Human-in-the-loop Simulation-based Combat Vehicle Duty Cycle Measurement: Duty Cycle Experiment 1 (06S-SIW-080)

Victor J. Paul
U.S. Army TARDEC-GVSL
April 4-5, 2006
<table>
<thead>
<tr>
<th>Report Documentation Page</th>
</tr>
</thead>
</table>

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE 27 MAR 2006
2. REPORT TYPE Briefing Charts
3. DATES COVERED 27-03-2006 to 27-03-2006

4. TITLE AND SUBTITLE
HUMAN-IN-THE-LOOP SIMULATION-BASED COMBAT VEHICLE DUTY CYCLE MEASUREMENT: DUTY CYCLE EXPERIMENT 1 (06S-SIW-080)

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) Victor Paul

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, 6501 E.11 Mile Rd, Warren, MI, 48397-5000

8. PERFORMING ORGANIZATION REPORT NUMBER
#15662

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, 6501 E.11 Mile Rd, Warren, MI, 48397-5000

10. SPONSOR/MONITOR’S ACRONYM(S) TARDEC
11. SPONSOR/MONITOR’S REPORT NUMBER(S) #15662

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
SPRING SIW CONFERENCE, HUNTSVILLE, AL 2006

14. ABSTRACT
N/A

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT unclassified
b. ABSTRACT unclassified
c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES 25

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18
Outline

- Duty Cycle Experiments
- Simulation Objectives
- Simulation Design
- Experiment Design
- Results
- Conclusions
Duty Cycle Experiments

- TARDEC has a Power & Energy program to develop future vehicle power systems.
- Design requires understanding of use.
- To measure use, vehicle must exist.
- Duty cycle experiments use simulation to measure duty cycles of notional vehicles.
- Duty cycle captures:
 - Operator (driver/gunner) use
 - External events
Simulation Objectives

- Create motion based simulation to invoke realistic driving behaviors
- Measure power usage of modeled vehicle during simulated battle
 - Mobility Loads
 - Non-Mobility Loads
- Move towards hardware-in-the-loop experiment
Simulation Design: Top Level

- 6 Major Components
- 12 Computers
- Communications
 - Ethernet
 - SCRAMNet
- Performance:
 - Model update: 500 Hz
 - System Latency: 247 ms
Simulation Design: RMS

Platform Payload: 1,600 lbs.
Platform Diameter: 46 inches
Acceleration Bandwidth: 40 Hz

Axes Displacement
- Linear (vert., lat., long.): ±20 in.
- Angular (roll, pitch, yaw): ±20°

Axes Velocity
- Linear (vert., lat., long.): ±50 in./s
- Angular (roll, pitch, yaw): ±70°/s

Axes Acceleration
- Linear (vert., lat., long.): ±2 g's
- Angular (roll, pitch, yaw): ±1150°/s²

Applications

Man-in-the-loop simulation
- Human/Robotic Investigations
- Crew station design
- HLA exercises/war-gaming

Crew station and component development
- Seat characterization
- Hardware component testing

Motion Drive
- Washout Algorithms
- Real-time Vehicle Dynamics
- Control Loaders
- Function Generator
- Random Signal Generator

Data Acquisition
- Soldier Performance
- Vehicle Performance
- HLA Battlefield Scenarios
- Simulator Performance

06S-SIW-080

UNITED STATES ARMY
TARDEC
TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
Simulation Design: CAT Crewstation

- Research tool for future crewstations
- 3 touch screens
 - 6 virtual displays
- Multi-function
- Soft button + hard button
- Yoke + Pedals
- "Drive" function
Simulation Design: ESS

- Provided with CAT
 - Training
 - Mission Rehearsal
- Used as DCE IG
- Based on open architecture
- Interfaces to OTB
- "Mobility" process replaced with VDMS
Simulation Design: VDMS

