2001:07

Two lower estimates in greedy approximation

V.N. Temlyakov

Department of Mathematics
University of South Carolina
Title: Two Lower Estimates in Greedy Approximation

Author:

University of South Carolina, Department of Mathematics, Columbia, SC, 29208

Abstract:

Approved for public release; distribution unlimited

Security Classification:

- **Report:** Unclassified
- **Abstract:** Unclassified
- **This Page:** Unclassified

Limitation of Report (SAR): Same as this page

Number of Pages: 13

Distribution/Availability Statement:

Approved for public release; distribution unlimited

Form Approved

OMB No. 0704-0188

Standard Form 298 (Rev. 8-98)

Processed by ANSI Std Z39-18
Two lower estimates in greedy approximation\(^1\)

V.N. TEMLYAKOV

University of South Carolina, Columbia, SC 29208, USA

Abstract. We prove one lower estimate for the rate of convergence of Pure Greedy Algorithm with regard to a general dictionary and another lower estimate for the rate of convergence of Weak Greedy Algorithm with a special weakness sequence \(\tau = \{t\}, 0 < t < 1\), with regard to a general dictionary. The second lower estimate combined with the known upper estimate gives the right (in the sense of order) dependence of the exponent in the rate of convergence on the parameter \(t\) when \(t \to 0\).

1. **Introduction**

This paper is a followup to the paper \([L]\) of E. Livshitz. In Sections 2,3 we study the convergence rate of Pure Greedy Algorithm and in Section 4 we study Weak Greedy Algorithm. We define first the Pure Greedy Algorithm (PGA) in Hilbert space \(H\). We describe this algorithm for a general dictionary \(\mathcal{D}\). If \(f \in H\), we let \(g(f) \in \mathcal{D}\) be an element from \(\mathcal{D}\) which maximizes \(|\langle f, g \rangle|\). We shall assume for simplicity that such a maximizer exists; if not suitable modifications are necessary (see Weak Greedy Algorithm below) in the algorithm that follows. We define

\[
G(f, \mathcal{D}) := \langle f, g(f) \rangle g(f)
\]

and

\[
R(f, \mathcal{D}) := f - G(f, \mathcal{D}).
\]

Pure Greedy Algorithm (PGA). We define \(R_0(f, \mathcal{D}) := f\) and \(G_0(f, \mathcal{D}) := 0\). Then, for each \(m \geq 1\), we inductively define

\[
G_m(f, \mathcal{D}) := G_{m-1}(f, \mathcal{D}) + G(R_{m-1}(f, \mathcal{D}), \mathcal{D})
\]

\[
R_m(f, \mathcal{D}) := f - G_m(f, \mathcal{D}) = R(R_{m-1}(f, \mathcal{D}), \mathcal{D}).
\]

For a general dictionary \(\mathcal{D}\) we define the class of functions

\[
\mathcal{A}_1^0(\mathcal{D}, M) := \{f \in H : f = \sum_{k \in \Lambda} c_k w_k, \quad w_k \in \mathcal{D}, \quad \# \Lambda < \infty \quad \text{and} \quad \sum_{k \in \Lambda} |c_k| \leq M\}
\]

and we define \(\mathcal{A}_1(\mathcal{D}, M)\) as the closure (in \(H\)) of \(\mathcal{A}_1^0(\mathcal{D}, M)\). Furthermore, we define \(\mathcal{A}_1(\mathcal{D})\) as the union of the classes \(\mathcal{A}_1(\mathcal{D}, M)\) over all \(M > 0\). For \(f \in \mathcal{A}_1(\mathcal{D})\), we define the “semi-norm”

\[
|f|_{\mathcal{A}_1(\mathcal{D})}
\]

as the smallest \(M\) such that \(f \in \mathcal{A}_1(\mathcal{D}, M)\).

\(^1\)This research was supported by the National Science Foundation Grant DMS 9970326 and by ONR Grant N00014-91-J1343
It was proved in [DT] that for a general dictionary \mathcal{D} the Pure Greedy Algorithm provides the following estimate

$$\|f - G_m(f, \mathcal{D})\| \leq |f|_{A_1(\mathcal{D})} m^{-1/6}. \quad (1.1)$$

(In this and similar estimates we consider that the inequality holds for all possible choices of $\{G_m\}$.) The paper [DT] contains also an example of a dictionary \mathcal{D} and an element f such that

$$\|f - G_m(f, \mathcal{D})\| > \frac{1}{2} |f|_{A_1(\mathcal{D})} m^{-1/2}, \quad m \geq 4. \quad (1.2)$$

We proved in [KT] a new estimate

$$\|f - G_m(f, \mathcal{D})\| \leq 4 |f|_{A_1(\mathcal{D})} m^{-11/62} \quad (1.3)$$

which improves a little the original one (see (1.1)).

