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NOTATION

Dimensions in Mass-
Symbol Descript ion Length-Time System

L Overall length L

D Diameter at the maximum section L

S Wetted-surface area L2

_V_ Volume L3

R Dimensional radias L

R0 Dimensional nose radius L

Ri Dimensional tail radius L

X Dimensional abscissa L
Y Dimensional ordinate LX
x Nondimensional abscissa, X

y Nondimensional ordinate, Y

L/D Fineness ratio D

0p Prismatic coefficient

CPF Forebody prismatic coefficient
CPA Afterbody prismatic coefficient

LCB Position of the longitudinal center of
buoyancy measured from the nose ex-
pressed as a ratio to the length.

m Distance of maximum section from the
nose expressed as a ratio to the length

r Nondimensional radius

ro Nondimensional nose radius
ri Nondimensional tail radius

C5  Wetted surface coefficient
V Speed LT"1

p Mass density ML-s

v Kinematic viscosity L2 T- 1

R Total resistance MLT-
Rf Frictional resistance 4LT 2

Rr Residual resistance MLT-

AR, Resistance added due to sand roughness nLT- 2

AR2  Resistance added due to strut interfer- mLT- 2

ence effect
EHP Effective horsepower
R1  Reynolds number based on length of body

Ct Total-resistance coefficient

Cf Frictional-resistance coefficient

Cr Residual-resistance coefficient
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ABSTRACT

The results of experiments with a systematic series of 24 mathematically re-

lated streamlined bodies of revolution, showing how the resistance of these bodies at

deep submergence varies with changes in five selected geometrical parameters, are pre-

sented. These geometrical parameters are the fineness ratio, the prismatic coefficient,

the nose radius, the tail radius, and the position of the maximum section.

The characteristics of the series forms, the techniques used in testing, the pro-

cedures used in analyzing the data, the methods of predicting prototype performance, and

the means used to shuw relative performance are explained. The results of tests of

four models at near-surface or snorkelling conditions are also included.

The series forms ard compared on an equal volume basis including the estimat-

ed added resistance due to control surfaces necessary for prescribed directional stability
characteristics. These comparisons indicate that there is a large variation in submerged

resistance among these forms and that there is a definite minimum resistance on each

parameter variation except for the nose radius.

INTRODUCTION

The Bureau of Ships requested' the David Taylor Model Basin to con-
duct a broad investigative program on the resistance of various shapes of

underwater bodies, in order to provide basic data for the hull design of high-

submerged-speed submarines. The investigation was intended not only to cover

bare-hull performance but also to consider the effect on resistance of those

control surfaces that are necessary to meet certain directional-stability

requirements.

The David Taylor Model Basin had previously made a survey of the
literature and existing aeronautical data and incorporated its findings in a

memorandum which, because of its original limited circulation, is reproduced
in Appendix 1. The conclusion that was reached from this survey was that Sys-
tematic data on the resistance of streamlined forms deeply submerged in a

* fluid, was practically nonexistent. Consequently the Taylor Model Basin for-

mulated a mathematically derived series of bodies of revolution which was

designated Series 58. Twenty-four 9-foot models were constructed for the se-
ries. These were tested to determine their resistance at a submergence which

was deep enough to substantially eliminate free-surface effects.

*All references are listed on page 3h of this report.
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The primary purpose of the resistance tests was to determine the
effect, upon submerged resistance, of the variation of five selected geometri-
cal parameters which can be used to define the shape of streamlined bodies of
revolution.

The subject matter of this report concerns the establishment of gen-
eral criteria for designing minimum resistance forms for given service re-
quirements. The characteristics and derivation of the series forms are given;
the methods of testing including the towing apparatus, the devices used to
correct for strut-interference effects, and the method of stimulating turbu-
"lence are described in detail; the techniques for the reduction of model data
and methods for predicting prototype performance are explained; and suggested

considerations for the selection of the minimum resistance form for applica-
tion to submarine design are given. The results of tests of four models at
near-surface or snorkelling conditions are also given to show their influence
upon the final selection of the optimum form.

CHARACTERISTICS OF SERIES 58

The offsets of the models composing Series 58 are derived, by the
method described in Reference 2, from a sixth degree polynomial of the form
y2 = a~x + a 2 x 2 + asxS + a4 x4 + a5 x 5 

+ a 6x 6 , where x is the nondimensional
abscissa and y is the nondimensional ordinate. The arbitrary constants al,

a2 , etc., for each form are determined when the values for the geometrical
parameters are assigned. The geometrical parameters which are varied are,
nondimensionally, the overall prismatic coefficient Cp, the position of the
maximum section m, the nose radius r0 , the tail radius r , , and the fineness
ratio L/A. The nondimensional offsets X/L vs. Y/D are the same for all fine-
ness ratios, once the other four parameters have been fixed. The nose and
tail radii are nondimensionalized by the following relationship:

R
r = D& =-D)Ill-

D 2  D
L

where r is the nondimonsional radius,

R is the dimensional radius,
L is the length, and
D is the diameter.

It should be noted that the nose-radius and tail-radius parameters
as used here do not apply merely .to the extremities of the given forms but
actually affect the shape of the whole form. 2 This is shown in Figure 3 where
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it can be seen that substantial changes of prismatic of forebody and prismatic

of afterbody occur with the changes in nose and tail radii.

A system of serial numbers which describes the nondimensional forms
of the series has been used. The serial number for a given form generally con-
sists of ten integers which are read from left to right in gro'.4s of two to

denote the parameters in the following order: Position of maximum section,

nose radius, tail radius, prismatic coefficient, and fineness ratio. Thus,
to illustrate the parameters and position of the decimal points, for a serial

of 40050165-70,
m = 0.40
ro = 0.50

r, = 0.10

O = o.65
L/D = 7.00

When more than two integers are required to describe the parameter they are
placed in parentheses. Thus for a tail radius of 0.05, the serial is given
as (005).

The forms of Series 58 are defined by five parameters and, assuming
that four variations on each parameter would be required to establish a curve
accurately, it would require 45 or 1024 models to give complete coverage.

Consequently, Series 58 was abbreviated by first selecting a parent form which
would serve as an approximate central point for the variation of each param-

eter. The parent selected was one having a serial of 40050165-70. Twenty-
two models based upon this parent were then constructed. The parameters for
these models are shown in Table 1. One of these models, having an L/D = 5.0,

was selected as a second parent and two additional models were constructed.

The characteristics of these are also shown in Table 1.

A complete table of offsets for each series model is given in Ap-
pendix 2. Each table includes the nondimensional abscissas and ordinates and

dimensional abscissas and ordinates for the construction of a 9-foot model.
Other pertinent data-such as the maximum diameter, volume, wetted surface,
position of the maximum section, position of the longitudinal center of buoy-
ancy, etc., including the mathematical equation for the forms-are also given.

Curves showirZ the variation of wetted-surface coefficient with the five pre-
scribed geometrical parameters are given in Figure 1. Curves showing how the
wetted surface varies on a fixed volume basis are shown in Figure 2.

It is interesting to note that when the comparisons are made on an
equal-volume basis, there is only a small change in wetted surface with pris-
matic coefficient over the range of values covered. This is true even though
there is a substantial change in the wetted-surface coefficients of these

CONFIDENTIAL
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TABLE 1

The Geometrical Parameters for Models of Series 58

Model m ro LrD

415LL 0.240 0.50 0.10 o.65 4.0
4155 0.40 0.50 o.io o.65 5.0

4156 0.40 0.50 0.10 0.65 6.0
4157 o.14o 0.50 0.10 o.65 7.0

4158 0.40 0.50 0.10 o.65 8.0
4159 0.140 0.50 0.10 o.65 10.0
416o 0.36 0.50 0.10 0.65 7.0

4161 0.44 0.50 0.10 0.65 7.0
4162 0.48 0.50 0.10 0.65 7.0
4163 0.52 0.50 0.10 0.65 7.0
4164 0.40 0.50 0.10 0.55 7.0
4165 0.140 0.50 0.10 o.60 7.0
4166 0.40 0.50 0.10 0.70 7.0

4167 0.140 0.00 0.10 0.65 7.0
4168 0.14o 0.30 0.10 o.65 7.0
4169 0.140 0.70 0.10 o.65 7.0

4170 0.40 1.00 0.10 0.65 7.0
4171 0.140 0.50 0.00 o.65 7.0

4172 0.140 0.50 0.05 o.65 7.0
4173 0.140 0.50 0.15 o.65 7.0
4174 0. 40 0.50 0.20 o.65 7.0
4175 0.140 0.50 0.10 O.60 5.0
4176 0.40 0.50 0.10 0.55 5.0
14177 0.34 0.50 0.10 0.65 7.0

forms as shown in Figure 1. The reason for this can be shown by. the following

relationship:

os = _S [21

where C. is the wetted-surface coefficient,
S is the wetted surface,

L is the length, and
D is the maximum diameter.

CONFIDENTIAL
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m.0.40 ro.050 CP -0.
6 5  

_ L/D7.00 I C5

0.01 1 1011L~~I.00
0.0 .04 .08 .12 .16 .20 .24 .28

Tall Radius, r,

m, _ 0.40 .....__ _ _ 11 .65 L/0D 7.00 1.0 5

020 0.40 0.60 0.60 1.00 1.20 .0

Nose Radius, r,

m 0.40 -0.50 0.10 1.05

L 5..0

0.54 0.8 0.62 0.66 0.70 0.74 0.78 0.P2

Prismatic 0oefficient, Cp
3U

ra, 0.50 g "0.10 Cp ,0.65 1 ID T.00iI I
fF1.

Pii t z z I FIJ00
0.34 08 0.42 0.46 0.50 0.54

Position of Maximumn Section, mnol

m ,0.40
v 0. 0.50
r, 0.10 '.35
Cp, 0.65

-. 30

-- 1.25

J 1.20

1.00
4 6 ? 9 10 11

fineness Ratio, -0

Fgurs 2 - Wetted-Surface Areas for Prototypes of Series 58
Compared on a Basis of Equal Volume

The wetted-surfaoe areas have been calculated for bare-hull. prototypes and are ex-
pressed as a ratio to the minimum for each geometrical parameter variation.
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ML= [31

where C. is the prismatic coefficient and *V-is the volume.

Let the fineness ratio L/D = n. Then

C n [4]

or

L (4n__1t
L, = (r0) [5]

Substituting Equation [5] in Equation [2] and transposing

S = C 7r1/s n|/a(4V-)2/ [6]

is obtained. This is the general expression for obtaining the wetted surface
of all prototypes of Series 58. Now, if n and * are taken to be constant and
all the remaining constant terms are collected and denoted by K, then

KCs
S = 57](Cp)2/3,

Substituting numerical values from Figure 1, for Cp 0.55 and L/D 7.00,

S = x o.6954. 1.036K
(0.55)2/a

and for Cp= 0.70 and L/D = 7.00,

S= K x 0.8094 . 1.027 K
(0.70)2"/

Thus there is only 0.9 percent difference In wetted-surface area between the
OF of 0.55 and the Cp of 0.70, a percentage that agrees with Figure 2. Or to
summarize, the wetted-surface coefficient varies approximately as the two-
thirds power of the prismatic coefficient in the range of values covered by
Series 58.

The volumetric distribution on the series forms is shown in Figure
3 by curves of prismatic of the forebody, C.F, prismatic of the afterbody,
CPA, and position of longitudinal center of buoyancy, LOB, versus each of the
prescribed parameters for the series-with the exception of fineness ratio
which does not alter these properties.
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Figure 3 -The Variation of Fborebody Pri.snatic Coefficient, Afterbody
Prismatic Coefficient, and Lonigitudinal Center of Buoyancy

for Series 58

DESCRIPTION OF MODELS

The models for the series were constructed in the model shop at the

; David Taylor Model Basin and were all 9 feet in length. All but two of the

,: models were built of Honduras mahogany. Of the exccepted two, one was made of

Alaska yellow cedar and the other of sugar pine. Mahogany was selected as

the preferred material for building the models since it was found to be more

impervious to water and consequently the models constructed of mahogany main- '

tained their dimensions within a few hundredths of an inch without cracking

or checking, even when subjected to long periods of soaking.

The procedure for constructing the models was as follows: A block

was assembled from glued lifts cut from planks; the block was then turned on

a lathe and cut by a rotating cutting head which travelled along a longitud- ,

inal template defining the profile meridian of the form; a central cutout was

provided in the model to accommodate an internal d.ynamometer and forward and

after cutouts were made to aeeommiodat• the pads for securing the towing struts;

the cutouts were covered by I/8-inch-thick sheet-aluminum plates which were

molded to fit the contours of the model.

CONFIDENTIAL
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The procedure for finishing the models was as follows: The mahogany
was first sealed with marine wood sealer followed by paste wood filler and

then rubbed with burlap or excelsior to remove the excess filler; after about

6 hours of drying time, the model was sprayed with Dupont 1991 lacquer sealer
and then sanded with sandpaper moistened with soapy water until a smooth fin-

ish was obtained; a final coating of Dupont Dulux examel, Ra-190, exterior

clear, was sprayed on the model and, when dry, was rubbed down with a rubbing

compound. A photograph of a typical model is given in Figure 4.

Figure 4 - A Typical Model of Series 58

TEST APPARATUS AND PROCEDURE

The "TMB Paired Towing Struts" were used to tow the series models

in the deep-submergence condition. The assembly of each of the two towing
struts consists of an internal supporting strut and an external fairing. The

internal supporting strut is pin-connected to the model at one end and clamped
to the floating girder of the resistance dynamometer at the other end. The
external fairing is placed concentrically about the supporting strut to shield

it completely from the flow. The fairing is free at the model end and is
fixed to a pair of rails, which are rigidly mounted to the towing carriage, at
the upper end.

The towing arrangement used for the tests is diagrammatically shown
in Figure 5. Two struts were used because a single one of the existing struts

did not have the torsional rigidity required to overcome the inherent dynamic

instability of the bare-hull models at the test speeds comtemplated. The I
fairings of the struts were inserted into the model through deck-plate open-
Ings which had enough clearance to provide for the motion of the resistance
dynamometer and for possible side deflection of the internal strut or fairing.

CONFIDENTIAL
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A resistance increase was expected due to the interference with the
flow about the models caused by the presence of the towing struts. Consequent-
ly, It was necessary to construct a pair of dummy struts in order to determine
the ni~gnitude of this effect. The dumim-strut assem~bly 16 shown in Figure 6.

-Floating Girder

)0000 00000000 0 -DO000000 0000000 00go 00

internal Suipporting Strut FxdBa
Adjusting Screw

Windshield removed
Supporting Strut Brackiet_-- to show bracket.-irsh

T~External Fairing Bracket

External Fairing

0

0J Direction of Tow

internal Supporting Strut

Figure 5 -Schematic Diagram of the Arrangement of the Model-Towing Apparatus
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I.

