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Abstract 
The classification of vegetation and materials-both natural and man-made--in the terrestrial environment was 
conducted using high-spatial-resolution, multi-spectral satellite imagery obtained from the IKONOS-2 sensor. The 
results of three supervised classification techniques, the Maximum Likelihood Classifier (MLC), the Spectral Angle 
Mapper (SAM) classifier, and Mahalanobis Distance classifier, are presented. Ground truth data were used to 
compare the statistical accuracy of the different classifier techniques to determine which classifier provided the best 
overall results. Based on the results of the statistical comparison, producer accuracy, omission error, and 
commission error, it was determined that the MLC provided the best overall classification. This technique was then 
optimized using the training data sets, and the process was implemented over the entire area of the satellite image. 
One site from within the image was selected for a final ground truth comparison to determine the overall 
improvement of the optimized classifier. 

Introduction 
AUTEC is a Department of Defense (DoD) test and evaluation facility that supports deep-water, littoral, and 
terrestrial training and test and evaluation operations. The DoD recognizes the importance of preserving the natural 
resources and ecosystems that are present in and around military installations by adherence to established federal, 
state, and local environmental regulations. The DoD is committed to protecting our natural resources while 
maintaining operational readiness through training and testing at its facilities. The assessment of these environments 
is critical for operational reasons and for purposes of monitoring these natural resources. 

AUTEC has completed baseline environmental assessments of its littoral environment in and around its main base 
using multi-spectral satellite data and LIDAR bathymetric data to classify the materials observed within the satellite 
imagery. The advantage of using remotely-sensed (satellite) data instead of conducting conventional field surveys is 
that remote sensing provides timely, accurate, and complete coverage of a study area in the most cost-effective 
manner. 

The focus of this paper is the classification of vegetation and natural and man-made materials within the 
approximate 1-square-mile terrestrial region in and around AUTEC's main base for purposes of environmental 
planning and for identification of training and testing areas within the terrestrial and littoral environment. The 
analysis and results for the littoral region are presented in a separate paper.1 

In the past, satellite sensors, due to their spatial resolution, have been able to provide information on only a broad 
ecological scale, with accuracies typically on the order of 55 to 70 percent using the LANDSAT thematic mapper or 
SPOT XS data.2 With the advances in image processing technology and the advent of new satellite sensors (i.e., 
IKONOS-2 and QuickBird), the ability to spatially resolve and classify finer scale habitats has dramatically 
improved. 

The methodology presented in this paper utilizes high-spatial-resolution IKONOS-2 data to conduct supervised 
classifications of the AUTEC terrestrial environment for the purpose of defming vegetative species and natural and 
man-made materials using various spectral classifiers, ground truth image data, and in-situ field data to evaluate the 
classification results. 



Study Area 
A UTEC is located on Andros Island in the Bahamas, approximately 177 nautical miles southeast of West Palm 
Beach, FL. Figure 1 depicts AUTEC's location with respect to Florida and the major Bahamian Islands. The 
AUTEC main base, located on the eastern side of Andros Island, is approximately 1 square mile in area. It 
comprises both developed and undeveloped areas. The developed areas consist of paved surfaces (such as roads and 
a heliport), buildings, and cultivated areas (such as a baseball field), and a capped landfill. The undeveloped areas 
consist of undisturbed vegetation of both indigenous and non-indigenous invasive species. The vegetation species 
on the main base are representative of the vegetation species across the island; therefore, the classification 
techniques employed in this study are applicable to the island as a whole. The vegetation on the main base includes 
many tree species-like the mahogany tree (Swietenia mahogoni) and silk cotton tree (Ceiba pentandra}-that are 
protected by the Bahamian Government. The Australian 
pine tree (Casuarina equisetifolias) is considered to be one 
of the most prevalent invasive species in the Caribbean. 
The Australian pine competes with and displaces native 
plant species, such as the mangrove tree. The mangrove 
ecosystem and other beach habitats have been altered 
because of the encroachment of the Australian pine. 3 

Data Sources 
The IKONOS-2 data for the main base was acquired from 
Space Imaging Corporation. IKONOS-2 imagery can 
sometimes be obtained from the Commercial Satellite 
Imagery Library archives for certain locations; however no 
data were available for the AUTEC main base. The 
IKONOS-2 data used in this analysis were acquired on 25 
April 2000. The data were provided in both panchromatic 
and multi-spectral image (MSI) formats. The MSI data 
consist of four spectral bands--blue, green, red, and near­
infrared. The data were provided in Universal Transverse 
Mercator (UTM) coordinates and had an X-Y spatial 
resolution of 4 meters by 4 meters. 

