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Abstract

The efficacy of end-to-end multicast transport pro-
tocols depends critically upon their ability to scale
efficiently to a large number of receivers. Several
research multicast protocols attempt to achieve this
high scalability by identifying sets of co-located re-
ceivers in order to enhance loss recovery, congestion
control and so forth. A number of these schemes
could be enhanced and simplified by some level of
explicit knowledge of the topology of the multicast
distribution tree, the value of the bottleneck band-
width along the path between the source and each
individual receiver and the approximate location of
the bottlenecks in the tree. In this paper, we explore
the problem of inferring the internal structure of a
multicast distribution tree using only observations
made at the end hosts. By noting correlations of
loss patterns across the receiver set and by measur-
ing how the network perturbs the fine-grained tim-
ing structure of the packets sent from the source,
we can determine both the underlying multicast tree
structure as well as the bottleneck bandwidths. Our
simulations show that the algorithm is robust and
appears to converge to the correct tree with high
probability.

1 Introduction and Motivation

The IP Multicast service provides for efficient one-
to-many packet transmission. A single packet trans-
mitted by the source is delivered to an arbitrary
number of receivers by replicating the packet within
the network at fan-out points along a distribution
tree rooted at the traffic’s source [11]. The IP Multi-
cast service model provides a best-effort service, yet

a number of emerging applications, such as shared
white-boards, software updates, news articles etc re-
quire reliable packet delivery. To meet this require-
ment, reliable multi-cast protocols such as SRM [4],
RMTP [9], and TMTP [20] build reliability on top
of this unreliable service.

A key challenge in the design of a reliable mul-
ticast protocol is its loss recovery algorithm, which
has proven difficult to scale to a large number of
receivers. For example, the global loss recovery
component of SRM multicasts retransmission re-
quests and replies to the entire group and thus scales
poorly [16] as the entire tree participates in the
recovery process and even a single lossy receiver
can significantly degrade the overall session perfor-
mance. To solve this problem a number of schemes
have been proposed that try to restrict error recov-
ery traffic to the required scope, i.e., these schemes
attempt to achievelocal recovery. The key idea be-
hind local recovery is to identify loss neighborhoods
of receivers that share similar loss patterns and con-
fine error recovery to this neighborhood without dis-
turbing the rest of the tree. Schemes based on this
approach include:

� the use of hop-scoping to control the dis-
tance travelled by retransmission requests and
replies [10];

� the use of separate local multicast groups for
error recovery [10];

� replier-based schemes, based on a new set of
router forwarding services such as directed
multicast and subcast forwarding [13]; and,

� the use of a new “randomcast” forwarding ser-
vice to form “search parties” of loss affected
members searching for lost data [3].
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All these schemes essentially require that the re-
ceiver discover the loss recovery group to which it
belongs and search for potential candidates to re-
transmit lost packets.

The Reliable Multicast Transport Protocol [9]
attempts to solve the loss recovery problem by or-
ganizing members into a hierarchy. Acknowledg-
ments are sent not to the source, but to the parent
member in the tree. Internal nodes in the hierarchy
called Designated Receivers (DRs) cache data pack-
ets for later retransmission of lost packets. RMTP
therefore provides both implosion avoidance and lo-
cal recovery. However for RMTP to perform well,
the hierarchy of members must be very closely cor-
related to the underlying multicast distribution tree
and DRs need to be optimally and dynamically dis-
tributed over the tree. How this can be achieved is
still an open research problem.

The recent work on Self-Organized Transcod-
ing (SOT) [7] tries to adapt continuous-media appli-
cations to varying network conditions through the
use of self organized transcoding. In SOT, when a
group of co-located receivers detects loss caused by
a congested link, an upstream receiver with better
reception at the far end of the bottleneck acts as a
transcoder and provides a customized version of the
stream. A new stream is multicast to a new address
and receivers adversely affected by the bottleneck
switch to the new group. Receivers use the observed
loss patterns to decide when to switch groups. Since
it is crucial to the stability of the protocol that all re-
ceivers within the same loss subtree switch groups
together, decision errors regarding joining and leav-
ing groups need to be minimized. The problem of
knowing when to join and leave groups and know-
ing which group to join is equivalent to the prob-
lem of knowing which loss neighborhood a receiver
belongs to. The problem of optimally placing a
transcoder or a designated receiver is essentially the
problem of determining which receiver would be an
ideal candidate for retransmitting lost packets.