The dummy struts are supported by a frame which is parallel to the towing

struts. The struts have the same cross section as the fairings of the towing
struts. They project at right angles to the supporting frame and are inserted
into the model in a manner similar to the fairings of the towing struts and,
like the latter, are not attached to the model. The arrangement of placing
the dummy struts at 90 degrees instead of 180 degrees to the towing struts was
selected for two reasons: First, because of the imppx-acticability of I.pport-

ing dummy struts coming up to the bottom of the model, and second', because it

was considered desirable to reproduce, in another plane, the original asym-

metry in flow about the model caused by the towing struts. It was assumed
from previous experience that there would be no measurable increase in resist-
ance due to mutual interference in flow between each towing strut and dummy
strut. The validity of this assumption is verified by the agreement in the

results of tests of 9- and 15-foot geometrically similar streamlined bodies
of revolution, which are discussed in a subsequent section of this report.

For the purpose of stimulating turbulence, the model was prepared

for tests with a 1/2-inch-wide sand strip placed in the form of a circle,

around the nose of the model at a distance of 1/20 of the length (of the mod-

el) from the nose. The strip was prepared by sprinkling 20- to 30-mesh sand

on a thin adhesive coating.
The procedure used in the testing was as follows: The smooth bare

hull was first towed at a range of steady-state speeds from 1 to 18 knots;
the test was then repeated for the model equipped with the sand strip. The
model with the sand strip was tested with the duxmmy struts inserted and then
with the dummy struts removed but with the dummy-strut supporting frame down
(in order to obtain the net effect of the dummy struts alone). The tests with
the dummy struts in place extended only up to a speed of approximately 8.5
knots because the system was not stiff enough to maintain clearance between

the dummy strut and the edge of the cutout in the model at higher speeds.
Strut-interference teats were not conducted for all models since the small

change in strut-interference coefficient from model to model permitted accu-
rate interpolation and extrapolation.

The apparatus used to tow the models at the near-surface or snorkel-
ling conditions consisted of a single towing strut, having a 4- by 1-inch ogi-
val cross section,which was rigidly attached to the model at one end and to the
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floating girder of the resistance dynamometer at the other end. The strut
had no external fairing, so that separate resistance tests of the strut werv
necessary to obtain the tare.

The procedure of testing was as follows: Each model, prepared with
a sand strip, was towed at a range of steady-state speeds from 1 to 18 knots
at each of three different depths of submergence. The depths were taken in

small increments about what was considered to be a reasonable snorkelling
depth based on information from other submarines. The strut was then towed
alone over the same speed range at the appropriate depths to obtain the tare

resistances.
Separate tests of the models to determine the additions in resist-

ance due to sand-roughness and strut-interference effect were not made at the
snorkelling conditions. The means used to assess these quantities are ex-
plained in the following section. Because of limitations in time, only four
models, embodying the variation of prismatic coefficient at a fineness ratio
of 7.0, were tested for near-surface resistance.

REDUCTION OF TEST DATA

The resistance'versus-speed values obtained from the tests of each
model were reduced to nondimensional form by the method of Reference 3, as
follows:

The total-resistance coefficient is defined as:
C Rt[8t sv 8]

where C t is the total-resistance coefficient,
Rt is the total resistance,
p is the mass density, and
V is the speed.

The frictional-resistance coefficient is obtained from the
Schoenherr formula

o7 - logCO (Re. Cf) fg

where C f is the frictional-resistance coefficient,
Re Is the Reynolds number, equal t3 'VL
Ve is thespe

L is the overall length, and
v is the kinenatic viscosity of the basin water.
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This is subtracted from the total-resistance coefficient to obtain the

residual-resistance coefficient, or
=C Rr

Ut - C f Sr= [10oSSV2

where C is the residual-resistance coefficient, and R is the residual
r r

resistance.
The residual-resistance coefficient values were then plotted against

the Froude number,_-, and irregularities due to obvious test-spot discrepan-

cics faired out. The Froude number was selected as the speed parametfr for
fairing purposes even for the deep-submergence tests because, although the
models for these tests were towed at considerable depth, a small amount of
wave-making resistance, which varies with Froude number, remained.

As mentioned previously, for the majority of the models four resist-
ance tests at deep submergence were made: A test of the smooth model, a test
of the model with the sand strip for stimulating turbulence, a test of the
model with the dummy-strut supporting frame alone, and a test of the model
with the dummy struts inserted into the model. To illustrate how the data
from these four tests are used to obtain the net residual-resistance coeffi-
cient, the data from the tests of Model 4165 are reproduced in Figure 7.

Iftrt-Ittrfrn - t bummy truts Inetti

.0 .20 .~~ .40 W~th~Support~ing Frq(AqroI Oflllt030 - ~ 10J~
.1o .20 .$o .4 0 .5 0 .0 o .$0 .90

Froude Number, V/ -g.

It 6 nd irt nd-tJough0On Ce tfg Int0.

___- - -gf' l -- l • l .i ._ _ , _ . • _ , o

JO JO .30 40 J.O A, .0 i *0 .90 , .0 II .2l 1. 1.4 LO .6l L7 l

Frouda Number, V/g1•-

Figure 7 - Sample flesidual-Resistancc-Coefficient Curves

T1he data w~ro derlved from taests with Mudel 4165.
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Examining first the results of the smooth-hull tests, It can be

seen that below a s-roude number of 0.7-corresponding to a Reynolds number of

about 1 .04 x 107 -the Cr curve drops sharply and attains uc:.gative values below

a Froude number 0.4. Since the Cr values were obtained by subtracting turbu-

lent Cf values from the Ct data, the drop in the Cr curve indicates the pres-

-ence of laminar flow over part of the body. This is verified by the Cr curve

for the body wtion the sand strip is used to stimulate turbulence. Here the

Cr curve is very nearly horizontal from low to high Froude numbers, except

for the hump, which is known to be due to wave-making resistance. The Cr
curve for the body with the sand strip is higher, however, even at high Froude

numbers. This is considered to be due to the added resistance, caused by the

sand itself. It is noted that above a Froude number of 0.7 these two Cr

curves are parallel. Thus, the difference between the Cr s in this area can

be taken as representative of the correction needed to compensate for the add-

ed resistanco of the sand. The curve for the smooth body can then be amended
as shown by the broken line. The effect of the sand beyond that caused by

turbulence stimulwtion will hereinafter be referred to as the "sand-roughness

coefficient," -/2 , where4R, is the resistance added by the sand.

If, now, the Cr curve for the model towed with the dummy-strut sup-

porting frame alone in place and the curve for the model including the dummy

struts are taken as a pair, it can be seen that these curves are also parallel.

Consequently if the difference between these curves can be denoted as the
"strut-interference coefficient," p12 SV2 , then the smooth-bare-hull Cr curve
can be further corrected to obtain the net Cr curve which is shown in Figure

7. To summarize, net Cr = gross Cr minus sand-roughness coefficient minus strut-
interference coefficient.

To illustrate the velidity of the aforementioned procedure, the re-

sults of tests of two different-sized, geometrically similar streamlined
bodies of revolution are shown as resistance coefficients in Figure 8. The

test results are for a 9- and a 15-foot model of a TMB-EPH form of a fineness

ratio of 5. As can be readily seen, after the respective sand-roughness and

strut-interference coefficients are deducted from the Ct curves derived from

the tests of each model, the net Ct curves, and consequently the net Cr

curves, in the area outside of the wave-making hump are identical. The fact

that the sand-roughness and strut-interference coefficients are quite differ-

ent in magnitude for the two different sized models, (0.10 x 10-3 and 0.30 x
i0-3) for the 9-foot model and (0.05 x 10-3 nnd 0.05 x I0-3) for the 15-foot

model, and yet yield the same net Crts, is an indication of the accuracy of
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the test procedure and analysis technique. Thus the results of the tests of

the 9-foot models can be used quantitatively with the same confidence as those
from tests of large models.

The method used to extrapolate the model data to obtain the effec-
tive horsepowers for geometrically similar prototypes for deep submergence is
essentially the same as the method of Reference 3. The only difference is
that Cr is considered to be constant and independent of Froude number. The
assumption of the constancy of Cr for the deep submergence condition is based

on the following reasoning: As will be shown subsequently, the results of
tests of all models of Series 58 at deep submergence have indicated that the

Crts as defined by Equation [10] are sensibly constant over a range of Reyn-
¶ olds numbers from 2 x 106 to 2 x 107 , with the exception of the small wave-

making hump. It is reasonable to assume, therefore, that if the Cr does not

change over such a wide model range, where its dependency with Reynolds num-
ber should be most pronounced, there will be no further change in the extrapo-
lation to full-scale Reynolds numbers, which are only removed from the high-
est model Reynolds number by a factor of the order of 10. Thus, the total ef-

fective horsepower is:

EHPt = (Cr + Cf + ACf) Pv (1.689)8
r f f 55U-

where Cr is the net residual-resistance coefficient corrected for the sand-
roughness coefficient and the strut-interference coefficient,

Cf is obtained from the Schoenherr formula using the appropriate Reyn-
olds number based on the full-scale speed and length and on a kine-
matic viscosity corresponding to a standard sea water of 3 percent
salinity at a temperature of 59 F.,

ACf is the roughness-allowance coefficient and is taken, for the purpose

of this analysis, equal to 0.400 x 10O3 as recommended by the Ameri-
can Towing Tank Conference,*

p is the mass density of sea water at 59 F.,
* S is the full-scale wetted-surface area,

V is the speed which, when knots are used, requires the conversion
factor of 1.689, and

550 is the conversion factor of foot-lb per second to horsepower.

*Recent stanidardization irials have IrAicated that a roughness-allowance coefficient of 0.4 x 10-3
is somewhat low even for clean-bottom vessels treated with zinc chromate paint. Roughness-allowance
coefficients for vessels treated vinh fmtifouling paints of hot or cold plastic are even higher. There
are very little existing data on the roughnese of 4ubmarine hulls. It is recommended, therefore, that
when sufficient roughness data are available, they be applied to adjust the EHP values in this report,
if more accurate quok4attv results are desired. In general, the merit relationships will not be ma-
terially altered by a chn.nge of roughness-allownncc coefficient.
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The method used to reduce the data from the model snorkelling tests

was as follows: The strut taro resistances were faired against model speed

and then cross-faired against depth. The appropriate faired tares were then

subtracted from the test data values of gross resistance versus speed. The

tares were small, amounting to only approximately 8 percent of the total meas-

ured resistance. The resultant data were used to compute C's using Equations
[8) and [9) and these CrIs were then plotted agnsit Fr oude number and faired.

An examination of the Cr curves for each model revealed that, below a Froude

number of approximately 0.25, the curves for all tested depths converged at a

single constant value. The difference between this value and the net Cr for

deep submergence was considered to be equal to the sum of the sand-roughness

coefficient and the strut-interference coefficient for the snorkelling tests
of the given model. This assumed coefficient was then deducted from the

faired Cr curve values to obtain the net Cr-versus-Froude number curves. The
EHP's were then computed by the method of Reference 3 using the net Cr ,.

PRESENTATION OF DATA

The data derived from the deep-submergence resistance tests of Se-

ries 58 are presented in several different forms to facilitate immediate ap-
plication for various purposes.

First, to permit an independent evaluation, the data are presented

in Appendix 3 as total-resistance coefficients plotted against Reynolds number.
Test spots are shown for the model tested, with and without sand strips. Val-
ues for the sand-roughness coefficient and the strut-interference coefficient

are given on each set of curves. Data for the strut-interference coefficients

ars given in Appendix 4 in the form of Cr versus Froude number.
Secondly, the corrected, or net, Cr's plotted against Froude number

are shown as curves in Appendix 5. These curves demonstrate that Cr is con-

stant and independent of Reynolds' number at deep submergence, show the extent
of the wave-making resistance at the depth tested, and permit calculations of

the total-resistance coefficient, the effective horsepower, or various other
comparative resistance coefficients. The constant values for the Cr taken

from each of these curves are restated in Table 2.
To provide a means for readily obtaining the effective horsepower

for various prototypes of each of the series forms, curves of effective horse-
power versus Immersed volume (or displacement in salt-water tons) are given

for various even speeds in Appendix 6. The EHP's in these curves have been

calculated for bare hull, to which a roughness-allowance coefficient of 0.4 x
10-s has been added. Standard conditions of salt water at 59 F. were used.
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TABLE 2

Net Residual-Resistance Coefficients for Series 58 Forms
at Deep Submergence

Model Net Model Net Moel Net

Coefficient Coefficient Coefficient

4154 0.58 x 10-" 4162 0.17 x 10-9 4170 0.18 x 10-8
4155 0.36 4163 0.19 4171 0.13
4156 0.22 t4164 0.37 4172 0.13
4157 0.13 4165 0.07 4173 0.13
4158 0.09 4166 o.28 4174 0.10

4159 0.075 4167 o.16 4175 0.32
416o 0.12 4168 0.14 4176 0.141
4161 0.15 4169 0.14 4177 o.16

Curves relating the lengths to the volumes of the prototypes are also given

in Appendix 6.
The variation in EHP due to the change in geometrical parameters is

shown by the use of "merit curves" in Figures 9 to 14. The EHPIs used to con-
struct these curves were calculated for prototypes having equal volumes, name-
ly 60,00o cubic feet (corresponding to 1715 tons) of displaced salt water.
In each curve, submerged EHP's for a given form are expressed as ratios to
the minimum bare-hull EHP of the group of forms being compared. The ratios
are average values for a speed range of 10 to 30 knots and apply to any speed
in this range to within 1/2 of I percent, changing only because of the small
variation of frictional resistance coefficient with Reynolds numbers. They
also apply Just as closely to any fixed volume comparison between volumes of
20,000 to 100,000 cubic feet. The ratios are, in each case, plotted against
the geometrical parameter that is varied. Thus the advantage that can be
gained, In terms of percent, by the variation of these parameters can be read-
ily seen. The circle on each curve denotes the parent form.

The broken lines on the merit curves indicate the EHP-Including a
calculated added EHP due to the addition of horizontal and vertical control
surfaces. The increase in EHP due to the addition of the control surfaces
was estimated by the following empirical relationship:
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nr EHP 1  + 2.3.] fi [2]

where EHP, is the effective horsepower for the bare-hull plus control
surfaces,

EHP1 is the bare-hull effective horsepower,
Sis the wetted-surface area of the control surfaces,

S is the wetted-area of the bare-hull, and the factor
2.3 was obtained by averaging the results of tests to determine the

separate resistances of various types of control surfaces when
Installed on different classes of submarines.
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This empirical factor (2.3) combines the effects of several vari-
ables, such as the interference effect between the control surface and the
hull, the use of a Reynolds number based on the length of the hull instead of
a Reynolds number based on the length of the control surface, and differences
in boundary-layer thicknesses or wakes in the neighborhood of the control sur-
face. The resultant effect is a first approximation of the augmentation to
the total resistance of the hull due to the addition of the control surfaces.

