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THE AXIALLY SYMMETRIC POTENTIAL FLOW ABOUT

ELONGATED. BODIES OF REVOLUTION

by

L. Landweber

ABSTRACT I

An iteration formula for Fredholm integral equations of the first kind is ap-

plied In two new methods for obtaining the steady, irrotational, axisymmetric flow of

an inviscid, incompressible fluid about a body of revolution. In the first method a

continuous, axial distribution of doublets is sought as a solution of an integral equa-

tion of the A kind. A method of determining the end points and the initial trends

of the dbstri1I n, and a first approximation to a solution of the integral equation are
given. This approximation is then used to obtain a sequence of successive approxima-

tions whose successive differences furnish a geometric measure of the accuracy of an

approximation. When a doublet distribution has been assumed, the velocity and pres-

sure can be computed by means of formulas which are also given.

In the second method the velocity is given directly as the solution of an inte-

gral equation of the first kind. Here also a first approximation is derived and applied

to obtain a sequence of successive approximations. In contrast with the first method,

which, in general, can give only an approximate solution, the integral equation of the

second method has an exact solution.

Both methods are illustrated In detail by an example. The results are com-

pared with those obtained by other well-known methods.
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2

INTRODUCTION

HISTORY

The determination of the flow about elongated bodies of~revolution

is of great practical and theoretical importance in aero- and hydrodynamics.

Such knowledge is required in connection with bodies such as airships, tor-

pedoes, projectiles, airplane fuselages, pitot tubes, etc. Since it is well

known that for a streamlined body, moving in the direction of the axis of sym-

metry, the actual flow is very closely approximated by the potential (inviscid)

flow about the body,' numerous attempts have been made to find a convenient

theoretical method for obtaining numerical solutions of the potential flow

problem.

At first the problem was attacked by indirect means. In 1871

Rankine2 showed how one could obtain families of bodies of revolution of known

potential flow, generated by placing several point sources and sinks of vari-

ous strengths on the axis. This method was extended and used by D.W. Taylor
3

in 1894 and by 0. Fuhrmann4 in 1911. The latter also constructed models of

the computed forms and showed that the measured distributions of the pressures

over them agreed very well with the computed values except for a small region

at the downstream ends. More recently, in 1944, the Rankine method was em-

ployed by Munzer and Reichardt5 to obtain bodies with flat pressure distribu-

tion curves, and a further refinement of the technique was published by

Riegels and Brandt.6 Most recently the indirect method has been employed to

obtain bodies generated by axisymmetric source-sink distributions on circum-

ferences, rings, disks, and cylinders. This development, which enabled bodies

with much blunter noses to be generated, was initiated by Weinstein7 in 1948

and continued by van Tuyl8 and by Sadowsky and Sternberg 9 in 1950.

A method of solving the direct problem, i.e., to determine the flow

over a given body of revolution, appears to have been first published by

von Kirminl ° in 1927. von KErmin reduced the problem to that of solving a

Fredholm integral equation of the first kind for the axial source-sink distri-

bution which would generate the given body, and solved the integral equation

approximately by replacing it with a set of simultaneous linear equations.

Although this method has limited accuracy and becomes very laborious when, for

greater refinement, a large number of linear equations are employed, neverthe-

less it is the best known and most frequently used of the direct methods. A

modification of the von Karman method was published by Wijngaarden" in 1948.

1
References are listed on page 59.

* !$ -°
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An interesting attempt to solve the direct problem was made by

Weinig12 in 1928. He also formulated the problem in terms of an Integral equa-

tion for en axial doublet distribution which would generate the given body,

and employed an iteration formula to obtain successive approximations. Since

the successive approximations diverged, the recommended proceduxve was to extra-

polate one step backwards to obtain a solution.

In 1935 an entirely different approach, in which a solution for the

velocity potential was assumed in the form of an infinite linear sum of orthog-

onal functions, was made by Kaplan1 3 and independently by Smith.1 4 The coeffi-

cients of this series are given as the solution of a set of linear equations,

infinite in number. In practice a finite number of these equations is solved

for a finite number of coefficients, and Kaplan has shown that the approximate

solution thus obtained is that due to an axial source-sink distribution which

is also determined. A simplification of Kaplan's method by means of addition-

al approximations was proposed by Young and Owen15 in 1943.

It appears to be generally agreed, by those who have tried them,

that the aforementioned methods are both laborious and approximate. Thus, ac-

cording to Young and Owen:
1 5

'In every case, however, the methods proposed are laborious
to apply, and the labour and heaviness of the computations
increase rapidly with the rigour and accuracy of the proc-
ess. Inevitably, a compromise is necessary between the
accuracy aimed at and the difficulties of computation. All
the methods reduce, ultimately, to finding in one way or
another the equivalent sink-source distribution, and it is
this part of the process which in general involves the
heaviest computing."

Furthermore, a fundamental objection is that only a special class of bodies of

revolution can be represented by a distribution of sources and sinks on the

axis of symmetry. According to von Kirmn: 1 0

"This (representability by an axial source-sink distribu-
tion) is possible only in the exceptional case when the
analytical continuation of the potential function, free
from singularities in the space outside the body, can be
extended to the axis of symmetry without encountering

e singular spots."

The dissatisfaction with these methods is reflected by the continuing attempts

to devise other procedures.

A new method published by Kaplan 1' in 1943 is free of the assumption3

of axial singularities and appears to be exact in the sense that the solution

can be made as accurate as desired, but the labor required for the same ac- I
curacy appears to be much greater than by other methods. The application of

the method requires that first the conform3l transformation which transforms

I+
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the given meridian profile into a circle be determined. The velocity poten- 4

tial is then expressed as an infinite series whose terms are universal func-

tions involving the coefficients of the conformal transformation. 9Kaplan'

has derived only the first three of these universal functions.

Cummins of the David Taylor Model Basin is developing a iethod based

on a distribution of sources and sinks on the surface of the given body. This

method is also exact, but the labor involved in its application has not yet

been evaluated.

Another exact method, based on a distribution of vorticity over the

surface of the body, is being developed by )r. Vandry of the Admiralty Re-

search Laboratory, Teddington, England. The methods of both Cummins and

Vandry lead to Fredhoim integral equations of the second kind, which can be

solved by iteration.

The present writer has developed two new methods, an approximate one

in which an axial doublet distribution is assumed, and an exact one based on

a general application of Green's theorem of potential theory. Both methods

lead to Fredholm integral equations of the first kind for which a solution by

iteration has been discussed by the author.'7 Indeed, the consideration of

this iteration formula was initiated in an attempt to find more satisfactory

solutions of the integral equations of vorn Karmanl ° and Weinig.' 2 These new

methods will be presented, and, by application to a particular body, compared

with other methods from the point of view of accuracy and convenience of

application.

FORMULATION OF THE PROBLEM

We will consider the steady, irrotational, axially symmetric flow

of a perfect incompressible fluid about a body of revolution. Take the x-axis

as the axis of symetry and let x, y be the coordinates in a meridian plane.

Denote the equation of the body profile by

y2 - f(x) [1

Since the flow is irrotational there exists a velocity potential *
which, for axisymetric flows, depends only on the cylindrical coordinates

x, y and satisfies Laplace's equation in cylindrical coordinates

A+1(2]
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Also, since the flow is axisymmetric, there exists a Stokes stream function

O(x, y) which is related to the velocity potential by the equations

alp at, U4 . x (3]

It is seen that Equation (2 ] may be interpreted as the necessary and suffi-

cient condition insuring the existence of the function 0. As is well known,

t is constant along a streamline and, considering the surface of revolution

generated by rotation of a streamline about the axis of symmetry, 2iro may be

considered as the flux bounded by this surface. On the surface of the given.

body and along the axis of symmetry outside the body we have 0. satis-

fies the equation

which is obtained by eliminating s between Equations [3]

The velocity will be taken as the negative gradient of the velocity

potential. Let u, v be the velocity components in the x, y directions, Then

by (3], we have

v y xj (6]

For a uniform flow of velocity U parallel to the x-axis we have

.m-Ux, (-- u9 (7]

The boundary condition for the body to be a stream surface may be

written in various ways. If the body is stationary the boundary condition is

*(x, V7FT -0 [8aJ

or, equivalently,

d S(8b

n ) .-
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where the derivative in [8b] is evaluated on the surface of the body in the

direction of the outward normal to the body. If the body is moving with veloc-

ity V parallel to the x-axis the boundary condition becomes

--v OB,(9

where p is the angle between the outward normal to the body and the x-axis.

It is desired to obtain a solution of [2] or [4] which satisfies the

boundary conditions (7] at infinity and (8] or [9] on the body.

METHOD OF AXIAL DISTRIBUTIONS

SOURCES AND SINKS

The potential and stream functions for a point source of strength M

situated on the x-axis at x = t are

r' ' = w(-i + r [10

where

r (X- t) 2 + y2  ]

If the sources are distributed piecewise-continuously along the x-

axis between the points a and b (see Figure 1) with a strength u(x) per unit

length, the potential and stream functions are

d dt (12]

X-t~
S+(t)(-l +r dt [13]

Figure I - The Meridian Plane
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As is well known, Rankine bodies are obtained by superposition 
of

these flows with a uniform stream so as to obtain a 
dividing streamline begin-

ning at a stagnation point. Without loss of generality we may suppose this

uniform stream to be of unit magnitude. This dividing streamline is the pro-

file of the Rankine body for which, by [7], the stream function is

~ y2 +f (- + ~dt (14]
2 r.

The boundary condition, Equation [8a], then gives as the impli6it equation for

the body

f' ( 1 + dt = -y2 [15]

where now Y2 - f(x) and r2 * (x-t)g + f(x). In order to obtain a closed body

the total strength of sources and sinks must be zero, i.e.,

In this case (15] becomes

,(;.t) x a t - [15a]

In general [15a] cannot be solved explicitly for f(x) 
when ,[t) is

given. A practical procedure for obtaining f(x) for a given x is to evaluate

the integral numerically for various assumed values of f(x) and to determine

the value which satisfies [15a] by graphical means.

-When f(x) is prescribed (15a] may be considered as a Predhols inte-

*gral equation of the first kind for determining the unknown function g(t).

This equation will not be treated. Indeed it will be shown that, when con-

tinuous distributions are considered, it is a special case of the more general

equation for doublet distributions which will now be derived.

DOUBLET DISTRIBUTIONS

kLet m(x) be the strength per unit length of a continuous 
distribu-

tion of doublets along the x-axis between the points a and b (see Figure 1).

The potential and stream functions may be taken as

t-X
* m = (t) dt [161• i

l 
~ -m - In
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and

y2 m(t) dt [17]

The stream function for a Rankine flow now becomes

y2 + y2 f' + ) dt [18]
2a rs3

Hence the boundary condition, Equation [8a), gives

M.( ) dt = 19

Here again Equation [19] may be considered as an implicit equation for the

Rankine body when m(t) is given, or as a Fredholm integral equation of the

first kind when the body profile y - f(x) is prescribed.