In each of the schemes outlined above (i.e., lo-
cal recovery, RMTP, and SOT), the receiver’s pro-
tocol could be enhanced and potentially simplified
with explicit knowledge of the underlying multi-
cast distribution tree. Unfortunately, the IP service
model deliberately hides this information in favor
of a universal packet service that is easily ported

across diverse technologies and environments. To
overcome this, protocols like TCP adapt to physical
path characteristics through end-to-end adaptation
(e.g., searching for the bottleneck bandwidth with
slow startand adapting to changes in available ca-
pacity with itscongestion avoidancemode). But un-
like unicast TCP, multicast communication creates
many paths between a source and its receivers with
potentially heterogeneous characteristics. Conse-
quently, researchers have devised schemes like lo-
cal recovery and SOT to discover the homogenous
sub-regions of a heterogeneous multicast distribu-
tion tree, and exploit this knowledge in the adapta-
tion processes.

In this paper, we propose a scheme for deriving
a fairly accurate picture of the topology of a multi-
cast distribution tree strictly from end-to-end obser-
vations. Our approach relies upon complete infor-
mation of loss statistics at every receiver and thus
is not a practical protocol building block in its own
right. However, we believe the process of explor-
ing this extreme point sheds light on the difficulty
of the problem and forms the foundation for follow-
on work that could exploit variations in the basic
approach to trade off computational overhead for
topological accuracy. Even so, our scheme could
be of potential use in its current form for network
monitoring, debugging, and performance character-
ization using off-line processing.

Our approach to this topology discovery prob-
lem consists of two core pieces: a tree inference al-
gorithm and bottleneck bandwidth estimator. The
tree inference engine clusters nodes according to
shared loss and estimates the tree according to a
probabilistic model that eliminates “false sharing”.
The estimate converges to the true tree as more loss
statistics are collected. We combine this topolog-
ical information with a bottleneck bandwidth esti-
mation technique in order to approximate the loca-
tion of the bottlenecks in the tree. The result is a
model that faithfully captures the link capacities and
multicast topology of the underlying physical tree
even though our algorithms require information that
is easily available at the end hosts and work with the
existing multicast routing service.

In the next section, we describe the bottle-
neck bandwidth estimation technique. Section 3 de-
scribes the tree inference algorithm. In Section 4,



∆

∆

Bottleneck bandwidth = pkt size / 

Figure 1:Packet pairs flowing through a bottleneck
link. The vertical dimension is bandwidth, horizon-
tal dimension is time

the two algorithms are combined into a compre-
hensive algorithm that approximates link capacities
from the bottleneck measurements. Implementa-
tion details and preliminary test results are in Sec-
tion 5. Finally, we describe related work on bottle-
neck bandwidth estimation and path inference tech-
niques, and conclude.

2 Bottleneck Bandwidth Estima-
tion

Transmission of a packet from a source to a re-
ceiver involves forwarding the packet along a series
of consecutive links. Each link has a maximum rate
at which it can forward packets. The maximum rate
of the slowest link along the chain determines the
maximum rate at which data can be transmitted be-
tween the source and receiver. In other words, the
slowest link sets the bottleneck bandwidth along a
given path. The ability to measure this bottleneck
bandwidth value stems from the observation that as
a packet is transmitted along a link, it is “spaced”
out in time depending on the transmission rate of
the link with the amount of spacing being inversely
proportional to the capacity of the link [5]. The
basic idea behind the packet-pair mechanism is as
follows: if two probe packets travel together such
that they are adjacent at the bottleneck link, with no
packets intervening between them then, on emerg-
ing from the bottleneck link the inter-packet spacing
will be proportional to the transmission time of the
first packet over the bottleneck. This can be seen in
Figure 1.