E. Livshitz [L] proved that there exist $\delta > 0$, a dictionary \mathcal{D} and an element $f \in H$, $f \neq 0$, such that

$$\|f - G_m(f, \mathcal{D})\| \geq C m^{-1/2+\delta} |f|_{A_1(\mathcal{D})}$$

with a positive constant C. We develop and refine ideas from [L] here to prove the following lower estimate.

Theorem 1.1. There exist a dictionary \mathcal{D} and an element $f \in H$, $f \neq 0$, such that

$$\|f - G_m(f, \mathcal{D})\| \geq C m^{-1/3} |f|_{A_1(\mathcal{D})}$$

with a positive constant C.

In Section 4 we study the Weak Greedy Algorithm. Let a sequence $\tau = \{t_k\}_{k=1}^\infty$, $0 \leq t_k \leq 1$, be given. Following [T] we define Weak Greedy Algorithm as follows.

Weak Greedy Algorithm (WGA). We define $f_0^\tau := f$. Then for each $m \geq 1$, we inductively define:

1). $\varphi_m^\tau \in \mathcal{D}$ is any satisfying

$$|\langle f_{m-1}^\tau, \varphi_m^\tau \rangle| \geq t_m \sup_{g \in \mathcal{D}} |\langle f_{m-1}^\tau, g \rangle|;$$

2). $f_m^\tau := f_{m-1}^\tau \ominus \langle f_{m-1}^\tau, \varphi_m^\tau \rangle \varphi_m^\tau;$

3). $G_m^\tau(f, \mathcal{D}) := \sum_{j=1}^m \langle f_{j-1}^\tau, \varphi_j^\tau \rangle \varphi_j^\tau.$

In Section 4 we discuss the following question. How does the weakness sequence τ affect rate of convergence of WGA? We consider here only the special case of weakness sequences $\tau = \{t_k\}_{k=1}^\infty$ with $t_k = t$, $k = 1, 2, \ldots$, $0 < t < 1$. In order to stress this we replace in notations τ by t. It is known from [J] that WGA with the above special weakness sequence $\{t\}$ converges for any $0 < t < 1$. We show in Section 4 that the weakness parameter t affects the rate of convergence of WGA on the class $A_1(\mathcal{D})$. For the WGA we have the following upper estimate [T].
Theorem 1.2. Let \mathcal{D} be an arbitrary dictionary in H. Assume $\tau := \{t_k\}_{k=1}^\infty$ is a nonincreasing sequence. Then for $f \in \mathcal{A}_1(\mathcal{D}, M)$ we have

$$
\|f - G^\tau_m(f, \mathcal{D})\| \leq M(1 + \sum_{k=1}^m t_k^2)^{t_m/2(2+t_m)}
$$

for any realization of $G^\tau_m(f, \mathcal{D})$.

In a particular case $\tau = \{t\}$, $(t_k = t, \ k = 1, 2, \ldots)$, (1.4) gives

$$
\|f - G^t_m(f, \mathcal{D})\| \leq M(1 + mt^2)^{-t/(4+2t)}, \quad 0 < t \leq 1.
$$

This estimate implies the following inequality

$$
\|f - G^t_m(f, \mathcal{D})\| \leq C_1(t)m^{-at}|f|_{\mathcal{A}_1(\mathcal{D})}, \quad a < 1/6,
$$

with the exponent at approaching 0 linearly in t. We prove in Section 4 that this exponent cannot decrease to 0 slower than linearly.

Theorem 1.3. There exists an absolute constant $b > 0$ such that for any $t > 0$ we can find a dictionary \mathcal{D}_t and a function $f_t \in \mathcal{A}_1(\mathcal{D}_t)$ such that for some realization $G^t_m(f_t, \mathcal{D}_t)$ of Weak Greedy Algorithm we have

$$
\liminf_{m \to \infty} \|f_t - G^t_m(f_t, \mathcal{D}_t)\| m^{bt} / |f_t|_{\mathcal{A}_1(\mathcal{D}_t)} > 0.
$$