In ordet to show the relation between the source and doublet distri-

butions in Equations [15a] and [19], integrate by parts in [19]. We have

f dt - + , -+- dt

Hence [19] may be written as

m(t) - +JTt -rdtu+2 [20]

The interpretation of Equation [20] is that a doublet distribution of strength

m is equivalent to a source-sink distribution of strength dm/dt together with

point sources of strength m(a) and -m(b) at the end points. Hence source-sink

distributions are completely equivalent only to those doublet distributions

which vanish at the end points. This Justifies the remark in the previous

section that the integral equation for the doublet distributions is more gen-

eral than that for the source-sink distributions.

MUNK'S APPROXIMATE DISTRIBUTION

Munk"e has given an approximate solution of Equation [19] for elon-

gated bodies. His formula may be derived as follows. At a great distance

from the ends of a very elongated body, the integrand of [19], m(t)/r3, will

A00

SA r. *



peak sharply in' the neighborhood of t = x. In the range of the peak, in which

the value of the integral is principally determined, m(t) will vary little

from m(x). Also, only a small error will be introduced by replacing the lim-

its of integration by - and +cc. Hence, as a first approximation to a solu-

tion of [19], try

~dt 1m1(x)f. y~ [21]

We obtain

Ml(x) - 9[22]

a distribution proportional to the section-area curve of the body. This ap-

proximation was independently derived by Weinig12 who employed it as the first

step in a divergent iteration procedure. It has also been rediscovered by

Young and Owen'5 and Laitone'9 who have shown the accuracy of the approxima-

tion for elongated bodies by several examples.

It is apparent from its derivation that [22] also gives the asymptot-

ic radius of the half-body generated by a constant axial dipole distribution

extending from a point on the axis to infinity. It is readily seen that this

distribution is equivalent to a point source at the initial point.

As a refinement to Munk's formula, Weinblumie has used the approxi-

mation

mI(x) -.C9 [23]

where C is a factor obtained by comparison of the distributions and section-

area curves of several bodies. Weinblum's factor bears an interesting rela-

tion to the virtual mass of the body. This is seen by considering the expres-

sion for the virtual mass kIA in terms of the mass of the displaced fluid A

and the totality of the doublets,

.kA a 4*p mdx - 24

where k. Is designated the longitudinal virtual mass coefficient, and p is the

density of the fluid. But, from [23],

4orfmadx - iICf rydx a 4CA

Li - -1.. ~
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since, for elongated bodies, a and b very nearly coincide with the body ends.

Hence

C =(1 + k) [25]

In practice an approximate value of k1 may be taken as that of the

prolate spheroid having the same length-diameter ratio as the given body. The

values of k1 for a prolate spheroid may be computed from the formula
2 4

ki M [261Xl( i:~2  
- Xln (X + 7X [26]

where A is the length-diameter ratio. Hence

1 a1 s/2

C- '(k ) [27]

The values of k1 versus A have also been tabulated by Lamb' and graphed by
Munk. 2 1

END POINTS OF A DISTRIBUTION

A difficulty in determining the doublet distribution from Equation
(19] is that the limits of integration, a and b, are also unknown. In the
method of von Kirmfin" the end points are arbitrarily chosen; Kaplan 1 takes
the end point of the distribution midway between the end of the body and the
center of curvature at that end.

Kaplan based his choice on a consideration of the prolate spheroid.
Thus the equation of the spheroid of unit length and length-diameter ratio A,
extending from x - 0 to x - 1, is

9 2.~( [x)28]

The radius of curvature at x a 0 is then-a-. The exact doublet distribution,
20 *

however, extends between the foci of the spheroid which are situated at dis-
tances

2A

from the end points. Hence the error in Kaplan's assumption,



4 )<V'" - - 1.m-2-( +- + ...

2X 4X2 16x 2X2

diminishes rapidly with increasing X.

For the half-body generated by a constant doublet distribution (a

point source), Kaplan's assumption gives a poor approximation. Let a2 be the
strength of the distribution. Then it can easily be shown from [19] that the

source is at a distance a from the end of the body (stagnation point), and

that, if the origin is chosen at the latter point, the equation Of the half-

body is

8x 20 2 16 [

Hence the radius of curvature at the end Is 4a so that Kaplan's assumption

for the start of the distribution gives-. This is in error by 3 a.
An approximate method for determining the end points of a distribu-

tion and its trends at the ends is given in Appendix 1. The given profile is

assumed to extend from x - 0 to x - 1 and to have the equation

y2 - a x + a2x2 + a3x* + ... [30]

The doublet distribution is assumed to extend from x - a to x - b, so that

0 < a << b < 1, with a near 0 and b near 1, and to have the equation

M(x) - C + C1 x + c,x' + ... [31]

Only the trends of the distribution near the origin are discussed in Appendix

1. It is clear, however, that by means of a linear transformation the equa- I
tion of the given profile can be expressed so that the end points of the body
exchange their roles. Hence the results in Appendix 1 can be applied to either6I
end of the body.

The method of Appendix 1 consists essentially of expanding the inte-

gral in (19] about the origin and equating powers of t on the two sides of the

equation to obtain a series of equations in the unknowna a, c, c , c . .
By applying the first four of these equations an approximate solution is ob-

tained in the form

a = . (32]

Ii
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coD= -- 4a 2[3c1 - 37d2 + 120a - 96 + 24a2 + 24a(3ad2 - 15a + 16 - 4a2)1 [33]

C1D = a[15c? - 168 a2 + 512.- 384 + 96a2 + 48a(5cm - 24c+ 24 - 6a 2 )] (34]

4D a - - 4- - 1) + a [35]

where

D m 2 (9 ,S - 94d2 + 272* - 192) + 8[(a - 4)2(a - 1) + 4a ln-a

+ 96a - 2a(15a8 - 264a? + 944* - 768) - 384aa2  [361
22

-96a
2(50? - 24a + 24) + 576a2 aa

and a is a root of the seventh-degree polynomial

2 a
A + a B + a C + a a D + a2 E + a a2F + a a 0 + a2 a H 0 [37]1 2 1 2 2 1 13 1 3

where

A(a) - - }4)2(5' - 83a3 + 288a' - 368a + 128)

B(a) - 72(a - 4)2(5d3 - 25a2 + 40. - 16)

C(a) = 4a(a - 4)(53? . 148a + 128)

D(a) -288(a - 4)(5a. - 16a + 16)

E(a) - -96a(3a - 8]

F(O) - 1152(2a - 3)

0(a) - 480(3a - 8)

H(a) a -1152(a - 3)

The solution gives, for the initial doublet strength at x - a,

"[2 16, a
m(a) - 42- [(a - 4)(*2 - 12at + 16) + 48a(a - 4)(a - 2) + 16at- 9 la ) (391

When &V a2, a , are all small in comparison with unity, an ap-

proximate solution for a is
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4 + a2 - a a, if a Z 0 [40]

=4 + a, if a < 0 [41]

2 3

and, to the same order of approximation,
al(x) =2 1  1)(a + y2)

m(T40 . +# 2- [42]

and

inca) = 2 + + a ln a -a-y, if a 3 a 0 [431

m(a) = 0, if a3 < 0 [44]

It is seen that Kaplan's assumption that a = 4 gives the principal

term of the solution in [40] or [41]. The form [42] immediately suggests a

modification and refinement of the Munk-Weinblum approximation, Equation [23],

which will be considered in the next section.

A graphical procedure for finding the roots a of Equation [35] is
also given in the Appendix. For this purpose the functions A(a), B(a),... H(a)
are tabulated in Table 10.

AN IMPROVED FIRST APPROXIMATION

According to its derivation the Munk approximation could be expected

to be useful only at a distance from the end points of a distribution. It was

seen, howover, Equaticn [42], that under certain circumstances a distribution

which was a suitable approximation for the nose and tail of a body also ap-

peared as a generalization of the Nunk-Weinblum approximation, [23]. This I
suggests a procedure for obtaining an improved approximate distribution.

It is desired to obtain a distribution m(x) which satisfies the fol-
lowing conditions:

r (a) n(x) assumes known values ma and mb at the distribution limits a and

b, i.e.,

mia) - m, m(b) - [451

(b) m(x) is nearly equivalent to the Munk-Weinblum approximation (23] at

a distance from the distribution limits, i.e.,

m(a)=aC? for a 4x< b



14

(c) m(x) satisfies the virtual mass relation [24] which may be written

in the convenient form

m(x)dx =(1 + k) Jy2dx (46]

It is readily verified that Condition (a) is satisfied by the

distribution

(x) C 2 + eo + e x [47]

where

e. F a[b %- + C(afb bf a)] [48]

and

e 1 b" - ma + C (f - fb)] [49]

If the linear term e o + eIx in (47] is small in comparison with m(x) at a dis-

tance from the ends, then Condition (b) Is also satisfied. Finally, Condition

(c) can be satisfied by a proper choice of C in [47]. This is accomplished by

writing m(x) in the form

mill - c( b-x f -a f b-x + -,
oY- T-aa-- f~b) +F- a a B-aa b

substituting it into Equation [46], and solving for C. We obtain

jl+k adx -j-(b-a) (ma+~

y x- 7(b -a) (fa+fb)L~

SOLUTION OF INTEGRAL EQUATION BY ITERATION

Now that we have derived a good first approximation to the doublet
distribution function in the integral equation [193, it would be very desir-
able to apply it to obtain a second, closer approximation. This can be accom-
plished by means of the iteration formula which we will now derive.

Let ne,(x) be a known first approximation and *1 (x) the corresponding

values of the stream function *on the given profile yR = f(x). Then, from

Equation [18],
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- W f(x) + f(x) - t- dt51

Thus 0 (x) is a measure of the error when m (t) is tried as a solution of the
II

integral equation [19]. If m(t) is a solution of (19], Equation, [51] may be

written in the form

b m 1(t)-m(t)

W - f(x) 3 dt [52]

But, on the same assumptions as were used to derive Munk's approximate distri-
bution, Equation (22), we obtain as an approximate solution of the integral

equation [52]

m lx) - mlx) = 0,(x) (53]

or, denoting the new approximation to mix) by m (x),

m.(x) - mj(x) - (x) (54]

Hence, from [51]

m2 (x) - m(x) +7 f(x)[.- A-)dtJ [55]

Since the foregoing procedure can be repeated successively, we obtain the iter-

ation formula

m+ Wx) = mi x) +-1 f(x) j' r d (56]

and

(i+i(x) - mi x) - -1-(x) 157]

It is seen that 0, is the value of the stream function on the given

profile corresponding to the i t h approximation m I W and hence serves as a
measure of the error when mi(t) is tried as a solution of the integral equa-

tion [19]. 1
Although successfve approximations to mix) may be computed directly

from 156], an alternative form, which is both more convenient and more signif-

icant, will now be derived. From (56] we may write.
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M(X) m(x) +- fJ - dt [56a]

Hence, deducting [56a] from [56] and making use of [57], we get

bi

,i(x) _ .(x) - - f(x) dt [58]

Also, from [57] we obtain

mi(x) m m(x) W jx [59]
i-i

Thus, In order to obtain mi+l(x), we first assume an a x), then determine

tl(x) 'from [51]. V,(x), *i(x), ... can then be successively obtained from

[58], and finally m1+l(x) from [59].
It has been stated that the magnitude of i,(x) is a measure of the

proximity of m (x). This property of *1 (x) can be given a geometrical in-

terpretation. Corresponding to the distribution mi(x) there is an exact

stream surface on which the stream function 0(x, y) a 0. Let An, be the

distance from a point (x, y) on the given body to this exact stream surface,

measured along the normal to the given body, positive outwards. Let ua be

the tangential component of the flow along the body. Then we have

1 81 (xy) 1 Ah*(x,y)
a, = 'F n " y An I

But A*- -*r(x), since #i(x, y) - 0 on the exact stream surface. Hence

SC(x)
An I a- yus(60

Since, for an elongated body, us - 1, except in the neighborhood of the stag-

nation points, it is seen that *l(x) enables a rapid estimate to be made of

the variation from the desired profile of the exact stream surface correspond-

Ing to mt(x). This is an important property because It can be used to monitor

the successive approximations. Thus, the sequence *,(x) can be terminated

when An, becomes uniformly less than some specified tolerance; or, since there

is no assurance that the infinite sequence #1 (x) converges. the sequence can

conceivably give useful results even without convergence If it Is, continued as
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long as Ani decreases on the average, and is terminated when the error begins

to increase and grows to an unacceptable magnitude at some point along the
body. The strong similarity between these remarks and the discussion follow-

7 ing Theorem 2 of Reference 17 should be noted.

