

“o
i}

density of water.
P = u./Sfe = reclative density cocfficient.

Ky, Ko, Ky = ‘added masg! coefficients (accelerstion
derivatives)

P = Vz/ge = Froude number.
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The equations of motion are

mY%% = -D + mg sin ¢

szg‘%= w0 FUME GOBUR R e e e e s Wik

Bq_ = M

We may write approximatcely

D = Kavil + dspvicy

L = sz'vz%g + -%'vaequ + -"]‘}-vach ‘_ s e (2)
< 1 2 1 2

M = -K3Bq + ¥5pVETmyq + 4SPVECy

The first term on the right hand side of eaeh equation (2)
is the part of the forec or moment crising from acceleration,
while the last term is the drag, lift or moment in reetilinear
motion at eonstant epecd and incideneec. The terms containing
z, and mq represent a foree and 4 moment arising from the
vglocity of rotution q. 4As defined obove, zy end mg are non-
dimensional

The equations (1) may now be written

(1 + Kl)m%'% = -35(Cp + %%‘ sin ¢

-.. (3)

Is

(1 + ko)l = -3SPOL + 2§ cos 4 - d5pr,

. 2 2
(1 + K5)Bg = 45V €Cp + 4spvi myq

Write 8 = @&
fo = mfsp€
F o= Vg
B = k-

go that O expresses the path lenzgth in multiples of the
projectile length, # is a measure of the relative density of
the projeecile, and P is tue Froude number. -

The equations (3 ) then beeome

Lty )

¥

(1 +K1)\17g-:%4 = -2]7*01) +

(e 5 2k
(1 +I\2)a-,é.-= -%F\CL + %.- cos P -2].?kzq9v- e eeeens (4)

bag- 3.2 By o8
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Again, since q =6 - @ =§-£—a_(9-4)

€ a
Tae =t F&O-H *T? (b - )

€ - a Y
and L d—d_(g .

v -
and since F = Vz/se

LdfF = 24V

P 40" v aaT

Making these subatitutions in the cquations (4) and using
a dash to denote differentlation with respect to G, we obtain
finally

&(1+K1)§',' - -5};01” L sin 6 l

(1 + Kz)ﬁ! = - ZECL + Fr cos ¢ - ——zq(g ¢) - ..(5)

€2
1
(1+K3)(6 ?( +‘g‘(l+Kj)F ZF(E)m‘-I(a -p)—zr(f)cm
+
The equations (5) are in non-dimensional form.
In general, thce coeffiecicnts Cr, Cp, Cp uwre functions of

the incidence & und of the dimensionless ratios R, ¥ und q
where
\ . v {

R is the ileynolds Number = “p-
is the Cuvitation Number = (a{-PC)/iPVB
is the Kinematic ¥iscozity of water (6)

is the static pressurc at the depth of
the projectile.

& & & ¢

is the pressure in the cavity behind
the projectile

2. Approximations to the REguations of Motion

In many ceases of intcrest in underwater bullisties, the
speed of the projectile, at sny rate during the carlier stages
of the motion, is sufficivntly nigh for the gravitational
forces to be negligiblc in compariscon with the hydrodynamic
ones. When this is so, the tecrms 1 sin ¢ and L cos ¢ in
equations (5) ure negligible comparcd with.thD and giQL- in
what follows we shall suppose this so.

Elimination of F and ¢ from the third cquation (9) by
means/ -

b AT R T TR AR S TN D N SN s it
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means of the firast two gives

OO . A RS T
i +27|L1+K23'€ g P 1+1<3(K)"1‘1Je
L

2/ e AN o B 8r k.
'(21‘;) E_-TI-Q_CD+..!._:E§(§) "‘J(mzcl‘) =§lr~u'217"l'%zzq)(ﬁ)1+x3 Sl b )

3. application to the motion of a gcymmetrical projeetile in
the phase prior to touech-down of the t..il on the cavity
wall.

