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THE AXIALLY SYMMETRIC POTENTIAL FLOW ABOUT
ELONGATED. BODIES OF REVOLUTION

by !

L. Landweber

ABSTRACT

An iteration formula for Fredholm integral equations of the first kind is ap-
plied in two new methods for obtaining the steady, irrotational, axisymmetric flow of
an inviscid, incompressible fluid about a body of revolution. In the first method a
continuous, axial distribution of doublets is sought as a solution of an integral equa-
tion of the lﬂklnd. A method of determining the end points and the initial trends
of the distrib€dbn, and a first approximation to a solution of the integral equation are
given. This approximation is then used to obtain a sequence of successive approxima-
tions whose successive differences furnish a geometric measure of the accuracy of an
approximation. When a doublet distribution has been assumed, the velocity and pres-
sure can be computed by means of formulas which are also given.

In the second method the velocity is given directly as the solution of an inte-
gral equation of the first kind. Here also a first approximation is derived and applied
to obtain a sequence of successive approximations. In contrast with the first method,
which, in general, can give only an approximate solution, the integral equation of the
second method has an exact solution.

Both methods are illustrated in detail by an example. The results are com-
pared with those obtained by other well-known methods.
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INTRODUCTION
HISTORY

The determination of the flow about elongated bodles ofrevolution
is of great practical and theoretical importance in aero- and hydfodynamics.
Such knowledge is required in connectlion with bodles such as airsﬁips, tor-
pedoes, projectiles, alrplane fuselages, pitot tubes, etc. Since it is well
known that for a streamlined body, moving in the direction of the axis of sym-
metry, the actual flow is very closely approximeted by the potentlal (inviscid)
flow about the body,® numerous attempts have been made to find a bonvenient
theoretical method for obtaining numerical solutions of the potential flow
problem.

At first the problem was attacked by indirect means. In 1871
Rankine® showed how one could obtain families of bodies of revolution of known
potential flow, generated by placing several point sources and sinks of vari-
ous strengths on the axis. This method was extended and used by D.W. Taylor®
in 1894 and by G. Fuhrmann® in 1911. The latter also constructed models of
the computed forms and showed that the measured distributions of the pressures
over them agreed very well with the computed values except for a small region
at the downstream ends. More recently, in 1944, the Rankine method was em-
ployed by Munzer and Reichardt® to obtain bodies with flat pressure distribu-
tion curves, and a further refinement of the technique was published by
Riegels and Brandt.’ Most recently the indirect method has been employed to
obtain bodies generated by axisymmetric source-sink distributions on circum-
ferences, rings, dilsks,and cylinders. Thils development, which enabled bodies
with much blunter noses to be generated, was initiated by Weinstein' in 1948
and continued by van Tuyl8 and by Sadowsky and Sternberg9 in 1950.

A method of solving the direct problem, i1.e., to determine the flow
over a given body of revolution, appears tc have been first published by
von Kdrmdn!® 1n 1927. von Kdrmén reduced the problem to that of solving a
Fredholm integral equation of the first kind for the axlal source-sink distri-
bution which would generate the given body, and solved the integral equation
approximately by replacing it with a set of simultaneous linear equations.
Although this method has limited accuracy and becomes very laborious when, for
greater refinement, a large number of linear equations are employed, neverthe-
less it 18 the best known and most frequently used of the direct methods. A
modification of the von Kirmdn method was published by Wijngaarden'! in 1948,

‘References are listed on page 59.
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An interesting attempt to solve the direct problem was made by
Weinig!® in 1928. He also formulated the problem in terms of an integral equa-

_tionffor en axial doublet distribution which would generate the given body,

and employed an iteration formula to obtain successive approximations. Since
the successive approximations diverged, the recommended proceduﬁe was to extra-
polate one step backwards to obtain a solution. ,

In 1935 an entirely different approach, in which a solution for the
velocity potential was assumed in the form of an infinite linear sum of orthog-
onal functions, was made by Kaplan'® and independently by Smith.}* The coeffi-
clents of this series are given as the solution of a set of linear equations,
infinite in number. In practice a finite number of these equations is solved
for a finite number of coefficients, and Kaplan has shown that the approximate
solution thus obtained is that due to an axial source-sink distribution which
is also determined. A simplification of Kaplan's method by means of addition-
al approximations was proposed by Young and Owen'® in 1943,

It appears to be generally agreed, by those who have tried them,
that the aforementioned methods are both laborious and approximate. Thus, ac-
cording to Young and Owen:!® '

"In every case, however, the methods proposed are laborious

to apply, and the labour and heaviness of the computations

increase rapidly with the rigour and accuracy of the proc-

ess. Inevitably, a compromise 1s necessary between the

accuracy aimed at and the difficulties of computation. All

the methods reduce, ultimately, to finding in one way or

another the equivalent sink-source distribution, and it is

this part of the process which in general involves the

heaviest computing."

Purthermore, a fundamental objection is that only a special class of bodies of
revolution can be represented by a distribution of sources and sinks on the
axis of symmetry. According to von Kdrmdn:!®

"This (representability by an axial source-sink distribu-

tion) 1is possible only in the exceptional case when the

analytical continuation of the potential function, free

from singularities in the space outside the body, can be

extended to the axis of symmetry without encountering

singular spots.”

The dissatisfaction with these methods 1s reflected by the continuing attempts
to devise other procedures.

A new method published by Kaplan!® in 1943 is free of the assumption
of axial singularities and appears to be exact in the sense that the solution
can be made as accurate as desired, but the labor required for the same ac-
curacy appears to be much greater than by other methods. The application of

the method requires that first the conforzal transformation which transforms
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the given meridian profile into a circle be determined. The velocity poten-
tial is then expressed as an infinite series whose terms are universal func-
tions involving the coefficlients of the conformal transformation. !Kaplan16
has derived only the first three of these universal functions.

Cummins of the David Taylor Model Basin is developing a ﬁethod based |
on a distribution of sources and sinks on the surface of the given body. This
method is also exact, but the labor involved in its application has not yet
been evaluated. ‘

Another exact method, based on a distribution of vorticity over the
surface of the body, is being developed by "r. Vandry of the Admirélty Re-
search Laboratory, Teddington, England. The methods of both Cummins and
Vandry lead to Fredholm integral equations of the second kind, which can be
solved by iteration.

The present writer has developed two new methods, an approximate one 1
in which an axial doublet distribution is assumed, and an exact one based on |
a general application of Green's theorem of potential theory. Both methods
lead to Fredholm integral equations of the first kind for which a solution by
iteration has been discussed by the author.!” Indeed, the consideration of
this iteration formula was initiated in an attempt to find more satisfactory
solutions of the integral equations of vor. Karmanl’ and Weinig.l!2 These new
methods will be presented, and, by application to a particular body, compared
with other methods from the point of view of accuracy and convenience of
application.

-

FORMULATION OF THE PROBLEM

We will consider the steady, irrotational, axially symmetric flow
of a perfect incompressible fluid about a body of revolution. Take the x-axis
as the axis of symmetry and let x, y be the coordinates in a meridian plane.
Denote the equation of the body profile by

Y -V 7 N

¥y = f(x) (1]

Since the flow is irrotational there exists a veloclity potential ¢ :
which, for axisymmetric flows, depends only on the cylindrical coordinates ‘
X, y and satisfies Laplace's equation in cylindrical coordinates i

2 (532)+ 2 (139 o s
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Also, since the flow 1s axisymmetric, there exists a Stokes streamsfunction
Y{x, y) which 1s related to the velocity potential by the equations

%f=-y%§. %-ygf | : (3]

I
<

It 1s seen that Equation (2] may be interpreted as the necessary and suffi-
clent condition insuring the existence of the function . As is well known,
Y 18 constant along a streamline and, considering the surface of revolution
generated by rotation of a streamline about the axis of symmetry, 2wy may be
considered as the flux bounded by this surface. On the surface of the given.
body and along the axis of symmetry outside the body we have y = 0. y satis-
fles the equation

9%y 9%y _1 9y
ox? ¥ oy2 YO at

which is obtained by eliminating ¢ between Equations [3].

The velocity will be taken as the negative gradient of the velocity
potential. Let u, v be the velocity components in the x, y directions, Then
by (3], we have

u--g--%g—f (5]

19
For a uniform flow of velocity U parallel to the x-axis we have
$=-Ux, y= -% uy® (7]

The boundary condition for the body to be a stream surface may be
written in various ways. If the body 1s stationary the boundary condition is

w(x,Vfx] =0 (8a)

or, equivalently,

(‘ddﬁ)s =0 ~_ [8v)

s
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6

where the derivative in [8b] is evaluated on the surface of the body in the
direction of the outward normal to the body. If the body is moving with veloc-
ity V parallel to the x-axis the boundary condition becomes

)
I

(%n't)s = -V cos 8 . (9]

where 8 is the angle between the outward normal to the body and the x-axis.
It is desired to obtain a solution of [2] or (4] which satisfies the
boundary conditions {7] at infinity and [8] or [9] on the body.

METHOD OP AXIAL DISTRIBUTIONS
SOURCES AND SINKS

The potential and stream functions for a point source of strength M
situated on the x-axis at x = t are

p=2  yam(n+ XL [10)
vhere )
r = (x-t)2+y (1)

If the sources are distributed plecewise-continuously along the x-
axis between the points a and b (see Figure 1) with a strength u(x) per unit
length, the potentlal and stream functions are

¢ = j'l@ at [12]
P = f““‘)(“ + l;—t) dat [13)

Figure 1 - The Meridian Plane
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As is well known, Rankine bodies are obtained by superposition of
these flows with a uniform stream 80 &8 to obtain a dividing streamline begin-
ning at a stagnation point. Without loss of generality we may suppose this
uniform stream to be of unit magnitude. This dividing streamline is the pro-

file of the Rankine body for which, by (7], the stream function. is

v = -%-y’ + J“ w(t) (-1 +"—;"‘) at (4]

The boundary condition, Equation (8a], then gives as the implicit equation for
the body
b x-t 1
Ln(t)(d sEb)at - 50 [15]

where now y2 = £(x) and r® = (x-t)® + f(x). In order to obtain a closed body
the total strength of sources and sinks must be zero, 1l.e.,

I:u(t) dt = 0

In this case [15] becomes

[an o -3y (1581

In general [15a] cannot be solved explicitly for f(x) when u(t) is
given. A practical procedure for obtaining f(x) for a given x 1s to evaluate
the integral numerically for various assumed values of f(x) and to determine
the value which satisfies [15a) by graphical means.

When f(x) is prescribed [15a] may be considered as a Fredholm inte-
gral equation of the first kind for determining the unknown function ul(t).
This equation will not be treated. Indeed it will be shown that, when con-
tinuous distributions are considered, it 1s a special case of the more general
equation for doublet distributions which will now be derived.

DOUBLET DISTRIBUTICNS

Let m(x) be the strength per unit length of & continuous distribu-
tion of doublets along the x-axis between the points a and b (see Figure 1).
The potential and stream functions may be taken as

¢ = I.I(t) -t—-;g-dt o [16]




L

and

b
v=v| mit) g [17)
s I
The stream function for a Rankine flow now becomes )
)
1
¢;=-§y2+y2_[.ﬂir-§-zdt (18]

Hence the boundary condition, Equation [8a], gives

bm(t 1
L“‘?’dt-g [19]

Here again Equation [19] may be considered as an implicit equation for the
Rankine body when m(t) is given, or as a Fredholm integral equation of the
first kind when the body profile y° = f(x) 1s prescribed.

In order to show the relation between the source and doublet distri-
butions in Equations {15a) and {19], integrate by parts in [19]. We have

[ ]
dm x-t
*Lar;-“

J:m(t) -E dt = m(t)---E-;lc-

Hence [19] may be written as

[ J
4y b-x dm x-t 1
wie) £2| 4 [[R Kraag (20}

The interpretation of Equation {20] is that a doublet distribution of strength
m is equivalent to a source-sink distribution of strength dm/dt together with
point sources of strength m(a) and -m(b) at the end points. Hence source-sink
distributions are completely equivalent only tc those doublet distributions
which vanish at the end points. This justifies the remark in the previous
section that the integral equation for the doublet distributions is more gen-
eral than that for the source-sink distributions.