There is also a strong similarity between the iteration formula of
Reference 17 whose convergence was thoroughly discussed, and the present equa-

tion [561. An essential difference between the iteration formulas is that the
former employs the iterated kernel of the integral equation, the latter does
not, so that the convergence theorems of Reference 17 are not applicable. Nev-Ri ertheless, it is proposed to use the form in [56] (or the equivalent iteration

formula [58]), for the following reasons:

a. The labor of numerical calculations would be greatly increased by

iterating the kernel, and even then only convergence in the mean would be

guaranteed (Theorem 4 of Reference 17).

b. The physical derivation of Equation [56] indicates that at least the

first few approximations should be successively improving.

c. The successive approximations are monitored so that the sequence can

be stopped when the error is as small as desired or, In the case of initial

convergence and then divergence, when the errors begin to grow.

VELOCITY AND PRESSURE DISTRIBUTION ON THE SURFACE

When an approximate doublet distribution mi(x) has been obtained,

the velocity components u, v can be computed from the corresponding stream

function [18]

*i(xy) - Y L dt - [611
J.

from which, in accordance with Equations [5] and (6],

u= 1 + f( - m(t)dt [62]
.'r' ra

and~t-X

re " l(t)dt [63]V l-

*
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On the given surface we have, from [61],

2 yi(t) (x) [64

where now

r= (x-t)2 + f(x) [65]

Differentiating [64] with respect to x gives

'(x) 2*i(x)yI(x) [63 6*"t-x-y' m (t)d t - 0i(x .-~~ 'x [66]

f. r y2(x) y*(x)

Hence, from [62] and [64] we obtain

U.3y2  b mi(t) 2(x) [67
f(x)

and, from [63], [66], and [67],

O4(x)

v - uy'(x) + [68]
y(x)

where the primes denote differentiation with respect to x. Equations [67]

and [68] are the desired expressions for u and v. If the approximation mi(t)

is very good, the contributions of the error function *,(x) should be very

small. It is interesting to note that the form of Equation [68] shows the
deviation of the resultant velocity from the tangent to the given body.

Bernoulli's equation for steady, incompressible, irrotational flow

with zero pressure at infinity now gives the pressure distribution p,

1 -(u + va) [69]
q

where q is the stagnation pressure.
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NUMERICAL EVALUATION OF INTEGRALS

In order to perform the iterations in Equations [56] and [58] and to

compute the velocity distribution it will frequently be necessary to evaluate

integrals of the form

b m ( t ) dt and b m ( t ) dt

rr

where

r, (x-t)2 + f(x)

Because in this form these integrals peak sharply in the neighborhood of t x,

especially when the body is elongated, they are consequently unsuited for nu-

merical evaluation.

A more suitable form can be obtained by means of the following trans-

formation. Let (x, y) be the coordinates of a point on the body, t the ab-

scissa of a point on the axis, 9 the angle between a line joining these two

points and the x-axis; see Figure 1. Then

x - t - y(x) cot ( [701

We may now transform the integrals so that 9 becomes the variable of integra- I
tion. Then

3m(t)dt m :(t) sin 0df [71]

and

1here: t) Jm(t) sin dG [721

~where

a a arctan x ya# arctan (731

An alternate procedure, which eliminates the peak without a trnm-

formation of variables, is the following. We have -!

-m(t)t •f [m(t) +m(x)]dt+(X) dt,
Sr s  r r

.I !
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and

fIm(t)dt *fY[m(t)-m(x)]dt + mx) dt

Hence

m(t)dt r ff[m(t) -m(x)] dt + m(x) (cos a - cosp) 7a

y  m(t)dt f f-L[m(t)-m(x)]dt

+ m(x) [CoB a- coro -- (cosa - Coo )] [72a

Gauss' quadrature formula is a convenient and accurate method of

evaluating these integrals. The formula may be expressed in the form

jF()df - 4, RniF((n) (74]

where the t are the zeros of Legendre's polynomial of degree n and the Rni
are weighting factors. These have been tabulated for values of n from 1 to
16. These numbers have the properties

Rni - Rn,n-i+ 1 and f nn-+l (75]

The value of the integral given by Formula [74)] is the same as could be ob-
tained by fitting a polynomial of degree 2n-1 to F(x). The values of R andni
eni are tabulated in Table 1 for n - 7, 11, and 16.

When the limits of Integration are a and P, as in Equations (71 1
and (72), Gauss' formula becomes

/ (O]d* -Rig-r ' n , I  1761

where

I
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TABLE I

ABSCISSAE AND WEIGHTING FACTORS FOR. GAUSSI QUADRATURE FORMULA

n= 7 nul n. 16

1 -0.949108 0.129485 -0.978229 0.055669 -0.9894i01 0.027152

2 .741531 .279705 .887063 .125580 .944575 .0622541.

3 -0.405845 .381830 .730152 .186290 .865631 .095159
4 0 0.417959 .519096 .233194 .755404 .124629

5 1  -"n-l 1 a R n-+1 -0.269543 .262805 .617876 .149596

6 0 0.272925 .458017 .169157

7 ti - "n-+,l Ri - Rnli+1 .281604 .182603

8 -0.095013 0.189451 j
1 "n-i+! R1 

= Rn-i+l

ILLUSTRATIVE EXAMPLE

The foregoing considerations will now be applied to a body of rev-

olution whose meridian profile is given, for -1 ; x : 1, by

Y- f(x) - 0.04(1 - X') (781

The body is smmetric fore and aft, has a length-diameter ratio X - 5, and a

prismatic coefficient

f 1 0 - x')dx- 0.80 [791

By applying to [78] the transformation

x l 24 - 1, y - 2* [80]

We obtain the equation for the geometrically similar body of unit length, for

-- 0.084q - 3 ' + 4f - 2' 4 ) l 0.08t(1 - #)(2#2 - 24 + 1) (81]
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We will also need the slope of the profile which, from [78], is

Y1=f'(x) -0.4 X3

- 2y (1.x4 )1/2  [82]

The profile and f(x) are graphed in Figure 2.

Y

-IId

Figure 2 - Graphs of y(x) and y2(x) for y2 (x) - 0.04(1 - x')

First let us find the end points or the distribution. We have, from
[81], a1 a 0.08, a2 - -0.24, a3 - 0.32. The approximate formula (40] thena1
gives a - 3.68 or 3.84, whence a - - - 0.0217 or 0.0208. An examination of
the complete polynomial [37] with the aid of Table 10 shows that its zeros oc-
cur at a - 3.65, 3.85, 12.1. In the application of Table 10 to determine these
roots the regions of possible zeros should be determined by inspection, the
values of the polynomial in these regions calculated from Equation [37] and
Table 10, and then graphed to obtain the zeros. It is seen that in the pres-
ent case the approximate formula (40] would have been sufficiently accurate
for the determination of the roots near a - 4. The solution of the complete
polynomial equation will always yield an additional large root, corresponding
to the large root of Equation (131 ] of the Appendix; in general, however, this

root should be rejected since as wll be shown, the initial doublet distribu-
tion corresponding to it is less simple than for the roots near a - 4.

--------I
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The initial behavior of the distributions corresponding to each of

the three roots, as determined from Equations (33] through [36], and [39], is

Ishown in Table 2. It is seen from the table that the distribut on for a - 12.1

begins with practically a zero value for m(a), with a small negative slope and

with upward curvature. Since the distribution curve cannot continue very far

with upward curvature, there must be an inflection point nearby. In contrast,

the distribution corresponding to the other two roots begin with positive

slopes and downward curvatures and hence must be considered simpler. Further-

more, the distribution for the first root is considered simpler than for the

second since the distribution curves are practically identical except that,

for the second root, the curve is extended a distance Aa - 0.0011, in the

course of which m(a) changes from a positive to almost a numerically equal

negative value. If we take the point of view that the positive and negative

values of this extension counterbalance each other, the curve without the

extension, corresponding to the first root, must be considered the simplest.

TABLE 2

Characteristics of Initial Distribution

a a m(a) C1  Ca

3.65 o.0219 +0.0ooo216 +0.0375 -0.103
3.85 0.0208 -0.0000191 +0.0376 -o.1o9

12.1 0.0066 +0.0o0ooo8 -o.oo64 +0.35

Hence, for the purpose of obtaining a first approximation, we will

assume a -3.65 and, correspondingly, a - 0.022, m(a) - 0.000022. Often, as

in this case, the labor of obtaining a and ae(a) can be considerably reduced

by using the less exact equations (401 through (441 instead of [37) through

S(39]. Since, as will be seen, the iteration formulas rapidly improve upon the
first approximation, great effort should not be expended to determine an

initial value for r(a).

The values a - 0.022 and a(&) - 0.000022 have been derived for the

profile in the f, #-plane. The corresponding values in the x, y-plane are

a = -0.956 and ma 0.000088. By symetry we also have b = -a,%m

A first approximation can now be obtained from (47], (481, [49], and
(50). Since A a 5.0, we have k, - 0.059. Also, from [78]: fa a 0.00659,

fedlxfo 0.0640, Cy'dx - 0.0637. Hence from (501, C - 0.328. Then, from (481,• £, I
iI
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eo ma - Cfa - -0.00207; from (49], eU 0. Finally we obtain from (47]

mj(x) = 0.328y2 - 0.00207 (83]

We can now apply Equation (51] and the iteration formula [58] to ob-
tain the sequence of functions *,(x). Let us suppose that it is desired to
obtain a distribution mi(x) whose exact stream surface deviates from the given
surface by less than one percent of the maximum radius, i.e., A4 < 0.002.
Then, by [60], the sequence i(x) should be continued until b(Xi) < 0.002 Vf-x
for a S x S b, unless the error, as represented by t(x), begins to grow before
the desired degree of approximation is attained. In the latter case the best
approximation attainable would fall short of the specified accuracy.

The integrations in [501 and [51] may be carried out in the form
[71] in terms of 9 defined in [70]. For a fixed (x, y) on the given profile,
a and 9 are first computed from [73]. Then, to apply Gauss' quadrature formu-
la [76], the interval is subdivided at the points Gj given by [77] and the
Integrands evaluated at these points. The corresponding values of t at which
me(t) in [51] or 0.,(t) in [58] is to be read are, from [70],

t =x - y cot Gj [70a]

Since the values t and sin * are used repeatedly in the successive itera-
tions at a given (x, y), these should be stored in a form convenient for
application.