It is eleuar that in this case the 1lift and moment eoeffic-
ients are odd funetions of & , while the drug coeffieient is an
even funetion. We may, therefore, write

2 14
Gp = by +b58° + 8% 4 il bl (8)
B (g e efgj + e2@5 + ees ,[

ihere ag, by, ey ete. ure funetions of the parameters (6).
We will suppose that, for the displacements oceurring in the
motion, the seriecs (8) are suffieiently elosely represented by
their first terms, so that

CL = d'OG (
Cp = bg : R D
Cph = eoG J~

and furthermore that ag; by, co may be assumed constant.

We will furthermore suppose, in the interests of formul
simplieity, that the multipliers involving X;, K> znd K4 are
absorbed into the respective coeffiecients Cp, C or zg4, €m or
Mg , to whiech they may be regarded as corrections.

The equations (5) and (7) now become

o

s ST ‘.-
F ~ -L
o ane S ¢1)]6 y (10)
R i 2
R A I e NN

o

Prom the last equation it follows that stability of the
motion reguires

ag = by = (%)2% Y0

aoi;bo + ('gf)zmq} + (2/.4.' - zq)(%

L N L

-~
[

3 i
o |
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Ths equations (2) may bs written

L= I{zmvzg-g- + -}Sf’vz'(aﬁ + zqgvﬁ)

M = KyB§ + isyvge(coa + mq%-,-e?)

qe'is ths velocity, normal to the path, of a point on the
projsctile distant £ from the centre of gravity, and so qE/v
represente ths angls of attack which the incident water makes
with the surfacs element at distancs from the centre of
gravity by virtue of the rotational velocity q. Thus, if b
be ths distanos of the centre of pressure on the nose from t%a
gentrg of gravity, the nose is effectivsely at an inoidsncs
- 0. to the stream and the 1lift on it is therefors,

$5pV2a0(0 - 822)

It follows that

2, = -8 ]
q -z- o ho Sesessecssssncan (12)
and similarly, mg = - 2— Cq -

The third equation (10) is thus :
[ e h r} 2 é2
6 +$[a° -bo+(t)2-a9co]9-(3'r) [aobo+2[t(-k-)coJ@= 0 .. (13)
The squations (10) and (13 ) are linear squations with

ponatant coefficients and may be directly integrated. The
first equation givss '

P = FoeDo%lH
or V = Voe'bOOTz": Voe'b°a/2‘“e

eessssccsecsean (14)

The seoond and third squations are independent of V, from
which it follows that the trajectory and attitude of the pro-
Jeotile are independent of the entry velocity excspt in so far
a8 the drag, 1lift and moment ooefficients depend on speed.
That they do, in faot, vary with the latter, owing to the
variation in the degree of cavitation with speed, is one reason

. why ths aotual trajsctory depends on the entrance velocity. .
The othsr important influence is gravity.

4, Estimati £ the eriva ues of the ¢ icjents in
' particular cugsg. .

, The calculation of the values of ag, bg and co in any
‘ particular case is difficult. Birkhoff and others (1), 1sing
8 hypothesis originating from Newton, have suggested that the
forces may be estimated by supposing the gxcess pressure a%
any point of the wetted surface to be #f per unit arsa, whtare
Vn is the component of forward spced normal to the surface.
This hypothssis is known to gzive values of the force.coeffic-
isnts of the rizht order in certain cases capable of exaot
solution, e.g. flat plate and esphere, but it results in zero
pitching moment on the flat plate at any incidence, which is
contrary to fact. Applied to a right ciscular cone of semi-

angle and base 5 with axis inclined at to0 the undisturbed
flow, :

”

o e e

vt

L
R
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flow, Birkhoff's hypothesis gives
-0 sin(?[cosZﬂ + 48in9(1 + Scos28)] |
Cp cos%sinzﬂ[l + ?;tanzacotzﬁj e s s (15

dm = g-% sin26 eoszﬂ - i’nl:; sin2/3]

[}

where hy is the distunce of the centre of pressure from the
centre of gravity and h. is the height of thc cone. The ccntre
of pressure is distant B-h from the basc of the cone.