MUNK'S APPROXIMATE DISTRIBUTION

Munk!® has given an approximate solution of Equation [19] for elon-
gated bodies. His formula may be derived as follows. At a great distance
from the ends of a very elongated body, the integrand of [19], m(t)/r®, will
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peak sharply in the neighborhood of t = x. In the range of the peak, in which
the value of the integral is principally determined, m(t) will vary little
from m(x). Also, only a small error will be introduced by replacing the lim-
its of integration by -e and +e. Hence, as a first approxj:.mation to a solu-
tion of [19], try

7 *ﬂgstft»—.g:w.‘wf ek

I

. “at _ 1
; m, (x) il 1 (21]
» We obtain 1

; m, (x) --f‘—yz (22]

At

a distribution proportional to the section-area curve of the body. This ap-
proximation was independently derived by Weinig'? who employed it as the first
step in a divergent iteration procedure. It has alsoc been rediscovered by
Young and Owen'® and Laitone® who have shown the accuracy of the approxima-
tion for elongated bodies by several examples.

It 1s apparent from its derivation that [22) also gives the asymptot-
i¢c radius of the half-body generated by a constant axial dipole distribution
extending from a point on the axis to infinity. It is readily seen that this
distribution 1s equivalent to a point source at the initial point.

As a refinement to Munk's formula, Weinblum®® has used the approxi-

mation
m, (x) = Cy* (23]
: where C is a factor obtained by comparison of the distributions and section-
Y area curves of several bodles. Weinblum's factor beg;s an interesting rela-
& tion to the virtual mass of the body. This is seen by considering the expres-
‘ sion for the virtual mass k ,4 1n terms of the mass of the displaced fluid 4
; and the totality of the doublets. f mdx,21:22,23
&
X

[}
k4 = u,,j mdx - 4 [24)
e

where k, 1s designated the longiéudinal virtual mass coefficient, and p is the
density of the fluid. But, from [23],

“tpL.lxdx - upcj'wy'ax = 4ca
]




—_—— e 4 e e e g s e e e — o — S

10

since, for elongated bodies, a and b very nearly coincide with the body ends.
Hence

c =-ﬂ-(1 + k) ' [25]

1

In practice an approximate value of k1 may be taken asvthat of the’
prolate spheroid having the same length-diameter ratio as the given body. The
values of k, for a prolate spheroid may be computed from the formulaZ*

. atn(x + 377) - VTS

k (26]
Looa2vaZ3 - an (A+ Vx"‘-ﬂ
where A is the length-diameter ratio. Hence
s/2
= — : 27
A2 VAT - Aln (x + V3E-1)

The values of k, versus A have also been tabulated by Lamb® and graphed by
Munk.2®

END POINTS OF A DISTRIBUTION

A difficulty in determining the doublet distribution from Equation
(19] is that the limits of integration, a and b, are also unknown. In the
method of von Kirmén!® the end points are arbitrarily chosen; Kaplan'® takes
the end point of the distribution midway between the end of the body and the
center of curvature at that end.

Kaplan based his choice on a consideration of the prolate spheroid.
Thus the equation of the spheroid of unit length and length-diameter ratio A,
extending from x = 0 to x = 1, 18

V- l_!(x - x2) (28)

The radius of curvature at x = 0 is then*l-;. The exact doublet distribution,
however, extends between the foci of the spheroid which are situated at dis-
tances

A-NT 5
2A

from the end points. Hence the error in Kaplan's assumption, '

ot wene il
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)

diminishes rapidly with increasing A. ;

For ths half-body generated by a constant doublet distribution (a
point source), Kaplan's assumption gives a poor approximation. Let a? be the
strength of the distribution. Then it can easily be shown from [19]) that the
source is at a distance a from the end of the body (stagnation point), and
that, if the origin is chosen at the latter point, the equation of the half-
body 1s ‘

GO R IO 1 2

Hence the radius of curvature at the endzia-%a, so that Kaplan's assumption
for the start of the distribution gives-ga. This 18 in error by-%a.

An approximate method for determining the end points of a distribu-
tion and its trends at the ends 1s given in Appendix 1. The given profile 1is
assumed to extend from x = 0 to x = 1 and to have the equation

Y = ax + aaxa + asx’ + ... (30]

The doublet distribution is assumed to extend from x = a to x = b, so that
0<a<«b< 1, with a near 0 and b near 1, and to have the equation

m(x) = ¢, + ¢, x + e x* + ... (31)
Only the trends of the distribution near the origin are discussod in Appendix

1. It is clear, however, that by means of & linear transformation the equa-
tion of the given profile can be expressed so that the end points of the body

exchange their roles. Hence the results in Appendix 1 can be applied to either

end of the body.
The method of Appendix 1 consists essentially of expanding the inte-

gral in [19] about the origin and equating powers of t on the two sides of the

eguation to obtaln a series of equations in the unknowns a, Coo S0 Cpv vvv -
By applying the first four of these equations an approximate solution is ob-
tained in the fornm

8= (32)

ot
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c,D = -4a? [30® - 370® + 120a - 96 + 24a, + 2Ha(of - 150 + 16 - ba )| [33]
¢,D = a[15a° - 1686 + 512 - 384 + 96a, + UBa(50f - 2Ua + 24 - 6a2)] [34]

¢,D = -4[(a - 1) (a - 1) + 4, ' 35)

where

D = 2(9a® - 94a® + 272a - 192) + 8[(« - 4)2(a - 1) + uaz]ln"a 3

+ 96a2 - 2a(15a® - 264e + YUlUe - 768) - 38Uaa, | > [36]
- 96a2(5¢° - 2Ua + 2U) + 576aaaa )
and a 18 a root of the seventh-degree polynomial
A+aB+a,C+aads+ a:E + ala:F +aal+ aiasﬂ =0 (37)
where
Aa) = ala - 4)2(5a® - 83a® + 28807 - 368a + 128) )
Bla) = 72(a - 4)2(50° - 250 + 40a - 16)
Cla) = Yala - 4)(53a® - 148a + 128)
D(a) = -288(a - 4)(5e® - 16a + 16)
> [38]

E(a) = -96a(3a - U4)
Fla) = 1152(2a - 3)
6(a) = 48a(3a - 8)

Hla) = -1152(a - 3)

The solution gives, for the initial doublet strength at x = a,
2 ;
m(a) = [l - ¥)ia® - 120 + 16) + U8ala - U)(a - 2) + 16a, - 96aa )] [39]

¥When a, a, a,, ... are all small in comparison with unity, an ap-
proximate solution for a is

FE P

PR = s
+
\
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1 '
? a=U4+a, -5VEa, ifa 20 (40]
%
‘ a=U+a, ifa <O ; [(41]
% and, to the same order of approximation, ,
§ 1 8, 3; a,, af )
% m(x)=r(1 t3 +3 lnr)(-u—-i-yz (2]
?r and ‘
v a a a '
¢ 1 1 1 ‘
m(a) =§(1 +35 + 2—2 In h—)az}’alas, ir a, 20 [43]
[
; m(a) =0, ifa /<0 (44 )
H
o It is seen that Kaplan's assumption that @ = 4 gives the principal
i term of the solution in [40] or [¥1]. The form [42] immediately suggests a
k modification and refinement of the Munk-Weinblum approximation, Equation [23],

which will be conslidered in the next section.

A graphical procedure for finding the roots a of Equation [35] is
- also given in the Appendix. For this purpose the functions A(a), Bla),... Hla)
are tabulated in Table 10.

ERAFe

£ AN IMPROVED FIRST APPROXIMATION

According to its derivation the Munk approximation could be expected
to be useful only at a distance from the end points of a distribution. It was
seen, howover, Equaticn [42], that under certain circumstances a distribution
which was a suitable approximation for the nose and tall of a body also ap-
peared as a generalization of the Munk-Weinblum approximation, (23]. This
suggests a procedure for obtaining an improved approximate distribution.

it is desired to obtain a distribution m(x) which satisfies the fol-

) lowing conditions:

(a) m(x) assumes known values m, and m, at the distribution limits a and
b, 1.e.,

m(a) = m, m(b)=m (¥5]

(b) m(x) 1s nearly equivalent to the Munk-Weinblum approximation [23] at
a distance from the distribution limits, 1i.e.,

mla) ®Cy® for a K x&KbD o
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(c) mi(x) satisfies the virtual mass relation [24] which may be written
in the convenient form

)

] 1 1 ;
[mixax = 0 + ) [ y2ex Ty

It is readily verified that Condition (a) is satisfied by the
distribution

m(x) = Cy* + e + ex P47
where |
0 = Tig [bm - 8m, + C(afy - be,)] [48)
and
- 3‘_—3[% - m, + C(fy - 1)] (49]

If the linesr term e, + € X in (47]) 18 small in comparison with m(x) at a dis-
tance from the ends, then Condition (b) is also satisfied. Finally, Condition
(¢) can be satisfied by a proper choice of C in (47]. This is accomplished by
writing m(x) in the form

m(x)-c(;r'-%?:t -2t )+%—5n +rlb

substituting it into Equation [46], and solving for C. We obtain

]‘-1+k I yidx - -a)(n‘ﬁ
I ylax - -5(b~n)(t o)

(50]

SOLUTION OF INTEGRAL EQUATION BY ITERATION

Now that we have derived a good first approximetion to the doublet
distribution function in the integral equation [19], it would be very desir-
able to apply it to obtain a second, closer approximation. This can be accom-
plished by means of the iteration formula which we will now derive.

Let m, (x) be a known first approximation and y, (x) the corresponding
values of the stream function g on the given profile y* = f(x). Then, from
Equation [18],

e — e . - - - " . - - e s v
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¥, (x) = -x [51]

l
Thus ¥, (x) is a measure of the error when m, (t) is tried as a solution of the

integral equation [19]. If m(t) 1s a solution of [19], Equation {51] may be
written in the form

b m, (t)-m(t) |
v, (x) = f(x)I '————-————- dt ; [52]

But, on the same assumptions as were used to derive Munk's approximate distri-

bution, Equation [22], we obtain as an approximate solution of the integral
equation [52]

m,(x) - m(x) = 5 ¥, (x) (53]

or, denoting the new approximation to m(x) by ma(x).

m,(x) = m (x) -3¢ (x) [54)
Hence, from [51]
‘m_(t)
m,(x) = m (x) +% f(x)[-;_— -I 21;— dt] (551
e r

Since the foregoing procedure can be repeated successively, we obtaln the iter-
ation formula

(t
m,q (x) = m(x) +—r(x)[- [ —1—) ac] [56]

and

mi+l(x) - mi(X) = '%-wi(x) (57]

It is seen that ¢ is the value of the stream function on the given
profile corresponding to the 1th approximation m, (x) and hence serves as a
measure of the error when mi(t) is tried as a solution of the integral equa-
tion [19]. ,

Although successive approximations to m(x) may be computed directly
from [56], an alternative form, which 1is both more convenlent and more signif-
icant, will now be derived. Prom [56] we may write

e e o
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m (x) = my (%) +3 f(x)[ j'-li—) dt] ~ [56a]

Hence, deducting [56a] from [56] and making use of [57], we get '

¥, _4(t)
uyx) = vy jlx) -3 el [ 25—t (58]
Also, from [57) we obtain
) :
my,y (%) = my(x) -5 57y,(x) [59)

=1

'rhus.gin order to obtain m1+1(x), we first assume an ml(x). then determine
¢ (x) from [51]. Y, (x), Yy (x), ... can then be successively obtained from
[58]. and finally -1+1(x) frOI (59].

