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NACA ARR No. ILR22a RESTRISTED
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

'ADVANCE RESTRICTED REPCRT

THE CONFORMAL TRANSFCRMATICN  OF AN AIRFOIL INTO

A STRAIGHT LINE AND ITS APPLICATICN TO THE
INVERSE PHORLEM OF AIRIOIL THKORY
By Willliem Mutterperl

SUMMARY

A method of conformel treansformation 1s developed
that maps an alrfoll into a straight line, the line
being chosen 2s the extendad choid lina’ of the airfoil.
The mapping is acconplishsd bty operating directly with
the airfoll ordinates. The absence of any prelininary
trensformation is found to shorten the worl: substantlally
over that of previous nethods. Use 1s made of the
superposition of solutions to obitain a rigorous counter-
part of the approximate nethods of thin-alrfoll theory.
The method is mpplied to the solution of tho direct and
inverse problems for urbltrary airfoils and pressure
distributions. Numericel examples are given. Appli~
cations to mcre general types of reglons, in particular
to blplenes und to cascades of airfoils, are indicated.

INTRODUCTION

In an attempt to set up an efficient numerical method
for finding the potentisl flow through an arbitrary cas-
cade of airfoils (reference 1) a nethod of conformal
tranaformatlorn was developed that was found to apply to
advantare in the cmsa of isolsted alrfoils.

The method consists In transforming the isolated
=inrfoll directly to a stralght line, namely, the extended
.rd line of the airfoll. The absenco of the hitherto

.sual preliminary tranaformation of the airfoil into a
neer circle nakes for a decided simplification ol concept
and procedure.

RESTRICTED
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The exposition of the method, followed by lts appli-
cation to the direct problem of the conformal mappling of
glven airfolls, is given ln part I of thls paper. 1In
part I7 the method 1s applied to the lnverse problem of
airfoll thecry: namely, the derivatlon of an alrfoll sec=-
tion to satisfy a prescribed velocity distrlbution. A
gonparison with previous inverse iethods 1s made. Addl-
tional materilal that willl be of use 1n the applicatlon of
the =mothod 1s given in the apnendlxes, In appendlx A cer-
taln numerical details of the calculatlons are dlscussed.
In appendix B extenslons of the methoed to the conformal
mapoing of cother types of reglons are 1ndicated, The
relation cof the methods used for the mapping of airfolls
to the Cauchy interral formula is discussed in appendlx C.

Acknowledgment 1s made to Mre. Yols %vana Doran of

the corputing staff of the Jangley full-scale tunnel for
her aselstance in making the calculations.

SYMDOLS

x + 1y plane of airfoll

€ + 1 plane of straight lines
Plane of unit circle
central angle of circle

component of Carteslan mapping function (CMF)
parallel to chord

Ay eomponent of Cartesian mapping functlon perpen-
dlcular to chord

aAx,, Ay, particular CMF's, tables T and TI

T dlsplacement constant for locating alrfolil

r = 2R diameter of circls, senilength of straight line
Cpn = 8p + 1by coefficients of serles for CMF

By nepative of central angle of circle, correasponding
to leading edge of alrfoll




NACA ARR No. ILX22e 3

ﬁT central angle of circle minus 180°, corresponding
to trailing edge of airfoil .

e airfoil chord
section 1lift coefficient

veloecity at aurface of airfoil, fraction of free-
stream veloclty

veloelty &t surface of circle, fraction of free-
stream velocity

Iree~stroam veloelity
element of length on airfoil

eirculation

thiclkness factor

camber fuctor

thickness ratio

normalizing constant

denominator of eguation (17)°

camber, percent

incremental Clts

poaltive area under approximate vp(®) curve
negative area under approximate vp(9) ocurve
angle of attack

ideal angle of attack

Py

trus votential

approximate potential

ceritral angle of near circle

t=0 -8
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Subscripts:
¥ leading edge (nose)
T trailing edge
(-] camber
KR thickness

o0, 1, 2 auccesaive approximation in direct or inverse
CIPF nethods

I - THE DIRECT POTENTIAL PROBLZM OF ATIRFOIL THEORY

THE CARTRSIAN MAPPING FUNCTION
The Derivation of the Cartesian liapping Function

Consider the transtormation of en airfoil, z-~plane,
into & atralght line, {-plane (fig. 1). The vector
distance between confornelly corresronding points such
es P, =and P on the two contours 1s composed of a
horizontal displacement Ax &nd a vertical displace~
ment A4y. The quantlty 4x + 1 Ay 1is only another way
of writing the analytic function z - {; that 1is,

2 -f=(x+1y) = (£ + 1in)
(x - &) + 1(y - n)
ax + 1 Ay (1)

By Riemann's baslc exiastence theorem on conformal
mapping, the function z -~ [ connecting conformally
corresponding points in the z- and $-plancs 1s a regular
function of either z or § everywhere outslde the
airfoil or stralght line. This function will be relerred
to aa a Cartesian mnapping function, or ClF. In order to
map en alrfoll onto a stralghit line, the airfoll ordi-
nates Ay are regarded as tne lmaglnary part of an
analytic function on the stralght line und the problen
reduces to the calculatlion of the real part Aax.
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The calculation of the real part of an analytle
function on a closed contour from the known values of
the imeginary part 1ls well known. It 18 convenient for
this calculation to consider the stralght 1line as con-
formally related to a circle, p-plane, by the famlliar
transformation

2
L=T=p+ %; (2a)

where the constant displuacerent T has been Iinserted for
future convenience in locating the airfoil. For corre~
sponding points on the strajight line and the cirels,
~equation (2a) reduces to

E=T+ prcos O

(2b)
r,=0

Considersd as a function of p, thepefore, the CMF 2z ~ [
1s regular everywhere outside the circle and is therefore
expreassible by the inverse power series:

z-£=i-°—§ (3)
0 P

The analogy of equation (%) with the Theodorsen-Garrick
transformation (reference 2)

.
c
log B-=35_ -2
i p°
whlch relates conformally a near circle, pt-plane, to a
c¢ircle, p~-plane, may bes noted. On the c¢ircle proper,

where p = Reim, and defining cp = &, + 1b,, equa-

tion (3) reduces to two conjugate Fourier series for the
CMF; namely,

a

b

coa n@ + 2 -% sin n%® (L)
l R
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o b o
Ay = b. + -2 o8 no - & 8in no (5)
7= % Zl R® g RD

These serles evidently determine 4x from Ay or vice
versa.

An alternative method of performing this calculation
is possible. It is known that 1f the real and Imaginary
parts of a functlon sre given by conjugate Fourier series,
as in equatlons (l}) and (5), with the constant terms
Zero, two integral relations are satisfied. (See, for
example, references 2 and 3; also, appendix C.) These
relations are

2 .
4x(9) = - -él;f Ly(®t) cot L?‘.E do? (6)
(o}

L
ay(o) 51;\/'2 Ax(®') cot S’L.%_E ao! (7N
' 0

Before thc detalled applicatlon of the CUMF 2z ~
to the solution of the direct and inverse vroblens of
alrfoil theory 1s made, some necessary basic properties
of thils function will be dlscussed.

Alrfoil Position for Given CHP

It 1s noted first th~t the reglons at infinity in
the three planes are the sams except for a trivial and
,arbi%r?ry translation; that 1s, by equations (1), (2a),
and (3),

lim 2 « { = Axp + 1 Ay, = € = 8, + 1b
z, 0= (-] ("] [+]

(8)
. 1im { = P+
{,p—anm
Secondly, 1f an airfoll 1s to be mapped into a
straight line, it becomes necessary to wnow the point on
the stralght line corresponding to the trailing edge of
the airfoll. For a given CHF, ax(D), Ay(9), and
straight line of length 2r located as in figure 1,
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the airfoil coordinates Xx, y are obtained from equa-
tions (1) and (2b) as

X=T +rcos @ + Ax(Q) 9)
y = ay(®) (10)

The leading and trelling edpges of the alrfoil will be
taken as the points corresponding to the extremities of
the airfoll abscissas. The corresponding locations on
the circle are therefore determined bty maxinizing x
with respect to & in equation (9). Thus

dx dAx

a?I:O--rBlnC'-\\-—ﬁ—

dix

8in ¢ = T ac

(11)

The condltion {11) ylelds (usually by grabhical deter- .
mination) the anglea corresponding to the leading and
trailing edges (fig. 1)

@ B

N E Py
.= n+ ST.

(12)

L

It will be found convenlent tc so alter the position
and scale of a derived alrfoll that, for exemple, 1its
chordwlse extremities are located at x = 1 and the
tralling edge has the ordinate y = 0 (to be referred
to as the normal form). The cherd ¢ of a derived alr-
foil is by definitlon the difference in alrfoll absciasa
extremities, or by equations (12} and (9),

¢ = rcos 3 - cos ST) + Ax(Fp) - Bx(mr) (23)

The incrsanse ln scale from ¢ to some des’red c, 1s
obtained simply by multiplying r, A4x, and Ay by the
factor co/c. The translatlon necessary to bring the
trailing edge of the airfoll to its de=sired location 1e
th;n accomplished by adjusting the translation constants T
and bg.
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Veloolty Distribution on Alrfoll

Once the CMF Ax(®), Ay(®) and the diameter of -
eircle r of an airfcil have been deternined, the
velooity ut a point on its surface 18 obtzined in a well-
known manner as the product of the known veloclty at the
corresponding point of the eclircle and the stretching
fastor from the circle to the airfoil; that ls,

vz(9) = r §& v, (9) (1)

where vp {®) 1s half the veloclty on the circle (since
= 2R) and ds 13 the elenent of length on the airfoil.