LetQb seconds be the time required to forward

a packet of lengthP bytes through the bottleneck
link. If the bottleneck bandwidth isB(bytes=s)
thenQb = P=B. Qb can be approximated at the
receiver’s end. The problem that then arises is that
queuing elements beyond the bottleneck can distort
the spacing between the probe packets. Either the
first or the second packet can be randomly delayed
thus randomly increasing or decreasing the calcu-
lated estimate of the bottleneck bandwidth. These
random variations can be viewed as noise affect-
ing the consistent inter-packet spacing caused by the
bottleneck. Filtering mechanisms are thus needed to
extract the desired measurements.

2.1 Filtering algorithm for robust bottle-
neck bandwidth estimation

In [15], Paxson develops a robust algorithm called
Packet Bunch Mode (PBM) that estimates the bot-
tleneck bandwidth along a unicast path. Our fil-
tering algorithm is adopted from Paxson’s work on
PBM. In this section, we briefly review our filter-
ing techniques. A more in-depth description of the
details of PBM and the selection of the appropriate
values for the required parameters can be found in
[15].

Probe packets transmitted by the sender in-
clude a sequence number, and a time-stamp indicat-
ing the transmission time. The packet’s arrival time
is noted at the receiving end. Inter-packet spacing
measurements are made by recording the difference
in arrival times�Tr between consecutive packets.
The difference in transmission times,�Ts, is calcu-
lated from the packet time-stamps. The criteria used
to select valid sample measurements are:

� We define an expansion factor� which mea-
sures the factor by which the packets were
spread out by the network as:

� = �Tr=�Ts

If � < 1:0, then the packets were not spread
out by the network and hence not shaped by
the bottleneck. Thus, calculations based on
their arrival times should not be used in esti-
mating the bottleneck and are not accepted as
valid samples.



� If the last packet pair we inspected yielded
a valid sample and spanned an interval of
�T 0

r then we perform a heuristic test: If
�Tr=�T

0

r > 2 then the current pair was
spaced out more than twice as much as the pre-
vious pair and we skip the current pair as it is
likely to reflect sporadic arrivals.

� Pairs that include out of order arrivals or lost
packets are rejected.

Samples meeting the above criteria are used to
calculate a set of bottleneck estimates. LetNb be
the number of estimates obtained. IfN is the total
number of packets sent, thenN=2 is the maximum
number of possible estimates using packet pairs. If
Nb is less than 70% ofN=2 then we reject further
analysis of the set of estimates as it consists of too
few estimates. Otherwise, we turn to the problem
of extracting the best estimate from the set. The
set of estimates is first sorted in decreasing order
of the frequency of their occurrence. LetX be the
estimate that occurs with maximum frequency. We
then search the set for values that fall within� 5%
of X and combine them as a single entry with value
X and frequency equal to the sum total of the in-
dividual frequencies. The set of estimates is thus
narrowed down to a set of disjoint ranges. The es-
timate that occurs with the maximum frequency is
then selected as the bottleneck bandwidth provided
it occurs with a frequency that exceeds all other es-
timates by at least 60%. If not, the results obtained
from the set of samples is ambiguous and no esti-
mate of the bottleneck bandwidth is made.

The above bottleneck estimation algorithm can
be extended to step through an increasing series of
packet bunch sizes as outlined in [15] in order to
detect multi-channel bottlenecks and changing bot-
tleneck bandwidths.

2.2 Estimation of the bottleneck band-
width in a multicast tree

To apply the techniques described in Section 2.1 ,
the traffic source in the multicast tree transmits a
stream of back-to-back probe pairs. Each receiver
measures the arrival times of packets at its end and
uses the filtering algorithm outlined in Section 2.1 to
infer the bottleneck bandwidth of the path between
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Figure 2:Original tree topology

itself and the source. Note that this method does
not, by itself, in any way indicate where along the
path the bottleneck is located.

3 Tree Inference Algorithm

This section describes our tree inference algorithm
which reconstructs a logical representation of the
multicast distribution tree using information ob-
tained from the losses seen by the receivers.

Multicast packets flow along a distribution tree
rooted at the source. The receivers form the leaves
of the tree, the routers are the internal nodes in the
tree and the links form the edges of the tree. A
packet that is dropped along any link of the distri-
bution tree, is lost by all the downstream receivers
in the subtree rooted at the link. The tree structured
delivery model thus introduces correlations in the
packet losses seen by the different receivers. This
loss correlation between receivers can be exploited
to infer the topology of the tree that caused the ob-
served loss patterns.