-

The ground truth data used for the comparison were obtained Figure 1. AUTEC, Andros Island, Bahamas 
from two sources: a high-spatial-resolution mosaic 
photograph of the AUTEC main base and in-situ field surveys. The composite photograph was created from a series 
of low-altitude photographs acquired over a period of several days in October 200 I . The relative spatial resolution 
of the photograph is on the order of0.15 meter. The in-situ field surveys were conducted to develop the regions of 
interest for the classifier training data set and to develop ground truth sites for post-processing comparison. The 
geodetic positions and percent relative material coverages were collected at various ground truth sites. 

Radiometric Corrections 
The satellite sensor records the intensity of electromagnetic radiation reflecting from the earth's surface as a digital 
number (ND). For these arbitrary DN values to be meaningful, they must be radiometrically corrected and 
converted to surface reflectance values. Three steps are involved in the radiometric correction process of satellite 
imagery data: 

1. The raw DN values for each band must be converted to spectral radiance at the aperture of the sensor. This 
conversion uses the calibration coefficients of the sensor to account for the "gain" and "bias" of the sensor in each 
band of the multi-spectral image. 

2. The spectral radiance must be converted to apparent reflectance at the sensor. Reflectance is simply the 
ratio of the radiance recorded at the sensor to the irradiance from the sun, taking into account the solar elevation at 
the time of image acquisition. Radiance refers to the upwelling radiation leaving the earth's surface, whereas 
irradiance refers to downwelling radiation reaching the earth's surface from the sun. 
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3. The apparent reflectance must be converted to surface reflectance. This conversion corrects for the effects 
of absorption and scattering due to the atmosphere. Atmospheric corrections can be implemented using several 
different methods, most of which account for only the removal of path radiance. The atmospheric modeling method, 
which is the most complicated and sophisticated method to implement, was chosen because it compensates for both 
atmospheric absorption and scattering. The "Second Simulation of Satellite Signal in the Solar Spectrum (6S)" 
model4 was used to implement atmospheric corrections to the IKONOS-2 data. 

Ground Truth Data Collection 
Supervised classification derives its name from the fact that the classifier compares the spectra from within the 
image to reference spectra. Reference spectra can be obtained from published spectral libraries that are available for 
both natural and man-made materials, as well as for vegetation. When the reference spectra have been obtained 
from a spectral library, the units of the image must be in surface reflectance. Reference spectra can also be obtained 
from within the image using ground control points (GCPs). Whenever ground truth data are available, the preferred 
approach is to use reference spectra derived from within the image. In the case of this analysis, the ground truth 
comparison site GCPs and the classification training data sets could easily be established. 

An in-situ field survey was conducted in November 2002 to defme areas of specific vegetation and to establish 
GCPs at these locations. The GCPs are geospatial reference locations where the material or vegetation has been 
identified and is distinct over an area of spatial extent that is greater than that of the spatial resolution of the satellite 
image. Table 1 presents a partial list of the vegetation GCPs that were collected. 

Table 1. Vegetation Regions of Interest 

Lat 
Vegetation Type Genus and Species (deg) 

Mahogany Swietenia mahagoni 24 
Mahogany Swietenia mahagoni 24 

Australian Pine Casuarina 24 
Australian Pine Casuarina 24 

Mangrove Rhizophora mangle 24 

Royal Poinciana Delonix regia 24 

Because of variations in spectral reflectance with 
the seasons, the spectral signatures ofthe vegetation 
may be significantly different from the in-situ data 
because the latter were collected in November and 
the satellite imagery was acquired in April. For 
example, the near visual infra-red (NVIR) spectral 
reflectance of wet grass is significantly higher than 
that of dry grass. 

The GCP location data were combined with the 
material identification data, coverage data, and 
extent data to generate an image-based spectral 
reference library for the materials and vegetation 
species of interest. These image-based reference 
spectra are sometimes referred to as regions of 
interest (ROis). The ROis relate the material 
classification to the spectral signature of the 
material. Figure 2 shows the ROis for mangrove 
trees, Australian pines, asphalt surfaces, and other 
items of interest. 