The velocity on the circle v,(¢), which makes the
peint © = 7 + By corresponding to the tralling edge
of the rirfoil a stagnation point (Kutta condition), 1s

vp(®) =|sln (9 + a) + 8in (a + ST)I (15)

where a 13 the angle of attack. The veloclties vp
and v, A&are expressed nondimensionally as fractions of

free-stream velocity. The stretching factor ds/d® is
obtained from equations (9) wnd (19) as

N SR C il T (3 (16)

The velocity v,(®), equation (1), therelore becomes.

lsin (9 + a) + 8in (a + BT)I

b, dAy 2
— vty — e
(r ae sin qy (r dq;)

Thil equation 1s the general expreszsion, in terms of the

for the veloclty at the surface, equations (9) and
(105, of an arbltrary airfoil., The denominator depends
only on the alrfoil geomctry, while the numerator depends
also on the angle of attack. Equation (17) is similar
to the corresponding expression in the Theodorsen-Garrick
method except for the absence of the factor representing
a preliminary transformation from the airfoil to a near
circle.

vg(®) = (17)
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The expressinns for the 1ift coerficiont'nnd ideal
angle of attack nay be noted. The elirculation P areund
the airfoll is (V is free-streum velocity)

T = lir RV sin (g + 3T) (18)
The 1ift coefficlent ¢, i3 Gefined by

%OCIVEP

- r
¢ = br Estn (a + 3) (19)
where the airfoil chord c¢ is glven by equation (13).

The tdesl angle of attack (reference 2) is defined
as that angle of attueck for which a stagnation point
exlsts at the leading edge; thet is, vz =0 for o = -BN
in equation (17). FHence, _
By - B
a,I = l_é_.l (20)

Supsrp~asition of Selutiens

The sum of twe anulytic functions is an analytic
function; therefore, for a given p-plane circle, the sun
of two CNF's is itsell a CIF as iL also evident from
equatlons (4) to (7). Thus, the ClF!'s 4xy +1Ay; and
axy + 1 Ay; of two component -airfoils may, ror the saume r,
be added together ton ;ive a CMF (Axl*-sz +1(Ayl*-Ay2

and thence, by equation (17), an exact velocity distribu-
tion for a recultant airfoill. The resultant prnfile and
148 velecity alstribution is & superpositlion in this
sense of the companent proliles and vslocity distributions.
Thus, without sserifice of exuctness and with no great
increase of labor, airfoila may be analyzed and synthe-
sized in terms of comvnonent symuetrical thicknoss distri-
butions and mean camber lines, This result provlides a
rigorous counterpart of the well-known approximate super-
position mothods of thin-airioll vortex and source-gink
potential theory.
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As a particular case of superposition, a known CHF
Ax + 1 Ay may be multiplied by a constant 3 and the
resulting CMF S Ax + 1S Ay determinss a new profile by
the now displacements 3 4x, S 4y f{rom polnts on ths
original straight line. It is evideunt that, except for
the corrections (S - 1) &x to the airfoll absclssas,
this new profile 1s increased in thickness and camber
over the original profile by the lsctor S. The effect
on the velocity distribution is that of multlplylng the
derivatives in aquation (17) by S. By virtue of a reduc-
tion 1n scale by the factor 1/3 this profile mey also
be regsrded as obtilined fron the original one by usinb
the same A4x, Ay but a length of 1ine 1/5 times the
length of the original one.

The use of superposition as well as the application
of the CMF to some particular airfoils will be illustrated
next.

Application of the CEF to Some Particular Alrfolls

Symmetrical thickness distributions.- The Certesian
mapping function was calculated for a symmetrical 30-
percent thickness ratlio Joukowsiki profile i'rom the known
conformal correspondance between a Joukows<l profile and
a stralght line. The CHMF 1s eglven ln normal form 1n

table 1. The assoclated constants T, and r, are

glven in table II and the prcfile 1tself, as determined
elther from the standard formulas or from aqrutions (9)
end (10), is shown in figure 2(a). The symmetry of the
profile roquired only the calculation of 4x(%), &y(®)
ror v € o0 £ 150°. The corresponding veloclty distri-
bution (flg. 2(b)) was obtained from equation (17) by
use of the computed velues of tne derivatives. At the
cusped trailing edge the velocity as given by equetion (17)
1s indeterninate; however, the llmiting form of equa-~
tion (17), deternined by differentiation of numerator
and denominator, is

cos (o + a)
lim v = | I (21)

O=>0p ( dz“ dZAI 2
cos @ -
r de< r ae?
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It is seen from this expression that the veloclty at a
cuspasd edge depends on the accond derivatives of the
rapping function, that is, on the curveture at the cuap.
The computed second derivatives ﬁaﬁxnt/ﬁwa, dauyot/ﬁca
of the CM® of table I are plotted in flpure 3 for a range
of values of @ near 180°,

The CiI''s fo1 syrmetrical profliles o' different
thickness rotlos were determined from that for the
Joukowskl profile as Indlcated previously in the section
"Superpositicn of Solutions." The fuctor wuy by which
to multiply Ax,, &y to obtaln & prof'lle of thlcknesas
retio T 18 obtained from

Ut A¥opay

+ uyg Lﬁx(v.l.) = Ar(c-,rl\] o

2

To

where Ay, is the maximum airfoill ordinate of the known
CMF (toble I) and the denominator representz the semichord
of the derived profile. The solution for u; 13

r,aT

AXin = :Ax"
Av o e e e L
¢ Onax 2

Values of wu; were calculated from this formula for
thickness ratios of 2l psrcent and 12 percent aad are
glven in table II. The resulting Cli¥'s were then nor-
malized as indicated in the section "Airfoll Position
for Glven CHF" so that the actual factors by which to
rmltiply the original Ax,, Ay, were hut. These values
are glven in table II, together vlth the assoclated
constants T and r. The profiles thus deterrlned aro
shown in figure 2(a) and the corrcsponding veloclty dis-
tributions in fiymre 2(b).

ut—

(22)

The derived profiles are not Joukowsll profiles.
The point of maximum tihilcknoss is zhifted back along the
chord somewhut as the thickness ratlo decreases. Con-
versely, the polnt of maximue: thickness would be shifted
forward by ;soing from a thin Joukowskl proflle to &
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thicker one. (Thia result was the reason for starting
from a thick section.) The CMF for the 1l2-percent thick
derived profile 1s illustrated in figure l. It is to be
noted that the horizontul displacerment function Axg(®)
is symmetricul about @ = 7, whereas the vertical dis-
placemant function Ay,4(®) 1s antisymmetrical about
o=

Mean camber lines.- The CMF was next calculated for
a circtilar-arc prol+lé of é-percent camber from the known
conformal correspondence between a circular arc and a
straight line. The normalized CMi and its derivatives
are given in terble III. The CMF is illustrated in fig-
ure L. The symmetry in this cese is with respect to
© = 90° =and © = 270°, the A%, (®) being antisymmetrical
and Aygc{(®) symmetrical. The circular-arc mean camber
line is shown in figure 5(a) and the corresponding
velocity distributlon in figure 5{b).

Derived mean camber lines were obtained from the CMF
for the circular arc in a nanner similar to that for the
symetrical profiles. The expression determining the
factor u, for a desired percent camber C is

u, Ly
¢ %max

= C
ZE'O cos @y + u, Ax(@iq)]

with the solution for wug

b = ZCQQicos wu___ (23)
Ayom - 2C Ax(mn)

The angle Oy I1n equation (23) (as in equation (22))

ecorresponds to the extremity of the derived mean line.
Because the factor wu, 1s to multiply the derivative

dax,(0)/de, the angle 9; as determined by the maxi-
mum condition (1l) depends on u,. One or two trials

ere sufficient to determine u, simultaneously with o
from equations (23%) and (1ll) for & glven desired camber C.
Values of u, and Lt {also @ by symmetry) are

given in table IV for derivecd cambers of 3 and 9 percent.
The actual multiplying factor to obtaln the derived
CMF!s in normal form is given in table IV as Xuc.
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The derived camber lines are shown in figure 5(a).
It 1s seen that the derived camber lines have been
separated into dlstinet upper and lower surfaces., Fur-
thermore, for the 9-percent camber line the "lower"
surface, that 1s, the surface corresponding to the lower
Part of the stralpght line or clrcle, lles above the
‘upper" surface. Although such a camber line 1s physi-
cally meaningless by ltself, nevertheless lts CM" can be
compounded with that for a thickness distribution to glve
a physically real result (if the resultant profile 13 a
real one). The vclocity distribution of the 5~-percent
cember line is given in fizure 5(bv). The "velocity dis-
tribution” of th2 9-porcent cemter Line 1s included in
figure 5(b) ror arithmetical comparison altiiough it ia
physically nmeaningless for the reason Just mentioned.

The velocitles at the cusped extremitlies of the
cember lines ere glven by equation (21). The second
derivatives of the CMF of table III were computed. They
are plotted in figure 3 as dZAxoc/dma, daAyoc/hma for
a range of © near 180°, These second derivatives, in
ecombination wlth those for the swmumetricul profile, can
be used to glve a more accurate determination of the
veloclty at and nesr a cusped tralllng edgs than 1s
obtained by using equation (17) near the tralling edge.

Combination of gymmetrical profile and mean cember

line.~ The CHI's derivad [or the syrmetrical groriles and
Tor the mean camber lines can no% be combined in varying
proportions to produce airfolls having both thickness

and camber. These airlolls may be useful in themselves
or, as in the followinsg sections, may he used as Initial
approximations in toth the d.rect and inverse processes,

As an illustration of such combinations, the CMF
of the l2-percent thick zymmetrical profile of flgure 2(a)
and the CMF of the 6-percent camber circular arc of
figure 5(a) were udded togsther., The airfoll prosile
thus determined is shown in ligure £(a). ror comparison,
the alrfoll obtalned in the manner of thin-airfoll theory
(see, for exanple, reference ;) by superposition of the
same symmetrical precfile and a g.5-percent camter clpr-
cular arc (in order te duplicute the canber of the exact
alrfoil more closely) 1a Indiceted in the figure. The
velocity distribution of the dotted airfoll should,
according to thin-airfoll theory, e the sum of the
symmetrical-profile velocity and the lncroment above the
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freeo~stream value of the camber-line velocity. This
velocity distribution, determinod from the two component
exact distributions at zero angle of attack, 18 shown
dotted in figure 6(b). The exact velocity distribution
of the "exact” airfoll of figure 6{a) was determined
for the same 1lift coefticlent (c; = 0.68, a = 19131)

from the known ClF. This distribution is shown in
figure 6(b). The two velocity distributions differ ap-
preciably, although in the directions to be expected
from the diffarences in shape of the corresponding air-
folls.

It appears that the CIT''s of a relatively small
number of useful thickness distrlbutlionz and camber lines
would suffice to yleld a large number of useful combi-
nations of which the (perfect fluid) characteristics could
be determined sxactly and casily in the mamner indicated.