This approximation, although not accurate enough for a quantitative appraisal,
serves the purpose of showing the effects of the addition of control surface
areas on the merit relationships of Series 58. Although this factor is high
compared to control surfaces designed solely on resistance considerations, it
is considered fairly representative of present practical control-surface

design.
The required control-surface areas for the various forms are shown

in Figure 15. The quantities given represent the total areas (both sides) of
both horizontal and vertical control surfaces. These areas were predicted
from the derivatives obtained from static-stability tests of Series 58 by the
method of Roference 4. The basic assumptions used in the derivation were: A
directional stability index (dimensional = -0.02 reciprocal second), a con-
stant volume of 60,ooo cubic feet, radii of gyration equal to those of prolate
spheroids of the same length, and control surfaces having a span equal to the
maximum diameter of the form under consideration.

The data derived from the resistance tests of models of Series 58
at the snorkelling conditions are presented in several ways. The net C'S
plotted against Froude number are shown in Appendix 7, as curves for each of
the tested depth-to-diameter ratios. These Cr's permit the calculation of
EHP's for any geometrically similar prototype within the given range of depth-
to-diameter ratios. For comparison purposes, the EHP's have been calculated
for 6 0,000-cubic-foot prototypes operating in salt water of 59 F. at an as-
sumed depth of submergence of 20 feet to the top of the hull at the maximum
diameter. These EHP's are shown plotted against speed for each prismatic co-
efficient in Figure 16 and as cross curves against prismatic coefficient for

various even speeds in Figure 17. The EHP's of Figures 16 and 17 are ex-
pressed, in Table 3, as ratios to the minimum BHP for deep submergence for
each given speed. The purpose of this is to show the magnitude of the snorkel-
ling EHP in percentages which are referred to the same basis as used in Figure

C FN.
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TABLE 3

Ratios of the EHP's at Snorkelling Condition to the Minimum EHP
at Deep Submergence for the Series 58 Variation of

Prismatic Coefficient at an L/D = 7.0
The EHP's have been calculated for 60,000-cubic-foot prototypes operating in salt

water of 59 F. at an assumed depth of submergenca of 20 feet to the top of the hull
at the maximum diameter.

KHP/EHPmin

Speed in knots Cp = 0.55 Cp = o.6o Cp = o.65 Cp = 0.70

12 1.179 1.074 1.o6o 1.149
14 1.325 1.190 1.129 1.246
16 1.886 1.490 1.319 1.305
18 2.852 2.415 2.278 2.195

20 3.483 3.067 3.177 3.120
22 3.657 3.333 3.521 3.457

DISCUSSION OF RESULTS

The range of the geometrical parameters selected for Series 58 is
comparatively narrow; the forms chosen are principally those which might rea-

sonably be used for the shape of external hulls for high-submerged-speed sub-
marines. However, these forms may be applied to airships, high-speed tor-

pedoes, airplane fuselages, sound domes, and numerous types of faired hous-
ings. Extension of the series to include the more radical shapes required for

other applications has been deferred because of the limitation in time imposed

on the first phases of the project. In spite of the fact that the series is

restricted in scope, it is believed that Figures 9 to 14 will enable the se-

lection of forms very near to the minimnum EHP, within practical design limi-

tations. It will be noted that, although all of the forms of Series 58 may
be considered as being within the category of well streamlined shapes, sub-

stantial improvement in resistance can be made by the proper selection of geo-
metrical parameters even for such shapes. Other things being equal, bodies of
revolution having features such as parallel middle body or very blunt after
bodies can be expected to have higher resistances than the bodies contained in

Series 58.

The variations of the EHP with the geometrical parameters which are
shown in Figures 9 to 14 apply in the strictest sense only to the particular
parent that is being varied. It is reasonable to assume, however, that the

resistances of other parent forms which are not too dissimilar will vary with

change of parameter in very nearly the same manner. Consequently, although
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the subsequent discussion will strictly pertain only to the forms encompassed
by the series, it will apply to other similar forms. The effects of the var-

iation of each geometrical parameter on the EHP for deep submergence are sep-

arately discussed in the following paragraphs. The comparisons have been made
on the basis of equal volume on the assumption that this quantity is of major
importance in the design of submarines. The data in the appendices will, how-
ever, enable comparisons to be made-based on length, maximum section, or any
other geometrical criterion which is suitable to a particular problem.

The effect of the variation of fineness ratio for constant volume is
shown in Figure 9. It can be seen that the minimum bare-hull EHP occurs at an
L/D of approximately 6.5. A saving of about 7.5 percent is effected by chang-
ing from an L/D of 10, which corresponds approximately to that of a convention-
al submarine design, to an L/D of 6.5. Figure 2 shows that for a constant
volume of 60,00o cubic feet there is approximately a 32 percent reduction in
bare-hull wetted-surface area in going from an L/D of 10 to one of 4.0. Since
the wetted-surface area is indicative of the amount of frictional EHP,. it is
apparent that, below an L/D of 6.5, the rate of increase in residual EHP is

greater than the decrease of the frictional EHP. This relationship is further
demonstrated by Figure 18, in which the total, frictional, and residual horse-
powers for a speed of 30 knots have been plotted for 60,000-cubic-foot proto-

types of the various L/Dls. The frictional EHPts increase almost linearly at
a pronounced rate, whereas the residual EHP's tend to level off ab.ove an L/D
of 8.0. The comparatively sharp increase in residual EHP* at the lower L/DIs

is probably caused by a thickened boundary layer due to the relatively greater
positive pressure gradients over the afterbody of the blunter forms. The
thicker boundary layers would result in a larger pressure defect over the tail
and consequently an increased pressure drag. The effect of the addition of

necessary control-surface area upon the location of the optimum L/D is small,
only shifting it to approximately 7.0.

The variation of the prismatic coefficient at an LID of 7,0 causes
the most pronounced change in EHP of any of the parameters covered by the so-
ries. It can be seen from Figure 10 that the minimum-bare-hull ERP occurs at
a C. of approximately 0.61. The EHP at this point is approximately 15 percent
lower than that of a 0p of 0.55, and 10 percent lower than that of a p of
0.70. The changes are almost entirely changes in residual EHP, since the bare-
hull wetted areas for prototypes of equal volumes are almost equal. The

*The explanations offered in this report to account for the relative malnitudes or the reuidual. Y2PB

for the various forms are based on a few preliminary observational experiments conducted in the circu.
.ating water channel of the Taylor Model Basin. More precise determination of the causes of form re-

sistance on streamlined bodies will form the subject of future research.
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The variation of EHP with Cp at an L/D of 5.0, shown in Figure 11,
differs somewhat from that at an L/b of 7.0. Although the minimum occurs at
nearly the same value, C. = 0.60, the bare-hull EHP at a Cp of 0.55 is only
4 percent higher than the minimum. The different character of this curve is
probably due to the fact that even at the optimum Cp for an L/D of 5.0, a sub-
stantial amount of form resistance exists. Consequently, since the boundary
layer at the tail is already relatively thick, it is reasonable to expect that
the thickness of the boundary layer would not be as sensitive to changes of
form as is the case for an L/n of 7.0. The addition of control surfaces does
not materially alter the position of the optimum Cp.

The effect of the variation of the nose radius is very small over
the range of values tested and consequently the choice of this parameter is
not critical. The nose radius of 0.5, used on the parent, appears to be most
satisfactory and it does not seem to be advisable to use a nose radius greater
than 0.8. The change of nose radius produces a substantial change in forebody
and afterbody prismatic coefficient and in the position of the LOB as shown

in Figure 3. The latter parameters could be substituted in place of the scale
for nose radius in Figure 12 or used interchangeably, to show that these param-
eters have little effect on resistance over the range tested. The fact that
the LOB can be moved quite considerably without much effect upon resistance
gives the designer considerable latitude In making his choice of form. The
additional resistance computed for tail surfaces does not alter the relative
effects of the nose radius.

The variation of the tail radius over the range given in Figure 13
does not result in any significant changes of resistance. The tail radius of
0.2 appears to be most satisfactory for the parent, having a 0 of 0.65, be-
cause it results in a more gradual afterbody taper. This probably would not
be true at lower Cps. The addition of control surface areas does not alter
the relative comparison of Figure 13.

The position of the maximum section, as shown in Figure 14, does not
appear to be critical over the range covered by the series. For the parent

used, the optimum position of the maximum section appears to be approximately
0.36. The change in bare-hull EHP is only 3 percent from an m of 0.36 to an
m of 0.52, The addition of control surfaces does not mterially alter the op-
timum position of the maximum section,

At snorkelling depths, the effect of the variation of geometrioal
parameters on EHP is more pronounced, since the effect of wave-mAking resist-
ance due to surface proximity is also included. As seen in Figure 17 and in
Table 3, the choice of the optimum Cp for enorkelling depends upon the speed
that is contemplated. At speeds below 12 knots, the Cp for minimum EHP
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approaches the optimum Cp for deep submergence and consequently the choice of
Cp for both conditions would be the same. At speeds of 14 to 17 knots, a CP
of approximately 0.65 would be more desirable for snorkelling, and if these
speeds were contemplated, the relative advantage of using the best Cp for deep

Ssubmergence or that for snorkelling would have to be considered in the design
of the hull form. It is assumed that snorkelling speeds above 17 knots are
impractical at the present time. It is nevertheless of interest to note the
effect of Cp at higher speeds, since the optimum Cp for deep submergence is
once more approached. It should be noted, from Table 3, that at a speed of
22 knots the bare hull EHP is of the order of 3 1/2 times the EHP at deep

submergence.
The selection of the minimum resistance form must be done advisedly,

even within the scope of the series. Since the variation of geometrical param-
eters has in each case been made from a common parent, the effects of each
parameter are not necessarily additive. For example, the nose or tail radius
most suitable for the parent form is not necessarily right for the body of
optimum Cp. Furthermore, the optimum form may not be unique in that several
combinations of the five parameters used in the series may result in equally
good resistance forms.

Based on the preceding factors, considering also the effect of the
addition of control surface's, and assuming a design snorkelling speed below
12 knots, one possible optimum resistance form is one having an L/D of 7.0,
a CP of 0.61, an ro of 0.5, an r1 of 0.1 and an m of 0.36. The r. of 0.1 was
selected, instead of the 0.2 indicated by the series results, because the
latter value is not compatible with the other parameter changes. Since there
are only small changes involved in going from a Cp of 0.61 to a C. of 0.60
and from an m of 0.36 to an m of 0.40, Model 41 65 with a serial of 400 501 60-70
has a form that has a resistance of only approximately 1 percent higher than
the selected minimum resistance form.

A comparison of the selected minimum resistance form from Series 58
with other existing streamlined bodies of revolution on the basis of equal
volume reveals the following: The optimum form has approximately a 3 percent
lower bare-hull EHP than the British Ri01 with an L/D = 5 (TMB Model 4184),
and approximately a 6 percent lower bare-hull EHP than the TMB-EPH form with
an L/D = 5 (TMB Model 414 9 ). It is especially interesting to note that if the
merit curves of Series 58 are entered with the geometrical parameters of the
R101 and EPH forms mentioned in the foregoing, the EHP difference is identical

to that obtained from the actual tests of these two models, i.e., 3 percent.
Furthermore, if the R101 form is compared with the Series 58 form having the
same geometrical parameters, the resistances are very nearly equal.
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The selected optimum form from Series 58 is compared on an equal-
volume basis to a conventional type of submarine in Figure 1(). It can be seen

that the conventional form has approximately 22 percent greater bare-hull EHP
than the optimum form.
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It should be emphasized that the optimum form suggested herein is

based solely on the resistance performance, which includes the effects of the
control surface area required for certain directional stability specifications.

The effects of hull shape on propulsive performance will undoubtedly play an

important part in the final selection of the optimum form. It is conceivable
that the use of a form of lower fineness ratio or fuller afterbody than indi-

cated for' minimum resistance may improve the wake and thrust deduction so that

a higher hull efficiency is obtained, which will result in a lower shaft horse-

power than that obtained with the minimum resistance form. Furthermore, prac-
tical considerations such as machinery layout, military characteristics, etc.

will also enter into the determination of the final form.
Programs to study the effect of variations in hull form on propul-

sive characteristics are being plat,ned as an extension of the work with Series
58 and will form the subject of future reports.

CONCLUSIONS

The results of the experiments with Series 58 show that the sub-

merged resistance of streamlined bodies of revolution, whose section area

curves may be represented by sixth degree polynomials, will vary with changes
in the geometrical parameters which are used to define these bodies. The

EHP of equal-volume prototypes of Series 58, equipped with horizontal and
vertical control surfaces, changes within the range of geometrical parameters
covered by the series as follows:

1. Fineness ratio-The maximum change is approximately 12 percent and
there is a minimum EHP at an L/D of 7.0.

2. Prismatic coefficient, L/D = 7.0-The maximum change is approximate-
ly 15 percent and there is a minimum EHP at a Cp of o.61.

3. Prismatic coefficient, L/D = 5.0-The maximum change is approximate- 2
ly 4 percent and there is a minimum EHP at a Cp of 0.60.

Pi

4. Nose radius-The maximum change is approximately 2 percent and there
is a minimum E11P at an ro of 0.5.

5. Tail radius-The maximum change is approximately I percent and there

is no definite minimum EHP indicated.

6. Position of maximum section-The maximum change is approximately 5
percent and there is a minimum EHP at an m of 0.36.

A minimum resistance form based on the preceding relationships is
one having an L/D of 7.0, a C of 0.61, an ro of 0.5, an r1 of 0.1, and an •.
of 0.36.
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APPENDIX 1

MEMORANDUM REVIEWING THE INFORMATION AVAILABLE ON
STREAMLINED BODIES OF REVOLUTION

PRIOR TO SERIES 58
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IN REPLY ADDRESS:
DIRECTOR, DAVID TAYLOR PUACU
MODEL BASIN, USN.

"REFER TO FILE: NAVY DEPARTMENT

C-SS/Sl-2(5) DAVID TAYLOR MODEL BASIN
C-A9-1 7 WASHINOTON 7, D.C.

(524:MG: or)

CONFIDENTIAL 3 May 1948

MEMORANDUM

To: Officer-in-Charge of Hydromechanics Department

SubJ: Research TMB SRD 542/46 - Hydrodynamics of High-Submerged-Speed Submarines -

Resistance of Streamline Forms.

Refs: (a) TM7 Conference of 25 Mar 46 attended by Dr. Kennard, Mr. Landweber,
Mr. Kirstein, Mr. Gertler, and Mr. Abkowitz of TMB.