Thus, neglecting K3, K2 cnd K3, we have

a.°=cos2_/.)> ‘ ‘L
bo=Sin2ﬂ D s L Eart e e (] 68)
co=f(c02/3 Q%Sinﬂ)J

In the above, the wetted crca has been taken us the surface
of the cone. It may be noted that with a sharp noscd cone,
breakaway of the flow in purc cuavitated flow cannot occur before
the base cdge, whatever the Cavitation Number, for the curvature
of the strcamlines away from the face, were brecakaway to occur
ecarlier, would imply & lower prcssure within the fluid than at
the surface of brezkaway.

5a Particular case of the thcory.

For a cone of semi-angle 30° the relations (16) give
ao = 015 “ v
0.25 S S s e

ho 4 %h_] ‘

The following vealues apply to a model of < cylindrical
rocket projcctile with a 600 conical nosc tested at Glen Fruin.

(=2
o
i

o
o
]

Weight 0.766 1b.

Dia. of basc of conc 0.75 ins.
8 9.4 ins.,

k = 2.58 ins.

Centre of gravity 3.93 ins from nose
Thus

2k = 10.2 i
¢/ )? = 13.28 1’
/ J

e B e e e TG e
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h = 0565 ins-

ho = 3-6 inH- .
® e 00 st 00 e 00 s 0ROt OO (18)

i ——

= =0. |
zq 0.19 ]
mq = -O-l .j
The equations (10) and (13 ) become
-~
v - Voe‘°'°245 o |

©
i

-0.04818 + 0.01840" l ceereresracaees (19)
6" + 0.1598" 2 0.3530 = o [

The negative term in the last of these equutions shows that
the motion is unstable owiny vo the reat preponderance of the

term in cgq

The sclution for & has the form
O = 0927 , g 0.6797

where a4 and B are to be determined.
6. Initisl Conditions.

Suppose thuat the entry condition: cun be re .arded as
equivalent to o nose impulse I normal to theepath. This will
produce instuntaneously an an:ular velocity 8 «nd « transverse
velocity wp wiere

Be’o = 1hg
mWoe = 1

The sidew.ys velocity results in . negative piten 6, where

[o]

00 = - —— = - —

o mVy

accompunied by a reduction in¢ equasl to -8 , ¢ ~6 remuining
unchanged .

again fe = Iho/B = Iho/mkz

80 that

é 2

° = (I/mVo)(e/k)‘ho/‘ = 9.08L/mV, in the particular

example above
Then .
A+ B = -IfoV,
0.524 = 0.679B = 5.08I/avV,
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6 - [3.673e°'52°~- 4.673 C-O'().79G~]I/mvo
and A A (DR

8' = [1.909°°92% 4 5.172¢7°+679] 1/mv,

The following values are obtained

Teble T
o 2 /:Tx% 6'/5% 1«5%[;
0 -1 5.080 -5.504
1 3.806 4.819 §.306
2 9,182 " 6.214 2.393
3 16.853 9.440 1.232
4 ©29.054 15.470 0.704

Suppose, for example, that 6 = 5.5° when 0" = 4, i.e when
the projectile has travelled four lengthe from the instant of
entry of the centre of gravity ¥

Then I/aV, = 0.00);04

(]
The angular velocity gla_ is then 0.065V
; The velocity has fallen to 0.907V,, so that for an entry
velocity Vo, = 300 ft/sec, V = 272 and the ungular velocity
relative to the trajectory is 17.79 radians per second.

; The corresponding initial path deflection and angular
velocity arc 0.19° and 6.43 radians per second.

The mean of these angular velocities in piteh is 12.09
radians per second, a value in good agrccment with observation.

The radius of curvature, R, of the path is

Ids | = |e/¢1‘= (Zf‘:_zwq_)e A SRS N O
|d¢ ; a® + zqéF

Ingtantuneous values of the radius of curvature in feet
for the particular conditions avove are guoted in Table II.
The radius of curvature ranges from =-1666 ft. at G = 0 to 213 ft.
‘at 0"= 4 .and changee sign at an infinite value when G¥= 0.58
when the path is instuantaneously straight.