The superpositlon of solutions can also be used with
the airfoll mapping rmethods based on the conformal trans-
formation of a near circle to a circle. There 1s a
decided advantage, howevasr, in working with the airfoil
ordinates directly, both 1n the fzcility of the calcula-
tiong and in the insipght that 1s meintained of the rela-
tionship between an alrfail and its velocity distribution.

THE DIRECT POTENTIAL FROELEM FOR AIRFOILS

The direct problem for airfolls is that of finding
the potential flow past a given arbitrary airfoil section
situated in a uniforn free stream. Thils problem can be
solved by a CMF method of successive approximation some=
what similar Yo that in reference 2.

Method of Solution

Suppose an airfoll to be gilven as in figure 6(a).
The chord 1s taken as any straight line such that perpen-
diculars drawn from its extremliiies are tangent to the
airfoil. For example, the "longest-line" chord, that 1g,
the longest line that can be drawn within the airfoil,
satisfies this definition. The x-axis is taken along
this chord esnd the origin is taken at 1ts midpoint.
Suppose, in addition, an initial CMF 4x, and Ay,,
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straight 1ine »r,, and chordwise translation constant 7T,
to be given such thet the corresponding airfoll has the
same chord and is similar in ghape to the given airfoll.
(At the worst the initial airfoil could be the glven

chord lire liself.)

At the clordwise locations xo(®) of the initial
airfoil, corresponuing tc an evenly spaced set off @
values by equetion (9), the diffarences 67,{®) between
the ord’nstes Ayl(w) of the given airfoll and Ayo(w)
of the initilul eirfoil ere measured. The ordinate dif-
ferences 0yy(®) deternine a conjugste set of sbsclssa
correctlons 6xl(w) In acecordance eitiier wlth equa-

tions (4) and (5) or equation (4). The detalls of this
calculation are given in apvendix A,

The initlel semlleagth of stralght linoe r, corre-
sponding to the initial ailrfoll 1s then corrected tc ry,
and the translation constant T, =adjusted to T;, 8o
that the use of ry with the first approximate CMP
x: = Ax, + Bx3, 4y = AYo + 6y, yields a lirst approxi-
mate airfoll of which the chordwlse extremities colncide
with those of the given airfoil. This correction is
described in detall presently. If the first epproximate
airfoll 1s not satisfactorlly close to the given alrfoil,
the proccdure 13 ropeated foi a Second approximate aip-
foil, and so on. The successive nirfoils thus deter-
mined provide & very useful critaorion of convergence to
the final solutlonj nauely, the glven airfoll. Evidently,
the fundementsl relation tetween an alrfoil and its
mapplng cirecle

ey , ¢
+ Y St~k S

14

z = p = cq

can be used in the manner indicated to effect directly
the transformution of an airfoil into a ¢ipele. It
appears prefeprable, howsven to subtract /p from the
second term on the right and tnenﬁe to introduce the

- . -
straight-line varinble { =p + %?'

The exact veloclty distribution of any of the
Yapproximate® airfolls (hence the approximato veloocity
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dlstribution of the glven alrfoll) may be ohtalned from
squation (17) using the derivatives of the corresponding
CMF. The zero-lift angle PBp to be used in equation (17)
is determined for each approximate alrfoll along with the
corresponding correction for r.

The correction for »r 18 necessary because 1if the
chordwise locations of the first spproximete alrfoll were:
computed by equation (9) with the original vaolues of r
and T, Ax;(®) bcing used instend of 4x,(9), the re-
sulting chordwlse extrenities would Iln general not be at
x = ¥1, It 1s therofore necessary to adjust r, end T

o
such that with the derived Ax;, Ay,

xl(’NI) =1
xl(%l) = =)

where ¢“1 and th are the angles on the cirele corre-

sponding to the extremitles of the deslred airfoll. Thls
operation was mentioned in the section "Superposition of
Solutlions." It may be termed a horizontal stretching of
the given airfoll. The condition given by equations.(2})
applied to equation (9) ylelds

1=m +r) cos O + A*l(“’Nl)

(24)

(25)

=1 =7y +r cos ¢Tl + Axl(OTl) j

Subtraction of the second of these equations from the
firat gives for ry

(o) - ()
1+ .
ry = = (26)
cos °N1 - cos le . . .
2
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Addition of equations (25) gives for Ty

cos By, + cos Ip, . A::G}lll + Axl(@r}l
2 2

Ty = =iy (27)
The angles QNl and le in equations {26) ana (27)
correspond to the extremities of the desired alrfoll.
They are given by graphical solution of equation (11)
dAz, (@)
o = Lx10)
r] de

sin (11)

Bquation (11) mnst bo rolved simultaneously with equa-
tion (26) for rp, ®r» And @y, . In practice only a

few successive trials are necessnry. Thence T, 1s
obtained by eguation (27). The angle Gbl determined in

this process 1s cquivalent to the zero=-lift angle of the
alrfoll, squatlion (12).

Illustrative Example of Direct Method

As a numerical illustration cf the direct method the
velocity distribution of the NACA 6512 airfoil was cale
culated. In order to obtain en initial airfoll, the CMF
of the 6-percent camber clrcular arc (tsbles III and IV)
was added to the CMF of the l2-percent thick symmetricel
profile, derived from that of table I aas indiecated in a
previous section. Before this addition was mede, the
CMF for ths clrcular urc was Increased in scale (multi-
plied) by 1.0928/1.0072 to correspond to the sane length
of stralght line r as the symmetrical profile GHF. The
normalized resultant CMF and the assacleted constunts are
given in tables V(a) and VI, respectively. The initial
airfoil 1s shown in figure (a).

The glven airfoll, NaCA 6512, was so rotated through
an engle of -0.88° (nose down) as to be tangent to the
initial airfoll at the leading edpe. The convergence
near the leading edge was thereby accelerated. The given
airfoil 1s shown in this position in figure 7{(a). Two
approximations were then carried out in accordance with
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the procedure given in the preceding section. The numeri-
cal results are given in tables V and VI. The first
epproxinate airfoll is indicated by the circles in fig-
ure 7{a); the second approximate airfoil was indistin-
gulshable to the ascals used (chord = 20 in.) from the
given alrfoil. -The valoclity distributions of the initial,
first, and second approximate airfolls are given in fig-
wre 7(b), together with those corresponding to one
approximation by the Theodorsen-Garrick method (refer-
ence 5). The sacond approximetion velocity distribution
differs appreclably from thut of the Theodorsen-Garrick
method on the upper surfice but agrees fairly wsll on the
lower surface. The dlscrepancy for the rearmost 9 percent
of chord on the lower surface appears to be due to lack

of detail in tals region in the Theodorsen-Garrlck cal-
culation.

The convergencs of the CMF method is seen to be
rapid, considering the approximate nature of the initial
airfoll, although two approximations are regquired for a
satisfactory result. "The sccond approximation could
probably have been made unnecesaary by sultably adjusting
the first increment &8y;(®) near the leading and trailing

edges on the upper surface bel>re calculating le(w).

The direction in which to adjust the increment is obtained
by coumparing the thiclkness of the initial airfoil with
that of the given airfoil In these regions. Because a
thicker section has a greater concentration of rchordwise
locations toward the extremities, for a given set of

©® points, than does a thinner suctlion, the chordwise
stations would be expected to be shifted outward as the
thickness of the section is increased. The ordinates
Ay1(®) should therefore huve been chosen at chordwise
stations slightly more toward the extremities than those
glven by equation (9).

The accuracy of the velocities is estimated to be
within 1 percent. It was expected, and verified by pre~
liminary calculations, that the results would tend to
be more inaccurate towsrd the extremities of the mirfoil
than near the coenter. This result is evident from sjua-
tion (17). A given inaccuracy in the slopes dix/dv and
dAy/de can produce & large error in the velocity near
the extremities, where sin @ approaches zero. This
disadvantage does not appear in the Theodorsen-Garrick
method, in which sin ¢ 1s replaced by one. fxcessive
error in these regions can be uvoided in varilous ways.
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If the initial airfoll, for which the slopes dbx,/d®
and dAy,/d® have presumsbly becn computed accurately,
12 a good upproximation in these regions, as evidenced
by the smallness of 8x;, O6y; compared to Ax,, Ayg,
the effect of inaccuracy ol the slopes dbx;/dQ, d8y,/do

will be reduced, since they are added tc the initisl
slopes dAx,/d®, dAy,/d®. It wus to reduce the magnitude
of the incremwental CMF near the leading edge that the

NACA 6512 airfoil was drewn tangent to the initial air-
foil in this region.

The error in the derivatives can also be aveided by
- eomputing them from the difrerentiated rourier series

for 6x;, Oyj. (See appendix a.) This calculation was
nade in the illustrative exumple, after it was found that
an error of about 5 psrcent in tiie velocity on the upper
aurface leading edge could be caused by unavoidable
inaccuracy in measuring the lincremental slopes.

The fact that the computed derivatives do not repre=
sent the deraivatives of the CINF but rather the deriva-
tive of its Fourier expansion to a finite number of
terms may introduce inaccuracy. (The derivative Fourier
series converges more slowly than the original series.)

A comparison of the ccmputed derivatives with the measured
glapes will indicate the 1imits of error, however, as well
as the true derivutive curve.

The importance of knowing thie CMF derivatives ac-
curately may make it desiruhle to solve the direct
problem from the airfoll slopes, rather than from the
airfoll itself, as given data. This variation of
technique enables the CMI* derivatives rather than the
CMF 1tself to be approximated initlally. T'urther
details are given in reference 1.

II - THE INVWRSE PFOTENTIAL PROBLEM OF AIRFOIL THEORY

The inverse potential problem of airfoll theory may
be stated as follows: Given the veloeclity distribution
&8s a function of percent choréd or surface arc of an unknown
airfoll - to derive the sairfoil. Before the queations of
existence and uniqueness of a solution to the prnblem as
thus stated are discussed, several CMF methods of solu-
tion will be outlined and illustruted by nunerical

L~
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examples. Various previous methads of solutlon will then
be described briefly and thelr lnherent limltatlons and
restrictlons on the prescribed veloclty distribution will
be compered with those of the CMF methods.

The prescribed veloclty distributlion 1s assumed to
be elther a double-valued continuous function of the
percent chord or a single-valued contlnucus function of
percent arc, (Iivlated dlscontinulitles in velocity are,
however, at least 1n the percent-chord case, admissible.)