2. General formulas

We will be constructing simultaneously two sequences of elements $\{x_n\}_{n=N}^\infty$ and $\{g_n\}_{n=N}^\infty$. A number N will be chosen later to be large enough. Let $\{e_j\}_{j=1}^\infty$ be an orthonormal basis for H. We let $\{x_n\}$ have the following form

$$
x_n = \sum_{k=1}^n a_{n,k}e_k, \quad n = N, \ldots,
$$

and the $\{g_n\}$ have the form

$$
g_{n+1} = \gamma_{n+1}x_n + h_{n+1} + \xi_{n+1}e_{n+1}, \quad n = N, \ldots,
$$

with the sequences $\{\gamma_k\}$, $\{h_k\}$, $\{\xi_k\}$, $0 \leq \xi_k \leq 1$, to be specified. The element g_N will be also specified later. We always assume that

$$
\|g_k\| = 1, \quad k = N, \ldots.
$$

We complete the inductive definition of sequences $\{x_n\}_{n=N}^\infty$ and $\{g_n\}_{n=N+1}^\infty$ by setting

$$
x_{n+1} := x_n - \langle x_n, g_{n+1} \rangle g_{n+1}.
$$
We will not specify the sequences \(\{\gamma_k\}, \{h_k\}, \{\xi_k\}, 0 \leq \xi_k \leq 1 \), in this section and get here some general formulas under assumption that the above sequences satisfy some conditions. It will be convenient for us to introduce one more sequence

\[
q_{n+1} := \langle x_n, g_{n+1} \rangle, \quad n = N, \ldots
\]

We assume that \(h_{n+1} \in \text{Span}\{e_1, \ldots, e_n\} \) for all \(n \). This assumption and (2.4) imply

\[
a_{n+1,n+1} = -q_{n+1} \xi_{n+1}.
\]

We assume that the sequences \(\{\gamma_k\} \) and \(\{q_k\} \) satisfy the following condition

\[
1 - \gamma_{n+1} q_{n+1} = \frac{q_{n+1}}{q_n}, \quad n = N + 1, \ldots
\]

Let us list some identities which will be useful later on. Using (2.2) and (2.5) we get from (2.4) that

\[
x_{n+1} = x_n - q_{n+1} g_{n+1} = (1 - \gamma_{n+1} q_{n+1}) x_n - q_{n+1} h_{n+1} - q_{n+1} \xi_{n+1} e_{n+1} = \frac{q_{n+1}}{q_n} x_n - q_{n+1} h_{n+1} - q_{n+1} \xi_{n+1} e_{n+1}.
\]

The relations (2.1) and (2.2) imply

\[
q_{n+1} = \langle x_n, g_{n+1} \rangle = \gamma_{n+1} \|x_n\|^2 + \langle x_n, h_{n+1} \rangle.
\]

We will need formulas for \(\langle x_n, g_k \rangle \). It is clear from (2.4) that

\[
\langle x_n, g_n \rangle = 0, \quad n = N + 1, \ldots
\]

I. **Case** \(N \leq k < n \). By (2.6) and (2.7) we get for \(n \geq N + 2 \)

\[
\langle x_n, g_k \rangle = \left(\frac{q_n}{q_{n-1}} \right) \langle x_{n-1} - q_n h_n, g_k \rangle = \frac{q_n}{q_{n-1}} \langle x_{n-1}, g_k \rangle - q_n \langle h_n, g_k \rangle.
\]

Repeating (2.10) and using (2.9) we obtain for \(k \geq N + 1 \)

\[
\langle x_n, g_k \rangle = \frac{q_n}{q_k} \langle x_k, g_k \rangle - q_n \sum_{l=k+1}^{n} \langle h_l, g_k \rangle = -q_n \sum_{l=k+1}^{n} \langle h_l, g_k \rangle.
\]

Let us choose \(g_N \) now. We specify \(h_{N+1} = 0 \) and take \(0 < \epsilon < 1 \). Set

\[
g_N := \epsilon x_{N+1} \|x_{N+1}\|^{-2} + \xi g_{N+1}
\]

with \(\xi \) such that \(\|g_N\| = 1 \). Then

\[
\langle x_{N+1}, g_N \rangle = \epsilon,
\]

and \(x_{N+1} \in \text{Span}(g_N, g_{N+1}) \). By (2.10) similarly to (2.11) we get for \(n \geq N + 2 \)