- VDMS is a process:
 - Real-time Dynamics
 - Power Train
 - Terrain Model
 - Interfaces to external systems.
- Deliver dynamic models in executable form.
- Can be used to simulate unmanned or manned vehicles.
Simulation Design: Vehicle Dynamics

- 24T Tracked Vehicle (MCS)
- Front-drive
- 6 road wheels/side
- SimCreator®’s Multi-body Dynamics
- Executes in VDMS
- Interfaces to Power System
Simulation Design: Power System

- Series Hybrid Power System for MCS
- Independent Left/Right
- Diesel Engine/Generator
- 600 V bus w/Battery
- Two 300kW traction motors.
- Includes thermal model
- Implemented in Simulink w/ Real-time workshop
Simulation Design: Audio System

- Internal sounds
 - Engine
 - Track
 - Engine RPM & vehicle speed change sound
- External sounds
 - Battle noise
 - Bullet Pings
Experiment Design: Two Experiments

- **DCE1**
 - Formal Study
 - Battle scenario
 - 9 civilian subjects

- **DCE1.1**
 - Informal follow-on
 - Driving scenario
 - 7 civilian subjects
DCE1: Experiment Design

- Assess aggregate power consumption using CASTFOREM
- Extract vignette
 - 9 hours into battle
 - MCS PLT
 - Road March (12 km)
 - Dismount ambush
- Drive + defensive systems
DCE1: OTB Implementation

- Implemented in OTB 2.0
- Blue forces:
 - 3 SAF M1
 - “Alpha 1” – “Alpha 3”
 - 1 Virtual MCS
 - “Alpha 4”
- Red forces
 - RPG
 - ATGM
DCE1: Proxy Commander

- Serve as PLT leader
- Give direction
- Maintain “chatter”

- Give mission briefing
- Monitors OTB

UNITED STATES ARMY
TARDEC
TANK AUTOMOTIVE RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER

06S-SIW-080
DCE1: Data Acquisition

- 57 channels of data at 100 Hz
 - 31 vehicle dynamics
 - 26 power system

- Video of experiment
- Events
 - hit,
 - transmission

- PDU log
DCE1.1: Experiment Design

- Drive one lap on hilly Army proving ground course.
- Record driver commands, speed, location.
- Seven subjects drawn from experimenters
DCE1: Subject Handling

- Affidavits and questionnaires
 - Consent form
 - Simulation Sickness Questionnaire (1 of 3)
 - Demographics Questionnaire
- Mission Briefing
- Practice drive
- Simulation Sickness Questionnaire (2 of 3)
- Conduct experiment
- Simulation Sickness Questionnaire (3 of 3)
- Exit Interview

~ 2 hours
DCE1 Results: Demographics

- 9 Subjects (7 male, 2 female)
 - Age 29 ± 2.2 years
 - Education: 4.7 years ± 0.3 yrs post HS.
 - Driving exp: 13 ± 2.4 yrs.
 - Military vehicle exp: 5 subjects
 - None with tracked vehicle exp
 - Computer use: 46 ± 7 hrs/wk.
 - Video game exp: 5.8 ± 1.5 hrs/mo.
DCE1 Results: Duty cycle

- 6 subjects completed
- 3 ended early – computer crash
- No significant simulator sickness
DCE1.1 Results: Duty cycle

- 7 subjects completed
- Lap times
 - 14.2 – 22.4 minutes
- Turns divergence

Approximate Elevation and Grade Performance

Driven path

Longitudinal Performance

Approximate Elevation and Grade Performance

06S-SIW-080
DCE1.1 Results: Path Averaging

- Find average path
- Synchronize data at each point.
- 2m averaging
DCE1.1 Results: Path Averaging

Path

TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
Conclusions

- Two duty cycles were recorded.
 - Battle scenario with driving and defensive systems.
 - Power train evaluation course.
- Motion base simulation affects how a vehicle is operated.
- A scenario may be extracted from a force-on-force simulation and executed at a higher resolution.