CMI' Method of Potentlals

This inverse metiiod 18 based on the fact that, 1f
the airfoll and 1ts correspondling flat plate and circle
are immersed In the sane free-strecam flows and have the
same circulation, confornally corresponding points in
the three planes have the sarne potential.

GConslder first the case where & veloclty dlstrlibu-~
tion corresponding to a symmetrical airfoll at zero 1lift
is specifled as a function of percent chord, If an
initial airfoll is asswned, the prescrlbed velocity can
be integrated along 1ts surfuce to yleld an approximate
potential dlstribution as a function of percent chord.
This potential increases {rom zero at the leading edge
to a maximum value at the trallling edge. Of fundamental
importance to the success ol the method 1s the fact that
this potentlsl curve depends meinly on the prescribed
veloclity distribution and only to & much lesser extent
on the form of the 1inltially asawned airfoll. The chord
line of the 1nitlal sirfoll taken as the x-axls 1s next
sufficlently extended that, in the same free-stream flow
as for the airrfoll, the potentlal, which in thils caae
1a simply VZ, lncreases linearly from zero at 1its
leading edge to the same maximum value st the tralling
edge as exlats for the upproximate votentlal curve derlved
initlally. Horlzontal displacements Ax between these
curves are then meacursd as a functlon of the straight-
line absclasas and, hence, as a function of the central
angle @ of the circle corresponding to the stralght
line. These horlzontal displacements 6x(¢), togethsr
with the conjugate function Av(®w) computed therefrom
and the length of stralght line previously determined,
constitute a CMP for an asirfoll that is a first approxi-
-matlon to the unknown airfoll. The approximation 1s
based on the use of 8 more or less arbltrary initial
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airfoll to set up the first approximate potential. The
exact veloclty distribution of the derived first approxl-
nate airfoll can now be computed and compared with the
prescribed velocity. If the agreement is not satisfac=-
torily close, the proccdure is ropeasted, with the airfoll
Just derived taking the place of the one inltlally asaumed.

The complication introduced in thc general case in
which the prescribed velocity distribution corresponds
to an unsymmetrlcal airfoil with circulation can be
resolved ss follows: It is convonient in this case to
discuss the potentials in the circle plane. The pre-
scribed velocity distributlon is transferred to the circle
plane by means o' the stretching factor, presumed known,
of the initially assumed alrlfoil; that 1s, equation (1l)
is solved for v,(®). The first approximate potential
distribution as a function of the centrsl angle ¢ 1is
obtained by integrating vp(®) through a ®-range of 2m

radians (around the airfeil), starting from the value
of @ near zero for which vp(G) is zero (the front

stagnation point). This apnroximate potential surve has

a ninimun value of zZero at the front stagnation point,
rises to a maximun for the value of © near 1 corre-
sponding to the rear stagnnilon point, then folls to a
minimurm for the final velue of ¢ (the front stagnation
point), which 1is ar ansle 27 radians from the starting
o-point. The difference between the final and the initial
potentisl minimums is a first approximation to the circu-
lation T.

A circle of such diameter is now derived which, with
this circulation und the same freec-strcam flow as for the
airfoll, yields a potentlal distribution (henceforth called
true potential distribution) that has the suame maximum
and minimum values as the approximate potential curve
Just derived. If the maximum approximate potentiul 1is
denoted by r, U and the decrease of potentlal (corsidered
positive) from the maximum to the final value by rgL,
where r, 13 ths diamater of the circle conrresponding
to the initiel airroil, the perameter ¢ 1is rirst com-
puted from

L S - (28)
2(w + cot v) U+ L
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by means of figure 8. The desired dlameter r 4s then
given by

_ ro(U + L)
T = li{cos ¥ + y sin v)

(29)

The psrameter y is actually the sum of the anflo of
attack and zero-lift angle ol the unknown airfoll, to a
firat approximation; that 1s,

It 1s related to the circulation I' by equation (18).
This procedure for the calculation of the diumeter
(see, for exampls, reference 6) follows easily from the

expreasion for the potential distributlion on a circle,
obtained by integration eof equation (15) as

#]
0. (o) = r",/.'r v, {0)de
L*BN B

= rq [cos v+ 3in y~cos @+ a)+ (9P+ a)sin y] (31)

If the diamemter r of the derived circle is ruch
greater than the dlamster r, of the circle corresponding
to the initianl alrfoil, it is desirable to incrense the
CUF AXxgy,; Ay, of the inltlal airfoll by a fector sulfie
client to modi?y the initlal alrfoil such that it carre-
aponds to a cirecle of diameter r. A new anprexinats and
true ontential distribhation is tien obtuined as deseribed
but by ueing the modified initilal mirfoil,

The firast aprrcxirete horlzeontal displacement fune-
tion is now determined te the sum of the horizontal
displacement &x,{(®)} correaponding to the (ui0dif’ed)
initlal sirfoil and an lncrement b&x;(®) produced by
the noncoincidence »f tlhie spproximate potential distri-
bution @, and the true potentlal distributlon ¢,
This hnrizontal increment mar be measured beiween the
two potertial curves, ooth comnsidered plotted against
chordwise positlion in the physical plane. 'ith asufficient
accuracy this increment may be computed &s the vertical
distance between the potential curvea divided by the
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alope of ths approximate potential curve; namely, the
prescribed veloclty v,. If, therefore, all quantities
are considered as functions of @ .

Axy = 4x, + 6xy

€. {0) =~ & (P) '
= . a8 .
Exq + ———L—vz(w) (32)

The ordinate funztion A4y,(®) conjugate to A4x;(0®)

cen now be computed and, together with Axy(®) and the
diameter r obtalned previously, determines the first
approximete airfoll by equations (9) and (10). Calcu~
lation or measurement of the CMF derivatives dAxl/dw,
ddy;/de® and the use of equations (11) and (17) then
determine the zero 1ift angle @, and the exact veloclty

distribution of the f'irst epproximate alrfoll. The angle
of attack, to a first aprroximation is glven by equa-

~tion (30), the value of y derlved from equutlon (28)
being used. This exact veloclty distribution 1s compered
with that prescrlbed and, if the agreement is not close
enough, the procedure can be repeated with the first
approximate alrfoll as the initlal airfoil,

In the case where the prescribed velocity is speci-
fled as & function of percont are, then by line integra-
tion of the prescribed velocity along the vercent arc,
the true potential distributlon of the unknown airfoil
is known a3 a function of arc (except for a trivial scale
factor). The maximum and ninimua values of this potential
distribution then pernlt the unique deterriinatlon, by the
calculsation previously described, of the clrcle corre-
sponding conformally to the unknown alrfoll. Correlation
of the potentlal distribution of this circle with the
potential distribution as & functlon of arc initlally
calculated therefore rields exactly the potentlal distri-
butlon of the unlnown alrfoll as a functlon of the central
angle © of the clrclé. This fact Lias been noted by
Gebeloln (reference 6}, The calculatlon of the diameter r
as outllned above f'or the percent-chord case 13 thus
unnecessary. The remalnder of' the procedure is the samne,
the successive approximate alrlfoils now being adjusted
to correspond conformuily to this circle. before corre-
lating their percent~-arc lengths with the prescribed
veloclty distribution In preparation for the next
approxi mation.
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The successive contours determined by the method of
potentials ere, of necessity, closed contours, whether or
not the sequence of contours converges to a solutlon
satisfying (mathematically) the prescribed velocity dis-
tribution. The closure of the contours 1s a consequence
of the method of setting un the hLorizontal disnlece~
rents, Ax{(®), and solving for Ay(®), by which the
contour coordinates are obtained as sirgle-valued func-
tions of ®. The necessity for closed coantours does not,
however, exclude the posaitility ol deriving physicully
unreal shapes; narely, contours of figure-elght type.
Thias point will be dlacussed =i greater lenpgth later but
it may be remarked here that It is the extra degreo of
froedom introduced by tho class of r'igure-eight type
sontours that adrmits the possihilitvy ol' a vnique solu-
tion to the inverse problem troutod Lore.

It will have baen nosiced that, vhereas in the direct
method a Ay 1is deternined {ron the given data - that 1ls,
the airfoll - and & Ax 1&g compuvtsd therof'rom, conversely,
in the inverse nmethod of ynotentials a Axz 1s deternined
from the given data - that 13, the veloclty dlstrlbution -
and & Ay 1is computed therefrom. Similarly, just as
the direct problem can alao be solved by deriving day/dv
from the pgiven airfnll slores srd thence computing
dAx/dT, so, converscly, asn the inverse problsi be solved
by deriving dix/de fron the rrescribed velocity dis-
tribution end thence computing day/d®. 1Tris inverse
method of derivatives will bz discussed after some
numerical examplea are presented, 1llustreting the method

of potentials.

Examples of CiFF Method of Poteontials

Symmetrical sovetlon.- The method of potentials was
applied iirst to tue derivaetlon of the syrmetrical profile
corresponding to the prescrlibed velocity dlstributicn
shown in figure 9(a). As an initial alrfoil the 12-
percent thick jrofiie derlved frim the 30-roarcent thick
Joukowskl profile in part I was used. The initlal OIMP
and associated constunts nre given in tnble VII. The
initial alrfoll and its velocity distribution are shown
in figure 9, The rirst increient CMF and the resultant
first approxinute alrfoll and its exuct velocity distri-
bution were calculated by the procedure of the preceding
section. The incremental slopes dbxy/a®, dby,/de

were computed and found to approximate the reasured slopes
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very slosely. The results are presgented in table VII
end figure 9. It is scen that the change in velocity
and profile uccomplished by one step of the inverse
process is large; that ls, the convergence ls rapld.

The high velocity cf the first point on the upper surfuce
(® = 15°) 1s due to lack of detail in the ecalcvlation.
(Twelve points on the upper surface were caleculated.)

For practisnl purposes the nose could be easily modified
to reduce this velocity if desired without golng through
a conplete necond approximation.