\[
\langle x_n, g_N \rangle = \frac{q_n}{q_{N+1}} \langle x_{N+1}, g_N \rangle - q_n \sum_{l=N+2}^{n} \langle h_l, g_N \rangle.
\]
II. Case $k > n + 1 \geq N + 2$. We have by (2.2) for $k \geq n + 1$
\[\langle x_n, g_{k+1} \rangle = \langle x_n, \gamma_{k+1} x_k + h_{k+1} \rangle = \gamma_{k+1} \langle x_n, x_k \rangle + \langle x_n, h_{k+1} \rangle. \]
Next,
\[\langle x_n, x_k \rangle = \langle x_n, x_{k-1} - q_k g_k \rangle = \langle x_n, x_{k-1} \rangle - q_k \langle x_n, g_k \rangle. \]
We also have
\[\langle x_n, g_k \rangle = \langle x_n, \gamma_k x_{k-1} + h_k \rangle = \gamma_k \langle x_n, x_{k-1} \rangle + \langle x_n, h_k \rangle \] and
\[\langle x_n, x_{k-1} \rangle = \gamma_k^{-1} (\langle x_n, g_k \rangle - \langle x_n, h_k \rangle). \]
Combining (2.15) and (2.17) we get from (2.14)
\[\langle x_n, g_{k+1} \rangle = (\gamma_k^{-1} - q_k) \gamma_{k+1} \langle x_n, g_k \rangle + \langle x_n, h_{k+1} - \frac{\gamma_{k+1}}{\gamma_k} h_k \rangle. \]
Using (2.6) we rewrite (2.18)
\[\langle x_n, g_{k+1} \rangle = \frac{\gamma_{k+1}}{\gamma_k} \frac{q_k}{q_{k-1}} \langle x_n, g_k \rangle + \langle x_n, h_{k+1} - \frac{\gamma_{k+1}}{\gamma_k} h_k \rangle. \]
We note that (2.4) implies
\[\|x_n\|^2 = \|x_{n+1}\|^2 + \langle x_n, g_{n+1} \rangle^2 \]
and
\[q_{n+1}^2 = \|x_n\|^2 - \|x_{n+1}\|^2, \quad n = N, \ldots. \]

3. Specifications

Our goal is to prove that the procedure described by (2.4) is a Pure Greedy Algorithm with regard to the dictionary $D = \{g_m\}_{m=N}^\infty$ with appropriately chosen N and f. We will choose
\[x_N := -N^{-1/2} \|x_N\| \sum_{i=1}^N e_i, \]
with the sequence $\{\|x_n\|\}$ specified below and we define g_N by (2.12). With these two starting elements we use the procedures (2.2) and (2.4) to get the sequences $\{x_n\}_{n=N}^\infty$ and $\{g_n\}_{n=N}^\infty$. We set $f := x_{N+1}$ and prove that for big enough N (2.4) is a realization of PGA. This means that we should check that for any $n \geq N + 1$ and any $m \geq N$, $m \neq n + 1$, we have
\[|\langle x_n, g_m \rangle| < q_{n+1}. \]
We remind that by the definition of $\{q_k\}$ we have
\[\langle x_n, g_{n+1} \rangle = q_{n+1}. \]
We will prove (3.1), considering separately two cases $m > n + 1$ and $m < n + 1$.

3.1 Numerical sequences. We define sequences \(\{\|x_n\|\}_{n=1}^{\infty}, \{q_n\}_{n=2}^{\infty}, \{\gamma_n\}_{n=3}^{\infty} \) depending on a parameter \(0 < \beta < 1/4 \). In parallel we give in square brackets asymptotic estimates for \(\beta = 1/6 \). This will give a construction for Theorem 1.1. We set

\[
(3.2) \quad \|x_1\| = 1; \quad \|x_n\|^2 = (1 - \beta)^2(1 - 2\beta)^{-1}n^{-1+2\beta}, \quad \left[\frac{25}{24}n^{-2/3} \right], \quad n = 2, 3, \ldots.
\]

Then by (2.20) we have

\[
q_n^2 = \|x_{n-1}\|^2 - \|x_n\|^2 \approx (1 - \beta)^2n^{-2+2\beta}, \quad n = 2, 3, \ldots,
\]

and

\[
(3.3) \quad q_n \approx (1 - \beta)n^{-1+\beta}, \quad \left[\frac{5}{6}n^{-5/6} \right].
\]

From (2.6) we get

\[
(3.4) \quad \gamma_n = q_n^{-1} - q_{n-1}^{-1} \approx n^{-\beta}, \quad \left[n^{-1/6} \right].
\]

We will also need the following relations

\[
(3.5) \quad \gamma_{n+1}\|x_n\|^2 - q_{n+1} \approx \beta(1 - \beta)(1 - 2\beta)^{-1}n^{-1+\beta}, \quad \left[\frac{5}{24}n^{-5/6} \right].
\]

\[
(3.6) \quad \frac{\gamma_{n+1}}{\gamma_n} - \frac{q_{n+1}}{q_n} \approx (1 - 2\beta)n^{-1}, \quad \left[\frac{2}{3}n^{-1} \right].
\]

\[
(3.7) \quad \frac{\gamma_{n+1}}{\gamma_n} \frac{q_n}{q_{n-1}} = 1 - (1 + o(1))n^{-1}.
\]

We will use the following numerical estimate for \(\beta = 1/6 \)

\[
(3.8) \quad (1 - \beta)(1 - 2\beta)^{-1/2} = 5(24)^{-1/2} \leq 1.021.
\]