The calculations for obtaining the integration limits a and p for
several values of x are given in Table 3. The values of 9 from [77], and the
corr esponding values of Ra sin 0 for application of the Gauss 11 ordinate
formula, and the values of t from [70a] for each x are entered as the first
three columns in Tables 5a through 5h, in which are given the calculations for

Oj(x).
In order to compute #,(x), al(t) Is computed from [83], then

m R sin * is obtained. These are tabulated in Table 5. Gauss' formula then

gives fin sine dG. is then obtained from [51]; Its graph is given in
Figure 3. It is important to note that m 1(t) is obtained by calculation,
rather than graphically, in this operation. This procedure is recommended
since it gives greater accuracy in a critical step. In the subsequent opera-
tions on the *s considerably less percentage accuracy is required, since the
#'s are of the nature of first differences between the m's, so that graphical
operations are sufficiently accurate.

a.- -. . C- -
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As a check on the accuracy of the integration, 0 1(0) was also eval-

uated by two other means, with the following results:
From Gauss 7-ordinate formula tbl(0) = 0.001258

From Gauss 11-ordinate formula tb(O) = 0.001243

From exact integration 0 1(0) = 0.001243

It is seen that the 7-ordinate formula introduces an error in the fifth deci-
mal place.

The first step in the determination of OW(x) is to read the values

of 01 (t) from the graph, Figure 3. tb1R sin 9 and f01 sin d are then ob-

tained. '(x) Is then given by [58] and graphed in Figure 3. Repeated

I
-0014

*3 [0.0012

Ok From Von Korm~n Method */

-0.0006

-00006

Q0004 4

-------------- 002

Compriso of rror-0. 0

-0.6 -. 7 .0. -050-4 -0.

Figure 3P oprsno ro unctiona O(x) from
Itration Formula and von irmi Method
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..-- 7-
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application of this procedure gives 0 (x) and 4 (x) uvhich are also graphed in

Figure 3. The sequence is stopped at 0,(x) since *4 has increased appreciably

over 0t at x = -0.956.

Hence, from [59], we have the approximate distribution

m W) - m1 (x) - .R4V1(W + 0b2(x) + O( 841

to which (4(x) is the corresponding error function. The distance An between

the stream surface for m4 (x) and the given profile is seen to be very small;

the largest error, 04- -0.00007 at x - -0.956, gives a An of about one per-

cent of the maximum ordinate. A graph of m4 (x) is given in Figure 4. For the

sake of comparison the curves for m (x) and the original Munk approximation
11
f(x) are also shown.

- - - - - - - - .012

Of "1'/" ' - -M0

.00

I-"

yt- 0.041-0.01 1

I I
Figure 4 - Comparison of Doublet Distributions (x), a (x),

and Munk's Approximation e/4
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Table 4 shows the calculations for obtaining the velocity components

u, v from [67] and (68], in which the integrals have been evaluated in terms

of the polar angle 0, according to Equations [711, [72], and [73]., Here also

Gauss' 11-ordinate formula is used. The values of 0 and t are again taken

from Table 5; the values of m 4 (t) are given by [84], in which the O's are read

from Figure 3 and m (t) is given in Table 5.

The pressure distribution can now be obtained from [69]. Graphs of

p/q are shown in Figure 5.

1.00
o Direct Velocity Method
a Axial Doublet Distribution Method. Gauss II Ordinate QuIdrature

o Axial Doublet Distribution Method, Gauss 7 Ordinate Quodroture
Koplen Method

+ K6ren n Method

-- 0.60

----- ---- ---- ----- 0.50

2.70
1 1

- -- _ _ - - 0.30-------. 20
I~ii-------0.10

-~ __ -- 020

-0.10 -0.9 -0.6 -0.? =0.6 -0.5 -0.4 -0.3 -0.2 .1 000

Figure 5 - Comparison of Vklues of p/q
Obtained by Various Methods-! o: ,.*,
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ERROR IN DETERMINATION OF p/q

Let A(p/q), Au, Av, and Am denote errors in p/q, u, v, and m. Then,

from [691, we have

Ak -2(u Au + v AV)

from [68], i

Av = y' Au J
and from (67] and (72], except near the stagnation points, A

Au a2 3A f Wsin 5 Od Um

y 2 J0y

Hence

A.R. 8uAm ( +
q 2 +

If now we assume u a 1, y' a 0, y2 a 4m (Hunk'a approximation), we obtain

A - ar2Am
q m

Thus an error of one percent In the determination of m would Introduce an

error of 0.02 in p/q.

In the foregoing example the minium value of p/q was about -0.20.

Hence an error of one percent in m would have produced an error of ten percent

in the minimum value of p/q. It was found, in fact, that the results with

Gauss' 7-ordinate rule deviated from the values of p/q given by the 11-point

rule by less than 0.003 for the entire body. The 7-point rule would have

* sufficed If an accuracy of only 0.003 in p/q were required; see Figure 5.

If greater accuracy is desired the integrals can be evaluated in the

forms 171a) and (72a]. If the latter forms are used In conjunction with the

Gauss quadrature formula the values of x should be chosen identical with the
t's required by the Gauss formula. This enables the entire calculations, in-
cluding the iterations and the velocity determinations, to be made arithmeti-

cally, without resort to graphical operations, so that the method becomes suit-

able for processing on an automatic-sequence computing machine. In order to

obtain sufficient accuracy In the integrations and to obtain the velocities I
and pressures at a sufficient number of points along the body a Gauss formula.



of high order should be used, say n - 16. For this reason the procedure that

has been illustrated in detail may be less tedious for manual application.

COMPARISON WITH KARNAN AND KAPLAN METHODS

In order to compare the accuracy of the Kirmain method with the pres- 4

ent one, the error function @k(x) was computed for a distribution derived by

the Kirman method, employing 14 intervals extending from -0.98 ;S x :5 0.98.

k(x) is graphed in Figure 3. It is seen that the errors are much greater

than for- the present method, especially near the ends of the body., The oscil-

latory character of 0 k(x) is imposed by the condition that the stream function

should vanish at the center of each Interval. It is conceivable that the

amplitude of the oscillations in ok(x) may remain large even when the number

of intervals is greatly increased; i.e., the Kirmin method may give a poorer

approximation when the number of source-sink segments is greatly Increased.

The pressure distribution obtained by the Kdarmn method is graphed in Figure 5.

Kaplan's first method" was also applied to obtain the pressure dis-

tribution. Kaplan expresses the potential function 0 in the form

q€- LAnqn(A) Pn{)

where X and p are confocal elliptic coordinates,

Pn(p) and Qn(A) are the nth Legendre and associated Legendre
polynomials, and the

an'S are coefficients to be determined from a set of
linear equations which express the condition
that the given profile is a stream function.

In the present case it was assumed that 0 was expressed in terms of the first

9 Legendre functions and the AnIs determined from the conditions that the

stream function should vanish at 9 prescribed points (including the stagnation

points) on the body. The resulting pressure distribution Is also shown in

Figure 5.

SOLUTION BY APPLICATION OF GREEWS THWREN

OINAL APPLICATION TO PROBLE IN POTENTIAL THE¥RY

Let # and w be any two functions harmonic in the region exterior to

a given body and vanishing at infinity. Then, a consequence of Green-s second

identitya  is

ff OLwdSmff doS (851

dn f h# .. -n

_Ali
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where the double integrals are taken over the boundary of the body and dn
denotes an element of the outwardly-directed normal to the surface S. Also
derivable from Green's formulas is the well-known expression for a potential
function in terms of its values and the values of its normal derivatives on
the boundary

2

q ff[ 11 + dS [86]

where r Is the distance from the element dS on the body to a point Q exterior

to the body.
When a distribution of V or dO/dn over the surface of the body is

given then [85] may be considered as an integral equation of the first kind
for finding dO/dn or # respectively, on the surface. If the integral equation
can be solved, [86] would then give the value of 9 at any point Q of the
region exterior to the body.

AN INTEGRAL EQUATION FOR AXISYMMETRIC FLOW

Equation [85] will now be applied to obtain an integral equation for
axisymmetric flow about a body of revolution. Let y be the ordinate of a
meridian section of the body and ds an element of arc length along the boundary
in a meridian plane. Then we may put 4

dS - 2yry ds [87] I
It will be supposed that the body is moving with unit velocity in the negative
x-direction, which is taken to coincide with the axis of symmetry. The con-
dition that the body should be a solid boundary for the flow is that the com-
ponent of the fluid velocity at the body normal to body is the same as the
component of the velocity of the body normal to itself. This gives the bound-
ary condition

-siny [88]

where y is the angle of the tangent to the body with the x-axis. Substitution

of Equations [87] and [88] into (85] now gives

yo d -- y& sin p ds [89]

where 2P Is the perimeter of a meridian section and the arc length a is mess-
ured from the foremost point of the body. S
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Now let us choose for w an axisymmetric potential function and let

O(x, y) be the corresponding stream function. Then

d _
Ydn ds

and

fy w-ds fbP -ds
0 dn i0

Also let U be the total velocity along the body when the flow is made steady

by superposing a stream of unit velocity in the positive x-direction. Then

U -d + cos Y

Furthermore, we have dx - ds cos y, dy m ds sin y. Then [89] may be written

01- (cosv - U)ds P- yw dy
0 o

or

fUods JP d -w ydy) -0 (901

But, since w and 0 are corresponding axisymmetric potential and stream func-

tions, we have

aw1

Hence *dx - ywdy is an exact differential defining a function 2(x, y) such

that

,- y [91

But since also

we obtain from [91 1 $

.2 .8Q + 100 D

+ *

TV-
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which, by comparison with [4], is seen to be the equation satisfied by the

Stokes stream function. Conversely, if 9 is a function satisfying [4], it can

readily be verified that the functions w and 0 de,'ined by [92] ard correspond-
ing axisymmetric potential and stream functions, i.e., that they satisfy Equa-
tions [3]. Written in terms of 9, [90] now becomes

f~ ~ds =[92]

If we choose for 9 the stream function of a source of unit strength

situated at an arbitrary point of the axis of symmetry within the body, we

have, from [10],

+ 1 r r - [(xtl 2 + y [93]

Then
y2

rS

and, since y vanishes at both limits,

Hence (93] becomes

- rU(x) y(x) do - 1 [94] t

It is seon that [94] is an integral equation of the first kind in which the

unknown function is U(x) and the kernel is y/2rs. I
In contrast with the integral equations for source-sink or doublet

distributions which can be used to obtain the potential flow about bodies of

revolution, the Integral equation [94] has two important advantages. The
first is that a solution exists, a desirable condition which is not in general
the case when a solution Is attempted in terms of axial source-sink or doublet
distributions. The second advantage is that [94] is expressed directly in

tams of the velocity along the body so that, when U is determined, the pres-
sure distribution along the body Is immediately given by Bernoulli's equation

(69]. In the case of the aforementioned distributions, on the other hand, it
would first be necessary to evaluate additional integrals, to obtain the ye-

locity along the body, before the pressures could be computed.
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KENNARD'S DERIVATION OF THE INTEGRAL EQUATION

A simple, physical derivation of the integral equation f94] has been

given by Dr. E.H. Kennard. This will now be presented.