(b) BuShips Conference of 30 Apr 46 attended by Captain Weaver, Comdr. Tilburne,
and Mr. Neidermair of BuShips and Mr. Kirstein, Mr. Gertler and Mr. Abkowitz
of TMB.

(c) TMB CONF Itr C-SS/81-2(5), C-A9-17 of 3 Aug 46.
(d) "Modern Developments in Fluid Dynamics," by S. Goldstein, Volume I1, Chapter

XI, Section 2 (1939).

Encl: (A) Bibliography of the Resistance of Streamline Bodies of Revolution, dated
31 Jan 47.

1. The purpose of this memorandum is to review the steps taken by the David Taylor Model
Basin in the basic research phases of the Program f'or Investigation of Hydrodynamics of
High-Submerged-Speed Submarines, designated as Project SIM 542/46. In addition, general
remarks concerning the state of available experimental data on streamline bodies, of revo-
lution are made and systematic series models are proposed for testing in order to further
this knowledge. The discussion which follows is concerned only with the phase of the pro-
gram which deals with factors affecting the resistance of these forms. Stability, con-
trollability, and propulsion are not considered herein.

2. At the inception of the High-Submerged-Speed Submarine Program, a conference, Reference
(a) was held, to determine the course of action to be taken. It was decided, at this time,
that data obtained from wind-tunnel experiments on airship forms might be directly appli-
cablo to the ideal submarine form for exclusively submerged operation. It. was suggested,
therefore, that a complete bibliographical search on this subject matter be made before
an experimental program of basin tests was planned.

3. Pursuant thereto, a detailed search of all available sources was made and the bibli-
ography oontaiiad in Enclosure (A) was assembled. The bibliography has been divided into
two categories; one of which is experimental and deals with the results of tests on
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streamline bodies of revolution in wind tunnels, model basins, and on full-scale trials
to obtain resistance and related data, and the second which contains papers by various
authorities on hydrodynamics giving a theoretical treatment of the same subject matter.

4. A study made to determine the value of these experimernal data revealed that in
general one or more of the following conditions were present which rendered them unre-
liable as bases for the proposed program:

Rt
a. The values of total resistance coefficient (Ct = ' where Rt is the

total resistance, p is the mass density. S is the wetted surface area, and V is the
speed at any given Reynolds number i , where V is the speed, L is the overall length
and v is the kinematic viscosity)for the same model tested in different wind' tunnels
varied over a wide range. This was due to the various degrees of turbulehee in these
tunnels.

b. The curves of total resistance coefficient versus Reynolds number for the same
model in the same wind tunnel varied greatly when different means were used to artifi-
cially stimulate turbulence. The curves did not converge at a given value as normally
occurs when the drag experiments are conducted in water. The drag coefficients ob-
taine from tests in an undisturbed air stream and those obtained from tests in an air
stream with turbulence induced by wire grids placed at different positions relative to
the model differed as much as 200 percent.

a. Most of the available wind tumnel data were obtained at low Reynolds numbers
because of the small size of the model used and the low air speed. As a result, most
of these data were obtained under conditions of either laminar or transitional flow.

d. The few wind tunnel tests made at high enough Reynolds numbers to ensure tur-
bulence without the use of artificial stimulation produced too few experimental obser-
vations to discern a trend in the data.

e. As far as can be letermined, there have been no tests of systematic series of
streamline bodies of revolution conducted in the wind tunnels. The majority of the
tests were made either on specific airship designs or isolated cases of streamlined
bodies of revolution. Very little or no attempt was made to relate the effect of var-
iables of size and shape to resistance.

f. The full-scale data available were obtained from deceleration tests and the
approximations relied upon make these data unreliable for any basic study.

g. The model basin test results which are available are inadequate because of
the use of small models, low towing speeds, and failure to take accurate temperature
readings. As a result, most of these data were obtained under tran~.tional flow con-
ditions. The following excerpts from Reference (d) confirm some of the above men-
tioned statements:

"Before that date (1929) much experimental work had been conducted on stream-
line bodies, but (for lack of facilities as well as knowledge) the Reynolds numbers
were as a rule so low that the results are of little practical value.
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"In most of the fairly numerous experiments made to determine the effect of the

variation of fineness ratio, the Reynolds number has been of the order of 105 or 106 so
that the boundary layer has in all probability been partly laminar and partly turbulent.

"Other experiments have been unsatisfactory because the fineness ratio has been

altered by the insertion of different lengths of cylindrical body between the nose and

tail. It is not clear what purpose such tests are expected to serve, since, given a well-

shaped nose and tail and Junction between them, it seems that the introduction of a cylin-

drical portion must increase the drag."

5. The inadequacies of the existing data led the Taylor Model Basin to suggest to the Bu-

reau of Ships in Reference (b) that systematic experiments of streamlined bodies of revo-

lution be conductied. It was agreed in this conference that, although these forms might

not be practical for submarine hulls, the information gained from tests of the bodies would

provide valuable guides for submarine huUl design and add much to the basic knowledge of

the subject. As the outcome of this conference, provision for experiments on these forms
were incorporated in paragraph 4a of Reference (c) as part of the general research program

for the hydrodynamics of high-submerged-speed submarines.

6. The Taylor Model Basin has conducted submerged resistance tests on the bare hulls of

several 20-foot submarine models. These models were towed at high enough speeds to ensure

reliable data. It was noted that the value of residual resistance coefficient, Cr-/
1 S Vr

where R is che residual resistance, was approximately the same for each model and equal

to 0,0002. This suggests that, in streamline bodies having a length-diameter ratio of from
10 to 12, the prime factor which affects the resistance is the wetted surface area. It

should be mentioned, however,, that the volumes of these models were not the same.

7. The variables which are likely to affect the resistance of streamline bodies of revo-
lution to the greatest extent expressed in non-dimensional form are: h . J , and and

L L LL
where L is the overall length of the body,

h fs the distance of the section of maximum d'iameter from the nose,
D is the diameter of the maximum section,
S is the wetted surface area, and

-Yi is the volume.

A systematic study of the effects of each of these variables can be made by a series of
models which would vary one of the variables at a time while the others remain constant.

i•nce the differences of wetted surface area would be accounted for in the non-dimensional
coefficient, C 1 Rt only the three remaining variables need be considered. Thus,t p12 S V12"

if three models were used for each of the variations, the resultant series would be com-
posed of 27 models. The number of models required might possibly be diminished by testing
models at selected end points and determining whether the magnitude of the resistance
changes warrant the testing of models at intermediate points.

8. Although it is true that the relationships which arise out of such a series may only
be strictly accurate for the particular family of forms tested, it is believed that the
general relationships will not deviate greatly in other similar families of reasonably
streamline forms.
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9. In addition to investigating the effects of the variables given above, it may be desir-
ablo to investigate details of shape such as curvature at the nose, curvature at the maximum

section, curvature at the tail, and the slope of the longitudinal section at various points.

Consequently, the family of forms chosen for the series work should also be able to define

these variations.

10. A family of streamline bodies of revolution which apparently satisfies most require-

ments is being presently developed. The family is derived from the power series equation:

2 - alx+ a x2 + aX2 + + . .+ ansn

where y is the non-dimensional ordinate, Y/D,

x is the non-dimensional abscissa, X/L, and

a., a 2 , as, etc. are arbitrary constants having numerical values which are dependent

upon the limitations imposed on the basic equation.

The degree of the basic equation is chosen to accommodate the number of variables which are

used to define the shape of the body. Typical features of shape which can be specified are:

Curvature of the nose, maximum section, and tail; position of maximum section, and volume.

11. The lines of investigation suggested for the bodies comprising the proposed series are
outlined as follows:

1. Resistance tests at zero angle of trim, for

a. Deep Submergence

b. Intermediate Depths

a. Surface

2. Resistance tests at various angles of trim, for

a. Deep Submergence

b. Intermediate Depths

e. Surface

3. Boundary layer studies, at

a. Deep Submergence

4. Point pressure studies, at

a. Deep Submergence

b. Intermediate Depths

c. Surface

Because of the amount of preparation and testing time required, it is proposed that the
boundary layer and point pressure work be confined to only one or two selected models.
It is also proposed to include tests of the series models equipped with various nose
shapes designed for the purpose of improving surface performance without serious detri-
mental effect on submerged performance.
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12. In addition to the tests of the hull forms, it is proposed that the design of append-
ages be studied in conjunction with the series models in the following manner:

1. Resistance of control surfaces

a. Effect of size

b. Effect of shape

c. Effect of location

2. Resistance of conning tower assemblies

a. Effect of size

b. Effect of shape

c. Effect of location

3. Resistance of sound domes

a. Effect of size

b. Effect of shape

c. Effect of location

13. The details concerning the series models, the most practical sizes of models and the
extent of the experiments will be determined as the work progresses,

M. GERTLER
Submarine and Torpedo

Powering Group
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APPENDIX 2

TABLES OF OFFSETS FOR SERIES 58

The Nondimensional Abscissas and Ordinates, the Di-
mensional Abscissas and Ordinates for a 9-foot Model, and other

Geometrical Particulars are Given for Each Form of Series 58 in
the Following Pages.
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Model 4154 
Serial 40050165-40

X/L X in Y/D Y ininches inches Formula:

0.00 0.00 0.0000 0.000
.02 2.16 .1439 3.885 Y = alx1+ax+ a 4 x4 +asx+axe.04 4.32 .2059 5 g59
.06 6.48 .2537 6. 50 where a, = + 1.00000.08 8.64 .2934 

* 10 0.10 10.80 .327 2 34 a. = + 2.149653.12 12.96 .6 9.626 as = - 17.773496
.14 15.12 .3 5 10.309
.16 17.28 .4037 10.900 a 4 = + 36.716580
.18 19.44 .4226 11.410 a, = - 33.511285.20 21.60 .4388 11.848.22 23.76 .4526 12.220 a 6 = + 11.418548
.24 25.92 .4641 12,531
.26 2.08 .4737 -12.790 Wetted Surface Coefficient =.28 30.24 481g 13.001 -L--D.30 32.40 4878 13.171.32 34.56 .49,5 13.298 = 0.7887
.34 36.8 .82 1

3841.04 49;2 13 .4g9 Longitudinal Center of Buoyancy
. 43.20 .5000 13.500 L
.42 45.36 .4997 13.492 

0.4644.44 47.542 .986 13.462
.46 4968 4968 13.414:548 51.84 :4944 13•349 Model Particulars:• 5 0 511 .0 0 4 9 1 7 1 3 2 6.502 56.1 :4882 13.1 '1 Length, ft 9.000
•4 58 .32 .4844 13.079 Diameter, ft 2.250.56 60.48 .4799 9 2. 571262 4 12.522 Nose radius, ft 0.2813
.6o 648t0 .4 92 12.668 Tail radius, ft 0.0563.62 66.96 .4629 12.498.64 69.12 2556 12.304 Wetted surface, ft 2 50.18.66 71.28 478 12.091 Volume, ft3  23.26.68 73.44 43A8 11.848
.70 75.60 4287 11.575 Longitudinal center 4.180.72 77.76 .4174 11 270 of buoyancy,
:74 79.92 4o46 192 ft from nose
.76 2.28 39 107544.
.88 95.04 230 7.10o
. 90 87.20 .2330 .62

S."2 99.36 .20 5•68 ..00984 101.52 1'63514.6141
.88 95.84 .2•30 12.01•.90 97.20 2;.)33 1.291 

...92 99.36 2000 5. 400
.9 101.52 :1635 4.415.9 103.68 .1230 3.321
• 98 1 05.84 • o771 2.082

1.00 106.00 0.0000 0.000
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Model 1155 Serial 40050165-50

X/L X in /D Y ininches inches Formula:

0.00 0.00 0.0000 0.000
.02 2.16 .11139 3.108 y2 -- alx+a 2x 2 +asxa + 4x4+ a8 x 5+ a 6

.0o 4.32 .2059 4 447

.06 6.48 .2537 5.480
.08 8.64 .2934 6.33 where a1 = 1.000000
.10 "o.8o .3272
.12 12.96 .32i2 7.700 a2 = + 2.149653
.14 15.12 .3 1• .247 a. = - 17.773496
.16 17.28 .403j 8.720
.18 19.44 .422 9.126
.20 21.60 .4388 9.478 a4 = + 36.716580
.22 23.76 .4526 9.776
.24 25.92 .4641 10.025 a5 = - 33.511285
.26 2 .08 .4737 10.232 a +.30332.40=15 11.418548
.28 30.24 .4b15 1 0.400.30 32.4o .4878 10o.536
.32 34.56 .4925 10.638 Wetted Surface Coefficient =
.34 36.72 .499 10:711 7 L D
.36 38.88 49 2 lo.761
.38 41.04 .4996 =0.091
.40 43.20 .5000 10A000 x
.42 4.5.36 .499 10.794 Longitudinal Center of Buoyancy= L
.44 47.52 .49Hi 10.770
.46 49.68 .4968 10. ;31 0.4.644
.48 51.84 .4944 10. 79
.50 54.00 .4917 10.621
.52 56. 16 .4882 10.545
•54 58.32 .4844 10.463 Model Particulars:
56 60.48 .4799 10.366

8 62.6+ •4749 10.258 Length, ft 9.000
.6o 64.80 .4692 10.135 Diameter, ft 1.800
.62 66.96 .4629 9e ft o.
.64 69.12 .4557 9 . N
.66 71.28 .44 " 9.672 Tail radius, ft 0.0360
.68 73.44 .43A8 9.478 w
.70 75.60 .4287 9.260 Wetted surface, ft2 39.75
.72 77.76 .4174 o.o16 Volume, ft3 14.89
:74 92 .4046 9.739 Longitudinal center 4.180
.76 92.08 .390ý 8.43
.76 .39o 8.035 of buoyancy,
o 86.40 :3566 7.703 ft from nose

.82 88.56 .3368 7.275

.84 90.72 .3146 .795

.86 92.8~8 .2901 6.266

.88 95.04 .2630 5.681

.90 97.20 .2330 5.033

.92 99.3b .2000 4.320

.94 101.52 .1635 3.532

.96 103.68 .1230 2.5

.98 10 .84 .0771 1.665
1.00 109.00 0.0000 0.000
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Model 4156 Serial 40050165-60

X/L X in Y/D Y in

Inches inchcs Formula:

0.00 0.00 0.0000 0.000
.02 2.16 .111439 2.590 y 2 %ax+a1x 2 + 3x

3 a 4x 5+a x5 +a x
.01, 4. 32 .2059 3.706
.o6 6.48 .2537 4.567
.08 8.64 .2934 5.281 where a1 =+ 1.00000
.10 10.80 .3272 5.890
.12 12.q6 .3565 6.417 a2 = + 2.149653
.14 15.12 .38Ri 6.82 a = - 17.773)196
.16 17.28 .403' 7.267
.18 19. 44 .4226 7-607 a4 = + 36.716580
.20 21.60 .4388 7= 3.6
.22 23.76 *14526 d.147 a
.24 25.92 .4641 8.351 a5 = - 33,511285
.26 28. 8 .4737 8.527 a + 11.418548
.28 30.24 . 4g 8. 667 6 =
.30 32.40 .4878 8.780 S
.32 34 56 .4925 8.865 Wetted Surface Coefficient = D
.34 36.72 .4959 8.926
.36 38. 88 .14962 8.968
.38 41.04 .4996 8.993
.140 41-3.20 . o000 .000
.142 4.5.36 .49 .8995 Longitudinal Center of Buoyancy 7--

.11.)[ 47.52 .49N 8.975L
.46 49.68 4§868 8.42
.48 51.84 .49114 8.899 0.4644
.50 54.00 .4917 8
-5; 56.16 .4882 8.:7
-54 58.32 .4844 8 Model Particulars:
)6 6o.48 .4799
.68 62.64. .4649 8.548 Length, ft 9.000
.6o 64.89 .4[692 8.346 Diameter, ft 1.500.62 6696 4629 832

.6[ 69.12 .457 8203 Nose radius, ft 0.1250
.66 71.28 141 8:6.68 73.44 .4388 7.898 Tail radius, ft 0.0250

•70 '5,60 .4287 7.717 Wetted surface, ft2 32.94
.72 77.76 .4174 7.513 Volume ft0
'74 7,9.92 .i.046 7.283 10.34
.76 -208 .390 029 Longitudinal ccntcr 4.180

884.24 .3744 6.739 of buoyancy,
86,40 .3566 6:419 ft from nose

.82 88.56 .3368 6.062

.84 90. .31'16 5.663
QU 92 .2901 •.222

.88 95.04 .2630 .734
.0o 97.2 .2330 111911.
.92 99.36 .2000 3.600
.94 101.5 2 .1635 2.943
96 103.68 .1230 2.114

.98 10 84 .0771 1,388
1.00 10 L .0000 0.000
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Model [1157 Serial 40050165-70

x/L Xn Y/D Y inSinches Y inches Formula:

0.00 0.00 0.0000 0.000 2
.02 2.16 .1439 2.220 Y =alx+a 2x+aex3+a 4 x +asx +a 6 x6

o0i4 4-32 .2059 3.177
.o6 6.48 .2537 3.914 where a, = + 1.000000
.08 8.64 .29314 14.527
.10 10.8o "32-2 5.046 a2 = + 2.1149653
.12 12.96 . ; 5-g00
.14 15.12 .31 5. 91 a. = - 17.773496
.16 17.28 .403 659 .229
.18 19.44 .422 6.520 a4 = + 36.716580
.20 21.6o .14388 6.7'70
.22 23.76 .4526 6.983 a5 = - 33.511285
.224 25.92 .4641 7.1603
.26 25.08 .14737 7.309 a. = + 11.418548.28 30.24. M415 I7.11-29.
•.30 3,2.40 148765 7.526
•34 36.72 .4959 7.599 Wetted Surface Coefficient387L D

.36 38. 8 .4982 7. 7
.38 41.04 .4996 7.70b = 0:7744
.4o 43..20 .5000 7.714
.42 145.36 .49 / 7.710 X
.44 11.7-52 _t .[9 7.693 Longitudinal Center of Buoyancy =-L
.146 49.68 l.4968 7.66
.48 51-.84 .4944 7.26r_ 0.4644
.50 54 .o .11917 7.586
.52 56.16 :4882 7 3• 54 58.32 .4844 i7.W47.56 5o.4 .4799 7.1464 Model Particulars:

.58 62.64 .64749 7.327 Length, ft 9.000
:6o 614.80 .14692 7.239
.62 66.96 .4629 7.142 Diameter, ft 1.286
.64 69.12 .4557 7.031
.66 71. *.471  6.909 Nose radius, ft 0.0918
.68 73.44 .4358 6 .770 Tail radius, ft 0.0184
.70 75.60 .4287 6.61 4 ft2

.72 77.76 .4174 6.440 Wetted surface, 28.15
74 70.92 .4046 6.242 Volume, ft3  7.595
.76 0828 .39o5 6.025 Longitudinal center 4.180

ý8 84.24 .3744 5.776o uyny
0 86.40 .3566 5.502 of buoyancy,

.82 88.56 .3368 5.196 ft from nose

.84 .,90.2 .3146 14.8514
986 2.88 2901 14.476

.88 95.04 .2630 4.:058

.90 97.20 .2330 3.5g5

.92 99-36 .2000 3.0 6

.94 101.52 .I635 2.523
• 96 103%.6 .1230 1. 98.98 10•.84 .0771 1 .190

1:00 10.00 0o.000 _ 0.000
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Model 4158 Serial 400501 65-80

X/L X in Y/b Y in

Inches inches Formula:

0.00 0.00 0.0000 0.000 2 3
.02 2.16 .1439 1. 9 43  y =azx+aex2 +a 3 xS-a~x4 +asx5 +a 6x

6

.04 4.32 .2059 2.780

.o6 6.48 .2537 3.11.25 where a, = + 1.000000

.08 8.64 .29341 3.961
.10 10.80 .3272 4.417 a2 = + 2,149653
.12 12.96 .365 4.813 ....65
.14 15.1? .3 1 5.154 a3 - - 17.773496
.16 17.28 .403Z 5.450
.18 19.4.4 .4226 5.705 a 4 = + 36.716580
.20 21.60 .4388 5.9214
.22 23.76 .4526 6.110 a. = - 33.511285
.24 25.92 .1[641 6.265
.26 28 08 .4ý37 639 a 6 = + 11.4185118
.28 30.24 .4o15 6:.
.30 32.40 .4878 6585 W s
.32 34.56 .4925 6.649 Wetted Surface Coefficient LD
.314 36.72 • 4959 6.695
.36 38.88 .4982 6.726 = 0.7727
.38 41 .04 .4996 6.745
.4o 43.20 .o000 6.750 x
.42 45.36 .499 6.746 Longitudinal Center of Buoyancy =-L
.44 L7.-52 .496 6.731
.146 149.68 .4968 6.o707o.4L
.48 51.84 .149414 6.674 0.4644
.50 54.0O0 .4917 6.638
.52 56.16 .4882 6,591
-54 58.32 .4844 653 Model Particulars:
.58 60.48 4719 6.1791 Length, ft 9.0005 8 62.64 ,4 "/q9 , 6. 4 .11

.60 614.80 .4692 6.3311 Diameter, ft 1.125

.62 66.96 .14629 6.2)49

.64 6.1? .4-59 6.152 Nose radius, ft 0.0703

.66 71.28 .447• 6.045 Tail radius, ft 0.0141.68 73.44 ION8 5.924 ' ""•.68 73.6o.4 .143 5 92i7 Wetted surface, ft2 214.58

.70 75.60 .4287 5:787

.72 77.76 .14174 5.635 Volume, ft3  5.815

.74 51.4 5.462 Longitudinal center 4.180.7 84.24 3 5.272 of buoyancy,, ";,B 85.25 .344. 5.0514
.0 86.40 .3566 4.814 ft from nose

.82 88.56 .3368 4.5417
.84 90.A2 .3146 .2290.86 92.88 .2ol 3.91o

.88 95.04 .2630 3.551
.90 97.20 .2330 3,116
.92 99.36 .2000 2.700
.94 101.52 1635 .207
.96 103.68 .1230 1.661
.98 lo1:84 .0771 1.041

1.0000 0.0000 0.000
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Model 4159 Serial 40050165-100

X/L X in Y in

inches Y/b inches Formula:

0.00 0.00 0.0000 0.000 2
.02 2.16 .- 439 1.554 Y =ax +a 2x+aexS+a 4 x4 +a~x5+ax6
.04 4.32 .2059 2.224.o6 6.48 .2537 2.7410 where a, = + 1.000000
-.08 8.64 .2934 3.169
.10 10.80 .32Z2 3•534 a2 = + 2.149653
.12 12.96 .3,6r 3.5•50
.14 15.12? .31 4.123 a. = - 17.773496
.16 17.28 .4037 4.360
.18 19.44 .4226 4.564 a4 = + 36.716580.20 21.60 .4388 4
.22 23.76 .4526 U.88 a = - 33.511285
.2 2;.92 .4641 5.012 5
.2 08 .4737 .116 a6 = + 11.418548.28 30.24 .4815 5.200
.30 32.40 .4878 5.268
.32 34.56 .4925 5.319
S34 36.72 .49R9 5.3g8 Wetted Surface Coefficient = S.6 38.88 .49 2 5.3 I 1 YL D

.38 41.04 .4996 5.396 7
.40 113.20 .?000 5.400 = 0.777
.42 45.36 [49 8 g.44 4.7 .52 49 5.3 5 AV
.46 49.68 4968 5.365 Longitudinal Center of Buoyancy =-•-
.48 51.84 .4944 5.340
.50 54.00 .4917 5.310 0.46
•52 56.16 .4882 5.273
-54 58.:32 .4844 5.:232
5.6 60. 48 .4799 5.183
"58 62.64 .Z494 5.%129 Model Particulars:
A6 64.80 .4692 5.067.62 66.96 .4629 4.999 Length, ft 9.000
.64 69.12 4.922 Diameter, ft 0.9000
.66 71.28 4,836
.68 73.44 438 4.739 Nose radius, ft 0.0450
.70 75.6o .4287 4. 30 Tail radius, ft 0.0090
.72 77.76 .4174 4.508
• 74 9.92 .4046 4.370 Wetted surface, ft2 19.64876 82.24 . Volume, ft4 3.722

86.4 2 3566 3 .851 Longitudinal center 4.180. 88.56 .3368 .637 of buoyancy,.82 90.7 .3146 3. 39 ft from nose
.86 92.8 .2901 3.133
.88 95.04 .2630 2.840
.90 97.20 .2330 2 516
.92 99.36 .2000 2.16o
.94 101.52 .1635 1.766
.96 103.68 .1230 1.328
.98 10. 84 .0771 0.833

1.00 10•1 .00 0.0000 0.000
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Model 41 6c Serial 360501 65-70

X X in Y/D Y in
inches inches Formula:

0.00 0.00 0.0000 0.000
02 2.16 .1454 2.243 y a, x+a x 2 +a x% x 4 + x + x.04 4.32 .2094 3.231 4 5x 6
.6 6.48 .2593 4.001
.08 8.64 .3009 4.642 where a1 = + 1.000000
.10 10.80 .3363 5.18
.12 12.96 -3669 5.. a= + 3,321200
.14 15.12 .3932 o.067
.16 17.28 . 4156 6.412 a. = - 24.678776
.18 19.44 •4347 6.707
.20 21 .6o .4500 0,9g5 4 = + 50.896065
.22 23.76 .4641 7.1 0 a = - 45.840700.2 2g:92 .4•749 7. 327
.26 2.08 .4b33 7a-847
.28 30.24 .4898 7.5g7 a6 = + 15.302158
.30 32.40 .4915 7.583
.32 34.56 .4977 7.079 Wetted Surface Coefficient = S

7 36.72 . D995 7.707 ff L-D.36 38.88 .5000 7.71...38 41.04 9g.95 7.707 = 0.7758
.40 43.20 .49 2 7.687
.42 45.36 .4961 7.654 X.44 47.52 .4934 7. 612 Longitudinal Center of Buoyancy =--
.46 49.68 4002 7.53.48 51.84 .67 7.5o9. 5 •-0 540 :482z Z0 0-• . 4594

:5 58.32 47 41 7.31554 58.32 .471 7.315 Model Particulars:
5~6 60.48 , 63 7.241.58 62.64 .462• 7.162 Length, ft 9.000.0 64,.80 .458 "7.0o7 ,60 66.96 .458 0.988 Diameter, ft 1.286

.64 69.12 .4 6 6.889 Nose radius, ft 0.091866 71.28 .43.M 6.779
.68 73.44 .4315 6.657 Tail radius, ft 0.0184
.70 75.60 .4225 6.519 Wetted surface, ft2  28.20
72 77.76 .4125 6.364

.74 79.92 .4010 6.187 Volume, ft0  7.595
076 2.08 .3882 5.989 Longitudinal center 4.135

.78 84.24 .3736 5.764 of buoyancy,
0 86.40 .3569 5.507 ft from nose

.82 88.56 .338 211
84 9072 .3170 4.891
.B6 92.88 .2931 4.522
.88 95.04 .2665 4.112
.90 97.20 .236 3. 050
.92 99.36 .2034 3.138
.94 01.5?2 -1665 2.569
96 103.68 .12 2 1. 31
.98 10O584 .0752 1.207

1.00 10 .00 0.0000 0.000
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Model 4161 Serial '44050165-70

X/L x in Y/b Y in
inchori inches Pormula:

0.00 0.00 0.0000 0.000 2= 2

.02 2.16 .1428 2.203 y a1  2x ax 4  a 5 + 6

.04 4.32 .2029 3.130

.o6 6.48 .2488 3.839 where a, = + 1.000000

.08 8.64 .2868 4.425

.10 10.80 .3191 4.923 a2 = + 1.214218
.12 12.96 .3472 5-357
.14 15.12 .3715 5.732 a. - 12.683118S1 6 17.28 . 3927 ON05
.18 19.44 .4273 6.:36 a4 = + 26.981999• 20 21.6oo .42.74 6 .' 94

.22 23.76 .4419 6.o18 a. = - 25.571 605
2 5492 .1533 6.994

.26 28.o 8  .463Z 7.154 a. = + 9.058511

.28 30.24 .4716 7.276

.30 32.40 47494 7.396 S

.32 34.56 .4855 7.491 Wetted Surface Coefficient =-

.34 36.72 .4901 7.562

.36 38.88 .4937 7.617 = 0.7742

.38 41.04 .4967 7.663

.140 43.20 .4985 7.691

.42 45.36 .4997 7.710 X

.44 14752 .5000 7.714 Longitudinal Center of Buoyancy =L-

.46 49.68 .4927 7. 710

.48 51.84 .1497 7. b94 = 0.4707

.50 54.00 .4970 7.668

.52 58.3 1 .4947 7.633

.54 56.32 .49m1 7.585 Model Particulars:

.56 60.148 .4880 7529

.58 62.614 .48314 7.458 Length, ft 9.000

.62 66.96 .4720 7.28 Diameter, ft 1.286

.64 69.12 .4649 7.173 Nose radius, ft 0.0918.66 7128 .471 7.5

.68 73.44 .475 7 .904 Tail radius, ft 0.0184

.70 75.60 .4370 6.742 Wetted surface, ft 2  28.14

.72 77.76 . 655 Volume, fts 7.595
74 92 .4117 6:352 Vlm~9cne :9Z9: •20 3 67 .1 21 Longitudinal center .7