S Motion subsequent to contact or the t:il with the cavity
wall.

When the tail of the projectile touches down on the cuvity
wall, new hydrodynamic forces and moments are brouzht into play
and the force and moment coefficients change their values.

Let/

I3




g o

Let the equation of pltchlng motion (10) prior to touch
down of the tail be written

8" + 29" -8 = o W G T St SR
Write f’ 6 31, wherc 91 is the incidcnce at which the
tail firat touches the cavity wall. The above cquation is
then equivalent to

vi'epy - uy = Qﬂl S B N A sl v )

It is plausible to assume that, for incidences gresater
than OJJ the tail forces and momentiy may be expressed as
functions of VW . The equation (23) then assumes the form

et SRS BTEEE TR BT ARG TR o ettt T

- where ! y H and r are functions of ¥ to bc determined.

In this sccond phase of the motion write

[
0, = af +cCp
i
C =Sl + G
» 0 A TSR R s b e )
O ol Cm
Zq - -_‘z—do+Zq
[}
mq = —%O—Co-i-mq

From equation (7) again simplified by the absorption of
Ky, Ky and hg 1nto the LOfolClentS, it follows that

§ E/Z'WE - (3 r'ug]

2h '
(5 [% +& mq}t&o +CL/¢) +{b0 (é) 'BQCO CL/*\ s een (27)
+ g ) {'“qco + (2 +h ag = zq)Cm/W}J j.

(34‘) [r_ao ch + (1%) mq}- (E{) choj

Ref. 2 contains the results of cxperiments on the towing
of cylinders in the seaplane tank at ii...E. Lift, drag and
moment were measurcd over a range of incidence and draught and
the results plotted as functions of the draught at constant
incidencc and the incidence at constant draught. Neither of
these plots 1s representative of the conditions when a pro-
Jectile penetrates its cavity wall, for then the draught and
incidence are varying simultaneously. Moreover, the cavity
surface is not plane but curved, and is not stationary
relative to the centre of gravity. For tnc existence of 1lift
on the nose implies the creation of downwards momentum in the
‘fluid. This will result in an asymmetric cavity and a
tendency for the cavity to move down as the nose goes up i.e.
the cavity wall will tcnd to move down with the tail.
Whatever/ :
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Vhatever the law of variation of the tail forees and moments with
incidenee, it is unlikely that they can be regarded as linear
funetions of the tail ineidenee over any but an infinitesimal
range of angular displaeecment.

an application of Birkhoff's hypothesis leads to the
eonclusion that, for small degrees of immersion, and a fixed
position of the eavity wall relative to the C.G., the 1lift at
the tail should be proportional to(#a 2)€ where é is the
inelination of tiie axis of thc projectile to the cavity wall.
(See Pig. II).

Purthermore, sinee € = €, +‘f, where €5 is the ineigenee
at first eontact, the 1ift should be proportional to €,y% +y%A

In the case of the pitening moment, there is the further
eomplication that a leverage about the centre of gravity,
varying with the degree of immersionj;is involved. It is clear,
however, that to a first approximaﬁ}on, the moment, like the
1ift, should be proportional to 2€, The drag, on the same
hypothesis, is proportional to €< and may, therefore, be
neglceted eompared with tne 1ift.

With forees and moments propoirtional to ‘¢qithe equation
(24) is solvable only by sueceessive approximation. Since the
object of the present snalysis is merely to illustrate the
salient features of the motion, we propose, in the absenee of
definite evidenee to the eontrury, to assume that the tail 1lift
and moment are proportionsl to ¢'over the small range of this
variable oeeurring in the motion, and write

!

G = a3 ¥ )
cf, = o ( A SRR itk Yy S0 whe.s s o 2 BY
] \
Cm = -Ol¢ )

. where the eoeffieients are, for convenicnee, based on the same

area as that used in defining the noue coefficients.