Imagine the body replaced by fluid at rest. Let U be the velocity

on the body. Then the field of flow consists of the superposition of the uni-

form (unit) flow and the flow due to a vortex sheet of density U.

Now subtract the uniform flow. There remains the flow due to the

vortex sheet alone, uniform inside the space originally occupied by the body,

of unit magnitude.

A vortex ring of strength Uds produces at an axial point distant z

from its plane the velocity

V - 2Uds

2 (y2 +z )3/11

where y is the radius of the ring. Let s be the distance of a point on the

body measured along the generator from the forward end, in a meridian plane.

The axial and radial coordinates will then be functions x(s), y(s). The ve-

locity due to the sheet at a point t on the axis will then be

oU a(s) y'(s) da 
0, 2rs  d

where rR - [x(s) - ti' + yo(s) and P Is the total length of a generator. The

equivalence of this equation with (94] is evident.

A FIRST APPROXIMATION

If we again make use of the polar transformation x - t - y(x) cot e,

[94] becomes

f.u(x) sin'd 1 (951
2 sin[e-x))

When x - t, 0 al For an elongated body the integrand in (941 peaks sharply

in the neighborhood of x - t, so that a good approximation is obtained when

U(x) Is replaced by U(t) for the entire range of integration. Also, y(x) will

be small except near the ends of the body so that the approximation

sin [- 7(x)]w sin e cos 7(x) w sin 0 cos y (t)

3 .3
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will also be introduced. We then obtain from [95] the approximation

U(t) 1 cos Y(t) [96]

Just as was done in the case of Munk's approximate doublet distribu-

tion we can improve upon this approximation in terms of an estimated longi-
tudinal virtual mass coefficient for the body. For this purpose we will first

derive a relation between this coefficient and the velocity distribution.
Let T be the kinetic energy of the fluid when the body Is moving

with unit velocity in the negative x-direction. Then

2T - -pffO It dS = 2rpjPy sinyds

by [88]. Integrating by parts and substituting for do/ds from [93] now gives

2T n -- rpf y2 A dsa rP, U(x) y2 (x)ds - A

where 4 is the displacement of the body. But also, by definition, 2T - k A.

Hence

A (1 +k) 7rpf U(x) y2(x)ds (97]

This is the desired relation between k and U(x).
Now suppose, as a generalization of [96], that an approximate solu-

tion of the integral equations [941] is U(x) - C cos r. If this value is sub-
stituted into [971, we obtain C - 1 + k1 . Hence an improved first approxima-
tion to U(x) is

U,(x) - (1 + k) coB ,(x) (98]

Equation [981 gives an exact solution for the prolate spheroid.

SOLUTION OF INTEGRAL EQUATION BY ITERATION

In order to solve [941 by means of the iteration formula treated
in Reference 17, it would be necessary to work with the Iterated kernel of
this integral equation. Since this would entail considerable computational
labor It is proposed to try a similar iteration formula, but employirg the
original kernel:

Un+ 1(t) - Un(t) + cos ,(t)[1- Jo 2 Un(x)ds]  [99] I
4.
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where ra - (x - t)2 + y2 (x) and x - x(s).

Here also it is convenient to express the iterations in terms of
error functions En(t) defined by

nUn X)
En(t) 1 -1 ds 100fo 2r 3

or, from [99],

Eh(t) Cos 7(t) - Un+i(t) - Un(t) (101]

Hensce
n

l U (t) - I t) + Cos v(t) "E1 (t) (102]

Also, from (99],

En~(t) En(t) ziEn(x) y2 (x)
ln12 r - dx [1031

o r=

where x0, x. are the nose and tail abscissae. Thus, to obtain Un+l(t), we
first obtain ECt) from U,(t) in (100], then E., E3, ... En from (103], and
finally Un+l(t) from (102].

NUMERICAL EVALUATION OF INTEGRAL

In applying Equations (100] and [1031] it will frequently be neces-
sary to evaluate Integrals of the form I

fE(x) l(x) dx, where 9 - l (t-x)2 + y9(x)

This form, however, is unsuited for numerical quadrature for elongated bodies,
since e(x) peaks sharply In the neighborhood of x - t. Here, as In the case
of the integrals for the doublet distribution, two procedures are available
for avoiding this difficulty. The first employs the polar transformation [70),
involves several graphical operations, but In general transforms the integrand
into a slowly varying function so that the Integral can be evaluated by a
quadrature formula using relatively few ordinates. The second retains the
original variables and eliminates the peak by subtracting from the integrand
an integrable function which behaves very much like the original Integrand In
the neighborhood of the peak. The numerical evaluation of the resulting inte-
gpal on the second method requires a quadrature formula with more ordinates
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than the first in order to obtain the same accuracy, but, since all graphical

operations are eliminated, the second method is suitable for processing on an

automatic-sequence calculating machine.

The result of the polar transformation has effectively been given

in [95]. We have,

f',E(x) Yl(x) dx E r E(x) sin' 2 jCoo (

Zo r3 sinjO-yx)] dO [104]

where

x - t - y(x) cot G (70]

It is desired to evaluate this integral for a series of values of t. In gen-

eral this can be done with sufficient accuracy by means of the Gauss 7- (or

11-) ordinate quadrature formulas. This gives 7 (or 11) values of 0 at which

the integrand needs to be determined for a given t. The value of x occurring

in the integrand is determined implicitly, for given values of t and 0, by the

polar transformation [70]. In practice the 7 (or 11) x's can be obtained

graphically from the intersections with a graph of the given profile of the 7
(or 11) rays from the point x - t on the axis at the angles required by the

Gauss quadrature formula. If greater accuracy is desired, these graphically
determined values of x can be corrected by means of the formula

A

t-xg + y(x ) cot e
X = Xg + - 9o15]

S+1-y'(xg) cot (15

in which xg is the graphically determined value and y' denotes the derivative

of y with respect to x.

Now let us derive an alternate, completely arithmetical procedure

for evaluating the integrals. Put

t ktxg(x, t)

k,(x, t) [(x-t) +

where yR = f(x) is the equation of the given profile and y, g(x, t) is
the equation of the prolate spheroid whose ends coincide with the ends of the

given body, and which intersects the given body at x = t. i.e.,-

*I s l '



42

g(x, t) - f(t) ([x1o)(x.)6](t-x0 )(xl t 16

The length-diameter ratio X of the spheroid is given by

(t-x.)(X-t)

f(t) [1071

whence the longitudinal virtual mass coefficient k (t) can be obtained from

[26].
Since U(x) - (1 + k.) cos Y(x) is an exact solution of [94] for the

prolate spheroid, we have

"k'(x t)dx [108]
so

We now obtain, from [98], [100], and [108]
+k 1 +k {o9

E(t) M 1 - 2 [k(x, t) - k'(x, t)]dx - (0(t) 9]Zz~t) - 1+- -T-)

Also [103] may be written in the form

En+1(t) - E n(t) -i-s- k(x, t)[En(x) - En(t)]dx- En(t)Wjk(x, t)dx

But from [98] and [100],

si 1-E Mti 1Z(t)

k(x, t)dx. 2

Rence we obtain
Bz (t)+k z E~)"'

- t- Ik(x, t)(,,(x) -%E.(t)Jdx (110]nl ( t )  7k, I" 1

ILLSI'RATMV ZANLE

The present method will now be applied to the same profile [78) as

before. By way of contrast with the smi-graphical procedures previously used,

a completely arithmetical procedure will be employed.

Ii
i
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The velocity U(t) will be determined at the 16 points alongithe body

whose abscissae are ti = 4., the Gaussian values for the 16-point quadrature

rule, Table 1. Since the body is symmetrical fore and aft, it is necessary to

determine the velocity at only half of these points. Values of y(x), cos Y(x)

and k (t) for these points are given in Table 6.

In order to apply the Gauss 16-ordinate rule it is necessary to eval-

[ uate the integrands in [109] and [1101 at the 16 Gaussian abscissae x=

for each of the 8 values of ti. Thus, there are 16 x 8 = 128 values of k(x, t)

and of k'(x, t) to be determined. The matrices Ki = Rjk(xj, t) and

K'i = R k(x , ti ) where the Rj's are the Gauss weighting factots, are given

in Tables 7 and 8, and applied to evaluate EM(t) from [109]. E2 , E., and E4
are then obtained from [110]. U (t) is then given by [102] and then p/q by

[69], in the form p/q = 1- The arrangement of the calculations and the

results are given in Table 9. The graph of p/q is included in Figure 5. i
TABLE 6

Values of y, cos y, and k (x) for Application of

Gauss 16-Point Quadrature Formula

x y(x) y'(x) y(x) cos y(x) k1 (x)

-0.9894009 0.0408548 1.8965483 1.0856 0.4664 0.096382
9445750 .0903198 0.7464764 o.6412 .8W14 .093389
.8656312 .1324422 .3917981 .3734 .9311 .088359

.7554044 .1642411 .2099651 .2070 .9787 .081862 I

.6178762 .1848527 .1020867 .1017 .9948 .074689

.4580168 .1955501 .0393076 .03932 0.9992 .o67885.2816036 .1993706 .0089607 .008961 1.0000 .062506

-0.0950125 0.1999919 0.0003431 0.0003431 1.0000 0.059509

. I**
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TABLE 7

Matrix of Value. s* 
R - f(x

2 3 4 5 6 7 8

1 0.66460 0.20313 0.02047 0.00338 0.00087 0.00030 0.00013 0.00006
2 '.g536 :68926 .29420 .05513 .01304 00o419 .00170 :00081
3 .2022 .45536 •71850 .32626 .07528 .02120 .077 0034
4 .14389 •21382 .4341 .75882 .34200 08574 .02666 w o67
5 .0712 .09665 .173o6 .4179 .80929 .35023 .09047 .02997

.03g 3 .04486 .07001 .1437 .40145 .86505 .35410 .0922z

.01 2 .02187 .03OO8 .05344 .12148 .3 70 .91588 .35647
z .0098 .01140 01502 .02307 .0 1 .10644 ...3700 .94729
9 .00565 .00639 .00802 .01137 .016 .03726 .09772 .36010

10 .00341 .00372 .00m460 .oo616 .00 28 015 .03403 .09380
11 .00208 .0022d .00270 .00348 .0N95 .00787 .01445 .03205
12 .00121 .00131 .00153 .O0192 .00262 .0O393 .00660 .01280
13 .00062 .00067 .00078 .00096 .00127 .00183 .00291 .00518
14 .00027 .00028 .00032 .00039 .00051 .00071 .00108 .00183
15 .o007 .00008 .00009 .00010 .00013 .00018 .00027 .0oo
16 o.oooo 0.00001 o.oo0o 0.00001 0.00001 0.00001 0.00002 0.00004

TABLE 8

Matrix of Values* K' n R i) t -J I [(x1 - ti),+g(Xj, t)]-/"

1 2 3 4 5 6 7 8

1 0.66458 0.20016 0.01841 0.00271 0.00061 0.00018 0.000 0.00003
2 .49077 .68925 .29 4 802 .00980 .00273 .00098 .00044
3 .28639 .4511 8.7P84 :32161 .063@9 .01533 .00493 00194
4 .16024 . 2649 3201 .758821 .3358 .07174 .01928 .00707
g .09055 .11637 .19118 .41862 .80927 .34255 .07641 .02291