It has been stated that the magnitude of ui(x) is a measure of the
proximity of m, (x). This property of vi(x) can be given a geometrical in-
terpretation. COrrosponding to the distribution ni(x) there is an exact
stream surface on which the stream function wi(x, y) = 0. Let Ani be the
distance from a point (x, y) on the given body to this exact stream surface,
measured along the normal to the given body, positive outwards. Let ug be
the tangential component of the flow along the body. Then we have

1 “1("”) 1 A’i(an)
Uty T Bn T Ty Am

«

But Ay = "'r(x)' since ﬁitx. y) = 0 on the exact stream surface. Hence

ﬁi(x)

4n, = yo, (60]

Since, for an elongated body, ug = 1, except in the neighborhood of the stag-
nation points, it is seen that y,(x) enables a rapid estimate to be made of
the variation from the desired profile of the exact streem surface correspond-
ing to -1(x). This is an important property because it can be used to monitor
the successive approximations. Thus, the sequence ti(x) can be terminated
when ‘“1 becomes uniformly less than some specified tolerance; or, since there
18 no assurance that the infinite sequence vi(x) converges, the sequence can
conceivably give useful results even without convergence if it 1is continued as

p——
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long as An1 decreases on the average, and is terminated when the error begins
to increase and grows to an unacceptable magnitude at some point along the
body. The strong similarity between these remarks and the discussion follow-
ing Theorem 2 of Reference 17 should be noted. !

There is also a strong similarity between the iteration formula of
Reference 17 whose convergence was thoroughly discussed, and the present equa-
tion [56]. An essential difference between the iteration formulas is that the
former employs the iterated kernel of the integral equation, the latter does
not, so that the convergence theorems of Reference 17 are not applicable. Nev-
ertheless, it is proposed to use the form in [56] (or the equivalent iteration
formula [58]), for the following reasons:

a. The labor of numerical calculations would be greatly increased by
iterating the kernel, and even then only convergence in the mean would be
guaranteed (Theorem 4 of Reference 17).

b. The physical derivation of Equation [56] indicates that at least the
first few approximations should be successively improving.

¢. The successive approximations are monitored so that the sejuence can
be stopped when the error is as small as desired or, in the case of initial
convergence and then divergence, when the errors begin to grow.

VELOCITY AND PRESSURE DISTRIBUTION ON THE SURFACE

When an approximate doublet distribution ni(x) has been obtained,
the velocity components u, v can be computed from the corresponding stream
function (18]

™o
b (x7) =y [I 1 gt - %] (61]

from which, in accordance with Equations [5) and [6],

us=14+ J"(%{_'__:_'.) m, (t)dt (62]
and tx
ve=3y J:.;-;- n,(t)at (63)

R S =
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On the given surface we have, from [61],

t .
J-b_ﬂ-l_ji—! at =%+ wi(X) [6'4]
e pd ¥2(x) f
where now
r? = (x-t)% + £(x) , (651]

Differentiating [64] with respect to x gives

b vi(x) 29, (x)y'(x)
X0 o (t)dt = —— - 2 66
BJ; s ¥ (x) ¥°(x) e
Hence, from [62] and [64] we obtain
bmi(t) Zwi(x)
= it - 6
wesy [ — [67)
and, from [63), [66], and (67],
]
(
v e uy'(x) + ¥yx) (68)

y(x)

where the primes denote differentiation with respect to x. Equations [67)
and [68] are the desired expressions for u and v. If the approximation mi(t)
is very good, the contributions of the error function wi(x) should be very
small. It is interesting to note that the form of Equation (68] shows the
deviation of the resultant velocity from the tangent to the given body.

Bernoulli's equation for steady, incompressible, irrotational flow
with zero pressure at infinity now gives the pressure distribution p,

%-‘l-(u’+v‘) (69]

where q is the stagnation pressure.

.
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NUMERICAL EVALUATION OF INTEGRALS

In order to perform the iterations in Equations [56] and'[58] and to
compute the velocity distribution it will frequently be necessary to evaluate
integrals of the form '

b [
j n{t) gt ana [ Mt) g¢
s pd s p°

where

r® = (x-t)2 + f(x)

Because in this form these integrals peak sharply in the neighborhood of t = x,
especially when the body is elongated, they are consequently unsuited for nu-
merical evaluation.

A more suitable form can be obtained by means of the following trans-
formation. Let (x, y) be the coordinates of a point on the body, t the ab-
scissa of a point on the axis, 6 the angle between a line joining these two
points and the x-axis; see Figure 1. Then

X -t =y(x) cot @ (70]

We may now transform the integrals so that 6 becomes the variable of integra-
tion. Then

f_f m(t)dt = I‘n(t) sin ¢ Ao (7]
rd .
and
b L4 , 1
L n(t) = I n(t) sin® ¢ 46 (72]
« P> .
where
a = arctan -i%, 8 = arctan ;!3 (73]

An alternate procedure, which eliminates the peak without a trans-
formation of variables, is the following. We have

rﬁ a(t)at = ré[l(t)-l(x)] at + a(x) f§ at.
s
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and

LI o

"X n(t)at = J:-Z%[m(t)-m(x)] dt + m(x) _f; at

Hence

*

J':.S m(t)dt = f-g[m(t)-m(x)]dt + m(x)(cosa - cosf)  [T1a]

(]
rs

"3 ne)at = [ L fm(e)-nix)]at
J: m I r5[m m(x]
+ m(x)[cos a -cos B --;— (cosda - cos’p)] (72a]

Gauss! quadrature formula 18 a convenlent and accurate method of
evaluating these integrals. The formula may be expressed in the form

1
Lp(e)de = é; R 4Ple,) (74]

where the ‘1 are the zeros of Legendre's polynomial of degree n and the Rni
are weighting factors. These have been tabulated®* for values of n from 1 to
16. These numbers have the properties

Rnt = Baon-te 80 &p, = 4, n-141 (75]

The value of the integral given by Formula [74) is the same as could be ob-

tained by fitting a polynomial of degree 2n-1 to F(x). The values of Rni and
¢, are tabulated in Table 1 for n = 7, 11, and 16.

When the limits of integration are @ and B, as in Equations (71)
and [72), Gauss' formula becomes

J"r(o)do -%—2121' R P(o,) [76)

where

o, G2, 122 )

/1
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TABLE 1

ABSCISSAE AND WEIGHTING FACTORS FOR GAUSS'!' QUADRATURE FOR?IULA

n=7 n="m n= 16
i
& Ry & Ry & Ry

1| -0.949108 0.129u485 -0.978229 0.055669 -0.989401 0.027152

2|  .T415: .219705 .887063 .125580 QU575 1 .062254

3| -0.4058u5 .381830 .730152 .186290 .865631 | .095159

4 0 0.417959 .519096 233194 755404 124629

518, = ~&,_141|Ry = Ryo14 -0.269543 .262805 .617876 . 149596

6 0 0.272925 458017 .169157

7 & = -4 yi1|Be = Rpoin 281604 .182603

8 -0.095013 0.189451
8 = ~dho1n Ry = Bragn

ILLUSTRATIVE EXAMPLE

The foregoing considerations will now be applied to a body of rev-
olution whose meridian profile is given, for -1 $ x §1, by

y2 = £(x) = 0.04(1 - x*) (78]

The body 1s symmetric fore and aft, has a length-diameter ratio A = 5, and a
prismatic coefficient

1
= [0 -xax =080 (191

]
By applying to [78] the transformation
x=2¢ -1,

y=29 (80)

We obtain the equation for the geometrically similar body of unit length, for
0S¢ S,

n% = 0.08(¢ - 3¢% + Ug® - 2¢*) = 0.088(1 - &)(2¢* - 2¢ + 1) (81]

s -
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We will also need the slope of the profile which, from (78], is

S fi(x) _ _0.4x®

I
y 2y (1-x4)¥/2 !

(82]

The profile and f(x) are graphed in Figure 2.

+002

ol x

Figure 2 - Graphs of y(x) and y?(x) for y?(x) = 0.04(1 - x*)

First let us find the end points of the distribution. We have, from
(81], a, = 0.08, a, = -0.24, ay = 0632' The approximate formula [40] then
glves a = 3.68 or 3.84, whence a = 2 = 0.0217 or 0.0208. An examination of
the complete polynomial [37) with the aid of Table 10 shows that its zeros oc-
cur at @ = 3.65, 3.85, 12.1. 1In the application of Table 10 to determine these
roots the regions of possible zeros should be determined by inspection, the
values of the polynomial in these regions calculated from Equation {37) and
Table 10, and then graphed to obtain the zeros. It 1s seen that in the pres-
ent case the approximate formula [40] would have been sufficiently accurate
for the determination of the roots near @ = 4. The solution of the complete
polynomial equation will always yield an additional large root, corresponding
to the large root of Equation [131] of the Appendix; in general, however, this
root should be rejected since as will be shown, the initial doublet distribu-
tion corresponding to it is less simple than for the roots near a=14,

.
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The initial behavior of the distributions corresponding to each of
the three roots, as determined from Equations [33] through [36], and [39], is
shown in Tatle 2. It is seen from the table that the distribution for a = 12.1
begins with practically a zero value for m(a), with a small negative slope and
with upward curvature. Since the distribution curve cannot continue very far
with upward curvature, there must be an inflection point nearby. In contrast,
the distribution corresponding to the other two roots begin with positive
slopes and downward curvatures and hence must be considered simpler. Further-
more, the distribution for the first root 1is considered simpler:than for the
second since the distribution curves are practically identical except that,
for the second root, the curve is extended a distance 4a = 0.0011, in the
course of which m{a) changes from a positive to almost a numerically equal
negative value. If we take the point of view that the positive and negative
values of this extension counterbalance each other, the curve without the
extension, corresponding to the first root, must be considered the simplest.

TABLE 2
Characteristics of Initial Distribution

a a m(a) c, c,

3.65/0.0219|+0.0000216]/+0.0375|-0.103
3.85/0.0208-0.0000191[+0.0376|-0.109
12.1 |0.0066]+0.0000008|-0.0064}+0.35

Hence, for the purpose of obtaining a first approximation, we will
assune a = 3.65 and, correspondingly, 8 = 0.022, m(a) = 0.000022. Often, as
in this case, the labor of obtaining a and m(a) can be considerably reduced
by using the less exact equations (40) through (4¥] instead of (37] through
(39]. Since, as will be seen, the iteration formulas rapidly improve upon the
first approximation, great effort should not be expended to determine an
initisl value for m(a).

The values ¢ = 0.022 and m(a) = 0.000022 have been derived for the
profile in the ¢, n-plane. The corresponding values in the x, y-plane are
2 = -0.956 and m, = 0.000088. By symmetry we also have b = -a, n = m

A first approximstion can now be obtained from [k7]. (48], [k9]. and
(50]. Since A = 5.0, we have k, = 0.059. Also, from (78]: £ = 0. 00659,
[y'ax = 0.0640, j’_'y'dx - 0.0637. Hence from [50], C = 0.328. Then, from (48],
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& = m, - Cfy = -0.00207; from [49], e = 0. Pinally we obtain from [47]

m, (x) = 0.328y% - 0.00207 ) (83]

We can now apply Equation ([51) and the iteration formula [58] to ob-
tain the .sequence of functions wi(x). Let us suppose that it is desired to
obtain a distribution mi(x) whose exact stream surface deviates from the given
surface by less than one percent of the maximum radius, 1i.e., 4n < 0.002.

Then, by [60], the sequence wi(x) should be continued until ¥ (x) < 0.002 Vf(x)
for a§ x S b, unless the error, as represented by p(x), begins to grow before
the desired degree of approximation is attained. In the latter case the best
approximation attainable would fall short of the specified accuracy.

The integrations in [50] and [51] may be carried out in the form
[(71] in terms of 6 defined in [70]. For a fixed (x, y) on the given profile,
a and 8 are first computed from [73]. Then, to apply Gauss' quadrature formu-
la [76], the interval is subdivided at the points OJ given by (77] and the
integrands evaluated at these points. The corresponding values of t at which
m (t) in [51] or w1-1(t) in [58] 1s to be read are, from [70],

ty=x -y cot o (70a])

Since the values t, and sin @, are used repeatedly in the successive itera-
tions at a given (x, y), these should be stored in a form convenient for
application.

The calculations for obtaining the integration limits @ and 8 for
several values of x are glven in Table 3. The values of ¢, from [77], and the
corresponding values of R, sin 6, for application of the Gauss 11 ordinate
formula, and the values of tJ from (70a] for each x are entered as the first
three columns in Tables 5a through 5h, in which are given the calculations for
¥, (x).