3.2 The sequence \(\{h_n\} \). We already agreed to set \(h_{N+1} = 0 \). Let for \(n \geq N + 2 \) define \(h_n \) as follows

\[
(3.9) \quad h_n := \frac{\alpha_n}{n-1}\Phi_n, \quad 0 < \alpha_n < \alpha_0 < 1/2,
\]

with

\[
\Phi_n := \sum_k \phi_n(k)e_k
\]

where \(\phi_n(t) := \chi_{(an,n-1)}(t) \) is the characteristic function of \((an, n-1) \) with a parameter \(0 < a < 1 \). In the following numerical estimates we set \(a = 0.05 \). The sequence \(\{\alpha_n\} \), \(0 < \alpha_n < \alpha_0 < 1/2 \), will be chosen later. Then we have

\[
(3.10) \quad \|\Phi_n\| \approx (1 - a)^{1/2}n^{1/2}, \quad \left[0.95^{1/2}n^{1/2} \right];
\]
and

\[\|\Phi_n\|_1 := \sum_k |\varphi_n(k)| \approx (1 - a)n, \quad [0.95n]. \]

It is clear from (2.2), (2.3) and definition of \(\Phi_n \) that \(\xi_n \to 1 \) as \(n \to \infty \). This and (2.7) imply that for big \(n \) we will have

\[a_{n,k} \leq -(1 + o(1))q_n, \quad n, k \geq N_1, \]

and

\[A_m := |\langle x_m, \Phi_{m+1} \rangle| = -\langle x_m, \Phi_{m+1} \rangle \geq (1 + o(1))q_m \|\Phi_{m+1}\|_1, \quad [0.79m^{1/6}]. \]

The sequence \(\{\alpha_n\} \) should satisfy the relation

\[q_{m+1} = \langle x_m, g_{m+1} \rangle = \gamma_{m+1}\|x_m\|^2 + \frac{\alpha_{m+1}}{m} \langle x_m, \Phi_{m+1} \rangle \]

and by (3.5) and (3.13)

\[\frac{\alpha_{m+1}}{m} = A_{m-1}^{-1} (\gamma_{m+1}\|x_m\|^2 - q_{m+1}) \leq (1 + o(1))((1 - a)mq_m)^{-1}\beta(1 - \beta)(1 - 2\beta)^{-1}m^{-1+\beta}, \quad [\frac{5}{19}m^{-1}]. \]

Let us specify \(\alpha_0 := 0.27 \) for \(\beta = 1/6 \). We will also need an estimate for \(A_m - A_{m-1} \).

Denote

\[g'_{n+1} := g_{n+1} - \xi_{n+1}e_{n+1} = \gamma_{n+1}x_n + h_{n+1}. \]

Taking into account that coordinates of \(x_n \) are negative (see (3.12)) and coordinates of \(h_{n+1} \) are positive and less in absolute value than the corresponding coordinates of \(x_n \) (see (3.9)) we get that the nonzero coordinates \((g'_{n+1})_k \) of \(g'_{n+1} \) are negative and

\[\|g'_{n+1}\| \leq \gamma_{n+1}\|x_n\|, \quad (g'_{n+1})_k \leq -(q_n\gamma_n - \alpha_0/n), \quad k \geq \alpha_n. \]

We have

\[A_{m-1} - A_m = \langle x_m, \Phi_{m+1} \rangle - \langle x_{m-1}, \Phi_m \rangle = \langle x_{m-1}, \Phi_{m+1} - \Phi_m \rangle - q_m \langle g_m, \Phi_{m+1} \rangle. \]

All coordinates of \(x_{m-1} \) are negative. Therefore

\[-(1 + o(1))q_m = a_{m-1,m-1} \leq \langle x_{m-1}, \Phi_{m+1} - \Phi_m \rangle \leq a_{m-1,m-1} + \|x_m\|'_{\infty} = -(1 + o(1))q_m + \|x_m\|'_{\infty}, \]

where

\[\|x_m\|'_{\infty} := \max_{k \geq \alpha_m} |a_{m,k}|. \]
From (2.7) and definition of \(\{h_n\} \) we get

\[
\|x_m\|'_\infty \leq (1 + o(1))q_m(1 + \alpha_0 \max_{am \leq k \leq m} \sum_{l=k}^{k/a} l^{-1}) \leq \\
(1 + o(1))q_m(1 + \alpha_0 \ln 1/a), \quad [1.51m^{-5/6}].
\]

Thus we get from (3.18) for \(\beta = 1/6 \) and big enough \(N \)

\[
-0.84m^{-5/6} < \langle x_m - 1, \Phi_{m+1} - \Phi_m \rangle < 0.68m^{-5/6}.
\]