.05223 .06265 .08976 .16366 .40559 .86501 .3 6 3 .08149
j .o3o6i .03502 .0456 07041 .13995 .3908o .91 6 3140
8 .0180) .01)98 .0242 .03352 .05520 .11924 :RE 729

9 .01058 .01144 .01329 .01694 .02457 1 1 1
10 .00607 .o0645 .00725 -.008176 .01165 :0178A .0339 .08960
11 .00334 .00351 .00385 .00411 .00561 00787 .01303 •02749
12 .00171 .O0178 .00193 1 .00262 0034 0052 9
13 .00078 .00081 .00086 .00096 .00112 .00142 .00202 00j39
14 .00029 .00030- .000 00035 .00040 00049 .00067 .00107
15 .00007 .00008 .0008 .00009 .000101 00012 .00016 .00024
16 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002

*For I > 8 use "A - '17-J, 17-i
**Iori 8 seKI i 7-J, 17-i
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TABLE 9

Calculations for En(t) and U(t)
Assume k, = 0.06: Put Kji R kji, K' = Rkii, Zn(x J)= n(t) - nj

1 + k, 0
(a) xi - -0-.989401; cos y - 0.4664; k(x .966815

j j K: Kj 1 'K'j1  Ej -El K j(E -E11 ) E23"E 2 1  Ki (E2jE 21. ) E E531 Kj E 3J E31)

1 0.66460 0.66458 +0.00002 0 0 0 0 0 0
2 .49536 .49077 +0.00459 -0.00730 -0.00362 -0. 0007 -0.00152 -0.00158 -0.00078

-3 .28022 .2863 -0.00617 .01799 .0:05 .00634 .00178 .00251 .00071
4 .1438 .6o2 .o1635 -71 :002570 .0101 .00078 .000 .00058
S071 01 .02.09065 .01236 708W 6 .016 1 .00118 .0050b .0 001.03 . •05223 .0i6 No 31 .00257 .021 ;2 .00078 .00706 .00025

."8 .03061 .012o6 .064 .02619 .00o48 .00802 .0001
1 00 o1oI IO9 .0099 ....02870 .008 .0rl .000i

9 •00565 ,01058 .009 .10087 .00057 .02870 .00016 .00851 .00005
10 .0034 1 .oo6 7 .0026 .0899 .00031 .02619 .00009 .00802 .00003
11 .002o8 .00334 .00126 .07213 02182 .00005 .00706 .00001
12 .00121 .00171 .00050 .05207 00 .01561 .00002 I -0.000

00 2 008Olo 10 004i03 0" 1) .00062 .O007B 0001 .03333 0.002 .00 -0:000g, .0 7
14 .00027 .00029 -0.00002 .01799 0 .00634 0 .0025} 0
1Z .00007 .00007 0 -0.00730 0 -0.00307 0 -0.0015 0

0.00001 0.001 0 0 0 0 0 0
J" -0.08362 J- -0.02350 f - -0,00793 f" -0.00306

E.- +0.07750 E21 , +0.02180 E31 = +0,00680 E 1 = +0.00241

ki + E = 0.12972 Us (z) - 0.5450, p-= 0.7030

1 k O965

(b) x -0.944575; cos y a 0.2014; I + k ) 0.96947

C2. + k1,,x. 2)7

j J K K Kuj-Ka E -E K 2(EIJ-E) E1j-E K2j(E -E2,) E-E KJ E- )
-i it -1-2 13- 2 13

1 0.2Q313 0.20017 +0.00296 +0.00730 +0.C0148 +0.00307 +0.00062 +0.C0158 +0.00032
2 6926 .6892 -0.00001 0 0 0 0 0 0
3 -4m6 .4511z +0.0048 -oo00 -o0o07 -0o002 -oO0-o,

2 2 . f:6 - ,01117 -02601 .0057 -0 '.00 95 .000 ..3
6 o.1.- .0043000 .0 1

.0 48 .0625 .01779 .:1; 00 7 0 oO48 .00025

.02187 .03502 .0082 .001 :02312 .00051 .0044 .00014

.001140 18 .03 , . .00107 .02563 0002 .00410 .0oo
9 0063q 001 0050' .- - c000 t. U

"12 .00131 .00178 .00047 .0477 ,ooco6 ,01 O ? .04C -. 0O6 .. o -ooool .014 .0b0 0. 0 009 .00245 o
1 8021 .00030 -0.00002 _0.01069 0 -0-00327 0 -0.(0045 0

1 .00008 .00008 0 o 0 0 0 0 0
10.00001 0.00001 0 +000730 0 +0-00307 o +0.oo158 0f" :o.o'% f --o.02022 f - -0.00583 f -. 00158

E .- +0.07020 E 2 - +0-01873 E2 = +0.00522 E = +0.00143

k + E IIV
+ 0,12283 Us(xll) - 0.9261; P - 0.1423
1

-,:1 -i
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TABLE 9 (Continued)

(c) xs - -o.865631; coSY = 0.9311; 1 + k, .9)]
[1 + kl(x 3 )] I

K K K Js-KJ EIj-E 3 KJS(E IJ-Es) E J-E s K 8(Ej-E..) E~j-E.. Kj.(E.J-E.)

1 0.02047 0.01841 +0.002Q6 +0.01799 +0.00037 +0.00634 +0.00013 +0.00253 +0.0000;
2 .29420 .29039 +0.0031 +0.01069 +0.00314 +0.00327 +0.00096 +0.00055 +0. 0002U
3 7185. 71851 -0.00001 .0 0 0 0 0 0
4 .0301 .03201 + 7 0025,10 -o. . 007666 -0.00467 -0.00208 .001 0 -0.00065

.17306 .1211 -0.01812 .03406 .00590 .0101 .00176 .00055.o0080; .08976, 1 o0 1 000 30 3 o 8 .0 5 b .O . 0 5 4 1 4 . 0 0 3 7 9 . 1 o B• o o 3

.o1 a, .04556 .01 :0 .00222 .01. .00061 .05 .00017
_,o_ .o023 0oo3 , .oo0 9 .0000,

9 .0002.01329 • 00527 O2W .00066 .0226 .00018 0059 .00005
10 .0046o .00725 .00265 .07200 .00033 .01 0000 00549 .00003
11 .00270 .00385 .00115 .0514 .00015 .01548 .0000 .01453 -0.00001.00oo Olq . oo0 .3408 .0101 o-? .o ooo 2 .0031513 o7 00076 -o000 ,-o0-0134 -o00001 -0.00467 --00150 0o
4 .00032 .00032 0 0 0 0 0 0 0
11 .00009 .00008 +o.ooo l +o.o069 0 +0. oo27 0 +0.00095 0

O .00001 O. 00001 0 +0.01799 0 +0.006 3 0 +0.00253 0
f -o -001750.fJ- -o.oo506 f . -0.00154

E - +0.0951 = +0.01546 E = +0.00427 E - +0.00125
' 8 @8 40

k, +0.11275 1 (xU ) 1.0619; -- -0.1276
1 + q

I + k& ,0.78
() ; - ... 759M; CoO I 0.9787; 097 9)

K K4 , -Kjf 4 -E 1 (- ) 4-s 31 34% ) ,-1,4 K4 j4 %4z.

1 0.00338 0-71 o67 +0.0333 +0.01101 +0.00004 +0.00403 +0.00001
2 05 1 01480 2 .02og3 00. 007914 .0004 002145 .01

23 2 :32161 + 0 0=6  +o.o1534 +0.00483 +000467 +0.00152 +0.00150 +0.00049
6 .7%882 0 0 0 0 0

: 1 ' 4$? . 1 0 6 2 - 0 . 0 0 0 6 r: - - 0 1 " -0 .0: -0 0. 0 -0 .0 0 2 3 0 -001 , -0 00 0 9
:5 l3:o16366 .02019 .o3o 01 01. :0030 .00043
1 4 .07041 .0167 .05666 .00-01518 -o8 .oooo1 .00021

10~00 .066 ~ * i~ . 6  0171 !002 00W !00005
11 0. -0003 00001

00 01. 0 0
1:o000 +0.0026 o.47 o0.00001 -0.00550 00. 0

1 o00 o +0 0J332 o 40.o1101 0 +o.000 0

f. -0.,23 f--0. m-o 31 0 1 -0-00087
14 . 0 +0.01079 E4 - +0.002T7 - +0.O00T1

0-.09827 u,(s ) 0."6; - -0190

-u AL
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TABLE 9 (Continued)

1 + k2  o98.
(e) z 5 " -0.617876; cos Y - 0.9948; 1 + k 0.9863

[1 + ki(xS)]

K K' K -K' EJ-E K(E-E) E -E K(E-E E-E K(E-E5 Ki s 3s 3 Kj (E 2 15 3 aj25 5 2 25 E3j Es 5 K 3 38)

1 0.0087 moo6. +0.00026 +0. 05207 +0.00005 +O.01 651 +0.00001 +0. 00568 0
2 .01304 .00980 .00324 .04471 .0005d .01344 .ooo8 .0410 +0.00053 .07528 .o6,89 .01139 .0o40o .00257 .01017 .0007 .003154 2 .3 20 384 .oo616 +0.0o1874 -+o,00641 +0.00550 +o.0019 +o.0i +0.'°°00o56

5092 4 .27 +0.00002 0 0 o o o 2 s0
: 4 0 559 . 00414 -0.02006 -0. 00805 -0. 00531 -0. 00213 -0.00138 -0.0o055
.1214 .1395 .01847 .03 2 .00461 .oo968 .011 .002 4 .0002d
.0.9 . 0SS20 .0120 . 00053 .002 .00012

0 .000 0 7 00590 .02 .2'00005
.0028 .011 5 .00237 .03792 .00035 .00968 .00009 .00234 .00002

11 .00 95 .00561 -0.00066 -0.0206 -0.00010 -0.00531 -0.00003 -0.00138 -o.oooo
12 .6 0260 .+0200 0 0 0

.1 7 +0.OO02 +0.00550 +0.00001 +0.00165 0
14 .00051 .ooo4o .00011 .0 408 .00002 .01017 +0.00001 .00315 0
15 .00013 .00010 +0.00003 .77 +0.00001 .0134 .00410 0
1 0.00001 0.00001 0 +0.05207 0 +0.01o51 0 +0.00568 0

-0.02219 - -00057 - -0-00133 J . -o8ooo18
E = +0.025431 E = +0.00112 E +0.00018

k + E
-+E o.o8og u(x ) 1.o864 2 -o.1803

1 0

(f) xg -0.148017; o s Y 0-999; os 1 0. + k( o9262

KJ K4. K -K's E -E K(F F -r 2 KM-E )) E -E K (E. -E)

1 0.00030 0.00018 +00001 +0.013 +0."0o 0.oo-, +0.00001 +0.00706 02 001419 .00273 0014 0 .00437 .coT7 .C000 .00548 +0.00002
3 02120 :0153 00 .05414 ..0115 :015a .00033 .00453 .00010