8 84.24 .300 5.863 of buoyancy,
. 86 .3672 5.665 ft from nose
.82 88.56 .3405 .253

.84 0.7.2 .3176 900

.86 92.8 .2923 4.510

.88 95.04 .264 4.081

.90 97.20 233. 3.607

.92 99.36 .2004 3.092

.94 1"01 .52 .1636 2.g24

.96 103.68 .1230 1.89

.98 1,o0.84 .0770 1.1;
1.00 108.00 0.0000 0.000
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Model 41162 Serial 480501 65-70

X/L X in Yb Yi

inches inches Formula:

.02 2.16 .1418 2.188

.04 4.32 .2005 3.093

.06 6.48 .2448 3.777 where a1 =+ 1.000000

.08 8.64 .2812 4.339

.10 10.80 .3120 4.814 a. = + 0.444725

.12 12.96 .3388 5.227

.14 15.12 .3621 5.587 a. = - 8.919726

.16 17.28 .3824 5.900

.18 19.44 .4003 6.176 a4 =+ 20.564463

.20 21.60 .4161 6.420

.22 23.76 .4299 6.633 a5 = - 20.948573

.24 2g:92 4420 6.819

.26 28.8 :4526 6.983 a6 = + 7.859120
.28 30.24 .4617 -7.123
.30 32.40 .4697 7.247 S
.32 34-.56 .4764 7. 3O Wetted Surface Coefficient =
.34 36.72 .4823 7.4 1
.36 38.88 .4871 7.515 = 0.7742
.38 41.04 .4912 7.579
.40 43.20 .4944 7.628
.42 45.36 .4969 7.666 CB
.44 47.52 .4985 7.691 Longitudinal Center of Buoyancy
.46 49.68 •4997 7.710
.48 51.84 .5000 7.714 = 0.4783
.50 54.00 .499 7.710
.52 56.16 :49b 7.693
.54 58-.32 .4967 7.663 Model Particulars:
.56 60.48 .4941 7.623 Lntf .058 62.64 .4906 7.569 Length, ft 9.000
.60 64.80 .4861 7.•00 Diameter, ft 1.286
.62 66.96 .4807 7.17 Nose radius, ft 0.0918
.64 69.12 .4742 7.316
.66 71.29 .4663 7.194 Tail radius, ft o.o184
.68 73.44 .4ý73 :gft
.708 75.60 . 6.8B• Wetted surface, ft2  28.14• 70 75 .60 .4 62 8

.72 77.76 .4350 6.711 Volume, ft3  7.595•.74 .9 .421.5 6.5o3

.76 1 :4062 6,267 Longitudinal center 4.30476 .2 :38690 o 6027 of buoyancy,
z36 7  5. ft from nose

.82 88.56 .3484 5.375

.84 90.72 .3247 5.010

.86 92:Z8' .2985 4.607

.88 95.04 .2699 4.164.90 97.20 .23'8 3.677

.92 99.36 .2038 3.144
.94 101.52 .1660 2.561
96 103.68 .1246 1.922

.98 iog:84 .0777 1.199
1.00 1 0.0000 0.000
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Model 4163 Gerial 520501" 5-70

X/L X in Y/D Y in
inches inches Formula:

0.00 0.00 0.0000 0.000 x2
=a X+a X2 +a x3+a x4+a X5 4-a x6

.02 2.16 .1411 2 177 1 2 a 4 5 6

.04 4.32 .1985 3.063

.o6 6.48 .:2414 3.724 where a, = + 1.000000

.08 8.64 .2764 4.264

.10 1o.8o .3660 4.721 a 2 = - 0.139160

.12 12.96 .3314 5.113

.14 15.12 .3535 5.454 a 3 = - 6.590919
.16 17.28 .3729 5.,753
.'18 19. 44 .3901 6.019 a4 = + 17.669802
.20 21.60 .4051 6. 250
.22 23.76 .4185 6:457 a. = - 19.81 0192.24 25.92 .4303 6.639
.26 28.08 .4409 6.802 a6 = + 7.870480
.28 30.24 .45o2 6.946
,30 32.40 .4585 7.074 s
.32 34e56 .4658 7.157 Wetted Surface Coefficient -

.34 36.72 .4724 7.288 2L D

.36 38.88 .4781 7.376

.38 41.04 .4631 7.4154 = 0.7746

.40 43.20 .4875 7.521.42 45,.36u .4912 7.579. x.42 457.2 .4912 7.626 Longitudinal Center of Buoyancy =T

.46 49.68 '.[967 7.663
.48 51 .84 4.985 7.691 = 0.4868
.50 54.00 .4996 7.708
.52 56.16 .5000 7.714
..54 58.32 .•456 7.708
5•6 60.48 .49 3 7.688 Model Particulars:
.58 62.64 -4961 7.6 54 Length, ft 9.000
.60 64.80 .4 30 7.606
.62 66.96 .4•87 7- 40 Diameter, ft 1.286
.64 69.12 .4832 7 . 55 Nose radius, ft 0.0918
.66 71.28 47Z64 7.350 Tail radius, ft 0.0184
.68 73.44 4. 481 7.222
:70 75.60 .4 7.072 Wetted surface, ft2 28.16
72 77.76 .46 6.6q0 Volume, ft3  7.595
:74 Z92 .43 6.o
•76 •.08 .415 6.457 Longitudinal center 4.381.
.78 84.24 .:1101'2 6.190 of buoyancy,

0 86 .40 .3817 5.889 ft from nose
.82 88.56 .36oo 5.554.84 90.72 3g
..86 92.88 .30 57 U7

.88 95.04 .2790 4.305
o90 97.20 .2 .62 3 799

:92 99.36 .2103 3.245
.94 101.52 .1710 2.635
:96 103.68 .12.7 1.970
.98 105.84 .0759 1.2'17

1.00 105.00 0.0000 0.000
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Model 4164 Serial 40050155-70

X/L X in Y/ [ Y in
inches inches Formtula:

0O00 0.00 0,0000 0.000
.02 2.16 .1407 2.171 Y 1=a x+aex2 + a +a x 5+a x6
.04 4.32 .1981 3.056
.o6 6.48 .2415 3.726 where a, = + 1.000000
.08 8.64 .2774 4 280
.10 10.80 .3084 4.758 a.=- 0.475347
.12 12.96 23358 5.0.5
.14 15.12 .3680 5:;56 a. = + 0.601504.1I6 1 7.28 .3820 . 94
.18 19.44 .4016 6.197 = - 8.564671
.20 21.6o .4192 6'498
.22 23.76 •4349 6.710 a5 = + 12.426215
.24 2.:92 .4489 6.926
.26 2 0o .4610 7.113 a. = - 4.987703
.28 30.24 .4715 7.275
.30 32.40 .11802 7.409 s
.32 34.56 .4874 7.520 Wetted Surface Coefficient =
.34 6.72 .4929 7:605
.36 38.88 .4979 o6666954
.38 41.04 .4993 7.703
.40 43.20 .5000 7.714
.42 45.36 .4993 7.6 Longitudinal Center of Buoyancy =
.11.j 47.52 .4970 7.681
.46 49.68 .4931 7.6o8
.48 51.84 .4878 7.526 = 0.4295
-50 54.00 .4810 7.21
.52 56. .47 29 7.296
.54 58.32 4634 Z50 Model Particulars:
.56 6o0.48 .4 2 M6"c1.58 62.64 .44014 6.795 Length, ft 9.000
.60 64.80 .4271 6.59o Diameter, ft 1.286
.62 66.96 .:1126 6.366 N
.64 69.12 .3970 6.125 Nose radius, ft 0.0918
.66 71.28 .3 04 5.869 Tail radius, ft 0.0184 H
.68 73.41 .3629 5.599 Wetted surface ft2 25.28
.70 75 60 .3445 5.315
.72 77.76 .3255 5.022 Volume, ft3  6.427
74 9.92 .3059 4.720 Longitudinal center 3.866
.76 Z2.08 .2858 4.409f uyac
.78 84.24 26rr J.96 o uyny.20 86.4 •24 .098 ft from nose86.4o : 2449 3.778
.82 88.56 .2244 3. 462
.184 90. 2 .2040 3.1147
.86 92.8 .1840 2.839
.88 95.04 .1643 2.535
.90 97.20 .151 2.239
.92 99.36 .1263 I .9!19
.94 101.52 .1073 1 1.655
96 103.68 .0869 i1.341

C98 OF 84 .o618 oQ531.0 c o i ot•o 0.0oooo o.0ooo
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Model 4165 Serial 400501 60-70

X/T X in y/D Y ininches inches Formula:

.06 6.48 02476 3.20 where a. = + 1.000000

.08 8.64 .2855 4.405

.10 10.80 .31 9 4.905 a2 = + 0.837153

.12 12.96 .3462 5.341

.14 15.12 .3710 5.724 a. = - 8.585996

.16 17.28 .3930 6.063

.18 19.44 .4123 6.361 a4 = + 14.075954

.20 21.60 .4260 6.573

.22 23.76 .4439 6.849 a. = - 10.542535

.24 25.92 .456 7.043

.26 25.08 .4674 7.211 a6 = + 3.215422

.28 30.24 .4765 7.352

.30 32.40 .4Z41 7.469

.32 34.56 .4900 7.5660 WtSi

.34 36.72 .4944 7.628 urace aoecen = L D

.36 38.88 .4976 7.677

.38 41.04 .4994 7 705 = 0.7374

.40 43.20 .5000 7:714

.42 45.36 .499g 7.707 x

.44 47.52 .495 7.6780 Longitudinal Center of Buoyancy =-.46 49.6•8 .45 t.637

.48 51.84 :4 11 7.577 = 0.4484

.50 54.00 4864 7.04
•52 56.16 .4876 15
54 58 32 .4739 7.312
.56 60.48 .4665 7.197 Model Particulars:
58 62.64 .458b 7.o6 L

.60 64.80 .4486 6.921 Length, ft 9.000

.62 66.96 .4384 6.764 Diameter, ft 1.286

.64 69.12 .4273 6.:93 Nose radius, ft 0.0918

.66 71.28 4154 6 N,

.68 73.44 .4026 6.212 Tail radius, ft 0.0184

.70 75.60 .3890 6.002 Wetted surface, ft2 26.81

.72 77.76 .374. 5.775

.•74 ý9.9 :3 82 5.536 Volume, ft3  7.011
•7. 5.280 Longitudinal center 4.036
z8 84.24 .3245 .o007
0 86.40 .305-9 •. 7 20 of buoyancy,

.82 88.56 .2861 4.414 ft from nose

.84 90.2 :2652 4.09?

.86 92.88 .2429 3,7148

.88 95.04 .2193 3.383

.90 97.20 .1941 1 .995

.92 99.36 .1672 2 ý.0.96 103.68 .133 4

.94 101.52 133 2.134.9 136 ioo5 1.64•9 10.8 A99 I.07

.0 0 106O0 0.0000 0.000

CONFIDENTIAL
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CONFIDENTIAL 6o

Model 41 66 Serial 40050170-70

X/L _n YD Y in
inches inches Formula:

0.-00 0.00 0.0000 0.000 2 - x+a x2+a x3+a x 4 + 5 iax
002 2.16 .1455 2.245 y = a 1 2 3 4 + X5 + a 6 X

.04 4.32 .209 3.235

.06 6.48 .2591 4.05 where a, + 1.000000

.08 8.64 .3010 4.hr a-0

.10 10.80 .3362 5.187 a2 =+ 3.462153

.12 12.96 .3664 5.653
.14 15.12 .3922 6.051 a. = - 26.960996
.16 17.28 .4141 6.369
.18 19.44 .4327 6.676 a. = + 59.35721
.20 21.60 .4483 6.917 +
.22 23.76 .4611 7.i14 a. = - 56.48003
.24 25.92 .4716 7.2765
.26 28.08 .4799 7.404 a. = + 19.62167
.28 30.24 .4865 7.5o6
.30 32.40 .4915 7.583 _

.32 34.56 .4950 7.637 Wetted Surface Coefficient =

.34 36 .'4974 7.674 TrL D
367.99 =: 0.8o94

.38 41.04 .4998 7.711

.4o 43.20 .00 7.714
.42 415.3 6 .98 7.711.44 t:.2 . 7 Longitudinal Center of Buoyancy

.4 47.52 .4994 7.0
.46 9q. 68 .4986 7b2
.48 51.84 .497B 7. 68o 0.4781
.50 54.00 .4968 7.6650
.52 56.16 .4958 7.649
.54 58•.32 .4945 7.629
.56 60.48 .4930 7.606 Model Particulars:

.58 62.64 .4912 7.579 Length, ft 9.000

.60 64.80 .4890 7.55 Diameter, ft 1.286

.62 66.96 .4862 7.501

.64 69.12 .4825 7.444 Nose radius, ft 0.0918

.66 71.28 .4780 7.315 Tail radius, ft 0.0184

.68 73.44 .4723 7.2

.70 75.60 .4b51 7.171 Wetted surface, fta 29.42

.72 77.76 .4565 0.043 Volume, ft3.74 ý9.92 .4 6b 6.881 Voue t 8.179

•76 .43g3 6:685 Longitudial center 4.303A8 84.24• .4 .15 6.4J7 of buoyancy,
08 86.40 .4010 6.1_87 ft from nosq

.82 88.56 .3807 5.874

.84 9N0.72 .3573 5.513

.86 92 .8 .3306 51.01

.88 95.04 .3004 4.635

.90 97.20 .2663 4.10o

.92 99.36 .2280 3.515
•94 101.52 .1853 2.859
.96 103.68 .1376 2..23
.98 105.84 .0837 1.291

1.00 1o0.00 0.0000 0.000
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Model 41 67 Serial 400001 65-70

X/L X in Y/D Y in
-- inches inches Formula:
0.00 0.00 0.0000 0.000 2 6.02 2.16 .0643 0 092 y -3 x+a 5x+ x+a x 6.04 4.32 .1231 1.:99.o6 6•48 .-,763 2.720 vaere a, o.ooooo

08 8.64 .2243 34 61.10 10.80 .2673 4.124 a2 = + 11 .337153
.12 12.96 .3057 4.717
.14 15.12 .3397 5.241 a. = - 50-335996
.16 17.28 .3695 5.701
S.18 19.4-4 .3955 6.102 a4 = + 91.950954
.20 21.60 .4178 6.446
.22 23.76 .4367 6.738 a5 = - 78.042535
.24 2.92 .:4527 6.985
26 08 .4657 7.185 a6 = + 25.090422