Since the tail ic effectually at the ineidence € + ghy/V
wherc hy is the disteneec of the eentre, of prggsure of the tail
from thc eentre of gravity, and cinee %ih = ; ete., it
follows that
e ' ¥

N
e)
]
ol
W
'_l

| ety Seae Al i st e RIS 1)
/ -Ii-‘el J 4

The results (27) now become

- ¢ |
; o ;}L' |21 + %‘ (E)Zol} |
_(421—"‘)2 1(4:)2 {ll‘J_E*I_IL(aOCl + H.leo) + 2,‘31‘? s u'lbo:i ‘\ L5198 (30)

2
-(El—)z(kz) %‘(aoel + a,¢,)

I

£
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The radius of curvature is determined from the equation
“connceting ¢ and 8
‘ becomes

2 oRID

With an average value fordi , § , 7 5 ¥ reduce to constants
and the equ.tion (24) becomes integrable. — +hen the 1ift and
moment are assumed proportional to a higher power of yb than the
first, % are zcro when = 0 und increasge steadily in
numericdal valuc with .

Stability of the system is assured if P + 20 and
.9 +h< 0. °"These roplace the conditions P> 0, 4 € 0 reclevant
before touch down of the tail. The equilibrium incidence is
determined by Y"= W' =0. If the equilibriur vulues be
denoted ¢ and

* = "-Q_L!_
4 g

Buud

= e D e TE e R eAL s T B e )
Q4+

olo, .

8.

Particular Example

There are at present no reliable experimental results from
which values of aj and c¢; can be estimated. By way of example
therefore a typical value will be selected for the equilibrium
‘radius of curvature of the trajectory
models.

as observed in tests on

We make the following assumptions

(1) angle at touch down of tail on cavity w&llq==5.§°\
(2) Equilibrium radius of curvature

R = 65 £\ (32)
(3) cl = 3‘&1 \

(4) 5’

The last value corresponds with o mean centre of prescure
of the tail forces one sixth of the %otal length from the
trailing edge. The third ascumption results in y ) and 3
being proportional to Ay e With the numericel valucs previously
used (see (18))

¥

0.42 - ' ,

-

= 0.328a) “l
B = -0.594a; } O S ORI (e 1
£ = -0.9568a J

When the tail forces are present this

g -53’7[&06+a1¢+zq(9'-¢!')_i

where zq is the total derivative as given in (26)
(et W 10
Then R = |28 = | 3,| = (24 =~ 2g) R LY
t ! 1
‘ ag l g aoa+al +-zq0

. (54)

Equation (35) repleces the provious equution (22)
The/
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The cquilibrium rodius of curvature iv, therefore

R = 2}‘-zq)e DRI A R A S A S S R A PR (3())

aoa + dl¢

Insertion of the valuvs of & and ¢ as determined by (31)
ond (33) results in a quadruetic equation for aq in terms of R,
#ith the numerical values of (32)we obtuin

ay = 3.36 I
and by (31) N s Y B
6 = 6.39°
T?e followinyg recults may now be deduced.
Cp, = 3.36
C; = =l.4) ;
za = l.41 {
m"l = =1l.99 ) P - X-D)
¢ - 1.
h = -1.99
"f Y = -0.086

X The equation (25) becomes ,
¥' w2268 4 1.68¥ = 00227 eeeiiiiiiiin. (39)
The motion is, therefore, stable.
j with the boundary conditions
¥ =0 y

v ! Y 1. )

0.051 J
at L. 4, which correspond with the terminal conditions in the
. first phase (see Table I), the solution is

¥ = 0.0156+[0.037 8in1.115(0"4) ~0.0L56 cos 1.115(0-_4)19-0-63@'-9)

-0 63(0 ‘.(41)
=[04091 cos1.115(0% 4) -0.006 sin1.115(= 4} e 0.63(C- 4) J
- The incidence, thercfore, oscillates about the steudy
value 6.39° with steadily decreasin: amplitude, each oscill-
ation being completecd in H.64 lengths truvel. :
The angulaer velocity is zero when
w = nW + arc tan 8.572 eesssevsssnrersenesa (42)

/The radius of curvature at any instant may be determined
from
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from equation (35) and the inclination of the path to the
horizontal by integration of (34) with the appropriate
functional forms of & and 8'inserted.