.85741 .017 +00 S. gg0 .0cp - 0
05 :5 +0.000= 0 0 0 0 00
0 3 -0.00610 -0.018 6 -O,008 -o.C I7 -0.oo168 -o.0ooQ6 -0.00037
5°9 .OyeZ .102 o I, -. 0291 .ooo7

o.00 -0.000 4
10 01 1 8 .000173 -. 01P -0.000109 -0.ocU37 -00007 .000* -0.0000?
11 .08 00 Ail 0 0 0 0 0 0 0

00.00+0 +0.0206 +0.00008 +0.00531 +0. +0.003P +0.00001
4 001b .00142 0 0007 0 01 0 3 +000001
14 :000 .00029 .00022 .054i at 00004 01'48 +0.00001 :0045; 0
1 .o 8 .00012 +o.0ooo6 .o683 +.oOi +0.018 0 +0:00706 0

o0.00001 0.00m 0 +.07 1 0 0
= 0-00370 0071, I +0.737 ,,,M7 2 - +0.00029K +0.00537 -- 00000 E3 -0.00026 K -0.0o016

0---'. 006167 tls (i*) -1.0641 - -.1323
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TABLE 9(Continued)

(g) 27 - -0.281604; coon y =1.0000; -f 14k + 0.976

J K 7  K'J J? -K' E-iE 7K (E - E 2 - E2 KJ92 E2 E~ 3JS '( E7

1 9.D:00013 0 o000l +0.00006 +0 089n9 +0.00001 +0.02619 +0,00000 +0:'00802 +0.00000
2 .00170 .001 .000? 2 08269 .00014 .02312 .00004 .00644 .00001
001009 : 002UO4 .07200 .0056 .00098 oo0549 .00004
:3521 012 .078 :r66 .05 .011l 0040 039 .01

:340*06 .00777 .0179 .00632 .043 .00155 .00096 .00034
.g5895 0.00002 +0.00000 +0.00000 +0.00000 +0,00000 +0.00000 +0.00000

.3730 3746 -~o466 -0.108 -0 0002I - - vj -0.00049 -0.00018
-f 79TT .1211 0.0445 '--~am -0.025 0..0.0049 -0-000

1.03403 -0339b +0-00007 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000
11 .01445 .01303 .0012 .01786 .00026 0o4M .00006 .0006 .00001

2. .00202 Q .2 1iM ' .0000 .00399 .4 0
.00 001~ .0~ 00008 .01985 .00002 004 .00

0 002 1 .00011 002 .02312ODO
0 000 0001 +0.00001 +0.08999 +0.00000 +0.02619- +0.00000 +0.00802 +0.00000

j+0. 02802 J f +0.-0076, f +0.00203 J-+0.00053
l?- -0.01241 E1 -0.00435 so, -0.00122 E4 -0.00032

k1  0.04482 U (x)-.ai.46; p -0.0849

I1 + k
1

(ii) ss- -0 .095013; cotrn 1.0000; --1 + 1.(x Ow"

E E KC -E) E E K E 
j Ka .4 K0 1j- S Kg El - 8 aeP3 (24 7 3j 3e Kj83j 36

1 0.00006 0.00003 0 -0000' 0.10087 0.00001 0.02870 0.0000 0.0061 0.00000
2 .00081 .00044 .00037 .0 .00008 00020000

3.0034 .00194 .0019 5= 2' )8.00

-1 .07% .0000010919

.2."

:r 005207 :0108 :00102 .00.000=9 000

11 .03205 :0279 .00456 .02814 .0009ooa .014

.01280~~ .0in 0002290

I003 11 001 03 -00059016 .000

1 .k W .00 0. 1(' o l0000; 0a.00 0000 00% .00
f--~~ 0 :35 +0(03 a 0029+.O"a+.06

FF

It +I (x9) o2T; 2 - .05
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SUMMARY

Two new methods for computing the steady, irrotational, )axisymmetric

flow of a perfect, incompressible fluid about a body of revolution are

presented.

In the first method a continuous, axial distribution of doublets

which generates the prescribed body in a uniform stream is sought as a solu-

tion of the integral equation

fb m(t) dt
rs

where r is the distance from a point (t, 0) on the axis to a point (x, y) on

the body, r2 a (x - t)2 + y2(x).

A method of determining the end points of the distribution and the

values of the distribution at the end points is given. If the equation of the

body profile, with the origin of coordinates at one end, is

y2(x) = aIx + a2x
2 + a3x3 +

a very good approximation for the distribution limit a at that end, when the

coefficients a1 , a2P ... are small, is given by

a 4

a 2 2 1 3

if a. a 0. If as is negative, the term containing it is neglected. The cor-

responding value of the doublet strength at this point is

a a  a

*~a -(P +;JL& + 2 log I a& V!7a

Por ualas and tables for determining a and r(a), which may be used when the
above procedure is insufficiently accurate, are also given. The values a, b,
ma - a(s), a - m(b), fa - e(a) and fb - e(b) are then used to obtain the
approximate solution of the Integral equation

* .(x) -c " a'' f +  s + .

I
4!

I
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where

l+kf
" jy 2 dx  (b'a)(m,+mb)

fy2dx -. b-a)Q(f)

and k is the longitudinal virtual mass coefficient for the body.

This approximation is used to obtain a sequence of, successive approx-

imations by means of the iteration formula

m+(x) M (x) +_1 y2(X) ) 1 dt
mi+1 m 2 L2 

0  
r5  -

When a doublet distribution has been assumed, the velocity components at a

point (x, y) in a meridian plane are

bt-

U + f b(-L .Z L m(t)dt
~~5  3

v - 3yf -- m(t)dt
rs

and the pressure is. given by

-1-. (u + V)
q

where q is the stagnation pressure.

The iterations are most conveniently performed in terms of the dif-

ferences between successive approximations to r(x), which also furnish, at

each iteration, a geometric measure of the accuracy of an approximation. )
Simpler forms for the velocity components at the surface of the body are given

in terms of this difference or error function.

Gauss' quadrature formulas are recommended for the numerical eval-

uation of the integrals. Two methods of carrying out the iterations are

given. The first employs a polar transformation and a graphical operation be-

tween successive iterations; the second is completely arithmetical and is

suitable for processing on an automatic-sequence computing machine. All of

these procedures are illustrated in detail by an example, in which the semi-

graphical method Is employed. The accuracy of the method is ana'lyzed; the re-

suits are compared with those obtained by the methods of JruK n and Kaplan.
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In the second method the velocity U(x) on the surface of the given

body Is given directly as the solution of the integral equation

f U(x)y'(x) ds = 10' 2r3

where s is the arc length along the profile,

x is equal to x(s), and

2P is the perimeter of a meridian section.

An approximate solution to this integral equation is

U (x) = (1 + k) cos y(x)

where k is the longitudinal virtual mass coefficient and y = arctan d

U1(x) is used to obtain a sequence of successive approximations by means of

the iteration formula

Un+1(t) - Un(t) + cos V(t)[1 - a(x) Un(Xds]

Here, also, the Iterations are most conveniently carried out in terms of the

differences between successive approximations to U(x) which also furnish a

measure of the error in the integral equation. Two methods of carrying out

the iterations are again available, of which one is semi-graphical, the other

completely arithmetical. The latter technique is employed on the same example

as was used to illustrate the first method.

j I
• I
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APPENDIX

END POINTS OF A DISTRIBUTION

An approximate method for determining the end points of a distribu-

tion and its trends at the ends will now be described. Let y - f(x) be the

equation of the given profile extending from x - 0 to x - 1; let m(x) be the

corresponding doublet distribution, extending from x - a to x - b., It will be

assumed that 0 < a << b < 1 and that a is near 0, b is near 1. Then m(x) is

given by the integral equation

bf m(tidt [1 ]]

[(x-t)2 + f(x)] 1/' 2 4

Various conditions on m(x) may now be obtained by differentiating j
[111 repeatedly with respect to x. We get

f mlt)[2x - 2t + f'l(x)] dt - 0 [1121
"r

JMMtL~ (2x - 2t + -') (J2 + t 0 [13
I

m, MM5(2x-2t+f 1 )3 15 (2+f")( t+f) +- - r Jdt - 0 [1141

When x- 0, r = t and, writing f(x) as a Taylor expansion s
a

(x) - a x + a x2 + a x3 + ... [1151

then also f'(0) - a, f"(O) - 2a , f'" (0) - 6a . Now, setting x = 0 In Equa- -

tions (111] and [1131], we obtain

Lb M(t) dt a [161

.(t) (a1  2t)dt 0 1117]
ts

f- 2Oat + -0 t- [1181

t 7

t7 a 0i 414 - aalt'ldt 0[18

Ag

- f - t
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mt)35a - 210a't + 60a1(6-a2)t2 + oO(3a 2 -4)t + 24ast4 dt - 0 [119]at

Also assume that m(x) may be expressed as a power series

m(x) = c0 + c~x + c2  + [120)

Then Equation [116] gives

20~(L2- L)+ c1(j- -b)+ C2 ao~- 2

or, neglecting I/b2 in comparison with 1/a2 and setting b - 1 in comparison
with I/a, ,

1+ 2c a(i-a) + 2c a2 log-!+ . a 2 (121]

Similarly, Equations (117], [118], and [119] give, approximately I
co (3al-8a) + 4cIa(al-3a) + 6c2a

2 (a1 -4a+4a2 ) = 0 [122] I
2c0[5a2 -2a a+6(4-a )a 2] + 4c a[3a~l-15a~a+4(4 a2 ]

[123]

+c2 a2 [15a-8oala+24(4-a2 )a2] 2 0

3c [35ai-240a2a+80a (6-a)a2+64(3a -4)a3+48aa']
5 2 1

-"+24c, [5a~a-35a'- +I2a1 (6-,2)a3+1 o(3a2-4)a"+8a'] [124 ]

+4c2[35a:a'-252aa3+90.x(6 a)a4+8(3 1,-)a5 +72asa.] 0

Equations [121 1 through (1241] are sufficient in number to determine the un-

knowns a, co, c1 , c 2 . Since the latter three equations are linear and homo-

geneous in c., C,, and c, a can be determined from the condition that the de-

terminant of their coefficients must vanish. In this way the following equa-

tion of the 7th degree in a -- was obtained:

-,- - ,-
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a(*- 4)2(504 - 83c? + 288 - 368a + 128) - 96aa(3a - 4)

+ 4aj(a - 4)(53d2 - 148a + 128) + 1152a a2(2a - 3)
[125]

+ 72al(a - 4)2(5a3 - 25d2 + 40a - 16) + 48ala3a(3 - 8).

122- 288a~a 2(a - 4 )(5d2-16 +16) - 1152a la,(a - 3) - 0

Corresponding to a solution a of [125], co, c1, and c2 can be obtained from
Equations [121], [122], and [123]. The solution of the latter equations gives

COD - -4a2[ N3 - 3702 + 120a - 96 + 24a + 24a(302 - 15a + 16.- 4a)] [126]

cD = a[l. - 168a' + 512a - 384 + 96a2 + 48a(5a2 - 24a + 24 - 6a2)] [127]

c2D - -4 [(a - 4)2(a - 1) + 4a,] [128]

where

D - 2(W. - 94c? + 272. - 192) + 8[(a 4)'(a - 1) + 4a.]log a + 96a,

-2a(l.%* - 264.' + 944a - 768) - 384aa - 96ag(5& - 24a + 24)

+ 576a a  [1291

The Initial doublet strength at x - a is

e(a) = c* + C a + C as +

or, from Equations (1261 through [129),

ma) . --- (a - 4)(611 - 12a + 16) + 48a(. - 4)(a - 2) + 16. - 968] [1130]
!