In order to compute ¥, (x), m,(t) 1s computed from [83], then
mR sin 6 is obtained. These are tabulated in Table 5. QGauss' formula then
gives J'nl sin6de. Q(x) is then obtained from (51); its graph is given in
Figure 3. It is important to note that “x(t) is obtained by calculation,
rather than graphically, in this operation. This procedure is recommended
since it gives greater accuracy in a critical step. In the subsequent opera-
tions on the $'s considerably less percentage accuracy is required, since the
¥'s are of the nature of first differences between the m's, so that graphical
operations are sufficiently accurate.
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As a check on the accuracy of the integration, wl(o) was also eval-
uated by two other means, with the following results:

From Gauss 7-ordinate formula ¢, (0) = 0.001258
From Gauss 11-ordinate formula ,(0) = 0.001243 '
From exact integration wl(o) = 0.001243

It is seen that the 7-ordinate formula introduces an error in the fifth deci-
mal place. :

The first step in the determination of ¢E(x) is to read @he values
of ¥, (t) from the graph, Pigure 3. ¥R sin ¢ and f% sin @ d 6are then ob-
tained. wz(x) is then given by [58] and graphed in Figure 3. Repeated
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Figure 3 - Comparison of Error Functions ¥(x) from ,
Iteration Formula and von n Method
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application of this procedure gives ¥, (x) and !I' (x) which are also graphed in
Pigure 3. The sequence 1s stopped at w (x) since :[o has increased appreciably
over y, at x = -0. 956. )

Hence, from (59], we have the approximate distribution

m (x) = m (x) - 5[ (x) + 9, (x) + g (x)] [84]

to which ql: (x) is the corresponding error function. The distarice An between
the stream surface for m, (x) and the given profile is seen to be very small;
the largest error, w‘ = -0 00007 at x = ~0.956, gives a 4n of about one per-
cent of the maximum ordinate. A graph of m (x) 18 given in Pigure 4. For the
sake of comparison the curves for m, (x) and the original Munk approximation
Ef(x) are also shown.
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Table 4 shows the calculations for obtaining the velocity components
u, v from [67] and [68], in which the integrals have been evaluated in terms
of the polar angle 6, according to Equations [71], [72], and [73]., Here also
Gauss' 11-ordinate formula 1s used. The values of ¢ and t are again taken
from Table 5; the values of m‘(t) are given by [84], in which the %'s are read
from Figure 3 and m, (t) is given in Table 5.

The pressure distribution can now be obtained from [69]. Graphs of
p/q are shown in Figure 5.

.00
© Direct Velocity Method .
0 Axiol Doublet Distribution Method, Gauss Il Ordinate Quodroture
O Axial Doublet Distribution Method, Gauss 7 Ordinate Quodratu 10.90
x Koplon Method
+ K&rmén Mathod
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0.60
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2
[ q
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l\ 0.20
\ 0.10
K - o
- ’A?‘" - 0.10
2
v ] - — 0.20
Gi0 09 08 07 06 05 04 03 0F o1 o

Figure 5 - Comparison of Values of p/q
Obtained by Various Methods
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ERROR IN DETERMINATION OF p/q

Let Alp/a), Au, Av, and Am denote errors in p/q, u, v, and m. Then,
from [69], we have ?

4% = -2(udu + v 4v)
from [68],
Av = y! Au

and from [67) and [72], except near the stagnation points,

Auzﬁf'sirﬁ 6de = JAm
y2

Hence

g

If now we assume u a 1, y' & 0, y¥* & 4m (Munk's approximation), we obtain

ak x Ao
Thus an error of one percent in the determination of m would introduce an
error of 0.02 in p/q.

In the foregoing example the minimum value of p/q was about -0.20.
Hence an error of one percent in m would have produced an error of ten percent
in the minimum value of p/q. It was found, in fact, that the results with
Gauss' 7-ordinate rule deviated from the values of p/q given by the 11-point
rule by less than 0.003 for the entire body. The T-point rule would have
sufficed if an accuracy of only 0.003 in p/q were required; see Pigure 5.

If greater accuracy 1s desired the integrals can be evaluated in the
forms [71a) and [72a]. If the latter forms are used in conjunction with the
Gauss quadrature formula the values of x should be chosen identical with the
t's required by the Gauss formula. This enables the entire calculations, in-
cluding the iterations and the velocity determinations, to be made arithmeti-
cally, without resort to graphical operations, so that the method becomes suit-
able for processing on an automatic-sequence computing machine. In order to
obtain sufficient accuracy in the integrations and to obtain the velocities
and pressures at a sufficient number of points along the body a Gauas formula
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of high order should be used, say n = 16. For thls reason the procedure that
has been illustrated in detail may be less tedious for manual appllication.

)

COMPARISON WITH KARMAN AND KAPLAN METHODS !

|
In order to compare the accuracy of the Kdrmin method with the pres-

ent one, the error function wk(x) was computed for a distribution derived by
the Kdérmdn method, employing 14 intervals extending from -0.98 £ x £ 0.98.
wk(x) is graphed in Figure 3. It is seen that the errors are mucq greater
than for the present method, especially near the ends of the body .. The oscil~
latory character of wk(x) is imposed by the condition that the stream function
should vanish at the center of each interval. It 1s conceivable that the
amplitude of the oscillations in wk(x) may remain large even when the number
of intervals is greatly increased; i.e., the Kirmén method may give a poorer
approximation when the number of source-sink segments 1s greatly increased.

The pressure distribution obtained by the Kirmdin method is graphed in Pigure 5.

Kaplan's first method® was also applied to obtain the pressure dis-
tribution. Kaplan expresses the potential function ¢ in the form

é=ZAQ ) P ()

where A and u are confocal elliptic coordinates,

Pn(n) and Qn(A) are the nth Legendre and associated Legendre
polynomials, and the

An'a are coefficients to be determined from a set of
linear equations which express the condition
that the given profile is a stream function.

In the present case it was assumed that ¢ was expressed in terms of the first
9 Legendre functions and the An's determined from the conditions that the
stream function should vanish at 9 prescribed points (including the stagnation

points) on the body. The resulting pressure distribution is also shown in
Figure 5.

SOLUTION BY APPLICATION OF GREEN'S THEOREM
GENERAL APPLICATION TO PROBLEMS IN POTENTIAL THEORY

Let ¢ and w be any two functions harmonic in the region exterior to

a given body and venishing at infinity. Then, a consequence of Green's second
identity®’ 1s

ﬂ&%ﬁ' as -Huggds (85]
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where the double integrals are taken over the boundary of the body and dn
denotes an element of the outwardly-directed normal to the surface S. Also
derivable from Green's formulas 1s the well-known expression for:a potential
function in terms of its values and the values of its normal derivatives on
the boundary®

1d¢ , 4,4 1
¢(Q) = und[r dn *t dn r]ds (861
where r is the distance from the element dS on the body to a point Q exterior

to the body.

When a distribution of ¢ or d¢/dn over the surface of the body is
given then [85] may be considered as an integral equation of the first kind
for finding d¢/dn or ¢ respectively, on the surface. If the integral equation
can be solved, [86] would then give the value of ¢ at any point Q of the
region exterior to the body.

AN INTEGRAL EQUATION POR AXISYMMETRIC FLOW

Equation [85]) will now be applied to obtain an integral equation for
axisymmetric flow about a body of revolution. Let y be the ordinate of a
meridian section of the body and ds an element of arc length along the boundary
in a meridian plane. Then we may put

ds = 2my ds (87)

It will be supposed that the body is moving with unit velocity in the negative
x-direction, which 1s taken to coilncide with the axis of symmetry. The con-
dition that the body should be a solid boundary for the flow is that the com-
ponent of the fluid velocity at the body normal to body is the same as the
component of the velocity of the body normal to itself. This gives the bound-
ary condition

%ﬁ = -sin y (88]

where y is the angle of the tangent to the body with the x-axis. Substitution
of Equations [87) and (88] into ([85] now gives

J' y¢a ds = -f yw 8in yds ' (89)

where 2P 18 the perimeter of a meridian section and the arc length s is meas-
ured from the foremost point of the body. v
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Now let us choose for w an axisymmetric potential function and let
v(x, y) be the corresponding stream function. Then A )

w _ dy :
Ydn * ds '

and
[ro48as - op| - ["wgfas

Also let U be the total velocity along the body when the flow 1s made steady
by superposing a stream of unit velocity in the positive x-direction. Then

a¢
U= -ds + Co8 ¥y
Furthermore, we have dx = ds cos ¥, dy = ds sin . Then [89] may be written

oV

P P P
- J‘ v(cosy - U)ds = -f yw dy
0 0 0

or
4

[90)

P P
- [uwas = [Twex - yoay) - gv
(] 0

But, since w and Y are corresponding axisymmetric potentlal and stream func-

tions, we have
Sw_ .
: v3y - -8

Hence ¢dx - ywdy is an exact differential defining a function @(x, y) such
that

-v §2-- [91]

But since also

we obtain from [91]
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which, by comparison with [4), is seen to be the equation satisfied by the
Stokes stream function. Conversely, if @ is a function satisfying (4], it can
readily be verified that the functions w and y de’ined by [92] are correspond-
ing axisymmetric potential and stream functions, i.e., that they éatisfy Equa-
tions [3]. Written in terms of Q, [90] now becomes ;

ﬂw%gds-@-¢%%)

If we choose for Q the stream function of a source of unit strength
situated at an arbitrary point of the axis of symmetry within the body, we
have, from [10],

(92]

P
(]

[

/2
Q= -1+ 553. ra= [(x-t)a + y’]l (93]
Then
o9
2.2

and, since y vanishes at both limits,

P
(2-82)| -2
Hence [93] becomes

[ Uz (x) g . s (9%
° ar

It 18 seen that [94] is an integral equation of the first kind in which the
unknown function 1s U(x) and the kernel is y®/2r3.

In contrast with the integral equations for source-sink or doublet
distributions which can be used to obtain the potential flow about bodies of
revolution, the integral equation [9%4] has two important advantages. The
first is that a solution exists, a desirable condition which is not in general
the case when a solution is attempted in terms of axial source-sink or doublet
distributions. The second advantage is that [94] is expressed directly in
terms of the velocity along the body so that, when U is determined, the pres-
sure distribution along the body is immediately given by Bernoulli's equation
(69]. In the case of the aforementioned distributions, on the other hand, 1t
would first be necessary to evaluate additional integrals, to obtain the ve-
locity along the body, before the pressures could be computed. C
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KENNARD'S DERIVATION OF THE INTEGRAL EQUATION ,
A simple, physical derivation of the integral equation 194] has been

given by Dr. E.H. Kennard. This will now be presented. i
Imagine the body replaced by fluid at rest. Let U be the velocity
on the body. Then the fleld of flow consists of the superpositioﬁ of the uni-
form (unit) flow and the flow due to a vortex sheet of density U.
Now subtract the uniform flow. There remains the flow due to the
vortex sheet alone, uniform inside the space originally occupied ﬁy the body,
of unit magnitude. .

A vortex ring of strength Uds produces at an axial point distant z

from its plane the velpcity
Ve y*Uds
2(y2+22)3/2

where y is the radius of the ring. Let s be the distance of a point on the
body measured along the generator from the forward end, in a meridian plane.
The axial and radial coordinates will then be functions x(s), y(s). The ve-
locity due to the sheet at a point t on the axis will then be

r U(s) y*(8) 45 u 1
° 2r®

where r® = [x(s) - t]* + y®(s) and P 1s the total length of a generator. The
equivalence of this equation with [94] is evident.