Mean carmber line for uniform veloclty increwment.-
As g 36cond cxampie of tlI.e inverse CMF method, the profile
producing uniform equal and opposite veloclty lncrements
on upper and lower surfaces was derived. By the methods
of thin-airfoll theory this velocity distrlibution ylelds
the so-called logarithmlic canber iine. The prescribed
velocity distribution is indicated in figure 10(a). The
veloclty peaks at the extrenities of the prescribed
velocity curve were assumed in order to compensate for
an expected rounding off of the veloecity in thls reglon
In working up from the initial veloeity distributicn.
The convergence to the prescribed uniform veloelty dis-
tribvution would thereby be accelereted. The initial
airfoil was taken as the 6-percent camber cireular are,
dlacussed in part T. The initial CMF end its associated
gonstants are given in tables III and YV. The circular
arc and its velocity distribution are shown in figure 10,

A first approximation was calculated as outlined in
the previous section. A nuaerical difficulty appeared
in the process of solving equation (11) for the zero-
1ift angle of the first appreximate airfoil. It appeared
that a 2l-point caleulation (12 points by symmetry) dld
not glve sufficient detall 4n the range mw< ¢ < n

to yleld a reliable solution of equation (1l) for the
zero=-1ift angle. This resalt was a consequence of the
prescribed velozity discontinulty et the extremities with
the consequent large but local chianges in CIF and profile
shape required In these regions. The sclution obtainad
for the zero-1lift angle was = 6.1°, which br equa-
tion (19) with »r = 1.)ChL3 anﬁ a3 = 0 ylelded

ey = 0.67. The desirsd c¢,, however, is 0.80, which
would correspond to 5T = 7.27°., It wus considered

that a relatively minute change in the shape of the
extremities of the derived camber line would alter the
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slope dAx,/d9 1in the desired range sufficiently to
yleld a zero-1ift angle of Bg = 7.27°. On the other

hand the effect of such a local change on the CMI" as a
whole would be smarll. The veloclity distributions of the
derived profile were therefore computed for both zero-
11ft angles quoted previously.

The results are glven 1n table VIII and in figure 10.
Included for comparison in flgure 10(b) {vertical scale
mugnified) 1s the logarithmic mesn line of thin-airfoll
theory, computed for 2; = 0.80. The velocity dlstri-
bution of the derived shape as calculated for the desired
11ft coefficlent of ¢; = 0.80 1s seen to be a satis-
factory apnroximation %o the desired rectangular veloclty
distribution. The profile 1tself 1s seen to be one of .
finite thickress as compared with the single line of
thin-airfolil theory. Aiirfolls bbtained by superposition
of this type of camber line with thickness profiles would
therefore be increased ln thickness over that of the
basic thickness form.

The changes in veloclty distrlbutlon and in shape
of profile are agaln seen to be large; that 1s, the con-
vergence was rapld. As 18 to be expected, the rapidlty
of convergence of both the direct and inverse methods in
comparable crses is about the same.

CMF Method of Derivatlves

Instead of approximating by the method of potentlals
to & CMP that, when differentiated, ylelds the prescribed
velocity, the CMF derivatives may be obtalned directly.
The controlling equations are equations (17), (9), and
@ modificatlion of equation (7).

~letn (o + @) + st + Bq)l
valey = Ltn et o s C Tg- (27)
dax _ w dAy
*:;—E; sin w) + (r dw)
aay .1 ["ax L o -0 )
el . Tor %t 3 de' (7_")
~ i i -

Pad
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X=cos 0 +ax{o) (9)
r r

These equatlons, together with the auxiliary equations (11)
and (1B), constitute a set of sinultaneous equations from
which the CMF derivative dAx/d@ may be determined from

a prescribed velcclity distribution v,. The corresponding
airfoll 1s determined by integration of dAx/d® and its
conjugats dAy/do.

Consider first the case where the veloclty is speci-
fied &8s a function of percent arc. As axplained iIn the
pravious section, the conastants r und 4 of the final
eirele corresponding to the un'mown uirfoil can in this
case be determined initlally. Polnts of equal potential
along the arc and circle ure thern found, which yield v,
a3 a function of 9. The angle of attack e in egua-
tion (17) 18 taken as some reasonable value and dAx/r dg
determined by successive approximation. In the firat
approximation dAy/r d¢ nmay, for exumple, correspond to
some known CNI'. Equation (17) is then solved for
dAx/r dg, for which the conjugate dAy/r do is calcu-
lated next and used as a besis for u better determinution
of dAx/r d¢. The airfoil corresponding to any approxl=
mation 1s obtalned by integration of diax/d¢ und its
conjugete dAy/d¢. (The method of derivatives may be
regarded as based on tho use of the function
ip ﬂiﬁa:_il_ This function 1a regular everywhere outalde
the circle p = Relm approaches zero at infinity, and

»
dax , 4 diy

raeduces to —= =< on the circie itself.)

a®

In general the dix/¢® ac determined in any aprroxi-
mation will have an avernge value other than zero. The
Ax(w) obtalned, say, by integration of its Fourier
serlies would therafore contaln & term proportional to @
in addition to a Fourier series. Thus, &x(®) would
not be a single-valued functlion of @ and the resulting
contour would not clecse. 3iuply subtracting the average
vulue of dax/dg¢ (the constant term in its rFourier series),
however, will close the derived contour. If the method
eonverges, this average velue approaches zero in the suc-
cessive approximations.

A prelimlnary over=-all adjustment of an 1n1tially
chosen CMF may be desiruble. Thus, if dAx;/d9 1s
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calculated in terms of the dAy,/de of a prevlous approxi-
mation and is found to be larger than dix,/deo by some
factor, dAy,/d9 can be multiplied by this factor and

the calculatlon of dAx;/d9 repeated.

Although the angle of attack may be arbltrarily set
initially in this calculatlon 1t should be so chosen that
the final airfoll will coincide approximately 1ln poslition
with the 1nitial alrfoll. After each calculatlon of
dox/dp, the zero-lift angle Bp can be calculated,
equation (11), which thereupon fixes a, since y=a+ BT
is known.

If the prescribed velocity distributlion 1s specl-
fied as a function of percent chord, v,(®) must be
determined in the successive approximations by use of
equation (9). The quantity « = a + 3 may be deter-
mined in cach approximation as in the method of potentials
or, in physically real cases, by equatlion (19). The
diameter r 1s so determined that the successlve alrfolls
are of a standard chord length.

It 1s evident from the struecture of equation (17)
that neer the alrfoll extrerilties where sin ¢-—>»0, and
in particular at the nose of the alrfoll where dAy/de
1s comperable to dAx/d® in magnitude, the convergence
by this method (and by the method of potentials) will be
comparatively slnrw. If modificatlons to the airfoll only
in the immediate nelghborhood of thie nose are requlred,
1t may be more expedient to apply a prelliminary Joukowskl
transformation, that 1s, to use these methods with the
Theodorsen-Garrick transformatlon.

An example of the use of the CMF method of deriva=-
tives to solve an inverse problam 1s given in reference 1
for the case of a cascade of airfolls.

Method of Betz

In the inverse mothod of Botz.{reference 7) an air-
foll and 1ts velocity distribution are assumed known
(f1g. 11) and a deslired valocity is specified as a func-
tion of percent arc. The new veloclty and length of arc
are specifled 1n such a way that the extremities of
potentlial are the same as on the known alrfoll. A Both
known and unknown alrfolls then transform into the sama
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eircle end, in perticulsr, the velocitles et points of
equal potentlal orn the two profiles can be found.

In order to determine the profile corresponding te
the new vclcelty, the complex displacement 2y - 2
between points of equel potentisl on the two profiles is
expressed as a function of the ccrraspondling complex
velocltias (denoted by v;) thus,

d . 92 _ dw/az
331(22'zl)"dzl'l'dwdza'l'

z
sy m {‘1(_1_ 1)az1 (33)

where the Iintegretion is cerried out elong the known pro-
f1le from the trelling sdgse, which is teken es coincident
for the two eirfolls, to the point 2,. The complex
function vzl/v_-.‘2 1s determined epproximetely from the

v

z
known rstio V"l corraspondlng to the points of equel
z

Hence

rotential by tiie ergument thst, lnssuuch as the two pro=-
f1las heve neerly the same slope at correspondlng points,

.o Va vz

the real pert of V‘L - 1 1s ziven by —4] < 1. (This
22 Vg

assumption, like the epproximations in the CMPF methods,

13 lesst velid at the nose of the airfoil. Tune function

2z - 27 18 In faet s Csrteslen mapping function.) The

imaginery pert 1s then computed &s the conjugste function,
equation (7).

In addition to the restrictions on the veloclty dis-
tribution mentioned initlally, further condltions must
be met in thils method, 1f closad contcurs are to be ob-
telned. Thus, the condltion for closure of contour,

f a(za - zl) f(;;; - )dzl =0 (34)
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and the required coincidence of v,, and vz, 8t

infinity, lead to the following three restrictions on
the real part R{¢) of the integrand in equation (34)
econsldersd as a function of @ 1In the circle plane,

an 21 2w
f R{c)de = R{(®) cos D dp= R{®) sin © d¢=0 (35)
0 0 0

Method of Weinig and Gebelein
The method of Weinig and Gebelein (reference 6) may

be deseribed essontially as followa: The given data are
the same as in the Betz method. Consider the functiion

Vz Vz
108-%_% = log "Ti -1 (s, - B2y) (36)

where Bzz and B, are the slopes at corresponding

points of the two airtoils (fiz. 11). Since |v32‘ and

|v=1' are known functions of ¢ with the data as given,
v

and since 1log ;Ea s regular outside the circle,

21
2 " B, can ne calculated as the function conjugate to
v

z
log ;;3 . The angle B being known, ﬂzz

detormined and hence, by simple integration, the unknown
airfoil coordinates are obtained.

8, 1

2y 18 thereby

As in the Betz method, the condition for closure of
the deslired contour

fdz=fwdp=j?dp=0 (37)
¢ c c 'z

dw/dz

leads to the additlonal rostrictions on the prescribed
velocity distridution,
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2w
51; , log|vz(o)|dv=

1 2
;f lng lvz(w)l sin ¢ dg¢ = -ain 2y

1 per .
;f log Ivz(m) cos @ dp = «w(l - cos 2¢)
0

/

where « 1is given by equation (30).