The development of ROis through the use of GCPs, 
combined with the visual interpretation of the 

Lat 
(min) 

42 
42 

42 
42 
42 

42 

Lat Long. Long. Long. 
(sec) (deg) (min) (sec) 
9.2 -77 46 17.1 

25.0 -77 46 26.4 

36.2 -77 46 7.3 
8.4 -77 45 45.8 

43.2 -77 46 14.6 

28.9 -77 46 43.8 

Figure 2. ROisfor Various Materials 
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image, is relatively straightforward. However, the possibility for the contamination of ROis by pixels that do not 
represent the desired spectra signature does exist. The selection of pure material pixels was refined through the use 
of theN-dimensional visualization tool.5 This tool plots the spectral response in one band against the spectral 
response in the other bands. From this visualization plot, one 
can see that pixels that correspond to the same material or 
vegetation type tend to cluster together. The clusters can 
then be isolated and new ROis generated that represent 
unique spectral signatures. The mean spectral response for 
each of the ROis was converted into a spectral signature that 
was used in the classification routines. Figure 3 shows the 
spectral signature for each material or vegetation species of 
interest that was extracted from the spectral image. The 
spectral response of some materials is very similar and, as a 
result, there is a potential for misclassification. In particular, 
the spectral responses for Australian pines and mixed 
vegetation are nearly identical. 

Preliminary Classification 
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Figure 3. Spectral Signatures of Materials 

The decision to use supervised classification techniques rather than unsupervised techniques was based solely on the 
availability of ground truth data and the ability to identify the features and materials from within the image. A series 
of preliminary classification tests was conducted to evaluate which supervised classification technique provided the 
best results. These included the Maximum Likelihood Classifier (MLC), the Mahalanobis Distance classifier, and 
the Spectral Angle Mapper (SAM) classifier. The classification results were compared to ground truth data 
constructed from a combination of GCP data, coverage area information, and the high-resolution composite aerial 
photographic image. 

The MLC is a statistical decision criteria classifier. It assumes that the statistics for each class in each band are 
normally distributed and calculates the probability that a given pixel belongs to a specific class. Each pixel is 
assigned to the class that has the highest probability (i.e., the maximum likelihood). 5 The threshold level for the 
decision criteria determines the classification rule. In the preliminary classification runs, the thresholds for all 
classes were set to zero so that all pixels within the image would be classified and no pixels would be undefined. 

The Mahalanobis Distance classifier is a direction-sensitive distance classifier that uses statistics for each class or 
ROI. It is similar to the MLC, but it assumes that all class covariances are equal; for this reason, the Mahalanobis 
algorithm can be implemented more quickly.5 The threshold level or distance threshold determines the classification 
rule. In the preliminary classification runs, the threshold distance was set to zero so that all pixels within the image 
would be classified. 

The SAM classifier is a physically-based spectral classifier that uses an N-dimensional angle to match pixels to 
reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle 
between the spectra and treating them as vectors in a space, with dimensionality equal to the number of bands. The 
length of the vector represents the brightness of the target pixel, and the angle represents the spectral feature. Thus, 
classification is based on the direction of the vector, not the length. As a result, this technique is relatively 
insensitive to illumination and albedo effects when used with calibrated reflectance data.6 In the preliminary 
classification runs, the threshold angle was set to 0.1 radian. 

Preliminary Classification Results 
The classification routines were implemented over the area of the AUTEC main base. Three sub-areas were chosen 
for use in a statistical evaluation where ground truth data had been established. Each classifier was applied to the 
spectral image using the preliminary condition specified, and the results of each classification were compared to the 
ground truth data. The output classification images are presented in figure 4. The three ground truth comparison 
sites that were used in evaluating the processing techniques are indicated by black rectangles in figure 4. It is 
apparent from the classification images that all pixels were classified by both the MLC and the Mahalanobis 
Distance classifier, as specified by the initial threshold conditions. In contrast, the classification image for the SAM 
classifier shows undefined or unclassified areas within the image, as color keyed in black. 
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Maximum Likelihood Classification Mahalanobis Distance Classification Spectral Angle Mapper Classification 

Figure 4. Preliminary Classification Results 

An accuracy assessment was performed for all three sub-areas by comparing the predicted classification to the 
ground truth data. The error analyses were evaluated in terms of percent coverage by each class of material. The 
metrics used to compare the classification results were the producer accuracy, the omission error, and the 
commission error. Producer accuracy is defined as the number of pixels that were correctly identified divided by the 
actual number of pixels for that class. Omission error (under-classification) is defined as the actual number of 
pixels for a class minus the predicted number of pixels for that class, divided by the actual number of pixels for the 
class. Commission error (over-classification) is defmed as the number of predicted pixels for that class that are 
incorrect divided by the total number of predicted pixels for that class. All three sub-areas from within the image 
were evaluated using these metrics. Table 2 presents the results for the area enclosed by the rectangle in the upper 
portion of each image. 