Our algorithm reconstructs a ‘logical’ repre-
sentation of the multicast tree. A logical represen-
tation of a multicast tree is one in which each in-
terior node is merely the closest common ancestor
of all downstream receivers in the tree [18]. In
reality each branch of the logical tree could con-
sist of a series of links. In order to learn the ex-
act topology of the tree we would have to enlist the
help of each intermediate router along the path as is
done in the traceroute and mtrace tools. Our algo-
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Figure 3:Inference of the logical tree

rithm is based only on end-to-end measurements us-
ing only information that is readily available at the
end hosts and requires no special router support, as
such, reconstructing a logical tree is as accurate as
we can get. Knowledge of the logical tree is how-
ever sufficient for our purpose because all the re-
ceivers downstream of a given logical branch will
see the same path characteristics such as the bottle-
neck bandwidth and loss rate irrespective of which
component link of the logical branch caused the ob-
served characteristics.

The tree inference algorithm described in the
following sections attempts to reconstruct this log-
ical tree in a bottom-up fashion using information
regarding the loss patterns of the different receivers.
Receivers having similar loss patterns are aggre-
gated together and represented by a single node one
level higher in the tree.The aggregated nodes can
then be regarded as a single node for further ag-
gregation. The entire tree has been reconstructed
when all the receivers have been coalesced in this
manner into a single tree. For example: In order
to rebuild the tree shown in figure 2, the algorithm
initially begins with a set of individual receiversA,
B andC. Information obtained from the loss pat-
terns of the three receivers indicates thatA andB
are more closely located thanA andC orB andC.
We thus aggregateA andB into a single “macro-
node” (AB). Next, (AB) andC are aggregated to
yield the logical tree((AB)C).

Application of the aggregation techniques out-
lined above requires knowledge of two things: first,
we need a selection criteria that is indicative of how
closely located receivers are in the tree and sec-
ond we need to know how many receivers are to
be aggregated together into a single representative
macro-node at each step of the tree building pro-
cess. We first develop the principles behind iden-
tifying a pair of receivers to be coalesced at each
step of the selection process, thus yielding a binary
tree and then generalize the principles to reconstruct
trees with arbitrary fan-out at each interior node.

3.1 Selection Criteria

We associate with each receiverX, a lossprintLx

which is an ordered listing of the sequence numbers
of packets lost by the receiverX. In a tree any two
receiversA andB see losses as described by their
lossprintsLa andLb respectively. These lossprints
could potentially have a certain number of losses in
common. We call these common losses the shared
losses between receiversA andB.

3.1.1 Selection criteria: Shared losses

At a first glance, the shared losses between a pair
of receivers appears to be an ideal indicator of how
closely located the receivers are in the underlying
tree. Net shared losses can however be misleading.
For example, in figure 4 consider the case where the
link R2�A has a high loss rate.A could then have a
high number of losses in common with every other
receiver. In particular, if the linkR1-R2 has a low
loss rate then, it is possible that the shared losses
betweenA andC exceed those betweenA andB
which could result in the wrong nodes being coa-
lesced. The flaw in the use of net shared losses as
selection criteria is easily understood if we look at
the ways in which shared losses occur.

Shared losses arise in two ways. A pair of re-
ceiversA andB share the path from the root to their
closest common ancestor. Any packets lost along
this shared path will appear in the lossprints of both
A andB. These losses are caused by the tree struc-
ture and are truly indicative of the underlying tree
structure. We call these true shared losses. In ad-
dition to these true shared losses, each receiver’s
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lossprint will also include the packets that are lost
along the separate paths from the closest common
ancestor to each receiver. It is possible that two
copies of the same packet are lost independently
along these distinct paths on account of which a por-
tion of the shared losses betweenA andB are not
caused by the shared path betweenA andB. These
shared losses are random and are not caused by the
underlying tree structure. We call these false shared
losses. The failure modes that arise in the use of the
net shared losses as selection criteria are due to this
“false sharing”.