A FIRST APPROXIMATION
If we again make use of the polar transformation x - t = y(x) cot @,
(9% ] becomes

" U(x) sin®0de _
v 2 sin[o-¥x))

(95)

When x = t, 6 = 7. PFor an elongated body the integrand in (94 ] peaks sharply
in the neighborhood of x = t, 80 that a good approximation is obtained when
U(x) 1s replaced by U(t) for the entire range of integration. Alsc, y(x) will
be small except near the ends of the body so that the approximation

sin [0« y(x)]* 8in @ cos y(x) ¥ sin @ cos y(t)

ke 1
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will also be introduced. We then obtain from [95] the approxiﬁation

)
U(t) = cos y(t) ! [96]
|
Just as was done in the case of Munk's approximate doublet distribu-
tion we can improve upon this approximation in terms of an estimated longl-
tudinal virtual mass coefficient for the body. For this purpose we will first
derive a relation between this coefficient and the velocity distribution.
Let T be the kinetic energy of the fluid when the bod& is moving
with unit velocity in the negative x-direction. Then

P
2T = -pffqigg 4as = anf yosin yds
0
by [88). Integrating by parts and substituting for dg¢/ds from (93] now gives
P P
27 = -npf ¥ 2 as - npj U(x) y*(x)ds - 4
(] [

where 4 is the displacement of the body. But also, by definition, 2T = kld.
Hence

401+ k) = mo [ Ux) y2(x)as [97]
0

This is the desired relation between k, and U(x).

Now suppose, as a generallzation of [96), that an approximate solu-
tion of the integral equations [94] 1s U(x) = C cos y. If this value is sub-
stituted into [97), we obtain C = 1 + k1' Hence an improved first approxima-
tion to U(x) 1s

U (x) = (1 + k) cos »(x) (98]
Equation [98) gives an exact solution for the prolate spheroid.

SOLUTION OF INTBEGRAL EQUATION BY ITERATION

In order to solve [94] by means of the iteration formula treated
in Reference 17, it would be necessary to work with the iterated kernel of
this integral equation. Since this would entail considerable computational
labor it 1s proposed to try a similar iteration formula, but employirg the
original kernel:

¥

Un+1(t) = U (t) + cos r(t)[1 - IT-1§£§) Un(x)ds] ‘ (991]
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where r? = (x - t)2 + y*(x) and x = x(s).
Here also it 1s convenient to express the iterations in terms of
error functions En(t) defined by

}

p U (x) y2(x) -
E (t) = 1 - J’o —’l-——z;;——-'—-ds ' [100]
or, from [99],
By(t) cos y(t) = Uy, (t) - U () - o]
Hence
n
Uper (8] = U (t) + cos »(t) Z!-:i(t) (102]

i=1
Also, from [99],
= B (x) yi(x) ax

1 R

Enyq(t) = E (t) '?I [ho3])
Zq r

where x , x, are the nose and tall abscissae. Thus, to obtain Un+1(t), we

first obtain El(t) from ux(t) in [100], then E_, E,, ... E, from (103], and

s
finally Un+1(t) from [102].

NUMERICAL EVALUATION OF INTEGRALS

In applying Equations [100) and [103] it will frequently be neces-
sary to evaluate integrals of the form

j"EL{l_!fi}) dx, where r® = (t-x)? + y*(x)

%9 rs

This form, however, is unsuited for numerical quadrature for elongated bodies,
since y2(x) peaks sharply in the neighborhood of x = t. Here, as in the case
of the integrals for the doublet distribution, two procedures are availabdle
for avoiding this difficulty. The first employs the polar transformation [70],
involves several graphical operations, but in general transforms the integrand
into a slowly varying function so that the integral can be evaluated by a
quadrature formula using relatively few ordinates. The second retains the
original variables and eliminates the peak by subtracting from the integrand
an integrable function which behaves very much like the originmal integrand in
the neighborhood of the peak. The numerical evaluation of the resulting inte-
gral on the second method requires a quadrature formula with more ordinates
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than the first in order to obtain the same accuracy, but, since all graphical
operations are eliminated, the second method 1s suitable for processing on an
automatic-sequence calculating machine. !

The result of the polar transformation has efrectively been given
in [95]. We have’

1E(x) y?(x) _ (" B{x) sin®@ cos »(x
Lo—ﬁ-—rs ax L—i—)—-[—,—nﬂ—lsmo,” ae [104]

where

X -t =y(x) cot @ [70]

It is desired to evaluate this integral for a series of values of t. In gen-
eral this can be done with sufficient accuracy by means of the Gauss 7- (or
11-) ordinate quadrature formulas. This gives 7 (or 11) values of @ at which
the integrand needs to be determined for a given t. The value.of x occurring
in the integrand is determined implicitly, for given values of t and 6, by the
polar transformation [70]. 1In practice the 7 (or 11) x's can be obtained
graphically from the intersections with a graph of the given profile of the 7
(or 11) rays from the point x = t on the axis at the angles required by the
Gauss quadrature formula. If greater accuracy is desired, these graphically
determined values of x can be corrected by means of the formula

s
]
4
{

t-x_+ y(x ) cot 6
X=X +—& [105]
g 1-y! (xg) cot 0

in which x8 is the graphically determined value and y' denotes the derivative
of y with respect to x.

Now let us derive an alternate, completely arithmetical procedure
for evaluating the 1ntegralsd. Put

kix, t) = ey HapTe

k'(x, t) = 515' t)
[(x-t)® + g(x))¥*®

where y* = f(x) 1s the equation of the given profile and y* = g(x, t) is
the equation of the prolate spheroid whose ends coincide with the ends of the
given body, and which intersects the given body at x = t. {i.e.;
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(x-x4)(x, -x)
glx, t) = 1(t) m . [106)

The length-diameter ratio A of the spheroid is given by

(t-x )(x!-t)
P f?(t) ' [ho7]

whence the longitudinal virtual mass coefficient kl(t) can be obtained from
[26].

Since U(x) = (1 + k,) cos y(x) 1is an exact solution of [94] for the
prolate spherold, we have

J:?k'(x, t)dx = T:EfTET - [108]

We now obtain, from [98], {100}, and [108]

1+k

_— (109]
1+k1(t)

4k, [
B (6) =1 -2 [ lklx, t) - k0 (x, thlax -
%o
Also [103] may be written in the form

Bt (8) = Eg(t) = 3 [ klx, 6}(By(x) - By(tdlax - Be)f lx, thex
%o (]

But from [98] and [100],

1-E, (¢)
j kix, t)dx = 2 ——-k—
1

Hence we obtain

E (¢
B ,q(t) = —-1-!— E (t) --2-‘[:'&(:. t)[xn(x) - Eh(t)]dx (110]

ILLUSTRATIVE EXANPLE
The present method will now be applied to the same profile [78) as

before. By way of contrast with the semi-graphical procedures previously used,

& completely arithmetical procedure will be employed. v
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The velocity U(t) will be determined at the 16 points along,the body
whose abscissae are ti = 61, the Gaussian values for.the 16-point quadrature
rule, Table 1. Since the body is symmetrical fore and aft, it is necessary to
determine the velocity at only half of these points. Values of y(x), cos y(x)
and kl(t) for these points are given in Table 6. f

In order to apply the Gauss 16-ordinate rule it is necessary to eval-
uate the integrands in [109] and [110] at the 16 Gaussian abscissae x, = ¢
for each of the 8 values of t,. Thus, there are 16 x 8 = 128 values of k(x, t)
and of k'(x, t) to be determined. The matrices KJi = RJk(xJ, ti? and
K'Ji = RJk'(xJ. ti) where the R,'s are the Gauss weighting factors, are given
in Tables 7 and 8, and applied to evaluate El(t) from [109]. E,, E,, and E,
are then obtained from [110]. Us(t) 1s then given by [102] and then p/q by
(69], in the form p/q = 1 - Uz. The arrangement of the calculations and the
results are given in Table 9. The graph of p/q 1s included in Figure 5.

TABLE 6

B 2 o o

Values of y, cos y, and kl(x) for Application of
Gauss 1o0-Point Quadrature Formula

FOLT WRAPE W W g TR TRT WG

x y(x) y'(x) y(x) |cos »(x)| k, (x)

-0.9894009]0.0408548]1.8965483|1.0856 0.4664 10.096382

945750 .0903198|0.T464TEOH[0.6412 .8014 | .093389

8656312 .1324422| .3917981| .3734 .9311 | .088359

J755404U [ 1642411 .2099651] .2070 .9787 | .081862

6178762 .1848527| .1020867| .1017 .9948 | .074689 |

.4580168] .1955501| .0393076] .03932 0.9992 | .067885 jl

.28160361 .1993706| .0089607| .008961 | 1.0000 | .062506 '
=0.095012510.1999919{0.00034310.0003431| 1.0000 |0.059509
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) TABLE 7
f(xL) ,
Matrix of Values* K., =R ;
J1 J - 2 s/2 !
l:(x.j ti) + f(xd)] .

A 1 2 3 y 5 6 7 8
1{0.66460[0.20313]0.02047{0.00338(0.00087|0.00030(0.00013]0.00006
2 .u3536 .68926| .29420| .05513( .01304| .00419| .00170| .00081
3| .28022| .45536| .71850| .32626| .07528| .02120 .oozzz 00349
4] .14389] .21382] .u3ub1| .75882| .34200] .08574] .02 .01067
5[ .07T154 '83665 17306 .u173u .80929] .35023| .09047[ .0299
6 .osg 3| .obu86| .07001] .14347| 4014 .83305 .35410| .0922
g .01 gz .02187| .03008| .0534%| .12148] .38470( .91588 .336&7

.009 .01140] .01502( .02307( .04319] .10644] .37030{ .94729]
9| .00565[ .00639| .00802[ .01137| .01867( .03(26] .09772 .%60 0

10| .00341| .00379| .oo60| .0061 .ogzz .01615| .03403| .09380

11| .00208| .00228| .00270| .o00348] .ook9s| .00787| .oiuus| .03205

12] .00121] .00131]| .00153| .00192] .00262| .00393] .00660| .01280

13| .00062 .00067| .00078] .00096| .00127| .00183[ .00291| .00518

14| .00027]| .00028| .00032| .00039( .00051] .00071| .00108| .00183

15| .00007| .00008| .00009| .00010| .00013| .00018| .00027| .000H

16{0.00001[0.00001 |0.00001 [0.00001 |0.00001|0.000010.00002|0.000
TABLE 8
glx,, t,)
Matrix of Values*® K' =R, - i M | ,
b} S [(xJ - ti)’+g(xJ, t:i)]’fz
J 1 1 2 3 N 5 6 7 8
1(0.66458(0.20016|0.01841[0.00271|0.00061{0.00018{0.00007|0.00003
2 .ugo77 .6892 29043| .ou802| .00980] .00273] .00098| .o0OUY
3] .2 632 45118] .7848| .32161| .06389] .01533| .00493| .0019%
Ul 16024 M43201] .75882] . .07174] .0192 .oo;oz
2 .09055( .11637 .19118| .18e2[ .B0927 '.g%égs '167§E1 L0229
.05223] .06265] .0B976| .16366| .40559| .86501| .3u633| .08149
_JL .03061] .03502 .ou256 .07041] .13995| .39080 .91336 .35140
,g1§ga .01 .028432] .03352( .05520] .11924| .376496 ‘?%%28
9 .01058] .0om .01329] .01 .02 27 L0431 .TUE%Z .
10| .00607| .00645]| .00725| -.00876] .01165| .017 .03396| .08960
11| .00334| .00351] .00385| .o04u47| .00561| .00787| .01303| .02749
12] .00171] .00178] .00193] .00218| .00262| .00346| .00523| .00
13| .00078] .00081] .00086] .00096] .00112] .00142] .00202] .00
14| .00029] .00030| .00032| .00035| .0004O| .00049| .00067| .00107
15( .00007| .00008| .00008| .00009| .00010( .02012| .00016| .0002u
16 (0.00001]0.00001|0.00001|0.00001}0.00001{0.00001|0.00001(0.00202
#For 1 > 8 use ‘Ji ‘xl"(-,j, 17-1 ,
*s%or 1 > 8 use K, - xi,H’ 171
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TABLE 9
Calculations for En(t) and U(t)

A

) ]