We get from (3.16)

\[
\|g_m, \Phi_{m+1}\| \leq \|g'_m\|\Phi_{m+1}\| \leq \gamma_m \|x_{m-1}\|\Phi_{m+1}\| \approx \\
(1 - a)^{1/2}(1 - \beta)(1 - 2\beta)^{-1/2}, \quad [1].
\]

On the other hand by (3.16) we get

\[
\langle g_m, \Phi_{m+1} \rangle \leq -(1 - a)m(q_m \gamma_m - \alpha_0/m), \quad [-0.53].
\]

Thus from (3.17), (3.20), (3.21), and (3.22) we get for big \(N \)

\[
-0.4m^{-5/6} \leq A_{m-1} - A_m \leq 1.52m^{-5/6}.
\]

Further,

\[
A_{m-1}^{-1} - A_m^{-1} = (A_{m-1} - A_m)(A_{m-1}A_m)^{-1}.
\]

Using (3.13) we get for \(\beta = 1/6 \) from (3.24) and (3.23) that

\[
-0.641m^{-7/6} < A_{m-1}^{-1} - A_m^{-1} < 2.43m^{-7/6}.
\]

We proceed now to estimate \(\|x_n, g_{m+1}\| \). Consider first the case \(m > n \). We will prove (3.1) in this case by induction using the following representation formula (2.19)

\[
\langle x_n, g_{m+1} \rangle = \frac{\gamma_{m+1}}{\gamma_m} q_m \langle x_n, g_m \rangle + \langle x_n, h_{m+1} - \frac{\gamma_{m+1}}{\gamma_m} h_m \rangle.
\]

By (3.7) and induction assumption we get for the first term

\[
\frac{\gamma_{m+1}}{\gamma_m} q_m \langle x_n, g_m \rangle \leq (1 - (1 + o(1)m^{-1}))q_{n+1}.
\]

Thus we need to prove that there exists \(\delta > 0 \) such that

\[
\|x_n, h_{m+1} - \frac{\gamma_{m+1}}{\gamma_m} h_m\| \leq (1 - \delta)m^{-1}q_{n+1}.
\]
We have

\[
\langle x_n, h_{m+1} - \frac{\gamma_{m+1}}{\gamma_m} h_m \rangle =
\]

\[
\langle x_n, \frac{\alpha_{m+1}}{m} (\Phi_{m+1} - \Phi_m) \rangle + \langle x_n, \Phi_m \left(\frac{\alpha_{m+1}}{m} - \frac{\gamma_{m+1}}{\gamma_m} \frac{\alpha_m}{m-1} \right) \rangle =: a_1 + a_2.
\]

We have by (3.19)

\[
|a_1| = \left| \langle x_n, \frac{\alpha_{m+1}}{m} (\Phi_{m+1} - \Phi_m) \rangle \right| \leq \|x_n\| \frac{\alpha_{m+1}}{m} \leq (1 + o(1))(1 + \alpha_0 \ln 1/a) q_{n+1} \alpha_0 m^{-1}, \quad 0.41 m^{-1} n^{-5/6}.
\]

For \(a_2\) we have

\[
|a_2| \leq \|x_n\| \|\Phi_m\| \frac{\alpha_{m+1}}{m} - \frac{\alpha_{m+1}}{m} \frac{\alpha_m}{m-1}.
\]

Using (3.14) we get

\[
\frac{\alpha_{m+1}}{m} - \frac{\gamma_{m+1}}{\gamma_m} \frac{\alpha_m}{m-1} = (A_m^{-1} - A_{m-1}^{-1}) (\gamma_{m+1} \|x_m\|^2 - q_{m+1} + A_{m-1}^{-1} (\gamma_{m+1} \|x_m\|^2 - \|x_{m-1}\|^2) - q_{m+1} + \frac{\gamma_{m+1}}{\gamma_m} q_m) =: \sigma_1 + \sigma_2.
\]

Taking into account (3.5) we get from (3.25) the following estimates for \(\sigma_1\)

\[
-0.14 m^{-2} \leq \sigma_1 \leq 0.51 m^{-2}.
\]

Let us proceed to \(\sigma_2\) now. We have

\[
\gamma_{m+1} (\|x_m\|^2 - \|x_{m-1}\|^2) - q_{m+1} + \frac{\gamma_{m+1}}{\gamma_m} q_m \approx -\beta (1 - \beta) m^{-1}.
\]

Using this, (3.13) and the following inequality for \(A_m\)

\[
A_m \leq \|x_m\| \|\Phi_{m+1}\| \approx (1 - \beta)(1 - 2\beta)^{-1/2} (1 - a)^{1/2} m^{\beta}, \quad [m^{1/6}],
\]

we get

\[
-0.18 m^{-2} m^{-2} \leq \sigma_2 \leq -0.13 m^{-2}.
\]