3.1.2 Selection criteria: True shared losses

The greater the extent of the shared path between
a pair of receivers, the greater is the probability of
their seeing true shared losses. The probability of
seeing true shared losses between a pair of receivers
is thus a good measure of how closely located re-
ceivers are in the tree and we use this probability as
the selection criteria in order to identify the pair of
receivers to be coalesced.

At the end host, there is nothing that distin-
guishes a true shared packet loss from a false one.
The receiver merely sees the net shared loss. In or-
der to allow the receiver to estimate the approximate
number of true shared losses from the total shared
losses, we apply the following loss model:

� A andB are arbitrary receivers from the set of
all receivers with lossprintsLa andLb respec-
tively. Let n be the total number of packets
transmitted at the source.

� A andB share a certain extent of the path from

Source

A

 R

 B

P

PP

ab

t

a
b

Figure 5:Loss model

the source. LetP t

ab
be the probability of seeing

losses along this path. i.e.P t

ab
is the probabil-

ity of seeing true shared losses betweenA and
B.

� Any losses seen by receiverA but not byB
occur along the path from the closest common
ancestor ofA andB and the receiverA. LetPa

be the loss probability along this path. Sim-
ilarly let Pb be the loss probability along the
path from the closest common ancestor ofA
andB toB.

The above model is represented by figure 5. Using
the above model, we can derive the following equa-
tions:

� Let the probability of seeing a shared loss
(whether true or false) betweenA andB be
Pab. Then,

Pab = P t

ab + (1� P t

ab)PaPb (1)

where the first term on the right hand side is the
probability of seeing true shared losses. The
second term is the probability of seeing false
shared losses.

� Let the probability of seeing a loss atA but not
atB beP

a�b. Then,

P
a�b = (1� P t

ab)Pa(1� Pb) (2)

Similarly, if the probability of seeing a loss at
B but not atA is Pb�a, then,

Pb�a = (1� P t

ab)(1� Pa)Pb (3)



� Solving equations (1) to (3) yields the follow-
ing solutions:

P t

ab =
PabPb�a + Pb�aPa�b + P

a�bPab + P 2
ab
� Pab

Pab + Pb�a + P
a�b � 1

Pa =
P
a�b

1� (Pb�a + Pab)

Pb =
Pb�a

1� (P
a�b + Pab)

� Let the number of measured shared losses be-
tweenA andB bejLabj whereLab = La\Lb.
We approximatePab asjLabj =n.

� Similarly, if the number of measured losses
seen byA but not byB is jL

a�bj, we approx-
imateP

a�b asjL
a�bj =n. We approximatePb�a as

jLb�aj =n. Asn increases, these approximations
should converge to the true value of the defined
probabilities.

3.2 Binary Trees

A binary tree is one in which every interior node in
the tree has at most two children. As we coalesce a
pair of receivers together at every step our algorithm
reconstructs a logical binary tree in which every in-
terior node has exactly two children.

Using the selection criteria defined in Section
3.1, the tree inference algorithm works as follows:
Input: A set of receiversS = f1; 2; :::; Ng with
lossprintsL1; L2; :::; Ln.

1. Compute the probability of seeing true shared
losses between all pairs of receivers from the
setS.

2. The pair of receivers,A andB, with the max-
imum probability of seeing true shared losses
are combined together into a single macro-
node(AB). SetL(ab) = La \ Lb and replace
A andB by (AB) in S.

3. Repeat the above steps until all the receivers in
S have been fused into the tree.

Our tree inference algorithm employs a greedy
strategy of making the most likely merger at ev-
ery step. Our results indicate that such a strategy

Case 2:

Case 1:
(AB) (ABC)

B

A C

A

C

B

(AB)

A B

C

A B

C

((AB)C)

(AB)

Figure 6: Possible relationships between a pair of
nodes to be coalesced for arbitrary trees

works well in practice. Future work could look into
algorithms that consider correlations across multi-
ple nodes. In recent work, [19] compare the per-
formance of top-down and bottom-up clustering al-
gorithms for the reconstruction of the logical tree
topology. Their results indicate that a bottom-up ap-
proach yields better results.