= 0.06: «Rk _,K' =Rk , B =F (t ) =
;E Assume k; = 0 Put K, =Rk, K} =Rk, n(‘a) ) E, )
i )
k (a) x = -0.989401; cos y = 0.466k; —=FL_ - 0.966815
1+ k1 X) |
* .
- ] ' ,
§ J L L9 K, K, Eu By K,u (Eu “Ey,) B Ba KJl (Eea “E,) BBy Kax(En “Ey )
1]0.66460[0.66458] +0.00002 0 0 0 0 0 0
2 .ug536 490771 +0.00459 -0.00730 -0. 00362 -0, 00307 -0.00152 -0.00158( -0.00078
. 3| .28022] .2 633 -0.00617 .01799 oga .00634 .00178 .00253 L0007
4| .14389] .1602 .01635 .g_g}}) .00li8o L0101 .00158 %[___.Q_Q%ag_‘
2 .o715u ~ 09055 01901 05207 00373 .0163 00118 0 00041
4 a .05223 .01660 .07213 .00257 .02182 .00078 .00706 .00025
5 3 . 63 .03061 .01236 . 339 .001864 .02619 .00048 .00802 .00015
) . 009 01805 .0 10087 -00099 .02870 .00028 .00851 -00008
- 9] .005651 ,01058 .W A 00057 .02870 00016 -00851 .00005
4 10| .00341 | .o00607 .002 6 .08999 .00031 .02619 .00009 .00802 .00003
. 11| .00208 | .00334 .00126 .07213 .oog;g .02182 .00005 .00706 .00001
H 121 001211 .0017Y . 00050 .%%g;[ .00 .01651 .00002 .0056 -0, 09001
H T3] . 00062 | 00078 00016 . =0.00002 L0101 -0.00001 5
F 14| .00027 | .00029| 0. ooooz 01799 0 .00634 0 .0025 o
12 .00007 | .00007 -0.00730 0 -0.00307 0 -0.0015 )
! 1610.00001 10,00001 o 0 o 0 0 0 ("
: J’ = -0.08362 [ = -0.02350 | = -0.00793 J = -0.00306
‘j; E,, = +0.07750 E, = +0.02180 E, = +0,00680 JE,, = +0.002%1
%
" k, +E P
T - 0.12972 U, (x,) = 0.5450, &= 0.7030
: (b) 3 = -0.9WK575; cos y = 0.200k; ¥ KL _ 0. 569u7
(1 + ki(x2)]
’ [}
: Il Ky, K\, Ky, -KY, E\yEp| KplEyy-Eyp) EyEp| KuplBpyEpp) | Eyy-Epp| KplE, -E,)
' 1]0.2031310.20017] +0.00296 |+0.00730] +0.co148 +0.0030 +0. 0602 +0,00158 40.00032
2] .68926] ,68927] -0.00001 7 0 o3 7 0 0 ’ 0 ’
3 .usggs 451 +0,0018 -0, o1 69 -0,00487 -0,0032 -0.001L9 -0.000¢ -0,00043
Ly 21382 699 =0.01 , 00557 L0079 LC0170 002k5 00052
v Z R L0191 . L 00LYY .0 00130 L0041 Q . 00040
,0hug .06265 01779 .0 002 .01875 . 0008k .005L8 0007
02187| .03502 0131 .0826; L0018 02312 . 00057 .00 . 0001
} Q11401 01908 20 00107 . 02563 100029 L 00€ 000
A 9 ., 00639[ .01 . g L 00060 L025%3 oot .COE93 . CO00H
4 10] .003791 .00645 00266 2 0N .02312 .00009 GOk L0Ceos
4 11{ .00228| 00350 .00122 .06483 00015 .01 i .CCo0k 00548 00001
H 12} .00131] ,00178 . 00047 0 . 06C06 0134 .00002 L00k1g -0, 00001
" R IR I Al I B S G
+ .\ . V. =v. - - 0
12 .00008] .00008 ] 0 0 7 0 Co » g
& 16f0. 00001 [0.00001 0 40.,00730 0 +0, 00*07 I\ +0.00158 0
. = 0.0 = -0.02022 J’ = -0.00583 ]= -0.00158
f- E = +0.07020 E,, = +0.01873 E,, = *0.00522 E,, = +0.00143
' l‘*—l;n 12283 v, (x,) 6; 2
= 0, x } = 0.9261; = 0.1u23
*k s' 2 q
¥

B3
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TABLE 9 (Continued)

1+k

(¢) xa = -0.865631; cosy = 0.9311; T x5 xa)] = 0.97394 i
| 1
I Ky K‘" Kys Ko Bl K::(Eu “E) E i Eas K“( '] 'Eaa) B3 Bas K“(E” Eqys)
110.02047l0.01811|  +0.00206  |+0.01799 +0,0003 +0.00634|  +0.00013 +0.00253 +0,0000
2| .29u20 29039 +0.00381  |+0.01069 +0,0031 +0.00327| +o. 00096 +0. ooogs +0.0002
3| .71850| .71851]  -0.00001 0 0 0 0
4 Lyl Ly + 40 ] -0.01534 -0,00666 -0.00467]  -0. ooz -oLoo15'o -0,00065
g 17306 J'mw 1 _-ol‘.om§1 2 , 03508 ,00590 .0t mg .00 . 00055
.07001| .08976 .01 z%g .05M14 .00379 . 01 5u 00108 ﬁ} .00032
g .0308 oua 6 01 .072 ,00222 .0 g 00061 005 00017
0 0930 00124 .0223 00009
9] 00 . 5 ,00066 ,022 . 0001 00005
10| .00460 oo725 .00265 .07200 .00033 .0 .0000 .oo 49 .00003
11§ .00270] .00385 .00115 0541 .00015 .015 .0000 . 006153 -0.00001
Looué 00008 L01017]  -0,00002 00315 9
T3] .00078] .00 ~0.0000 ~0.01530 -0.00001 -o.oou67 0 150 ()
14] .00032| .00032 0 0 ) 0 0 0
12 .00009| .00008| +0.00001 +0.01069 0 +0. oog 0 +0.000 0
1% 0.00001]0.00001 0 +0.01799 0 | +0.0063 0 +0,0025 0
| = -0.06312 = -0.01750 -0.00506 | = -0.00154
E , = +0.0595) E,, = +0.01546 E__ = +0.00427 E,, = +0.00125
X +E
e : = +0.11275 U, (x,) = 1.0619; %' -0.1276
(@) % = -0.75507; cos ¥ = 0.9T8T; pririry = 0.97980
Xy * ' 'Tie k,,(x‘”
- -
3 x“ x;. K, -x su £, x“(su -s“) s“-s“ x“(:"-:“) s”-s“ x"(z" :“)
1]0.00338]0.00 40.0006 +0.03333|  +0.000m 40.0110) 40.00004 | +0.00403 +0.,0000)
2| . 12 ou5071 ooz .02 20 L0014y .m 0004y .00245 .00014
a .;z 3216 40.00465 | +o. ozs;u +0.00483 | +0.00467 +0.00152 +0.00150 +o.ooo~° 9
3 R . -o.ooosa 0.0180% ] -0.00 '_25"‘-0 00 033 '_6'68!33 ; -o.Egnsg =0.0008)
b :J. 16366 .02019 oa oogg; m .0030 .00043
3 .05345] Lo70M1 .016¢ 666 .00 01518 . +00 00021
A02%07 % 1 . 00186 .01169 % N s
9] . . ' 00077 QU7 ‘ ' .
10| .0061 .ms .002 . 6 ooo; L0151 m oung 00002
11] 00348} . . .0 . 0001 0108 . .00 00001
12| 001 ___gg_g =0, 0002 <0, 01874 -0, 0000k -0, oosso -0,00001 0,001 0
I » 0 0 (0 0 0 1]
1k| .00059] .00035 40.00004 40.0123& 40, 00001 40, oolus 0 40,001 0
1§ 000101 .00009]  +0.00001 .02603 ¢ 0 002 0
15/0.00001 |0. 00001 0 +0.03333 0 +0, onm 0 40,0080 [
J = -0.0u523 = -0.01290 J = ~0.003m = .0.00087
E , = t0.0W17 E,, = +0.01079 E,, = +0.002T7 E,, = +0.00071
k +E N
-171(1‘-! =0.09827 U (x)= 1.0946; £~ ~0.1981

~ e n
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TABLE 9 (Continued)

1l +k

S B

R L

wrnal A3 bt ot o

e x, = -0.617876; cos 7 = 0.9948; —————— = 0. :
(e) 5 787 9948; T+ nxg] 98633 ‘
t 1 .
J KJS K.!s KJS KJS El: El! KJS(ELJ Els) Ea: Ezs KJ! (Ea,j Eas) ESJ Eas KJS(EBJ Ess)
110.00087]0.00061 +0.00026 +0. aﬁo*r +0.0000 +0.01651 +0.00001 +0.00568 0
2| .01304{ .00980 .00324 . .0005 L0134y .00018 000 +0.0000
3 07528 .06389 .on}g .o;uo .00227 .01017 .000 .00315 .0002
y Y ,0061 +o.o1 874 +0 006 1 +9,00550 +0.001 +o.001 65 +0.00056
% 9] .B0927 +0.00002 0 0
.uow . 40559 «0.00414 -0.02006 -0. 00805 -0. 00531 -0.0021 -o.oo1 38 -0.0005
g A2148] 13995 .01847 .03792 L0046 . 00968 .om .00234 .0002
043 1201 . .00211 .01219 . 00053 . 002 00012
9 .01 .0 . . ~00091 Lol 213 . 00023 00283 00005
10| .00928] .01185 .oozsg .03792 .00035 .0096 .00009 00234 .00002
11| .oolgs| .00561 -0.0006 -0.02006 -0.00010 -0.00531 -0.00003 -0.00138 -0.00001
12] .00262| 00262 0 0 0 0 0 0 0
13 .00127] 00112 ¥0.00015 +0.0187% +0.00002 +0. 00550 +0.00001 +0.00155 0
14| ,00051] .00040 .00011 .03408 .00002 .0101 +0.00001 .00315 0
1 2 .00013] .00010 +0.00003 . olyry +0.00001 .013Y 0 .00 0 0
16}0.00001]0. 00001 0 +0. 05207 0 +0.01 651 0 +6, 00568 0
j’- -0.02219 j- -0.00647 = -0.00133 = -0,00018
E,, = +0.02543 E_, = +0.00529 E,, = +0.00112 ) E,, = +0.0001 8

k +E 2
‘1712:1‘ 0.08059 U (x )} =1.0864 ; G- -0.1803

(£) xg = -0.U58017; cos y = 0.5392; -Tﬁl-r—;—sn- 0.99262

Vo i i+ Tk

b . <o -

PO

1 T - R - -
J KJ. K“ Je ‘K Js ! .Ell K“(r“ ELG) ::J rzl KJC (EzJ E?l) ESJ EO( KJ. (EiJ ES‘)
110.00030|0.00018 +0.0001 213 0,000 0, 0018 +0. ooom +0.00706 0
2] 00819} .00273 L0011 ol Redihy g mwg .€000% ooaua +0,00002
3 omo 01533 . L0115 L0154 .00033 00 53 00010
4} 08574 .0717 .01 ;eo 00333 L01C . 00093 0007
2 . N o7 ¥0.02000 ¥0. co7ow LD coszw +o.ogu’6 +0. ogw +0., go
. B6501 40 0
g . g .39%80 ~0.00610 -0.01786 -0. oofeg -o.cch} -0.00168 -0.00096 -0.00037
ugﬁ%% L0630 LO0ER 00073 L0usl 00015
9] .0 N3] . 00591 .0 00107 LCofTg L 00026 L0011l . 00005
10{ .01615] .01 -0.00173 -0.01 -0.00029 -0.00U37 -0.00007 «0. 0009 -0, 0000?
1} .00 .oo;ﬁg 0 0 0 0 (i 0
12] .00 .00 + 40, +0.00008 40,0053 +0.,00002 +0.00138 40, ooom
T3], 00183] .00 . . . 00007 .01 00002 .00303 +0. 60001
1% ooor . 000k 00022 .&:18; . 00004 . 01548 +0.00001 Eg 0
1% .000181 00012 40,00006 . 3 40.00001 .01875 0 +005 0
1€]0.0000110. 00001 0 40.07213 0 +0.02132 0 +0.0070‘ 0
= +0,00379 = 40,0007 j'a +0. 00052 j' = +0.00029
E , = +0.00537 E,, = -0.00002 B, = -0.00026 E,, = -0.00016

kK +E ‘ »
—\}T}:ﬁs 0.061€7 U {x) =1.0601 ; &= -0.1323

R R

"
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TABLE 9 (Continued)

(8) =x; = -0.28160k;

cos y = 1.0000;

l4+k
{1+ k(xp)]

= 0.99764 .