Equations (125] through [130] determine the end points of the distri-

bution and Its Initial trends. In general, Equation [125] will have more than
one real root. In this case the initial trends corresponding to each of the
roots should be examined, and that root chosen which appears to give the

"simplest" trend.

7-1
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The equations can be solved explicitly in the case of a very elon-

gated body for which a1, a2 , as .... in [1151 are all very small. First let

us suppose that they are so small that all the terms in [125] containing them

are negligible, so that the first product term alone may be equ4ted to zero,
i.e.,

a(a - 4)2 (5a' - 83a3 + 288aW - 368a + 128) - 0 [1311

whose real roots are a = 0, 0.547, 4.0, 4.0, and 12.429.

Let us consider the solution a - 4; i.e., a - Since the radius

of curvature at x = 0 is a,/2, this solution is seen to be in accord with

Kaplan's assumption for the end points of the distribution. Furthermore, sub-

stituting a - 4 into Equations [129] and [130], we obtain, to the same order

of approximation,
2
a a

D -64, c= -1 , ci -, , c2  0

whence

2a1  a1
m(x) - -j- -+i x, u(a) - 0 [132]

In order to obtain a second approximation it will be assumed that

not only a1, a2 a, ... but also (a - 4) are small to the first order. Then,

neglecting terms of third and higher order, Equation [125] becomes

-3072(a - 4)2 + 6144a 2(a - 4) - 3072a: + 768a 1 a, 0 [133 ]

whence

lo,-4 a + 1 [1341

provided

a0ae o

Corresponding to this value of a we obtain from Equations [126] through [129],

to the same order of approximation,

OTe smiler of these two roots has given the preferred solution in all cases tried thus far.

F
A
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2

where [135 ]

C + +a log

and

r(a) - Ca2  (1361

The expression for m(x) in [135] may also be written as

a2 e
m(x) - C(41 + y2) [135a]

When a3 < 0 the solution for a in [134] indicates that there would

be no real roots near a - 4. In this case a graph of the complete polynomial

in [125] should be examined either for the possibility that more complete cal-

culations would show that there are real roots near a - 4 nevertheless, or

that the maximum value of the complete polynomial in the neighborhood of a - 4

is so nearly zero, that the value of a corresponding to this maximum may be

taken as an approximate solution. On this assumption, the second order analy-

sis would give

a -4 + a, a3 < 0 [137]

Since a, does not occur explicitly in Equations (135], it is seen that they

would also be obtained, to the same order of approximation, if the value of

a in [137] were substituted into Equations [126] through (129],

If it is determined that not even an approximate solution can be

assumed near a - 4 it would be necessary to consider solutions in the neighbor-

hood of the other roots of Equation [131].

In order to facilitate the computations for graphing the polynomial

in [125], the functions A(a), B(a), ... H(a), where

I

I
U

I

- "-:
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Aa) = a(- 4)2(a - 83a3 + 288 2 - 368 a + 128)

B(a) - 72(a - 4 )2( 5 ? - 25c? + 40a - 16)

c (a) - 4a(a - 4 )(53d2 - 148a + 128)

D(a) - -288(a - 4)(5a - 16a + 16)
[1381

E(a) - -96a(3a- 4)

F(a) - 1152(2a- 3)

H(a) - -15(a -38)

H(a) - -1152(a - 3)

have been tabulated in Table 10. In terms of these functions, Equation (125]

becomes

A + a B + a C + a a D + a2 E + a a2F + a a G + a2a H M 0 (1391

It Is of interest to compare the approximate value for a from Equa-

tion [134] with the exact value for the prolate spheroid y2 -- j5(x - Ia). In

this case we have

1

a. a -a 2 - 8 , as  0

and the exact value of a is

a-2+2 =2 1 4

But when the length-diameter ratio X is large, Equation [134] gives the ap-

proximate value a - 4 -- , which is seen to consist of the first two terms of

the series expansion of the exact value of a. Table 11 shows that the approx-

imate formula gives excellent agreement with the exact values even for very

thick sections. Both the exact and the approximate formulas give n(a) - 0.

Thus the present approximate methods work very well for the prolate spheroid.
I

~ ~.,
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TABLE 10

Functions for Determining Limits of Doublet Distributions

a A(a) B(a) C(a) D(a) E(a) 1(a) 1(a) H(a)

0 0 -18432.0 0 18432.0 0 -3456.0 0 3456.0
0.1 43.0 -13409.7 -177.4 16230.2 35.5 -3225.6 -37.0 3340.8
.2 0 .5 -9315. -305.6 14227.2 5.3-2995.2 -71.0 3225.6:16 - - 2.4 1241.2 69.3 -27.- .2 3110 6

11255.1 10782. 107 -2534.4 -130.6 2995.21.5 -:4,?. .44.5

.364 -143j:3 708 2324.0 120.0 -2304.0 :156.0 2880.0.44.46 1 -65.6 8029.4 126.7 -2073.6-178.6 2764 .8
:7 -120.1 1148.7 _665.4 6890.4 127.7 -1843=2 -198.2 2649.6

-184.5 1887.4 -445.6 5898.2 122.9 -1b12.8 -215.0 2534.4
0.9 -234.5 2349.1 -421.1 5044.3 112.3 -1382.4 -229.0 2419.2

1.0 -270.0 2592.0 -396.0 4320.0 96.0 -1152.0 -240.0 2304.0
.1 -291.2 2667.3 -374.3 3716.6 73.9 -921.6 -248.2 2188.8
.2 -300.5 2619.2 -359.1 3225.6 6.1 -6Z1.2 -253. 207.6
.3 -300.9 2485.3 -353.4 283 .2 12.5 -6.8-255.8 2L50.4
.4 -295.9 2297.3 -359.3 2545.9 -26.9 -230.4 -255.4 1 3.2
.2 :288.9 2081.3 -378.8 2340.0 -72.0 0 -232. 1128.o

-2 3 1837 . -4 1 2 .9 22 1 1 .8 -12 2 .9 23 . -2 5 .8 1 6 12 .8
: -282 5 1643.5 -462. 2152.8 -179.5 460.8 -236.6 1497.6
282 14 7 : 5 214.2 -241.9 691.2 -224.6 1382.4

1. -298.8 12M.4 2207.5 -310.1 921.6 -209.8 1267.2
2.0 -320.0 1152.0 - 04.0 2304.0 -384.0 1152.0 -192.0 1152.01 -349.8 105.0 -128 2435.0 -463.7 119:40 :171.4 1036.8

.2 -387.3 9~.~-933.3 2592.0 -9.1 1612.8-147.8 9.6

430.9 .0 3.1 2766.2 -60.3 1843.2-121.4 .4
-478.2 93.7 -1199.3 2949.1 -737.3 2073.6 -92.2 691.2

5 -526.3 951.8 -1338.8 3132.0 -840.0 2304.0 -60.0 576.0
970.9-177.5 3302 -948.5 2534.4 -25 0 o.8

11.7 993.5 -11.4 363.2 162.7 2764.8 13.0 345.6
-6 9 1735.4 394.2 -1182.7 2995.2 53.8 230.4

2.9 -658.9 1018.9 -18 2 3690.7 -1308.5 3225.6 97.4 115.2
3.0 -660.0 1008.0 -1932.0 37 .0 -1440.034.0144.0 0

.1 -642.8 974.2 -1992.4 3745. -1577.3 3686.4 193.6 -115.2

.2 -606.1 914.2 -2018.5 3686.4 -1720.3 3916.8 245.8 -230.4
,9.6 826.8 -2003.0 3558.2 -1569.1 4147.2 301.0 -345.6

9 713.3 -1937.8 3352.3 -2023.7 4377.6 359.0 -460.8

:j :313 578-3 :181:8 30600 -2184.0 4608.0 420.0 -57b.0
-_28.2 29.5 -1624.8 2672.6-2350.1 4838.4 483.8 -691.2

8-138.5 2151.6 -221.9 5068.8 5.6 -80.41 006.0 178.2-2 :5 529 620.2 -921.63.9 -27.0 40.6 -556.8 553.9 -282.9 5529.6 692.6 -1036.8

4.0 0 0 0 0 -3072.05760.0768.o-1152.0
.1 -3:. 52.1 1 99 -6:.86 -1267.2

234.5 1 -2131.2 -3467.5 220.8 927.4 -13.14
.3 -943 591.5 2433.3 -314R25 -3W3.9 64l21011.14 -1;97.64 -7 17 1174.1 3540.3 -4884.5 -388 . 6681.6 1098.2 -1612.8

:2 -1360.2 2040.8 4817.3 -6516.0 -4104.0 6912.0 1188.0 -1728.0
-2170 .8 257.6 6278.2 -8329.0 -4327.7 71'42.4 1280.6 -1843.2-3 2 1 3 

-476.7 8 :.2 7937.7 -10332.0 -4557.17372.81376.2 -1958.-14693.14 75 . . -12533.8 -792.3 663.2 1 773.6 -20g.6
4.9 -6o.2 9797.5 11912. -14942.9 -5033.3 7833.6 1575.8 -2185.8
S.o -881o.o 13248.o 14260.0 -17568.o -528o.o 8064.o 68o.o -2304.0

, -7 - m - -0 0 '18432 0 18432 0 -3146 034 6
1 -270 2W9 -396 4320 96 1152 -240 23304
2 0 52 -704 2304 1 1152
3 -1932 3744 -14140 34 14 0
4 0 0 0 0 -3072 576 768 -1152

10 112 1420 1 : 0 8064 0 -204
11-352 55-110 5 10 368285
1488592 04876 -12.536 - 11424 1 262 EN 43

.1200 1456128 299006 2316 160 1496 6144 -760
9 -170050 3535200 5520 -3850 -1072 17250 206 912

1 0 -2 09 120 0O7m 2 9 7 52 -615168 -2 4960 19 1 56 - 85 0 6
I1 11260 1 r.,= . 1513 i20 -97120 -30624 2 11.200 -9216
12 = 1 5 253621432 22978 125376 -36864 214192 1 128 - .10368
13 470 610 423636148 33513148 -125 -143680 26496 191 11220
14 220550 67120600 1472861-222336 -51072 28800 22MP -12672

1, 880520 10309780 6489780 -28"1368 -590140 31104 266140 -13824

A + A3 + %2 C +t &aRD + aB + &iA? + &,%a + aIaalM .0

A...-41'(W- SW + 28W -368a 128) 2 -- 96.(3a - 4)
S lT 2 (a -4 )*(5s? -2 W + 4 0a - 6 ) P 11152(20 -3)
C W( - 4)(53e - 14S& + 128) 0 - 48(3w - 8)a
D- -288(o - )(W - 16, + 16) N - -1152( .- 3)

t



TABLE 11

Comparison of Exact and Computed Values

of a - for a Prolate Spheroida

A 2 3 4 5 6

Exact a 3.732 3.886 3.936 3.960 3.972

Approximate a 3.750 3.889 3.937 3.960 3.972
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