3.3 Arbitrary tree topologies

In the binary trees reconstructed in the previous sec-
tion, each interior node has a fan-out of exactly 2.
As such, the pair of nodes yielded by the selection
criteria are always aggregated as sibling nodes and
represented by their parent node for further aggre-
gation. In an arbitrary tree topology, interior nodes
have a fan-out of two or more. The selected pair of
nodes can thus be aggregated either as sibling nodes
as in the case of binary trees, or one of the selected
nodes could be the parent node of the other. The two
alternatives can be seen in the aggregation of node
C and macro-node(AB) in figure 6.

The ability to distinguish between these two
cases stems from the observation that in case 1
the probability of seeing true shared losses between
A andB should, under ideal circumstances, equal
the probability of seeing true shared losses between
macro-node(AB) and nodeC i.e P t

(ab)c = P t

ab
.

In case 2 the probabilityP t

ab
will be greater than

P t

(ab)c becauseA andB share an additional link



not shared byC. This added link adds to the true
shared losses betweenA andB on account of which
P t

ab
> P t

(ab)c. We could thus distinguish between
the two subtrees by making the following check :

If P t

(ab)c = P t

ab
then the nodes are coalesced as

in case 1 else the nodes are coalesced as in case 2.
In reality, since we use the measured losses in

order to approximate the probabilitiesPab, Pa�b and
Pb�a, the equality criteria for case 1 are too rigid.
Strict adherence to the above rules would result in
incorrect aggregations. In order to accommodate a
certain amount of variation, we would like to iden-
tify situations in whichP t

(ab)c “almost” equalsP t

ab
.

We thus define an error margin� and modify the
above rules to :

If P t

(ab)c is within�% of P t

ab
then the nodes are

coalesced as in case 1 else the nodes are coalesced
as in case 2.

This decision rule could result in incorrect ag-
gregations being made for subtrees as in case 2 if
the additional true shared losses betweenA andB
are responsible for less than�% of the probability
of seeing true shared losses betweenA andB. As�
will typically be low, such errors will only occur if
the loss rate along a shared link is very low. As the
purpose of these aggregations is to identify nodes
that can be grouped together for the purpose of local
loss recovery etc, such aggregations although not
exact are actually acceptable because the low loss
rate link is not the bottleneck causing loss, the prob-
lem links, if any, are further upstream and shared by
receiverC i.e. for the purpose of local recoveryA,B
andC should be aggregated together and treated as
belonging to the same loss recovery group.

4 Locating the bottlenecks in a
multicast tree

Combining the information obtained by the bottle-
neck estimation algorithm (Section 2) and the tree
inference algorithm (Section 3) it is possible to nar-
row down the possible locations of the bottlenecks
in the multicast tree.

Receivers appear as leaves in the reconstructed
logical tree. Section 2 gives us an estimate of the
bottleneck bandwidth between the source and each
leaf node. The bottleneck bandwidth seen by each

A B

C

E

B

B

a b

c

 = 10Kbps = 100Kbps

= 1Mbps

D

A

Figure 7: The bottleneck bandwidth seen by each
interior node equals at least the maximum of the es-
timate of its downstream nodes

interior node is at least equal to the maximum of the
bottleneck bandwidth estimates seen by each of its
downstream receiver nodes.

This can be easily understood by the simple ex-
ample in Figure 7. NodeD has to see a maximum
rate of at least 100Kbps in order for receiverB to
see a bottleneck rate of 100Kbps. This implies that
the bottleneck limiting the rate seen by receiverA
lies along the branch AD. Similarly nodeE has to
see a rate of at least 1Mbps and hence the bottle-
neck seen by receiverB lies some where along the
pathED � DB. We cannot narrow down the lo-
cation of the 100Kbps bottleneck link any further
because having removed linkDA from considera-
tion we are left with the same case as the unicast
path and hence we cannot obtain a more precise es-
timate using only information obtained at the end
hosts. However, knowing that the bottleneck link
lies somewhere along the path fromE toB is suffi-
cient for schemes that do not enlist router support
because all receivers downstream fromB would
share the same bottleneck in any case irrespective
of which component link along the path constitutes
the bottleneck and hence knowing the exact location
of the bottleneck does not provide us with any more
useful information.
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5 Implementation and Testing

5.1 Implementation

The implementation modules for the algorithms de-
scribed in the previous sections are shown in Figure
8. The topology generated by the random tree gen-
erator is constructed in the VINT network simulator,
ns [12]. Probe traffic is sent out by the source (root)
of the tree. Cross traffic (FTP, Telnet and Constant
Bit Rate/UDP ) is generated to try and simulate the
cross traffic that could cause queuing delays that ap-
pear as noise in the measurements made at the re-
ceiving end.