Typical values are . iven in Table II, in which o*denotes
the number of lengths travelled from the instant of entry of
the centre of _ravity, @ the incidence of the projectile to
its path in degrees, ¢ the inclination of the trajectory to
the horizontal in degrees, R the radius of ocurvature or the
path in feet and V/V0 the ratio of the instantanzous and initial
forward speeds.

Tu.BLr II
o é P-« R v/, Position
0 -0.19 -0.19 -lobd 1 Entry
1.0 0.72 =0.20 2514 0.976
2.0 1.74 =0.23 724 0.953
3.0 . 5.9 -0.29 373 0.929
4.0 5,50 =0.48 213 0.907 Touch down of tail
4.1 5.78 <0.56 103.5
4.2 6.04 <0.73 82.3
4,3 6.27 -0.83 69.7
4.5 6.65 -0.95 5.2 0.90
5.0 7.20 -l.46 43.2
5.3 7.28  -1.80 41,8 0.88 lux. Incidence
Min. &
6.0 7.02 -2,48 46.7
7.0 6,40 =3.25 b4.7
8.12 6.25 «3.95 1.2 0.84 Min. Incidence |,
Max. K. ‘
10.94 6.41 -5.86 64.2 0.78 2nd iaxz. Incidence
-] 6.39 65.0 Steudy condition

There is thus an initial small refruaction of the path,
resulting from thc assumption of an entry impulse, but the
trajectory remaina practically straight till touch down of the .
tail. For & 710, ¢ is suificiently accurutely obtained by
assuning thet the radius of curvature hags the constant value
gj ft. The slope of the trajectory is then siven very closely

Yy

g =+ 1.69 = 0,66 degrees  siiesesesiceces (43)
dith/
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With this sssumption the tTuJOCtOLy would bes horizontal at
0 = 24.2 for an entry angle = 159, snd the specd ratio would
then be 0.95)

The variations of & and R with € are shown graphically in
Fig. III.

9. Equatijons of iotion in more eneral case.

«8 was mentioned earlier, the trajectory in any actual
case is modified by the wction of gravity and by varietions of
the hydrodynamic force and moment coefficieats with sweed.

If thesc effects ure included, the equetions of motion (9) are
not directly inteczrable but ure ncvcrthol sg suitable for
mechanical integration on a machine such ¢s the Differential
analyser. The same is true of equ.tion'(29) when &, 4 and ¥
are not constunts.

The principal part of the effect of gruvity my, hoamer,befakm
into ascount by including u term 1/F- in thc second equation
(5) in place of the %erm J/F cos¢p. Since /P muy be expressed
as a funcflon of o~ by means of the Tirst equ.tion, in which
the term /P sin ¢ is neglected, thc equationsfor @ and
remain dlrcctly integradble.

The cquetions (23) and (25) arc mo¢131»d by the addition

of a term
o7 M

Z'A“O-(é) et s R PSR BT

to the right hand uide, where ¥y ig the Froude Nunber at entry,
and has its appropriate leuu. The solutions for and
now contain the above tern as & particular integral multiplied
by the factors.

: m2
b02 + boMP - /“20' - : (45)
#e ) :
and
be + bohk(® +§) - pla + ) ['
respcctively. :

There is no longer an cquilibrium radius of curvature in
the second phase, but o fictitious equilibrium radius may be
defined as that which would be attained were _ravity absent.

The solutions (21) and (41) navc been r¢¢alculated
assuming the entry impulse %40 rosult in a piteh of 5.5C at
¢ = 4 as before, and the fictitiou- equilibriur radius to be
65 £t.
The value of I/mVo becomes G.003,288 and equation (21)
conteins the additional term

(76,8927, 49,00 0797 ¢

gy@ - 3
SRR | e C s SOBMEEE S

: The nett effect in the phase prior to touch-down of the
tail is therefore a modification of the previous colution Ffor
by/ ‘
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by the addition of.the term

-0.679.0-

(18.032e°°22% ;. 124.3668 {20 A aa O )10 eee (47)

The e¢ffect is insigonificant.