Discussion of the Various Inverse MHethods

The methods of etz and of Welnig-Gebeleln may be
somewhat narrower in =scopc than the CKF niethods. The use
of nappinz functions such as iu equations (33) and (36)

13 based on the ebility to specify d42zp/d=; unambiguously

in the caorrespondlins regions. This requiroment appears

to restrict the contceurs obtainable by tuese nethods to
those bounding simply connected regions, Jurther investl-
getion of this point is necessary, however. By the CLF
methods, figure-eizht contours l.ave arisen in the course
of solution of hoth the direct ard the inverse rroblems.
(Ses the y-percent cember derived moan line (figz. 5(a))
and the illustrative examples in reference 1.) Such con-
tours ware first enzountared as prelimlnary results
(unpudblished) in using the method of potentiala with the
Theodorasn-~Garrick transformation. The il apparently
mekes no fundamental mathematicul distinction between simply
connected und figure-eight contours, for although 2z = ¢
must be a single-valued function of 2z, {, or p, the
coordinate z i1tself’ is of the same character as

the latter has two RKiemann sheets at its Jdisposal in
consequence of the Joulrowskl transformation from the {-

to the p-plane.

The methods of Betz and of Vielnig-Geheleln require
the numericelly difficult closure conditions equations (35)
and (3£)) to be satisfied in advance. If the methods are
worked through for prascribed veloclty distributions
which do not satisfy thesc conditions, it appears that
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open contours result. In the CMF methods, however, there
is elther no closure condition (method of potentials) or
a numerically simple one (method of derivatives):

an 2w
Q-A-E- - m -
T de f dp 40 =0

This simple closure condition in the method of deriva-

ives 1s fundamentally & consequence of the fact that
the required absernce of the constant term iIn the inverse
power serlies for the CMF derlivative mapping function

(1p Qiéag_él, mentioned previously) automatically ex-
cludes the inverse first power (the residue term) from

the power scries ror d(z - l)/dp.] Thus, physically
impossible veloclty dilstributions lead to open contours

in the Betz-Veinig-Gebelein methods and to flgure-eight
oontours in the CMF methods (1f the latter converge).

From the practical polnt of view In these cases, 1t may

be easler to obtaln the ailrfoll corresponding to the

Yhest possible" physicully attainables velocity dlstri-
bution by the CMPF methocds than by the others. If the
succession of alrfolls detertiined by an Inverse CMF method
i1s seen to tend toward the development of a figure-~elght,
the successive approximations can be stopped at the "best
possible" physically real airfoll.

A3 to tle exlstence and unlgueness of a solutlon to
the inverse problem as stated, a rigorous discussion of
the solutions, for a prescribed veloelty distribution,
of the controlling equations (17), (7a), and (9) is
lacking. For physically possible velocity distributlons,
however, spocified as a function of percent are, the
Weinig-Gebelein method shows that there is one and only
one airfoll as a solutlon. If, however, the veloclty 1s
specifled as a function of pereent chord, some further
condltion is necessary. This rayulrement 1s evident from
the fact thut one velocity distribution for an airfoll
can, for differently chosen chords, be exprossed as a
different function of rercent chord ln each case. One
cheord with a givon veloecity as a function of percent
chord can therefore have riore than one corresponding
airfoil, There i3 reason to suppose that the further
condition for uniqueness of solutlon in this case 1s,
the chord being deflned as in the section "The Direct
Potential Problem for Alrfolls,™ that the ordinates to
the alrfoll at the chordwise extremities be specified.
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From the experisnce with the CMP methods gained to
date, 1t 13 belleved that to a veloeity distribution
specified as at the beglnalng of part II, anéd with the
further condltlon mentioned 1n the percent-chord case,
there corresponds one and only one closed contour aatls-
fying the CMF svstem of erquetions. It 1s furthermore
belleved that the CHMIP methods are flexible enough to
converge to thils solutlion Iin at least thoaso cases of
&orodynamie inturest.

CONCLUSIONS

"l. The conformal transformation of an airfell to
a straight line by the Cartesian mapping funetion (CMF)
method results in simpler numerlecal solutlona of the
direct and inversge potential problems for airfoils than
have boen hitherto avallable.

2. The use of superposition with the CMF methéd
for alrfolls provides a rigorous counterpart of the
approximate methods of thin-airfoil theory.

Langley Memorisl Aeronautical Laboratory
National Advisory Com:ittee for Aeronautics
Langley Fleld, Va.
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APPENDIX A

THE CALCULATION OF CONJUGATE FUNCTIONS
EY THE RUNGE SCHEDULE

The basic calculatlon for the type of mapping func-
ticn treated in this paper and in reference 2 consists
of the computetion of the real part of an analytic func-
tion on a clircle, given the imaginary part, or vice
versa. To thls end the conjugate Fourler serles, equa-
tions (4) and (5), or the conjugate integral relationa,
equations () and (7), are avallable. This type of cal-
culation appears to be fundamental in many kinds of
two~dimensional potential problems. For example, the
solution of the integral equation relating normal induced
veloclty tc circulation in 1ifting-line theory can kbe
solved easlly by a method of succecsive approximation
if the transformation from the "1ifting line" to the
circle la known. Quicker methods of calculating a func-
tion from its conjugate than those given in this appendix
or in reference 2 would therefore be highly useful.

The use of the Fourler serles rather than the
integral reiantions in the calculations of this paper was
besed on the following conslderation. Because the func~-
tion 1/z 1s regular outside the unit circle, the real
and lmaginary parts of 1/z on the unlit circle, namely,
cos ® and -sin @, satisfy the integral relations (6¥,
(7). The substitutlon of ~sin ® for Ay in equa-
tlon (6) and subsequent numerical evaluation by the 20-
point method of reference 2 gave results thut were higher
than cos ® by a constant error of 2.8 percent. Evalua=-
tion by a LO-point method reduced. the-error by half, or
to 1.l percent. By the Fourler seriles, on the other hand,
the flrst harmonic (a one-point method) suffices to give
exact results In this case. It appears, therefore, that
when the glven real funetion is expressible in terms of
a 8mall number of harmonies, as 1s the case in airfoil
applications, the Fourier series method is preferable to
the use of the Integral relations.

The Runge schedule offers a convenient means of
carrying out the basic calculation of mapping functions,
namely, the analysls of a perlodic function into its
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Fourier series and the synthesis of a Fourler series
into a function. The theory and use of the schedule 1is
described, for erxumple, in reference O, wherein are also
glven schedules for 12-, 2l-, 36=-, and 72-point harmonie
analyses.

The necessary analyses and syntheses in the direct
and inversc CMF methods are carrlied out in accordance
with equatlons (l;) and (5) und thelr derivatives.

Table IX contalns the scheme of substitutior into the
Runge schodule, table X, for the various CMF mothods.

In the direct nmetrod, for example, the set of values

8y/12 corresponding to the evenly spaced ®-values is
substituted Into the 7, spaces at the beglnning of the
sum-table. The suns ang differcnces of thuese quantitles
are then obtalned aa dirscted at the left of the indi-
vidual tables anc substltuted into the succeedling tables.
In this way the entlire sum-table is I'11lled out. Belore
the product-table 1ls used, the sum~tabhle should te checked.

The quantitles snrrounded by the heavy llnss in the
sum~-table are next multipllied by the propsr factors at
the left of the product-table and the resuits entered
in the appropriate spuces us Indicated by the letters
at the lelft c¢f the 1lndlvldual product-spaces., A4 heavy
horizontal line at the lower 12/t edge of a product-
space Indicates tuat the corresrnonding product hsas
already bheen ohteinsd in a prsvious spasce in the same
row. A heavy vertical llnc slong tho left cdgs of a
product-space Is used to eniphasize that the negatlive
value of the product of the sum-tsble quantity and the
product~-table fuctor lg to bte entered. The cums of the
prodnct-table columns are then entered in the I, II, TII,
and IV spaces. & check on the work of the product~table
up to thls point is provided by the cclumns at the right.
The sums and differences of the I, II, III, and IV quun-
tities complete the product-table and give the Fourler
coelficients a,, by corresponding to 8y.

In order to perform a svnthesis calculetion from a
set of Fourier coefficlients ap, by to the values of the
corresponding function at the even ®-pointz, the coef-
fielents a,, bp ars entercd In the 4 and D spaces,
respactively, i1 Lhe sun-table, znd the remalnder of the
sum~-table ard the product-table werked through uas before.
The final veluzs in the a,, b, spaces of the product-
table are then entered in the d and D apaces at the
beginning ot tho sum-table and the sums and diff'erences
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obtained as indicated by the synthesis column at the
lert. (Note that d, and djp are to bs multiplied
by 2.) The resulting ¥y, quantities are the desired
values of the function.

The numerical values in tables X{a) and (b) 1llus=-
trate the process of obtalning 06xy1(®) from o&y;(®) in
the first approximation by the direct CMF method for the
NACA 6512 airfoil.
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'APPENDIX B’

THF: MAFPING OF MORE GENSRAL RREGICNS
Simply Connected Reglons

If the CMF method 1s applied to the mappling of a
simply connected boundary with a vertical discontinuity,
such as a rectangle or an inflnite line with a vertical
step, the ambigulty of the ordinate Ay at the discon-
tinuity will prevent an automatic and rapid convergence
of the method. Although the difficulty could be lessened
in particular cuses such as lor rectangles by taking the
diagonal as x-axls, thus removing the vertical discon=-
tinuity, or by uslng syrmmetry, as with squares, it 1s
evident that in gensral a reference shape particularly
sulted to the contour under lnveatipgation 1s needed.

The circle has been zhown in raference 2 to be a good
roference shape for the aquars, It could be expected
therefore that an ellipsc would be & good reference shape
for the rectangle. rurthermorc, Just as the mapping
function based on the circle was formed of an angular
displacement and a radial displacement, the mapping
function based on the ellipsc =zhould be formed of dis-
placements along and orthogonal to the e1llipse, that is,
should be speclified by elliptic coordinates. The speci-
fication of a figure by elliptic coordinates (¥, 8) 1in
the physical nlane 2z 1s equivalent, however, to the
transformation of the figure to a t'-plane by the two
transformations

z = p' + éh where p! e‘Mie

(39)
t' = log p' where t! ¥+ 10

and specifying the transformed figure by the Cartesian
coordinates of the tt-plane (¥, 8). The rectangle under
consideration will be a near-sircular shape in the p'-
plane and a near-stralght line shape in the t'-plane.