5.1.1 Random Tree Generator

The random tree generator module outputs a tree
topology which is used to test the bottleneck es-
timation and tree inference algorithms. Input
parameters to this module are: maximum num-
ber of nodes (Nodesmax), maximum number of
leaf nodes (Leavesmax) and the maximum fan-out
(Fanoutmax) of every node in the tree. The tree gen-
erator algorithm works as follows :

� Initially the tree consists of only the root at
level 0. The number of children generated by
the root is chosen at random from the range

[1� Fanoutmax]. These child nodes are added
to the tree as level 1 nodes.

� Each newly added child node can be either
a leaf or an interior (non-leaf) node. A
node may be a leaf node with probability
Leavesmax�Leavescurrent

Nodesmax�Nodescurrent
, where Leavescurrent

andNodescurrent are the number of leaves and
nodes in the tree so far. Thus, as we approach
the desired number of nodes in the tree, nodes
have a high probability of being leaf nodes.
If Nodesmax = Nodescurrent then, a node is
a leaf node with probability 1. These heuris-
tic rules ensure that the tree generation process
terminates.

� An interior node adds child nodes to the
next level in the tree. The number of
child nodes generated by an interior
node is selected at random in the range
[1;min(Fanoutmax; Nodesmax �Nodescurrent)].
In this way, starting from the root, child nodes
are added to successive levels in the tree. The
process terminates when the lowest level in
the tree has only leaf nodes.

5.2 Testing

In order to quantify the performance of our bottle-
neck estimation and tree inference algorithms, we
augmented the implementation modules in Figure 8
with two test modules.The tree comparator mod-
ule compares the original tree topology generated
by the random tree generator with the inferred tree
topology. The bottleneck comparator module com-
pares the estimated bottleneck bandwidths with the
actual ones. We have conducted experiments to test
the bottleneck estimation and tree inference algo-
rithms. Our results are described in the following
sections.

5.2.1 Bottleneck Estimation

We generated 50 data traces inns. For each trace
the following parameters were varied either singly
or in combination with others:

� Topology of the multicast distribution tree.

� Link Bandwidths.



Results of estimation No. of estimates

Estimate within 1% of exact value 296
No estimate due to insufficient
number of valid samples 12
Incorrect estimate 4

Total number of estimates 312

Table 1:Results of Bottleneck Estimation
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Figure 9:Binary trees:individual link loss rate is se-
lected at random in the range [0%,10%]

� Location of bottlenecks (e.g. towards leaves ,
near the root etc).

� Amount/Type and duration of cross traffic.

� Size of bunches of probe packets ( pairs, threes
or fours ).

� Run time ( which affects the number of gath-
ered samples ).

For each trace the bottleneck bandwidth seen
by each receiver was calculated. The results are
tabulated in Table 1. Our tests do not cover the
entire range of possible test conditions. Further,
the tests are restricted to a simulation environment
which differs from actual Internet conditions. Our
approach to bottleneck bandwidth estimation needs
to be tested on the Internet in order to quantify its
performance under realistic network traffic condi-
tions.
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Figure 10: Binary trees: individual link loss rate is
selected at random in the range [0%,5%]

5.2.2 Tree Inference Algorithm

Figures 9 amd 10 plot our test results for binary
trees. We plot the probability of correctly inferring
the tree for an increasing number of packets trans-
mitted at the source. As the number of transmit-
ted packets increases, the number of loss samples
collected at the receiver’s end increases and the ap-
proximated probability of seeing true shared losses
approaches its true value. We would thus expect the
probability of inferring the correct tree to approach
unity as the number of collected samples increases.
Figures 9 and 10 plot the observed results for dif-
ferent sized trees with the link loss-rates selected as
a uniform distribution within a selected range. We
see that the observed probability of correctly infer-
ring the tree does in fact converge towards one with
an increasing number of transmitted packets.