The golution for VD, equation (41), becomes, to the same
order of accuracy.

\f = 0.0156+{0.0568 5in1.115(0"-4) ~0.0161 cos 1.115(9'- 429-0'63(0-4)

+ 0.000,551e°°049¢= 4)

o e e o e (48)
Once again, the chunge is insignificant in the important
range of values of & .

The radius of curvaturc and inclination of the trajectory
at any point may be obtained as before.

10. 4application to_scale models.

Suppose that the characteristics of an underwater projectile
are studied by testing a geometricully similar model of correct
inertial scaling. The vuluecs of M and k ars then the same
for the model as for the full scale and, if the tegt be made 4t
the same value of ¥ us applics to the full scele, the gravity
forces will bear the same ratio to Lthe hydrodynamic forces in
both casés. If the effects of the reynolds wnd Cavitation
Numbers on the hydrodynamic forces can be neglected, the
‘equations (9) detcrmining the motion in the two cuses will be
identical and the truejectorics geomutrically similac, Furthner-
more the attitudes at corrcspondins; p ints and their space
rates of change in terrms of @ will likewise be identical.

If the velocities on full scaele «nd in the model test are
both sufficiently high for gravity forces to bec negligible in
the part of the motion under study, equality of rroude Number
is of no s3iznificance «nd attcntion may be directed to the
other paramecters. By vihat has becen said carlier, 8 4, it
appears unlikely that Javitation fWumber is on important
variable on sharp-nosed cone-headed projectiles in the phase
prior to touch down of the¢ tail on the cavity wall. But
although the edgc of brcakuway on the nose may, in this case,
be supposcd indcpendent of Cavitation Number, the cxtent of
the cavity, and hence the conditions at the tail, will vary
considerably with the latter. 50 long ae the cavity remains
opecn to the air, or approy1matcly at atmospherlc pressure,
Froude scaling will result in equulity oif Cavitation Number
since the pres ure difference py - pg (See (6)) will then be
directly proportional to the depth. In general, however,
unless the atmospheric pressure be reduced during the model
test, the Cavitation Fumber will be higher for the model than
f for thu full scale projectile and the cavity smaller relative
- .to the model in consequence.

e L Y

RS~ BT

Better agrecment between model anl full scale Cavitation
Numbers is likely to be obiained if the wmodel test is made at
a higher spced than Froude sceling would indicate, end this has
the beneficial effect of increcasing the heynolde Wumber, although
the discrepancy between model and full scale must remain very
large./ :
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large. iteynolds Number is, however, unlikely to be of much
significance.

11l. anclusiong-

The theory developed in this paper can be regarded as
only approximate, nevertheless the conclusions are in accord-
ance with observation so far as the salient features of the
motion of an underwater projectile in cavitated flow are
concerned . These are a preliminary phase, prior to touch
down of the tail on the cavity wall, during which the path
remains practically struight, followed by & second phase,
after touch down, in which the path rapidly assumes constant -
curvature while the projectile executes a heavily damped
oscillation about = stable position of equilibrium. In
certain cases, the tail of the projectile has been observed
to leave the cavity wall for a short space during the initial
stages of this second phase which continues till the velocity
has fallen suificiently for the cavity to change radically or
for gravity forces to become importunt.

In the particular example of the paper, which related to
an underwater rocket projectile having a4 60Y conical nose,
the forces on the nose of the projectile were calculated on
an approximate theory and the tall forces were then deduced
from assumptions based on the observation of actual trajectories.
The computed motion was found to be in jood agreement with
estimates from observation, and this encours:ies the hope that
with more detailed and systematic information obtained from
further experimentg, it may be posgible, at & later stuge, to
use the present theory to estimate the characteristics of an
underwater projectile with jood accuracy.
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