The mapping of the rectangle by means of an elliptic
mapping function in the physical plane iz therefore seen
to be accomplished by the Theodorsen-Garirick method 1n
the near-cirele p'-planc and by the CMF method in the
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near-gstralght line t'~plane. From this polnt of view,
therefore, tho Theodorsar-Carrick method conslsts of
specifying an airfoil in the physical plane by elliptic
coordinates, lI'ormlug the corresponding elliptic mapplng
function (¥ - ¥,) - 1€, whlch conformally relates the
airfoll to an elllnase or Joutowskl alrfoll as a basle
shape, and expressing the elliptic marping function s a
ragular function outslde the circle. On the other hand,
in the t! = log p'-plane the Thecdcrsen-~Garrick method
conslsts of the transfornatlon of the noar-straight

line WV(8) to the stralght line ¥, = Constant by means
of what 1s now the CMF (¥ = U,) - L€, Thus, the
Theodorsen~Garrick method may ge regarded as a form of
the CMF metnnd, In whichh 1log p' tales the place of 2
and log p, the plece of .

The mapping of silunly connected regions by dif-
farence mapping functions based on the curvillnear co-
ordlnates appropriate to the particular refervence shape
considered is thercfore equivalent to using the CMy dif-
ference functlon 2z = | in the plens of ths near-straight
line into which the relerence shape ls lnltlally trana-
foimed.

Mappling of the Entlire Fleld

The Fourler serles representation of mapplng func-
tions, equations (!} and (5), enablies the calculation of
sorrednondlng pointa in the twe reglons to be made, once
the correspondence of the boundaries has been calculated.
By the latter ealeculatlon the coelficlerts an, b, and
the radius R of the circle of correspondance have been
determined. If now & larger radius R' ®» R be substi-
tuted for R In equations (4) and (5), the resulting
aynthesis of ths Fourler sories will yleld the mapping
functlon for the circle of rudius R'; that is, wlll
determine nolnts in tie glven plane correaponulng to the
polnts in the ¢lrcle plune at tho distance k' from the
orlgin. It is nacessnry, of course, tn uso the nupping
funection In conjmnctlion with the shape in the physlcal
plane corresponding to the larger circle. In this way the
entire corresponding flelds can be manped out. It may
be noted that substitution of R' € R for R 1n equa~-
tions (L) and (5) enables the mapping of those corre-
sponding points inslde the original contours for which
the resulting Fourler serios converge.
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It appeara to be more difficult to find the point
in the circle plane corresponding to a point of the given
plane than vice wversu. This calculation may, howaver,
be accomplished by a rethod of successive approximations.
For examnle, 1i" the gliven plane is that of a near circle
the polar coordlnates of the given polnt in the near-
cirzle plare arc assumed to be a first approximation to
the coordinstes R! and ©® of the desired point in the
circle Flane. Substitution of these values into equa-
tions (}) and (5) ylelds a first approximate mapping
functlion which cun be used to correct the coordinates R!?
end o, elc. —

Riplanes

In the case of the biplane arrangement the CITF may
be set up directly in the physical plane in the sames way
as for the single alirfoll. In place of the simple trans-
formation from straight line to circle, however, the
transformation fror Lihe two extendsd chord lines of the
alrfolls to two concentric circles is used. This trans-
formatlion is derived in referance 9. The CMF method for
biplanes bears the same relation to the riethod of ref-
erence 9 that the CHUF method Tor monoplane airfcils bhears
to the Theodorsen-Garrick nethod (reference 2).

For biplanes (fig. 12) the CMPF =z - {, being regular
in the region outside the two straight lines, is regular
in the ammular reglion of the p-plans and consequently is
expressible as a Laurent series in p

P %ﬁ
where _ (40)

ey = 8, + ibp

If, for the inner circle, the relatlionship 1s written

z~0 =ax) + 14y

()
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and for the outer circle
- { =4ax; +14y,

(42)
p= Rzeim ' k2

there is obtained, upon substitution into equation (L0)
and reduction

o . b -
bxy(g) =85+ E 59;—;'—“ cos ng + E — - {l3a)
1
. 1 .1

Axa(@) = ao +

-]
b.
Ay1(¢) =bo ¢+ )
Z Ry
1
: b 1'b & a,
Ay2(®) =b, + E n cos nY - E BIo8 g4n 0o (434)
R
T .

These equations are the generalization to the biplane of
equations () and (5). The corresponding integral rela-
tions may be derived as in reference 9.

The solution of equations (43) in either the direct
or the inverse protlem riay be accomplished as before by
successive approxinations. For example, in the direct
method the two airfolls are given. If no inlitial approxi-
mation biplane wera avalleble, the two chord lines would
be taken as the inftial straight lines. by the trans-
formation of reference 9 this fixes the chiordwvise loca-
tions on the stralght lines corresponding to a set of
evonly spaced © points on the concentric circles. The
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ordinates Ay1(®) can therefore be measured, which
determines 4y,(®) by analysis snd synthesis of equa-
tions (L3c) and (h3d), respectively. (The radius ratio
RZ/Rl is fixed byr the initial transformation from the
straight llnes to the concentrlc circles.) These Ays(o)
values then deteimine a set of Ax,(?) values by the
glven shapes of the second airfoil and the known chordwise
locations of 1ty first aporoximation straight line.
Analysis of sz(w) and subsequent synthesis of Axl(v)

by equetions (l3b) and (L7a), respectively, determines a
correction to I; by a horizontel stretching process

(constant Ax, Ay -~ adjustuent of rl) to naintaln the

glven alrfoil chord. The procedure is rnow repeated with
Aya(w) as the initiul set of measured ordinates that

determines 4y,(%), Ax;(9), and sz(w) as before. The

radlus Ry, can now be similarly corrected. This step
completes the first approximation. For the second approxi-
mation a new corresvondence between tlre corrected straight
lines end the concentric circles 1s calculated and the
procedure repeated.

The inverse problem could ulso be solved by methods
eimilar to those plvan for the isolated airfoili. Sup-
posae, for examwle, a wilng section wore given and it were
desired to derfve a slat of glven chord and glven approxile
mate locaticn and having a preseribed veloeclty uistrl-
bution. The mothod of surface peotentisls, for example,
enables the calculation of 8 first approximate 4xy(®)
(subseript 1 refers to slut). The initlal correspondence
of points betwecen the stralght linzs end concentrie
circles, and therefore also Rz/Rl, being determined by
the initially azsumed straight lines, the functlon Axp(®)

is thereupon obtained by analysis and synthesis of equa-
tions (L3a) and (L3b), respectively. The horizontal dis-
placerent 4xp(%) thence determines &y (@) by the
known shape of the main wing sectlon. The determination
of A4y {(9) by snalysis and synthesiu of ocquations (434)
end (L3c) compietes the caiculation of the first approxi=-
mate slat section, for which the exact valocity dilstri-
bution can now ulso be calculated. II the main wine
section were also unknown then the wing section above is
regarded as an initlal apnroximution, the role of the two
airfoills is reveprsed, snd the nrocedure repeatoed to con-
plete the first approximation.
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The CMF method can be generaslized in the same manner
for multiply connected regions. The tranaformation from
the n reference shapes (such as straight lines) to n
circles being presumed knovm, the CMF can be set up as a
series convergent in the region between the n circles,
and the marping function for each boundary explicitly
expressed by allowing the coordinate vector to assume its
value on each boundary in turn. A method of successive
approximation for the solution of tue resulting equations
depending on the particular problem under consideration
would then be established.

Cascado of Airfoills

A simplified but practically important n-body problem
namely, the cascade of airfoils, may be mentioned finally.

The reference shape intoc which the cascade of air-
folls, figure 1%, is to bo transformed is chosen as the
cascade of stright lines coinciding with the extended
chord 1lines of the airfolls of the cescade. The trans-
formation from the cascade of stralght lines to a single
circle is well-known, relerence 10, The CMF chosen as
indicated in flgure 15 is thereiore exprescible as an
inverse power serie¢s in the circle plane and the resulting
procedure 1n elther the direct or the inverse problem is
seen to be esscntially the same a3 for isolated airfoils.
The detailed application of the CMI to cascades of air-
folls is given in reference 1l.
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APPEVDIX C

THE DETERMINATION OF MAPPING FUNCTIONS BY THE
CAUCHY INTFGRAL FORMULA

The foregoing methods of conforrmul transformation
heve been presented from the point of view of represen-
tatlion of the various mepning functions as infinite
series, In particular, the expression of the Cnrteslan
mapping function as an inverse power serles valid svery-
where outside and on a clicle led to the FPourler sorles
reprosentalion for the CMPF on bthe circle 1iself. The
integral formula representation was then obtalned from
the l'ourler serles by ths nethod of reference 3. It is
of interest to see how the integral relations (6) and (7)
can be derived diractly from the Cauchy integral formula
for a function regulur outside a circle. (These integral
relations heve aulso been derived by Betz, reference 7,
by a hydrodynamical argument.) Since the sppllecabllity
of the Cauchy intesral formula is not restricted to
circular boundaries, however, the results will be capable
of generalizatlion, in prineciple et least, to arbltrary
simply and multiply connected reglons.