6 Related Work

Bolot used a stream of packets sent at fixed intervals
to probe several Internet paths in order to character-
ize delay and loss behavior [1]. In [6], the author
proposes a “packet-pair” scheme to determine the
bottleneck service rate and uses this to develop a
rate-based flow control scheme. Keshav’s work is in
the context of unicast traffic and assumes a round-
robin-like queue service discipline. [2] describes



the implementation of BPROBE, a tool which pro-
vides an estimate of the uncongested bandwidth of
a path by sending a series of ICMP echo pack-
ets from source to destination and measuring the
inter-arrival times between successive packets at the
source. [14, 15] displays the fundamental limita-
tions of sender-based packet pair techniques and
advocates receiver based techniques. Paxson also
points out the failure of packet-pair techniques in
the face of multi-channel bottlenecks and general-
izes the receiver-based packet pair (RBPP) mech-
anism to propose a significantly more robust pro-
cedure, “packet-bunch modes” (PBM) which is es-
sentially based on sending bunches of probe packets
and varying the bunch size keeping in mind the pos-
sibility of finding more than one bottleneck value.

[17] proposes a loss-delay based adjustment al-
gorithm for adapting the transmission rate of mul-
timedia applications to the congestion level of the
network. The authors estimate the bottleneck band-
widths within the multicast tree in order to dynami-
cally determine the adaptation parameters. Estima-
tion of the bottlenecks is done by enhancing RTP
with the packet pair approach. The filtering mecha-
nism used is similar to that adopted in BPROBE.

Route tracing tools developed so far exploit
certain features within the routers in order to infer
the path from source to destination. The traceroute
tool built by Van Jacobson discovers the path be-
tween a source and receiver of unicast traffic by us-
ing the ttl field of an IP packet header to force inter-
mediate routers to send an error indication (ICMP
time exceeded) packet back to the source thus ex-
posing the routers within the network to discover the
path between the source and receiver. The pathchar
tool, also developed by Jacobson, estimates the
bandwidth, delay, average queue and loss rate of ev-
ery hop between any source and destination on the
Internet. Pathchar uses the same basic technique as
traceroute and measures the time between the trans-
mission of an IP packet from the source and the re-
turn of the corresponding ICMP packet from an in-
termediate router. Analysis of the timing data re-
veals the characteristics of each link along the path.

Estimation of the topology of the multicast tree
can be done using the tool “mtrace”. mtrace discov-
ers the multicast path from a source to a receiver
using an MTRACE tracing feature implemented in

multicast routers that is accessed as an extension to
the IGMP protocol. A trace query is passed hop-
by-hop along the reverse path from the receiver to
the source, collecting hop addresses, packet counts
and routing error conditions along the path, and re-
turning the response to the requestor as a standard
unicast packet. The Tracer protocol [8] uses the
same MTRACE router function in order to organize
the receivers of a multicast group deterministically
into a logical tree structure in order to achieve ef-
fective error recovery and congestion control. In
Tracer each receiver sends an MTRACE query to
the source of the tree. With the existing implemen-
tation of MTRACE, this could cause scaling prob-
lems due to an implosion of MTRACE queries to-
wards the source. Further this places a heavy load
on the source which has to unicast replies back to
every receiver. In order to improve the efficiency of
tracing in Tracer, Levine et al propose the addition
of source-based multicast tracing to IGMP.

7 Conclusions

In this paper, we presented algorithms that allow a
receiver to infer the logical topology of the multi-
cast tree, the bottleneck bandwidth of the path be-
tween the source and each receiver in the tree and
the approximate location of the bottlenecks in the
tree. These algorithms attempt to answer the ques-
tion: how much topological information can a re-
ceiver in a multicast tree glean using only informa-
tion that is readily available at the the end-hosts with
the existing IP Multicast service model?

Through the use of an IP group address the
IP multicast service provides a ”level of indirec-
tion” on account of which receivers and senders
need not know about each other. While this re-
ceiver anonymity allows multicast sessions to scale
to large sizes, potentially useful information is lost
in the process. Mechanisms that allow group mem-
bers to reconstruct this lost information are thus use-
ful. The algorithms presented here are a step in this
direction.
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