Thus

\[
-0.32 m^{-2} \leq \sigma_1 + \sigma_2 \leq 0.38 m^{-2}.
\]

and

\[
\langle a_2 \rangle \leq \|\sigma_1 + \sigma_2\| x_n \|\Phi_m\| \leq 0.38 m^{-3/2} n^{-1/3}.
\]

Combining (3.30) with (3.36) we get

\[
|a_1| + |a_2| \leq 0.79 m^{-1} n^{-5/6} < 0.99 m^{-1} q_{n+1}.
\]
This inequality holds for all \(m > n \) and big enough \(N \). Using (3.7) we inductively get from (3.26) and (3.37) that for all \(m > n \)
\[
(3.38) \quad |\langle x_n, g_{m+1} \rangle| < q_{n+1}.
\]

We proceed now to the case \(m < n \). By (2.11) and (2.13) we need to estimate
\[
| \sum_{k=1}^{n} \langle h_l, g_k \rangle |, \quad k = N + 1, \ldots.
\]
We use the definition \(h_l = \frac{\alpha_l}{l} \Phi_l \) and the inequality \(0 < \alpha_l \leq \alpha_0 \) which holds if \(N \) is big enough. If \(l > 20k \) then \(\langle h_l, g_k \rangle = 0 \). For \(l = k + 1 \) we have
\[
|\langle h_l, g_k \rangle| = |\langle h_l, g'_k \rangle| \leq \|h_l\| \|g_k\| \leq Ck^{-1}.
\]
For \(k + 2 \leq l \leq 20k \) we have
\[
(3.39) \quad \langle h_l, g_k \rangle = \frac{\alpha_l}{l} (\xi_k - |\langle \Phi_l, g'_k \rangle|)
\]
and by (3.16)
\[
|\langle \Phi_l, g'_k \rangle| \leq k^{1/2} \|g_k\| \leq 1.5.
\]
Thus
\[
|\langle h_l, g_k \rangle| < 0.27l^{-1}, \quad l \geq k + 2,
\]
and therefore
\[
(3.40) \quad \sum_{l=k+1}^{20k} |\langle h_l, g_k \rangle| \leq (1 + o(1)) 0.27 \ln 20 < 0.81.
\]
Thus we have for \(m \leq n \)
\[
(3.41) \quad |\langle x_n, g_m \rangle| \leq (0.81 + 0.05)q_{n+1} < q_{n+1}
\]
for \(\epsilon = 0.05q_{N+1} \) and big \(N \).

Let us complete the construction of a counterexample. Let \(N \) be big enough to ensure (3.38) and (3.41) for \(n, m \geq N \). Then we set
\[
x_N := \sum_{i=1}^{N} e_i
\]
and
\[
g_{N+1} := q_{N+1} x_N \|x_N\|^{-2} + \xi_{N+1} e_{N+1}
\]
with \(q_{N+1} \) chosen from (3.3) with \(\beta = 1/6 \) and \(\xi_{N+1} > 0 \) such that \(\|g_{N+1}\| = 1 \). We define now \(\{x_n\}_{n \geq N+1} \) and \(\{g_n\}_{n \geq N+2} \) by (2.2) and (2.4) with \(\{\gamma_n\}, \{h_n\} \) specified in Section 3 with \(\beta = 1/6 \). We set \(\epsilon = 0.05q_{N+1} \) and define
\[
g_N := \epsilon x_N \|x_N\|^{-2} + \xi g_{N+1}, \quad \|g_N\| = 1.
\]
Consider now \(f := x_{N+1} \) and \(D := \{g_N, g_{N+1}, \ldots\} \). We have that \(f \in \text{Span}(g_N, g_{N+1}) \) and therefore \(|f|_{A_1(D)} \leq C(N) \). By (3.38) and (3.41) the PGA with regard to \(D \) applied to \(f \) will exactly realize the iterative process (2.4). Thus
\[
f_m = x_{N+1+m}
\]
and
\[
\|f_m\|^2 = \frac{25}{24} (N + 1 + m)^{-2/3}.
\]
This implies
\[
\|f_m\| \geq C_1(N)m^{-1/3}
\]
which completes the proof of Theorem 1.1.
4. Proof of Theorem 1.3

The construction of \mathcal{D}_t is the same as in Section 2 of [LT]. It uses the Equalizer procedure. Let H be a Hilbert space with an orthonormal basis $\{e_j\}_{j=1}^{\infty}$. For two elements $e_i, e_j, \ i \neq j$, and for a positive number $t \leq 1/3$ we define the procedure which we call “equalizer” and denote $E(e_i, e_j, t)$.