1) 1
N Ky | Ky | Kp-Kp 1y = Eypl€,(By- F‘z?ﬂaed = B[k yp{By = Byp)|Eyy - Bk (Ey - Ey)
1{0.00013]0. oooog +0.00006 | +0. 08929 +0.00001 +0. 02619 +0.00000 +0.00802]  +0.00000
2| .00170 .00072 .00014 02312 . 00004 . 006kl .00001
z ooug a .002 .07200 .00056 -0198 .00015 .00549 . 00004
.02 20192 .00738 .05666 .00151 01 1 ___%__ . 00011
2 ~0308T| . 0760 OO0 08792 -00Y0Y . : .002 ~0002)
35410 ,3‘663% .00177 .01 .00632 37 .00155 .00096 .00034
|| ool il v | wee |wem) gesk ase e
R -0. 3 - -0. - -0, <0. -0.
9. 09T . Y021 =0.00465 | -0. =0.00106 -0.00251 ~0. TWS‘"“-U.W;“
10| .03403] .03396] +0.00007 +0.00000| +0.00000 +0.00000| +0.00000 +0.00000|  +0.00000
1; 014451 01303 .oo;uz 01786 .ooogs -0043 00006 | 00093 .00001
1 .
13(.00291] 002021 "%_. —%“2—" 1 —“%9?% 151 ’—%‘.o —T.003 '.oooot‘Q L‘M
1 ,oo1<9)8 00061 000k .g&goo .00008 .01985 .00002 . .00001
15| .00027] .0001 .00011 .08269 .00002 02312 .00001 . .00000
16[0.0000210.00001{ _+0.00001 +0.08999| +0.00000 +0.02619] +0.00000 _ [+0.00802]  +0.00000
{ = +0.02802 « +0.00765 | = +0.00203 J = +0.00053
E, = -o.mzui E,, * -0.00439 By, = -0.00122 E,; = -0.00032
5 * Ep - o0.0mB2 Ulx,) = 41.0016; B -0.0849
1+ k b
(B)  xg= -0.09%013; cos y = 1.0000; -pra—tid o 1.000k6
X3 j Temxgl
I Ky | Ky | Ky oKy By - B KBy EGVE B KB - B - ETK (B -EL]
1]0.00006/0.00003|  0.00002 0.10087|  0.00001 0.02870]  0.00000 0.00851]  ©0.00000
2] .00081 00037 ggzg .00008 .02513 .00002 .0069 .00001
?L .8?316 00194 ,00185 . -00029 .gg 6 oooge . 00002
5 Toz%“‘g‘?l. 9 _‘%‘Q_ —‘% . L W—LM . ‘
.09228| .08 49 01079 .02 °°§03 . .00063 00145 .00013
; 356471 .3 1;0 .00507 .01 .00 .00251 .00089 00049 .00017
313 : ; = Oaa———S0000 1 0oma o — 1300 ——
10 .09380] . 00420 .01088 00102 .00251 00024 00049 .00005
11] .03205| .027%9 0056 02874 00092 oosaa 00022 .00145 .
121 912 .00321 . N Q1219 . %
131 .00518( . : . _“%ﬁ .01;62 . . .
18] .00183] .00%0 .000 .082 m .02 . .00548 .00001
15] .000N5| .0002% .00021 .093 . 00001 3329 .00000
1éo. 0.00002]  0.00002 0.1 0.00000 |0 oz 10 0. 00000 0.00851]  0.00000
| = +0.04322 | = +0.00219 | = +0.0029% = +0.00063
g, = -0.02337 K, = -0.00690 E,, = ~0.0017% £, = -0.00038
K +E . . RB.
H. 0.0%456 Ug(l.) 1.0276; r} ~0.0560

in .A‘f.;‘, s o £
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SUMMARY

Two new methods for computing the steady, irrotational, axisymmetric
flow of a perfect, incompressible fluid about a body of revolution are
presented. j

In the first method a continuous, axial distribution of doublets
which generates the prescribed body in a uniform stream 1s sought as a solu-
tion of the integral equation

J'“a(ﬂ at =4
a pd

where r 18 the distance from a point (t, 0) on the axis to a point (x, y) on
the body, r? = (x - t)2 + y3(x).

A method of determining the end points of the distribution and the
values of the distribution at the end points is given. If the equation of the
body profile, with the origin of coordinates at one end, is '

yi(x) = ax +ax* + asx’ + ...

a very good approximation for the distribution limit a at that end, when the
coefficients 8,,a, ...are small, is given by

a 1

1
3 Chre,+x0aag

if a 20. If a, is negative, the term containing it is neglected. The cor-
responding value of the doublet strength at this point 1s

a(a) -%(1 +-;‘ +% log 1:—‘) a? r’alT'

Formulas and tables for determining a and m(a), which may be used when the
above procedure is insufficiently accurate, are also given. The values a, b,
n - n{a), n - a(d), f, = y'(a) and f, = y2(b) are then used to obtain the
approximate solution of the integral equation

'x(x)'c(" :::ra ::rb)"y'* e ™
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where

ﬁ- , v2ax - 3(b- a)(m +n,) 3

C =
f yzdx - o-a) (1 41, ) |

and k1 is the longitudinal virtual mass coefficient for the body.
This approximation 1s used to obtaln a sequence of:successive approx-
imations by means of the iteration formula

nyp(x) = my(x) + 3 23 - [ B at]

rd

When a doublet distribution has been assumed, the velocity components at a
point (x, y) in a meridian plane are

U= +J':(—3fs - £) a(t)ar

r r

v = 3y f X n(t)dt
and the pressure is given by
%-1-(u’+v")

where q is the stagnation pressure.

The iterations are most conveniently performed in terms of the dif-
ferences between successive approximations to m(x), which also furnish, at
each iteration, a geometric measure of the accuracy of an approximation.
Simpler forms for the velocity components at the surface of the body are given
in terms of this difference or error function.

Gauss' quadrature formulas are recommended for the numerical eval-
uation of the integrals. Two methods of carrying out the iterations are
glven. The first employs a polar transformation and & graphical operation be-
tween successive iterations; the second is completely arithmetical and 1is
suitable for processing on an automatic-sequence computing machine. All of
these procedures are illustrated in detall by an example, in which the semi-
graphical method is employed. The accuracy of the method is anaiyhed; the re-
sults are compared with those obtalned by the methods of Kdrmén and Kaplan.
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In the second method the velocity U(x) on the surface of the given
body 1s given directly as the solution of the integral equation

J"U(x)ﬁ(x) ds = 1 !
o 2r®

where s is the arc length along the profile,
x is equal to x(s), and
2P 18 the perimeter of a meridian section.

An approximate solution to this integral equation is

Ul(x) = (1 + kl) cos y(x)

where k1 is the longitudinal virtual mass coefficient and y = arctan %%.
U,(x) 1s used to obtain a sequence of successive approximations by means of
the iteration formula

U ,,(t) = U_(t) + cos (t) [1 J;’%ﬁ Un(x)ds]

Here, also, the iterations are most conveniently carried out in terms of the
differences between successive approximations to U(x) which also furnish a
measurs of the error in the integral equation. Two methods of carrying out
the iterations are again available, of which one is semi-graphical, the other
completely arithmetical. The latter technique is employed on the same example
as was used to illustrate the first method.

(SN N - e e SOy S - . . —

s i

s B s A sl ik



e

52

APPENDIX
END POINTS OF A DISTRIBUTION

An approximate method for determining the end points of a distribu-
tion and its trends at the ends will now be deseribed. Let y2 = f(x) be the
equation of the given profile extending from x = 0 to x = 1; let.mxx) be the
corresponding doublet distribution, extending from x = a to x = b.. It will be
assumed that 0 < a << b < 1 and that a is near 0, b 18 near 1. Then m(x) is
given by the integral equation -

’ m(t)dt .1 m
L[(x-t)a+r(x)]°/2 2 ;)

Various conditions on m(x) may now be obtained by differentiating
[111] repeatedly with respect to x. We get

r&?[zx -2t 4+ £'(x)] dt = 0 [112]
s p :

b 1 "

L m(t)[-z—z, (2x - 2t + £1)2 ECRE: )]dt -0 [113)
f-(t)[%% (2x-2t4£1)3 - ;:, (24£")(2x-2t+11) + T (X) r""] .0 [114]

When x = 0, r = t and, writing f(x) as a Taylor expansion
s
(x) =ax+ax?+ax’+... (115]

then also £'(0) = a,, £"(0) = 2a, £'" (0) = 63’. Now, setting x = 0 in Equa-
tions (111) and [113], we obtain

[ t 1
J: Li;) dt - [116)
J"!!L)(. - 2t)dt = 0 [(17]
. ts 1
f.!g.)[yf - 20a,t + (U - aa)t’]dc =0 (18]
N R -
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i:ﬂ%%l[BSaz - 210ait + 608, (6-a,)t® + UO(3a,-4)t® + 2uast‘]dt =0 [19]

Also assume that m(x) may be expressed as a power series
= 2
m(x) = ¢, + ¢,x + c X+ ...

Then Equation [116] gives

%G;-#)+%E~%)+%l%§+.”-%

or, neglecting 1/b® in comparison with 1/a® and setting b = 1 in
with 1/a, '

2 1 -
c, + 2cla(1-a) +2c,8° logo + ... =8

Similarly, Equations [117], [118], and [119] give, approximately

co(jal-8a) + ucla(al-ja) + 6c2a2(al-ua+ua’) =0

2co[5ai-2ua1a+6(u-az)a‘] + ucla[}ai-1531a+N(u-aa)a’]

+c,a®[15a] -80a a+2k(4-a, )a®] = 0

3¢, [350) -240a38+80a, (6-a,)a2+64(3a_-4)a®+4Baga’]

+2kc1[Sa:a-}Sa:a’+1231(6-aa)a°+10(}aa-4)a‘+8a,a’]

}
!
i

[120])

comparison

(121]

[122)

[123]

[12u]

+hca[35&23’-252a:a°+90a1(6-32)a‘+80(}aa-u)a’+7235a‘] =0

Equations [121] through [124) are sufficient in number to determine the un-
knowns a, ¢,, ¢, ¢,. Since the latter three equations are linear and homo-
geneous in c,, ¢,, and ¢,, & can be determined from the condition that the de-
terminant of their coefficients must vanish. In this way the following equa-

a .
tion of the 7th degree in a a«;ﬁ was obtalned:
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ala - 4)2(5a* - 83a® + 2880° - 368a + 128) - 96a:a(3a - 4) | ’
+ ha ala - 4) (534 - 148a + 128.) + 1152&182(241 - 3) ;
+ 728 (a - 4)2(50° - 250 + 40ax - 16) + 48a 8,a(3a - 8). e
- 288a,a_(a - 4)(5af-16 +16) - 1152878, (@ - 3) = 0

Corresponding to a solution a of (125}, ¢ , ¢, , and c, can be obtained from
Equations [121], [122], and [123]. The solution of the latter equations gives

¢,D = -ua‘[sa’ - 37a® + 120a - 96 + 24a_ + 24a(3a® - 154+ 16 - uaz)] [126]
¢,D = a[156° - 168e% + 512a - 384 + 96a, + 4Ba(5a® - 2Ua + 24 - 6a,)] [127]

e,D = 4[la - ¥)2(a - 1) + ba, ] [128]
where

D = 2(9a® - Y4a® + 272a - 192) + 8[(« -4)%(a-1)+ ua,]log a8 + 96a,
-2a(15a° - 26le” + ilUa - T68) - 384aa, - 96a% (54" - 2Ua + 24)
+ 576a%s, (h29])