.28 30.24 463 7:349
:30 32.40 .4844 7.474
.32 34.56 .4907 7.571 iuetted Surface coefficient = *-S
.,34 36.Z2 •49 I 7.639 = 0--6D..36 38.88 .49 0 7.68Q
• 38 41.04 .4996 7.708 = 0•7688
.40 43.20 .5000 7.714
.42 45.36 .4996 7.708 x.44 47.52 .498g 7.691 Longitudinal Center of Buoyancy =.46 49.68 .496 7. 66.48 51.84 .49418 7.634 o 0.4899.50 54. 00 .4924 7.597
.52 56.16 .4897 7.55554 58.32 .4870 7."14 Model Particulars:
.56 60.48 .4839 7. 66 Leghft.058 62.64 .4807 7.417 Length, ft 9.000.6o 64.80 .4772 7.363 Diameter, ft 1.286.62 66.96 .4732 7.301.64 69.12 .4687 7.231 Nose radius, ft 0.0000.66 71.28 .4634 7.151 Tail radius, ft 0.0184.68 73.44 .4574 ; Wetted surface, ft2  27.95
.70 75.60 .4 02 9.72 77.76 .4 16 6.813 Volume, fto 7.595.74 Z9:92 .4%314 6.656
.76 2.8 .4194 6.471 Longitudinal center 4.41008 84.24 .40 3 6. 253 of buoyancy,

86.40 .3888 5.999 ft from nose
.82 88.56 .3696 5.702.84 90.72 .3476 5.363
.86 92.88 .3222 4,971
.88 95.04 .2933 4.525
.9o 97.20 .2606 4.021
.92 99.36 .2237 3.451-., 101.52 .1823 2.813
.96 1 03.68 .1359 2.0,7
98 105.84 .0830 1. 1

1.00 1o0.00 0.0000 0.000
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CONFIDENTIAL 62

Model 4168 Serial 400301.65-70
X/ i Xin Y yin

inches inches Formula:

0.00 0.00 0.0000 0.000
.02 2.16 .1187 1.831 Y2 =aix+a 2 xe+asxS+a 4 x4 +a.xs+a 6 xa.04 4.32 .1775 2.739
.o6 6.48 .2259 3.485 where a, = + o.6ooooo
.08 8.64 .2679 4. 133
.10 I0.80 .3046 4.700 a., = + 5.824657
.12 12.96 .3371 5.201
.14 15.12 .3655 5.639 a. = - 30.798496
.16 17.28 .3914 39
.18 19.44 .4120 6.3P7 a. = + 58.810329
".20 21.60 L305 6.? +2.22 23.76 :4464 6.887 a, = - 51.323785
.24 25.92 .4596 7.091
.26 26.08 .4705 7.259 a6 = + 16.887297
.28 3Q.24 .4794 7.396
.30 32.40 . 4165 7.506
.32 34.56 .4918 7.588 Wetted Surface Coefficient S
.34 36.72 .49 6 7.646 erL DS36 38.88 1. t982 7.68y 1
.38 41.04 .4996 7.7o6 = 0.7732.4o 43.20 .5000 7.71
.42 45.36 .4996 7.:o8 Longitudinal Center of Buoyancy =
.'44 47.52 . 49ý5 7. o1L
.46 49.68 496 7.6 5.48 51.84 :4946 7.631 = 0.4746.50 54.00 .4920 7.591 [
.52 56.16 .4888 7.5ý41
.54 58.32 .4854 7. 4-9 Model Particulars:
.56 0. 48 .4815 -(.429
.28 62.67 7.363 Length, ft 9.000: 5 8• 6 2 6 1ý77 2 7 . 3 6 98
.6o 64.80 4 424 7.288 Diameter, ft 1.286.62 66.96 .4b70 7.205 Nose radius, ft
.64 69.12 .4610 7.113 0.0551
.66 71.28 .4541 7.006 Tail radius, ft 0.0184
.68 73.44 .263 6.886
.70 75.60 .4374 6.748 Wetted surface, ft2  28.11
.72 77.76 .4272 6.591 Volume, fs 7.595
.76 Z2.08 .4023 6.207 Longitudinal center 4.272
76 08 402 6.207 of buoyancy,
A 84.24 .3871 5.972 f fo m uonoseo 86.40 .3698 5:4705 f rmns

.82 88.56 .3503 5.40.84 90:Z2 .3282 Z.06•

.86 92.88 .3034 •.681

.88 95.04 .2756 4,252

.90 97.20 .2414 3.771

.92 99.36 .2098 3.237

.94 101.52 .1713 2.643
•96 103.68 .1283 1.979.9 105.84 •.0795 1 227
1.00 10t. 00 O,.0000 0.000
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Model 41 69 Serial 400701 65-70

X/L X in Y/D Y in
inches Inche Formula:

0.00 0.00 0.0000 0. 000 2
.02 2.16 .16514 2.552 y alx+a x 2 +a xa 4 x4+a xs +a x6

o.04 14.32 .2308 3.561
.06 6.48 .2787 4.300 where a, = + 1.400000
.08 8.64 .3156 4.888
.10 10.80 .3488 5.381 a2 =- 1.525347.12 12.96 .3748 5.783
.1il 15.12 .3974 6.131 a. =- 4.748496
.16 17.28 .4166 6.428
.18 19.44 .4330 6.681 a4 = + 14.622829
.20 21.60 .469 6.895
.22 23.76 .587 7.077 as = - 15.698785
.24 25.92 .4687 7.231
.26 o8 N60 7.358 a. = + 5.949797.28 30.24 .4836 7.461
.30 32.40 .4891 7.546
.32 34.56 .,49, 7.609 S•34 36.72 .*3 7.657 Wetted Surface Coefficient = fL-D• 36 38.88 11-984 7.6o90
.38 41.04 .L.996 7.708 = 0.7750
.40 43.20 .5000 7.714
.42 45.36 .149O7 7.710.44 47.-52 .4986 7. 93 Longitudinal Center of Buoyancy X
.46 49.68 .4968 7.665
.48 51 .84 .49114 7.628
.50 54.00 .4914 7.582 0.4542
.52 56.16 .14876 7.523
.54 58.32 14833 7. M4u7
.56 6o0.48 .4783 7.30 Model Part iculars:
.58 62.64 .4726 7.292 Length, ft 9.00060480 .•t , 7.2920e gt , f.60 64.80 .46 7.190 Diameter, ft 1.286
.62 66.96 •4587 .077
.64 69.12 .4505 .9.51 Nose radius, ft 0.1286.66 71.28 .14 13 6. 09
.68 73.44 .4311 6.651 Tail radius, ft O.0184
.70 75.6o .41,qQ 6._78 Wetted surface, ft2 28.17
72 77.76 .401 o 6.284.7174 79.92 .5•5 6.0I7 Volume, ft3  7.595.76 82.08 .3 82 5.835 Longitudinal center 4.088

1) 5 .57 of buoyancy,0 86.40 .3429 .9 ft from nose
.82 88.56 .3226 4.977
.814 90.72 .3005 14.636
.86 92.88 2763 4.263
.88 95.04 .21498 3.85LL
.90 97.20 .2210 3.1410
.92 99.36 .1896 2.925
.94 101.52 .1553 2. 96
.96 103.68 .1176 1.814
.98 105.84 .0746 1.151
1. 00 10.00 0.0000 0.000
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Model 4170 Serial 401 001 65-70

X Xin Y Y in

iinche inches Formula:

0.00 0.00 0.0000 0.000 2 5.02 2.16 .19ý1 2.979 lx+a x +asx +a 4 + asx +a6x.o4 O 4 32 .2640 4.073
.o6 6.48 .3124 4.820 where al = + 2.000000
.08 8.64 .3491 ' 5. 86.10 o.8o .3778 5. 2 - 7.037847
.12 12.96 :.4008 6.18
.14 15.12 .4196 6.47T4 a. + 14.789004
.16 17.28 •4 6.71
.18 19.44 1 6. 4 = - 18.517796.20 21.60 .4589 7.080
.22 23-.76 .467 7.219 a =+2 2g 2 5 7.=3 11.o19965

2 2- 8 7.430 ae - 2.253328.28 30.24 .14868 7.511
.30 32.140 .14910 7.5675-
.32 34.56 .1494 7.626 Wetted Surface Coefficient =.34 36.:2 '+900 7.bb5 irL D36 )8.88 .*4986 7. 693

4 1.04 .. 0,7744:O ,43.20 .ý0oo 771
.4 5-36 4 7.71014

44 47.52 .8496 7 Longitudinal Center of Buoyancy =-.46 149.68 .4968 7.665.48 51 .84 .49143 7.626 - 0.4389.50 54.O0 .4 09 7.574
.52 56.16 6. 7 7.50
5 5.. 32 -48 7. 32 Model Particulars:
.58 62.674 .4 7 ' Length, ft 9.000

.6o 64.80 .:4612 1. 6 Diameter, ft 1.286.62 66.96• .4 g5 3 1..286

.62 69.12 24 6:.26 Nose radius, ft 0.1837.66 71.28 .4 316 6.654 Tail radius, ft 0.0184.68 73.4'4 ."194 6.471 fT.70 75.60 .:4062 6.267 Wetted surface, ft2  28.15S. . .043 Volume, ft3]7 7992 .3760 5.801o
4 0 :92. :376 5.510 Longitudinal center 3.950

8•2 3O• 52•of buoyancy,•
840 .3212 08 258 ft from nose

.82 88.56 .3002 4.632
84 02 .4.286
86 92. 8 2541 3.920.88 95.04 .2286 3.527.90 97.20 .2017 3.112

92 99.36 .1729 2.668:94 10 o :0 g82 .1422 2.194u
96 03 .1088 1. b70ý

•8 1 84 o0707 1.091
1.00 10 00 o0000 0.000
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Model 4171 Serial 110050065-70

X/L X incs Y in
inches inches Formula:

0.00 0.00 0.0000 0.000 1,2 6 2
.02 2.16 .1446j 2.226 Yaax1+a~x +asx 3+a 4 x'+axS+a x6
.04 432 o2068 3.191
.06 6.48 .2550 3.934 where a, =+ 1.000000
.08 8.64 . 2951 4.553
.10 10.80 .3292 5.079 a 2 = + 2.449653
.12 12.96 .3g -7 5.534
.14 15.12 .3 41 5.926 a. = - 19.962385
.16 17.28 .4060 6.264
.18 19.44 .4248 6.554
.20 21.60 .4408 6.801 a = + 42.424913
.22 23.76 .4544 7.011 a5 = - 39.761285:L'4 25.92 .4657 7.185 1.26 28.08 .11750 7.32 a, = + 13.849103.28 30.24 .4U25 7. 44uý
. 32 .40 .4885 7.5ee3 S
32 34.56 .4930 7.60 Wetted Surface Coefficient = S

.3 36•=-.Z2 .4962 7 .656 irL D

36 38.88 :49 9 
= 0.7718

:38 4.1.04 . 4996• 7.7o0=6.71
.4o 43.20 .5000 7.714
.42 45.36 .4927 7.Z10 x.44 47.52 .49u8 7 Longitudinal Center of Buoyancy = f
.46 49.68 .4971 7,670.4-8 51.84 .4950 7.637 = 0.4618
.50 54.00 .:g25 7.599
.52 56.16 4.,4" 7' 43.
.54 58.32 .485 7:9,7 Model Particulars:
.56 60.o8 .4818 7.L33.58 62.64 .4771 7.361 Length, ft 9.000
.60 64.8o .4718 7 2Z9 Diameter, ft 1.286
.62 66.96 .4057 7. 5 Nose radius, ft 0.0918
.66 71.28 450 7.077 Tail radius, ft 0.0000
.68 73.44 • . 17 6
.70 75.60 .4314 6.656 Wetted surface,- ft2 28.06
.72 77.76 .4196 6.474 Volume, ft' 7.595
•74 ý2.02 .4o62 6.267 Longitudinal center 4.156.76 2 8. 2 391 6 .034 of buoyancy,

X 84.24 373a 5- 769. ft from nose
.82 88.56 .3.30 13,P
".84 g .)UOO 4-. (04
86 92.48 .2819 4. 34

.88 95.04! .2520 3.888

.90 97.20 ,2190 3 .379
•92 99.36 .182 2.819
.94 101.52 .142Z 2.203
.96 103.68 .0992 1. 531•98 lo5.8 .0517 0.798

1.00 0
_o_.00 

0.0000 0.000
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Model 4172 Serial 4005(005)65-70

I X in Y/D Y in

inches inches Formula:

0.00 0.00 0.0000 0.000 2M
.02 2.16 .1441 2.223 y al+x+a 2X +asxx+a 4 x4+a 5 x +a6 xe

.04 4.32 .2064 3.184
.6 6.48 .2543- 3.923 Where a, = + 1.000000
.08 8.64 .2942 4.53?
.10 10.80 .3282 5.064 a, " + 2.299653
.12 12.96 •3F76 5.517
.1 15.12 .3530 5.909 a. = - 18.867941
.16 17.28 .4049 6.247
.18 19.44 .4234 6.537 a4 -+ 39.570746
20 21.60 •439d 6.785
.22 23.76 .4535 6.997 a5 = - 36.636285
"24 25.92 .4649 7.173

26 28.08 .474 7.319 6 + 12. 633825
28 30.24 .4020 7. 437
:30 32.40 .4881 7.531
3 34.56 .4928 7.603 Wetted Surface Coefficient -

.34 36.72 4961 7.65g4

.3 38.58 .4983 7.6 8
38 41.04 .4996 7.708 a 0.7732
0 43.20 .5000 7.714

.42 47523 .49?ý 7Z Longitudinal center of Buoyancy -

.46 49.68 .4969 7.666

.48 51.84 .4947 7.6:.,3 - 0.4631

.50 54.00 .4921 7.592
.52 56.16 .4888 7.541
.54 58.32 .4851 7.484 Model Particulars:
56 0.48 .4809 7.420 Length, ft 9.000
.58 62.64 .4760 7.344
60 64.80 4 n 7.259 Diameter, ft 1.286
.62 66.96 .463 7.163
64 69.12 ,4572 3.054 Nose radius, ft 0.0918
.66 71.28 ,4,, 3 &.932 Tail radius, ft 0.0092
.68 73.-4 .4402 6,792
:70 75.60 .43Q1 6.636 Wetted surface, ftO 28.11

7P 77.76 .4185 6.457 Volume, ft8  7.595
4 2 .394054 6.255 Longitud inal center 4.168: , O.of buoyancy,
o 8. 0 8,556W6 ft from nose

90.72 17f82 .88 A2 61 1-. 414ý
188 95,04 ,25J5 3 .73
go 9;:20 , 221 N,48
R 92 36 ,1915 2,95B
9 o 101. 1 ,1 236

103.84 .1115ý
:98 lot-~ 84 ____ ________1_______1_

1100 00 0,000 0,006
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Model 4173 Serial 4005 (015) 65-70

X/L X iII Yi Y ininches inches Formula:

0.00 0.00 0.0000 0.000 2 x+ax2 +a x8+a a4 ±a +a x
.02 2.16 .1438 2.219 " a 1 2 x
.04 4.32 .2055 3.171
.o6 6.48 .2530 3.903 where a, = + 1.000000
.08 8.64 .2925 4.513
.10 1o.80 .3262 5.033 a, = + 1.999653
.12 12.96 .3554 5. 3
.14 15.12 0 5.874 a. = - 16.679052
1 .16 17.28 .4021 6.212

.18 19.44 .4215 6.503 a. + 33.862413
".20 2i.60 .4378 6.755
.22 23.76 .4517 6.969 a. - 30.386285
.24 2g:92 .4634 7.151

.08 4 31 7.299 a. + 10.203269.28 30.24 :10 7.421
.30 32.40 .4874 7.520 s

.32 34.56 .492g 7.595 Wetted Surface Coefficient = 7L D

.34 36.72 .4958 7 649

.36 38.88 .4982 7:687 = 0.7760

.38 41.04 .4995 7.707

.140 43.20 .5000 7.714

.42 45.36 .4996 7.708 x

.44 47.52 .49§6 7.691 Longitudinal Center of Buoyancy =-

.46 49.68 .4966 7.662

.48 51.84 .4942 7.625 - 0.4657

.50 54.0o .4912 7.579

.52 56.16 7.523 Mod

.54 58•.32 .4836 7. 61 Model Particulars:
.56 60.48 .4790 7.390 Length, ft 9.000
.58 62.64 .4jJ7 7.30'9
.60 64.80 .4 0 7.221 Diameter, ft 1.286
.62 66.96 .4615 7.120 Nose radius, ft 0.0918
.64 69.12 .4542 7.o08
.66 73.2 .4363 6. Tail radius, ft 0.0276
.70 75.60 .4274 6.794 Wetted surface, ft2  28.21

.72 77.76 .4163 6.423 Volume, fts 7.595•.74 79.92 .4-039 6. 232
.76 92.o8 .3901 6.039 Longitudinal center 4.192

S 84.24 b 374 5.71 of buoyancy,
8• 86.4 .3574 5.517 ft from nose

.82 88.56 .3386 Z:224

.84 90.72 .3175 14.8991

.86 92.88 .2940 4.536

.88 95.04 .2683 4.13

.90 97.20 .23g7 37698

.92 99.36 .20 1 3.211

.94 101.52 .1729 2.668
:96 103.68 .1334
98 105.84 .0871 1.34

1.C00 10d.00 0.0000 0.000
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Model 4174 Serial 40050265-70

X in Y in
X/L inches inches Formula:

0.00 2.16 .006 02.216 Yn.aax+a 2 x 2+a.xs+a X4+a xS+a xG

.04 4.32 .2051 3.164
.06 6.48 .2523 3.893 where a, = + i.000000
.08 8.64 .2916 4.499
.10 10.80 .3252 5.017 a2 = + 1.849653
.12 12.96 .3543 5.466.14 15.12 .379ý 5.855 a8 = - 15.584607
.16 17.28 .014 6.0a3
.18 19.44 .4204 6. 6 a4 = + 31 .o08246
.20 21.60 .4367 6-738
.22 23.76 4508 6.955 a5 = - 27.261285
.24 25.92 .4626 7.13
.26 2.08 .4724 7.288 a6 = + 8.987991
.28 30.24 .4505 7.413
.30 32.40 .4870 7.514 S
.32 34.56 .4920 7.5ý1 Wetted Surface Coefficient - nL T)
.34 36.72 .4956 7.68s
.36 38.88 4981 t.685
38 41.04 .4995 7.707 0.7772

.4o !3.20 .5000 7.714.42 45.36 • 4996 7.708•
S.2 7. Z494 7.690 Longitudinal Center of Buoyancy =1

.46 49.68 .4965 7 .660
.48 51.84 .493g 7.620 0.4671
•50 54.00 .4905 7.572
.52 56.16 .4571 7: -5
.54 58.32 .4828 7. 49 Model Particulars:.5 6. 48 ,44780. 7.375
5 8 .47806 775 Length, ft 9.000.58 62.64 .4726 7.292

.6o 64.80 .4667 7.201 Diameter, ft 1.286

.62 66.96 .4601 .09 Nose radius, ft 0.0918

. 64 69.12 1452 0.66 71.21 ý. 6.63 Tail radius, ft 0.0367

.66 71.2 438 6.74 Ta

.68 73.44 .435.8 6.724 Wetted surface, ft2  28.25

.70 75.60 .4260 6.5 7

.72 77.76 .4151 6Volume, ft8  7.595.7 9a ' 992 401 6.2194031 6.o1 Longitudinal center 4.204
76 Z .3898 6.014 of buoyancy,

7 8 4 750 5.786 ft from nose
0.o 86.40 .3556 5.533

.82 88.56 .3405 •-2-3

.84 90.72 .320 9. 3

.86 92 .8 .2982 4.601

.88 95.04 .2735 4.220

.90 97.20 .246-2 3.799
.92 99.36 .2159 3.331
.94 101.52 .1815 2.805
.96 103.68 .1430 2.206
.98 1004.8 .09b0 1.481

1.00 10 .00 0.0000 0.000
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Model 4175 Serial 40050160-50

X/L X in Y/D Y in
inches inches Formula:

0.00 0.00 0.0000 0.000 2 = a S+'.02 2.16 .1423 3. 074 Y a 2x+a x +asx 4x 4 asx 5 +a a6
.04 4.32 .2020 4.363
.06 6.48 .2476 5.348 where a, = + 1.000000
.o8 8.64 .2855 6.167.I0 1o.80 .3179 6.867 a. = + 0.837153
.12 12.96 .3462 7.1178
.14 15.12 .3710 014 a - 8585996"1.6 17.28 .3930 8.489.18 19.44 .4123 8.906 a4 = + 114.075954
.20 21.60 .4260 9.202
.22 23.76 .4439 9,588 a. = - 10.542535
.24 25.92 .4565 9. 6o.26 258.0 46 4 I0.O96 a6 = + 3.215422
.28 30.24 .4765 10.292
.30 32.40 .4841 10 . 457
.32 34.56 .4900 10.584 Wetted Surface Coefficient =.34 36.72 .4944 10.679 IrL D.36 38.88 .14976 10. 742
.38 41.0114 .4994 10. 787 = 0.7426
.4o 43.20 .9000 10. 00.42 45.36 .49 10.789 Longitudinal Center of Buoyancy
.44 147.52 .14979 10.F2L
.46 49.68 .4950 10 692.48 51.84 14911 io.608 .4484.50 54.00 .14864 10.5o6
52 56.16 .A806 10.381

•54 58.32 .4739 10.236 Model Particulars:
.56 60.48 .04665 10.0765.8 62.64 .4.580 9.893 Length, ft 9.000.60 64.8o .4486 9.69g0 Diameter, ft 1.8oo
.62 66.96 .4384 9.4469
.64 69.12 .14273 9.230 Nose radius. ft 0.1800.66 71.28 .4154 -.973 Tail radius, ft 0.0360
.68 73.44 .4026 8.696
.70 75.60 .3890 8.402 Wetted surface, ft' 37.79
72 .7776 3743 8.085 Volume, ft8  13.74.74. 79.9_2 •3858 7. 750.74 92.0 •3 7.392 Longitudinal center t..0 367 84.24 .3245 7.009 of buoyancy,
0 86.40 .3059 •.607 ft from nose.82 88.56 .286i 6.18o

.84 90U .2652 5.728.86 92 8 2429 5.247

.88 95.04 .2193 4.737

.90 97.20 .1941 4. 193

.92 99.36 .1672 3.612
•94 101.52 .1353 2.987
.96 103.68 .1065 2.300
•98 1og:84 .0699 1.510

1.00 1 00 0.0000 0.000
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Model 4176 Serial 40050155-50

X/L X in Y/D Y in
inches inches Formula:

0.00 0.00 0.0000 0.000 ya alx+a212+ asxo+ ax+ as + a x"
,02 2.16 .1407 3.039
.04 4.32 .1981 4279-
.o6 6 .48 .2415 5:21 where a + 1.000000
08 8.64 -2774 5.992
.10 10.80 .3084 6.661 a - 0.475347
.12 12.96 .3358 '1. 254
.14 15.12 .3601 7.778 a. = + 0.601504
.16 17.2 8 .3820 . 251
.18 19.44 .4016 8.675 a - 8.564671
.20 21.60 .4192 9.055
.22 23.76 .4349 9.394 a5 = + 12.426215
.24 25 92 .4489 9.696
.26 2.08 .461 9.958 a6 = - 4.987703
.28 30.24 .4715 114

.30 32.40 .4802 10. 372 S

.32 34.56 .4874 lO052L8 Wetted Surface Coefficient =
34 36:.2 .4929 10 . 647 LD

.36 38 8 .4969 10.733 0.7012.3 8 41.:04 • :11993 10 Q. -0701

.4o 43.20 . 1oo 0

.42 45.36 .9 10.785 LorgidLial Centor of Buoyancy =X44 47.52 1ý97o ,o-.W'5L
46 9.68 .49731 5

.48 51.84 .4878 1o.536 0.4295

.50 54.00 .4810 10.390
52 56.16 .4129 10.215

.54 58210.009 Model Particulars:
".58 62.46 .4 2 9.51377 Length, ft 9.000
.60 64.80 .4271 2.225 Dianmeter, ft 1.800
.62 66.96 .4126 .91 H2
.64 69.12 .3970 8.575 Nose radius, ft 0.1800
.66 71.28 :304 8 .P17 Tall radius, ft 0.0360
.68 73.44 73629 7.839
.T0 75.60 .3t445 7.441 Wetdsra, t 356

.72 77.76 .3255 7.031 Volume, ft3  12.60
.74 Z .92 .3052 U0.07 Longitudinal center 3.866
e -2o08 .285, 6.173 of buoyancy,
8 84.24 .2655 5.735 ft from nose
0 86.40 24 9 5.290

.82 88.56 .2244 4.847

.84 90. 2 .2040 4.406

.86 92.;8 .1840 3.974

.88 95.04 .1643 3.540

.90 97.20 .1451 3.134
•92 99.36 .1263 2.728
.94 101.52 .1073 2.318
.96 103.68 .0869 1.877
.98 o 0.84 .0618 1.335

1.00 1 0•.00 10.0000 0.000
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Model 4177 Serial 340501 65-70

X/L X in Y/D Y in
inches inches Formula:

0.00 0.00 0.0000 0.000 2.02 2.16 .1463 2.257 Y6=naix+a 2 x 2+asxS+a 4 x 4+a~x5+axe
o04 .1132 .2115 3.263.o6 6.48 .2627 4.053 where a, = + 1.000000

.08 8.64 •3054 4.712

.10 10.80 .3418 5.273 a2 = + 4.041346

.12 12.96 .3729 5.754
14 15.12 .3995 6.164 a = - 29.15465o

.16 17.28 .4222 6.514

.18 19.44 .4413 6.808 a4 = + 60.478948
.20 21.60 .4571 7.053
.22 23.76 .4700 7. 251 a5  - 54.459319
.24 25.9? .450 7.
.26 2 8.9 8 -407

o0 ,4879 7. 527 a.=+ 18.o93685.28 30.24 .4935 7.614
.30 32. 0 .4973 7.673

732 34.56 .4994 .705 Wetted Surface Coefficien = SL.34 36.72 .5000 7.714
36 38 .8 499ý 7.7o638 41;.o4 .497b 7.680 = 0.7770

.4o 43.20 .4954 7.644.42 45.36 .4923 7•596 X.44 47.52 .4888 7.5 Longitudil Cente of Buoyancy

.46 49•68 .4848 7.40I.48 51.84 .48o6 7.414 = 0.4577

.50 54.oo .4763 7.348

.52 56.16 .4y17 7.278
.54 58.32 .4672 7.209 Model Particulars:
56 60.48 .4625 7.136
.58 62.64 •4578 7063 Length, ft 9.000
.6o 64.80 •4528 6.986 Diameter, ft 1.286 J.62 66.96 .4475 6 .04 Nose radius, ft 0.0918
.64 69.12 .441; 6.517
.66 71.28 .4355 6. Talr
.68 73.44 .4285 6.:4 ai radius, ft 0.0184
.70 75.60 .4206 6.490 Wetted surface, ft 2  28.25
.72 77.76 .4116 6.351 Volume, ft3 7.595:74 v9 .4o13 6.1

.903 6. Longitudinal center 4.119776 2508 3792 6.005 of buoyancy,
0 86.40 .3ý9 5.550 ft from nose

.82 88.56 .3 ?.270
.84 90 .320
.86 92, .88 2974 5;
.88 95.04 .2708 4.178
.90 97.20 .2409 3.717
.92 99.36 .2073 3.198
94 101.52 .1696 2.61J
.96 103.68 .1274 1.966
.98 105.84 .079? 1.222

1.00 105.00 0.0000 0.000
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APPENDIX 3

TOTATz-BF•.STANCE COEFF'ICIENTS DERIVED FROM TESTS OF MODELS OF SERIES 58
AT DEEP SUBMERGENCE PLOTTED AGAINST R&YNOLDS NUMBERS

Test Spots are Shown for Each Model Tested With and With-
out Sand Strips. The Values for Sand Roughness Coefficient and

Strut Interference Coefficient are Given-on Each Set of Curves.
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APPENDIX 4

RESIDUAL-RESISTAN~CE COEFFICIENT CURVES USED TO D~ETEMINE
THE STRUT CORRECTION COEFFICIENTS

The Strut Interference Correction is Obtained by Deduct-
ing the Coefficients for the Model with DuWmn-Strut Supporting
Frame Alone In Place from the Coefficients for the Model with the
Dummy Struts Inserted.
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APPENDIX 5

NET RESIDUAL-RESISTANCE COEFFICIENTS FOR DEEP SU3AERGENCE
PLOTTED AGAINST FROUDE NUMBER

The Net Residual-Resistance Coefficients are Obtained

by Deducting the Sand Roughness Coefficient and Strut Interference

Coefficient from the Gross Residual-Resistance Coefficient Obtained
from Tests of the Model with the Sand Strip but Without the Duimy
Strut or Supporting Strut in Place.
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APPENDIX 6

TOTAL BARE HULL EFPECTIVE HORSEPOWER VERSUS VOLUME AT VARIOUS
EVEN SPEEDS FOR PROTOTYPES OF SERIES 58

OPERATING AT DEEP SUBMERGENCE,

The EHP's Have Been Calculated using the Net Cr for Deep
Submergence and a Roughness Allowance Coefficient of 0.4L x 10-s for
Standard. Conditions of Salt Water at 59 F. A Curve of Length Versus
Volume is Also Shown.
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APPENDIX 7

NET RESIDUAL-RESISTANCE COEFFICIENTS FOR SNORKELLING DEPTHS
PLOTTED AGAINST FROUDE NUMBER
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