Equalizer $E(e_i, e_j, t)$. Denote $f_0 := e_i$ and $g_1 := \alpha_1 e_i - (1 - \alpha_1^2)^{1/2} e_j$ with $\alpha_1 := t$. Then $\|g_1\| = 1$ and $\langle f_0, g_1 \rangle = t$. We define the sequences $f_1, \ldots, f_N; g_2, \ldots, g_N; \alpha_2, \ldots, \alpha_N$ inductively:

$$f_n := f_{n-1} - \langle f_{n-1}, g_n \rangle g_n; \quad g_{n+1} := \alpha_{n+1} e_i - (1 - \alpha_{n+1}^2)^{1/2} e_j$$

with α_{n+1} satisfying

$$\langle f_n, g_{n+1} \rangle = t, \quad n = 1, 2, \ldots.$$

Let $f_n = a_n e_i + b_n e_j$ and $N := N_t$ be the number such that

$$a_{N-1} - b_{N-1} \geq \sqrt{2t}, \quad a_N - b_N < \sqrt{2t}.$$

Then we modify the N-th step as follows. We take $g_N := 2^{-1/2}(e_i - e_j)$ and

$$f_N = f_{N-1} - \langle f_{N-1}, g_N \rangle g_N.$$

It is clear that then $a_N = b_N$ and

$$t \leq \langle f_{N-1}, g_N \rangle \leq 2t.$$

We list here the following simple relations

$$a_{n+1} = a_n - t a_{n+1}; \quad b_{n+1} = b_n + t (1 - a_{n+1}^2)^{1/2}, \quad n < N - 1;$$

(4.1) \quad $$a_{n+1} - b_{n+1} = a_n - b_n - t (a_{n+1} + (1 - a_{n+1}^2)^{1/2}), \quad n < N - 1;$$

$$\|f_{n+1}\|^2 = \|f_n\|^2 - t^2, \quad n < N - 1.$$

Relation (4.1) and the inequality $1 \leq x + (1 - x^2)^{1/2} \leq 2^{1/2}, 0 \leq x \leq 1$, imply that

(4.2) \quad $$N \leq 1/t$$

and

$$\|f_N\|^2 \geq \|f_{N-1}\|^2 - 4t^2 \geq \|f\|^2 - t - 3t^2.$$

It is clear that $E(e_i, e_j, t)$ is a WGA with regard to the dictionary $e_i, g_1, g_2, \ldots, g_N$ with the “weakness” parameter t.

We define WGA and a dictionary \mathcal{D}_t as follows. We begin with $f := e_1$ and apply $E(e_1, e_2, t)$. After $N_t \geq 1$ steps we get g_1^0, \ldots, g_N^0, and

$$f^1 = c_1 (e_1 + e_2)$$
with the property
\[\| f^1 \|^2 \geq \| f \|^2 - (t + 3t^2) = \| f \|^2 (1 - t - 3t^2). \]

We use now \(E(e_1, e_3, t) \) and \(E(e_2, e_4, t) \). After \(2N_t \geq 2 \) steps we obtain \(g_1^1, \ldots, g_{2N_t}^1 \), and
\[f^2 = c_2(e_1 + \cdots + e_4) \]
with the property
\[\| f^2 \|^2 \geq \| f^1 \|^2 (1 - t - 3t^2) \geq \| f \|^2 (1 - t - 3t^2)^2. \]

After \(s \) iterations we get
\[f^s = c_s(e_1 + \cdots + e_2) \]
and apply \(E(e_i, e_{i+2}, t), i = 1, 2, \ldots, 2^s \). We make \(2^s N_t \geq 2^s \) steps and get \(g_{i}^s, \ldots, g_{2^s N_t}^s \), and
\[f^{s+1} = c_{s+1}(e_1 + \cdots + e_{2^s + 1}) \]
with the property
\[\| f^{s+1} \|^2 \geq \| f \|^2 (1 - t - 3t^2)^{s+1}. \]

Thus we have
\[\| f - G^k_{2^s}(f, \mathcal{D}_t) \| \geq (1 - t - 3t^2)^{s}, \quad s = 1, 2, \ldots, \]
with the dictionary
\[\mathcal{D}_t = \bigcup_{k \in \mathbb{N}} e_k \cup \bigcup_{s \geq 0, 1 \leq i \leq 2^s N_t} g_i^s. \]

The relation (4.3) and monotonicity of \(\| f - G^r_{m}(f, \mathcal{D}_t) \| \) prove the Theorem 1.3.

Remark 4.1. The estimate (1.5) implies that for small \(t \) the parameter \(a \) in (1.6) can be taken close to 1/4. The inequality (4.3) implies that the parameter \(b \) in (1.7) can be taken close to \((\ln 2)^{-1}\).

References