The initial doublet strength at x = a 1s

S bt cus e el neeew e Won W W =T

m(a) =c, +ca+ cga‘ 4+ ...
or, from Equations [126]) through ([129], !
a(a) = B2 [(a - Y)a® - 120+ 16) + UBala - ¥)(a - 2) + 16a, - 96aa,] [130]

Equations [125) through [130) determine the end points of the distri- )
bution and its initial trends. In general, Equation [125] will have more than
one real root. In this case the initial trends corresponding to each of the
roots should be examined, and that root chosen which appears to give the
"simplest” trend.
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The equations can be solved explicitly in the case of a very elon-
gated body for which a , a, 8y, ... in (115] are all very small. First let
us suppose that they are so small that all the terms in [125] containing them
are negligible, so that the first product term alone may be equéted to zero,
1.e., 1

ala - 4)2(5a* - 830® + 2880F - 368a + 128) = 0 (131]

whose real roots are a = 0, 0.547, 4.0, 4.0, and 12.429.a '

Let us consider the solution a = 4; 1.e., a = El' Since the radius
of curvature at x = 0 1is 31/2, this solution 1s seen to be in accord with
Kaplan's assumption for the end points of the distribution. Furthermore, sub-
stituting o = 4 into Equations [129] and [130], we obtain, to the same order
of approximation,

a a
D=64, ¢ = 'T%’ c. = El' c, =0

whence
8 8
m(x) = ST m(a) = 0 (132]

In order to obtain a second approximation it will be assumed that
not only a,, 8,, a,, ... but also (@ - 4) are small to the first order. Then,
neglecting terms of third and higher order, Equation [125] becomes

-3072(a0 - 4)2 + 6144a_(a - &) - 30728 + 768a,a, = O [133)
whence
a=b+a tlyuut [134]
provided
8, 20

Corresponding to this value of a we obtain from Equations [126] through [129],
to the same order of approximation,

*The smller of these two roots has given the prefarred solution in all cases tried thus far.
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a’ N
m(x) = c(-gi +8,x + azx‘ + ...)

where > 1 [135)
a a |
¢l vzt e 7t ) '
and /
n(a) = 7 Ca® y&E, } [136]
The expression for m(x) in [135]) may also be written as
2
. a,
a(x) = ¢(-g* + ¥*) [135a)

When a, < 0 the solution for a in [134] indicates that there would
be no real roots near a = 4. In this case a graph of the complete polynomial
in [125] should be examined either for the possibility that more complete cal-
culations would show that there are real roots near a = 4 nevertheless, or
that the maximum value of the complete polynomial in the neighborhood of a = U
is 8o nearly zero, that the value of a corresponding to this maximum may be
taken as an approximate solution. On this assumption, the second order analy-
sis would give

a=4+a,, a,<o0 (137]
Since a, does not occur explicitly in Equations [135], it is seen that they
would also be obtained, to the same order of approximation, if the value of

a in [137) were substituted into Equations [126] through [129].

If it is determined that not even an approximate solution can be
assumed near a = 4 it would be necessary to consider solutions in the neighbor-
hood of the other roots of Equation [131].

In order to facilitate the computations for graphing the polynomial
in [125]), the functions A(a), B(a), ... H(a), where

L e Bk e e S B ..u»*...xf---‘*'
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Ala) = ale - 4)2(54* - 83a® + 28842 - 368a + 128)

Bla) = 72(a - 4)2(50° - 2506 + 40a - 16)

Cla) = bala - 4)(5302 - 148a + 128) '
Dia) = -288(ax - 4)(50® - 16a + 16)
Ela) = -96a(3a - 4)

Fla) = 1152(2a - 3) 5
Gla) = 48a(3a - 8)
H(a) = -1152(a - 3)

have been tabulated in Table 10. In terms of these functions, Equation [125])
becomes

A+aB+a,C+aaD+ a:E + ala:l? + 8,80 + aia,H =0 [139]

It 18 of interest to compare the approximate value for a from Equa-
tion [134] with the exact value for the prolate spheroid y® = %;(x -x%). In
this case we have

and the exact value of a 18

, % | 1 1
a=2 +2 1-;-“-?-W°...

But when the length-dlameter ratio A is large, Equation (134] gives the ap-
proximate value o = ¥ -%;, which 18 seen to consist of the first two terms of
the series expansion of the exact value of a. Table 11 shows that the approx-
imate formula gives excellent agreement with the exact values even for very
thick sections. Both the exact and the approximate formulas give m(a) = 0.
Thus the present approximate methods work very well for the prolate spheroid.
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TABLE 10
Functions for Determining Limits of Doublet Distributions
o Ala) Bla) Cla) Dla) | Ela) | PFla) | 8la) | Hla) ]
0 0 [-18432.0 o | 18u32.0 0 |-3u486.0] o | 3us6.0 !
0.1 143.0 |-13409.7| -177.4] 16230.2] 35.5]-3225.6{ -37.0| 3340.8 |
.2 188.5 | -90 -305.6| 14227.2 65.3 -2923.2 -71.0] 3225.6
.B 169.7 | -6027 :azz.u 12414.2 89.31-2766.8|-102.2] 3110 4
. 12,5 | -3433.9 5.1| 10782.7 107.5|-2534.4]-130.6] 2995.2
. 36.4 | -1433.3] -470.8] 9324.0] 120.0(-2304.0|-156.0] 2880.0
.2 <44y 66.6 -u25.6 029.4] 126.7]-2073.6 -1;8.6 2764 .8
.g -120.1 1148.7] -465.4] 6890.4] 127.7|-1843.2]-198.2] 2 3.6
. -184 1887.4| -4u5.6 5228.2 122.9(-1612.8|-215.0 233 A4
0.9 -234 2349.1| -U23.1| s0ku.3| 1M2.3]-1382.4|-229.0] 2619.2 ,
1.0] -270.0 2292.0 -396.0] 4320.0] 96.0]|-1152.0]-240.0| 2304.0 !
Al -291.2 | 2667.3 -374.3| 3n6.6|  73.9| -921.6|-2u8.2| 2188.8 '
2| -300.5 2619.2] -359.1| 3225.6] 46.1| -691.2|-253.4| 2073.6
.3 ) -300.9 | 2u85.3] -353.4] 2838.2] 12.5( -460.8(-255.8] 1958.4
M| -295.9 | 2297.3| -359.3| 2s45.9] -26.9| -230.4]-265.4| 1843.2
.2 -288.9 2081.3| -378.8] 2340.0] -72.0 0 |[-252.0{ 1728.0
. -283 .1 1857.91 -#12.9| 2211.8] -122.9} 230.4]-2 2.8 1612.8
.g -281.5 1 -uéz.a 2152.8] -1719.5] 460.8]-236.6 1“33'6
. -286.2 1W49.71 -5271. 2154 2| -241.9| 691.2|-224.6| 1382.4
1.9| -298.8 | 1284.4] -B08B.6| 2207.5) -310.1| 921.6]-209.8] 1267.2
2.0 -320.0 | 1152.0| -704.0] 2304.0] -384.0| 1152.0]|-192.0| 1152.0
O] -349.8 | 105%.0] -812.8] 2835.0] -463.7[ 1382.4[-171.4| 1036.8
2] -387.3 989.1| -933.3] 2592.0| -549.1] 1612.8|-147.8 21.6
.z -430.9 923.0 -1063.1| 2766.2] -640.3| 1843.2]-121.4 4
. -478.2 3.7]-1199.3| 2949.1| -737.3] 2073.6] -92.2| 691.2
. -526.3 951.8|-1338.8] 3132.0] -840.0| 2304.0] -60.0 6.0
.2 -5$z.o 970.9]-1477. 3306.2] -948.5] 2534.4] -25.0 2 0.8
Bk | enalapsal demzlveed] sl B8 e
2.9| -658.9 | 1018.9 -1533:z 3690.7{-1308.5| 3225.6( 97.4| 135.2
3.0| -660.0 | 1008.0|-1932.0] 3744.0|-1440.0] 3456.0( 144.0 0
A -642.8 974.2 -1392.& 31:2.“ -1577.3 3632.& 13) 6| -115.2
2] -606.1 1W.21-2018.5| 3686.4|-1720.3 3916.8 245 .8 -,zo.u
.z :zu .6 6.8|-2003.0| 3558.2|-1869.1| 4iu7.2| 301.0| -345.6
. T4.9 13.3]-1937.8] 3352.3]|-2023.7] 4377.6] 359.0| -460.8
.2 -385.3 378.3 -1814.8| 3060.0[|-2184.0| 4608.0] ¥20.0| -576.0
. -286.2 29.5]-1624 .8 2672.6]-2350.1| 4838.4| 483.8] -691.2
'Z -185.8 zz JT1-1358.51 2181.6]-2521.9] 5068.8 zgo 6| -806.4
. -9%.8 142.21-1006.0 1878.2 -2699.5| 5299.2| 620.2{ -921.6
3.9 -21.0 40.6| -556.8 53.9]-2882.93 5529.6| 692.6)-1036.8
M r | s bl el SR e KE2l s
A -34, . . ~992.2|- . . .20~ .
2 -156.% 23%.5| 14 .g -2131.21-3467.5| 6220.8| 927.4 -1zaz.u
.3 -39%.3 591.5| 2433.3| -3425.8]-3673.9| 6M51.2[1011.4]-1497.6
. ~182.7 | 11781 3540.3] -4884.5]-3886.1 1.611098.21-1612.8
.z «1360.2 2040.8| 4817.3| -6516.0]-4104.0] 6912.0][1188.0|-1728.0
. -2120.8 257.6] 6278.2] -8329.0|-4327.7| 77%2.4 [1280.6]-1043 .2
.l -3263.7 2 38’7'7 -10332.0]-4557.1] 7372.8|1376.2]-1958.4
B-4693.% | 7088.4 10.5 -12533.8)-4792.3| 7603.2 h474.6]-2073.6
4.9 |-6520.2 | 9797.5[11912.8]-14942.9]-5035.3| 7833.6|1575.8]-2188.8
.0 ] -8810.0 | 13248.0]14260.0}-17568.0}-5280.0| 806%.0]1680.0{-230%.0
0 o] -18u32 o] 18432 ol - 0 6
1 =270 2692 -396 ¥320 33 3‘1’ -240 3;3“
2 ~320 1982] 704 2308 -3 1" -192 | 11%2
3 660 1008 -1932 STHY | -14k0 )uzg 1 0
¥ 0 0 0 of -30712| ST 768 -1182
z 10 13248] 14260 -17283 -5280 | 806N 1% -230M
- 1 108 - 10, 2 -
o b B ol B a8 ) 28
19200] 1456128 -239616 | -15360 | 14976 1 614k :2760
91 -170055%0] 3535200| 550020 -3 -19872 | 172 8208 912
10 - 20 328] 9w1520] -6151681 -2 1 10560 | -806%
n -31?0;60 11;320~o 151;zo~ -897120| -3 21888 | 13200 | -9216
3 ':7"3“"- Vo| 42363608 3391300 -1590076 | 93600 | Seaok | 19108 | -1vass
10 [ 22095800 | Eras0800]a7380M0| 2225380 | “51072 | 2omce | 23e | 13 72

15 | 58820520 11030978081 6489780

-2054368

-59040 | 31108 | 26640 | -1382%

A+aB+a,CeanDeagEsaal+andsalolso
A=ala-¥)2(5" - 83 + 288" - 368 + 128) E = -96a(3a - ¥)
B = +72(a - ¥)%(Sa® - 25e + WOa - 16}

C = bala - ¥)(53e" - 148a + 128]
D = -288(a - ¥)(Se® - 16a + 16)

P« 1152{2a - 3)
@ = 48(3%e - 8)a

H=-15(e - 3)

‘
R 3 - a -

b4 . -
1 fu

U

e 0 - 4 A 3

[ .

e s vt
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TABLE M
Comparison of Exact and Computed Values

a
of @ = Ei for a Prolate Spheroid y

A 2 3 Yy 5 6

Exact o 3.732|3.886(3.936(3.960(3.972
Approximate a|3.750(3.889(3.937(3.960(3.972
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