The Cauchy integral formula glves the values of an
analytic function {{(p)} within a aluply connected do=-
main D in terms of its values f(t} on the boundary
of the domaln asg

£(p) =-1—f-f-‘i’— at (Lh)
t-p

where the path of integration is counterciockwise around

the boundary. Consider the domain D outside the simple
closed boundary C in the p-nlsne (fig.1}). This domain
can be made slmply connected by an outer boundary B and
the cuts between the two boundarles, as indlicated by the

dotted lines. The Cauchy integral formulu for the func-

tion f(p) at an interior polnt » of the domain D,

in terms of its values on the bounduary is

= L £(t) 1 L)
T = —tean e |
2l m Ct-pdt+2wift-pdt (45)
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vhere the equal and oprosite integrals slong the cuts

have been omitted. The paths of integration are indicated
by the arrows in figure lij. The fuaction f(p) is as-
sumed to be rezular everywhere outside the boundery C

and in particular to approach the limiting value [ as
p—>», I the boundary B 1is enlarged indefinitely

the integrond of the second integral of equation (hSS
approaches f,/t and thus

lin 2-1‘1" ti(—t-?- dt = fo (46)
t—= Mgt =P

The variable p will now be made to approach a point t!?
on the boundary €, «and equation (/;5) will consequently
reduce to an integral equation for the boundary values

of a functlon regular everywhere outside and on the boun-
dary. In order to evaluate properly the contribution of
the remaining (first) integral of eguation (L5) in the
neighborhood of tt!, ths boundary C 1is modified as
indicated in figure 1L,. The point p i3 nade the center
of a semicircle whose ends are faired into the original
boundary. As p-—at', the modified boundery approaches
coincidence with the orijginal boundary. The integral
over the modifled boundary i3 now evaluated as the sun

of the integral over the semizircle, which iIn the limit,

is half the residué ol' the integrrand or %f(t‘), and the

integral over the rast of the path, which in the limit

is analogous to the Cauchy principal velue of a real
definite integral of which the integrand becomes Infinlte
et some point in the interval of integration. Equa-

tion (L5) therefpre becomes, in the limit,

g oo SO e 03 188
2 —21r1j;t-t' Goiate (h7)

In addition, there is the auxiliary condition that

1 r(t) a
'EFIJ; i i e 29 (L8)

vwhich follows from the fact that f£(p) 4is regular every-
whare outside the boundary C. Equation (L7) is well
known in the thecry of functions ¢f a complex variable.
(Sce reference 1ll.)
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If, now, the function Tr(p) 318 taken as the Cartesian
napping function 2z - or, on the boundary,

£{t) = Ax + 1 Ay (49)

and if, further, the boundary C 18 taken aa a circle
with origin et the center,

v, +i0
=g ©

: (50)
g1 = GYoti®

substitution of eguations (49) and (50) into equation (47)
and using equatior. (48) (with f_ = 0) leads to the inte-
gral relations (6) and (7). If the poler mapping func-

a 1
tion 1log EL-¢.1¢c= (¥ - ¥,) - 1(9 ~ 8) (reforence 2)
is substituted for f£(t), the Theodsraen-Garrick integral
relatlons are obtained.

The Cauchy integral formula has already been applied
{refarence 12) Lo problems of conformal mapping in the
manner just indicated. Berpman has Included in refer-
ence 12 (chapter XI) contributions of two Russlan suthors,
Gershgorin and Krrlov. In reference 12 the mapping func-
tion from a clrcle to & near clrcle was taken In the i‘orm
log p. The resulting integral equction docs not appear
to be as convenient as those of the C'F methods. The nge

|4
of forms such as log %; or z - { are not only accurate

numerically eince they express changes in the coordinates
of the boundaries, but also they lead to pairs of integral
equations which contaln thse seolutions of both the direct
and the 1laverse potentirl problems.

From the analysis given it appears possible to trans-
form confornelly from one boundary to another without
requiring the transformation from elther boundary to a
oircle, sine> the boundury ¢ 1in equation (47) can be
rather arbitrary and 1r(t) can be taken as a mapplng
function from this boundary to another arbiltrary one.

The resulting integral equation for the mapplng functlon
is, however, not as easy to solve numerically as when the
boundary C 1s a circle.
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Once the conformal correspondence between two boun~
daries 1s known, corresponding points outside the boun-
daries can be determlncd by the Cauchy integral formula
(L4). It is potea that thn Cauchy integral gives the
correspondence of individual palrs of points rather than
the corresnondence of entire boundaries at once, which
1s given by the Fourler serles representation. Further-
more, tre possibility exists of determining pairs of
corresponding poilnts inside the given boundariea by the
Cauchy integrel, that 13, of anaiytically contlnuing the
conformal transformatlon boyond the original domains.
For 1f the translormation from a boundary € 1in a
p~-plane to a bomdary C! 1in a p'-plane were known, the
outside reglons corroesponding, then the correspondence
between a bLoundary & intarnel to ¢ and a bouncary A!'
internel to C', 1if it existed, could be determined by
an application of the Ceuchy integral formula to the
region bounded by A and C.

For example, if the boundaries A and C are taken
a8 concentric circles &nd the mapping function as

£(p) = log %'-

=y -te=(y-% - 1(0 - 8) (51)

in the notation of figure 15, the Cauchy integral formula
applied to the annular reglon in the p-plane (assumed
fres of singularlties of the mapping function) ylelds,

in the 1imit as the variable point p approaches the
inner circle A,

ne
*1(@1.) "2]7',:]0 " €1(¢1) oot e

L1 [7 €o(0,) sin (9, -0 1) ¥ (@) sink (X - %)
2n jo aosh (xo -Xl) - cos (‘Po -01')

4%

% -0

e

: 2n
SOUEER 7 AR ACARE a0,

. 'lfzn ¥o{®,) sin (cpo- @lv) + ¢ (9) sinh (X - Xl)“
AR By ey I
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Tn addition, the condltion of regularity of the function
f(p) in the snnular region ylelds the auxiliary condi-
tions

1 n 1 an
2 949 = 55 €49,
S an

0 ' 0 .

wodwo

In the problem under consideration, the mgpping function
vo(S,) - 1e (@)

for the outer boundaries is Ynown. The radii 3<°, gtl
of the concentric circlzs ars gilven., The second integrals
of equations {52) are thus known functions of @', FEgqua-
tions {52a) und (52b) therefore constitute a palr of
integral equations, similar to those of Theodorsen-Garrick,
for ths mapning function Wl(wi) - 1€1(m1), pertaining

to the lmner boundsries,

It 18 noted that i1f th2 variable peint p of the
Cauchy integral formula for the annular regilon is mude
to anproach the outer boundary ¢, then tweo additional
integral equations similar to egquations (52a) and (52b)
are obtalned. These equations, together with equa-
tions (53), are a generalization to the case of ring
regions of the corresponding Theodorssn-Garrick
equations for simply connected regions and can be used
for the conformal mapping of near circular ring regions,




NACOA ARR No. ILX22a

REFERENCES

Mutterperl, Willirm: A Solutlon of the Direct and
Inverse Potentlial Problems for Arbitrary Cascades
of Alrfolls. NACA ARR No. LhK22n, 19LL.

Theodorsen, T., and Gerrieck, I. E.: General Poten-
tial Theory of Arbitrary Wing Sections. HNACA
Rep. No. L52, 1933,

Millikan, Clark B.: An Extended Theory of Thin Alr-
foils and Its Apnlicstion to the Biplane Problem.
NACA Rep. No. 362, 1930.

Allen, H. Jullan: General Theory of Alrfoll Sections
Having Arbitrary Shnpe or Preassure Distribution.
NACA ACR No. 3G29, 19l3.

Garricls, I. E.: Determination of the Theoretical
Pressure Distribution for Tw:nty airfolla. HNACA
Rep. No. L65, 1933,

Gebelein, H.: Theory of Two-Dimensional Potential
Flow about Arbitrary Y%ing Sections. NACA T
No. 886, 193%9y.

Betz, A.: Modification of Ving-Section Shape to
Assure a Predetermined Chanze in Pressure Dis-
tribution. NACA TM No. 767, 1935.

Hussmann, Albrecht: Rechnerische Verfahren zur
harmonischen Analyse und Synthese. Julius
Springer (3erlin),1933.

Garrick, I. E.: Potential I"low about Arbitrary
Biplane V/ing Sections. KACA Rep. No. 542, 1936.

von Kermen, Th., and Burgsrs, J. K.: General Aero-
dynamic Theory - Perfect Fluids. Application of
the Theory of Conformal Traasformation to the
Investigation of the Flow around Alrfoll Profiles.
Vol. IT of Aerodynemic Theory, div. E, ch. II,
pt. B. W. I". Duraud, ed., Julius Springer (Berlin),
1935, p. 91.




NAGA ARR No. 1)iK22a Lo

11, Hurwitz, Adolf, and Courant, R.: Allgemeine
tunktionenthoorie und 21liptieche Funktlonen,
and GCeometrische Munktionenthoorile, B84, IITI of
¥athematischen Wisserschaften, Julius Springer
(Berlin), 1929, p. 3%35.

12, nRergman, Stefan: Partial Diffsrential Equations,
Advanced Topies. Advanced Instruction and
Resesrch in Mechanica, Brown Univ., Summer 1941,




b

NACA ARR No. LL4¥22a 50
TACLE I
CARTESIAN MAPPING TUNSTION FOR SYMMETRICAL
20~PiRCENT THICKNES3 JOUKNDWSKI PROFILT
(radg;ns) ax, Ay, adx,/do |day./de
0 x f% -0.315 | o 0 0.375
1 -.304 .096l .119 «355
2 -.258 182 226 .296
3 -.150 «250 <309 .206
i -,101 .287 +352 .0894
5 -.00724} .295 «352 -.0351
6 .0798 279 <304 -.149
% .148 .218 212 -.233
8 .189 «150 0916 | -.272
9 .197 .0310 -,0261 | -.240
10 179 .0291 -.0958 | -.149
11 154 00412 -.082l | ~-.0346
12 L2 0 0 0
TABLE II
CONSTANTS USED WITH CMF OF TABLE I
Profile | T |Au, | * r (;g) | e
Joukowsk1!0.30 {1.0300]0.0887|1.230 |0 | 180]1.000
Derived | .24 | .805| .0716{1.185 |0 | 180| .835
Derived .12 | Jho2| .03571.,0928{ 0 | 180| 453

NATIONAL ADVISCRY COLMITTEZ FOR AERONAUTICS
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TABLE III

CMF FOR 6-PERCENT-CAMBER CIRCULAR-ARC PROFILE

6

7
8

9
10
11
12
13
a1
15
16
17
18

Jnuﬁéns)

Ax°

Ayo

dAxo/aw

ddy,/ap

LS

Xt

12

0.108

«0960
.0638
L0171
-.03%63
-, 084
-.115
-.117
-,0852
-.0239
.0506
2113
136

0
-.0L8L
-.0371
-.109
-.106
-.0781
-.0279
.0346
. 0926
.128
.123
.0756
0

CONSTANTS USED WITH

TABLE IV

CMF OF TABLE IIIX

Profile

c
(per-
cent)

Ue

Aug |7

oN

2 (deg)

p ar
(deg) |(deg)

Clideal

Derived

Clrcular
arc

Derived

3

6
9

0.502

1.000

1.502

0.501| o

1.000{ 0
1.499f o

1.0052]-3.37

1.0072|-6.84
1.0050{-10.26

183.37] o

186.64] o©
190.26|1 ©

NATIONAL ADVISORY COMMITTEE FCR AERONAUTICS
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TABLE IX
HEDULE IN THE ANALYSIS

UGATE FOURIER SERIES

THE USE OF THE RUNGE SC
AND SYNTHESIS oF CONJ
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dn spaces
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