Table 2. Accuracy Assessment of Classification Routines 

Material Producer Accuracy Omission Error Commission Error 

Classification MLC MAH SAM MLC MAH SAM MLC MAH SAM 

Mangrove Tree 99.7 100.0 100.0 0.3 0.0 0.0 0.0 32.8 17.0 

Australian Pine 100.0 48.3 60.5 0.0 51.7 39.5 3.9 0.0 0.0 

Asphalt Surface 0.0 0.0 100.0 100.0 100.0 0.0 0.0 100.0 0.0 

Ballfield Clay 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 

Exposed Limestone 51.2 4.7 4.7 48.8 95.3 95.3 0.0 0.0 0.0 

Dry Grass 100.0 100.0 100.0 0.0 0.0 0.0 61.4 67.9 55.1 

Mixed Vegetation 88.9 80.6 96.1 11.1 19.4 3.9 0.0 0.0 0.0 

Undefined 2.8 2.8 100.0 97.2 97.2 0.0 0.0 0.0 31.1 

Average 67.8 54.5 82.7 32.2 45.5 17.3 8.2 25.1 12.9 

Weighted Average 8890 6900 8260 IIIO 3100 1740 N/A N/A N/A 

Based on the results of the accuracy assessment, the SAM classifier produced the highest average producer accuracy 
and the lowest average omission error. However, the over-classification levels led to the concern that these results 
might be biased due to the absence of some materials within the image sub-area. To correct for this potential bias, a 
weighted average was calculated for the producer accuracy and the omission error to take into account the 
abundance of any material within the image. Based on the weighted average results, the MLC classifier produced 
the best overall classifications. 
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Classification Optimization 
The preliminary classification results were derived using default classification criteria or minimum thresholds in 
order to evaluate the capabilities of several different classifier methodologies with respect to the specific image 
used. Based on the results of the preliminary classification, the MLC was chosen for classifier optimization. The 
optimization or tuning of the classifier implies the modification of classification rule criteria or, in the case of the 
MLC, the adjustment of the probability threshold for each material class. This process involved the modification of 
individual probability thresholds for each class of material for the three sub-areas of interest. The image was 
reprocessed using new classification criteria, and the results were compared to the earlier accuracy assessments. 
The goal in this optimization was to maximize the producer accuracy while minimizing both the omission and 
commission errors. A series of 12 optimization runs was conducted; the results are presented in table 3. 

Table 3. Optimized C/assif~eation Results 

WeiR;hted Results 
Material Producer Omission Commission Producer Omission 

Classification Accuracy Error Error Accuracy Error 

Mangrove Tree 98.2 1.8 0.0 3200 60 

Australian Pine 100.0 0.0 0.3 3190 0 

Asphalt Surface 100.0 0.0 100.0 0 0 

Ballfield Clay 100.0 0.0 0.0 0 0 
Exposed 

Limestone 11.6 88.4 0.0 50 380 

Dry Grass 100.0 0.0 56.1 610 0 
Mixed 

Vegetation 86.7 13.3 0.0 1560 240 

Undefined 83.1 16.9 0.0 590 120 

Sum 84.9 15.1 19.6 9200 800 

The optimized results show a significant increase in the producer accuracy and a decrease in the omission error. The 
results also show an increase in the commission error; however, this error is due to the over-estimation of asphalt 
surfaces, which does not exist in the actual ground truth data and accounts for less than 0.1% of the classification. 
The weighted producer accuracy for asphalt surfaces is therefore equal to zero, and the overall weighted producer 
accuracy for the optimized classification is higher and the weighted omission error is lower. 

Summary and Future Research 
This paper has presented the results of terrestrial environment classification of vegetation and natural and man-made 
materials using high-spatial-resolution, multi-spectral satellite imagery and supervised classification techniques. 
The results obtained from the three supervised classification techniques-the Maximum Likelihood Classifier, the 
Spectral Angle Mapping classifier, and the Mahalanobis Distance classifier-indicate that the assessment of 
material classifications and vegetation abundance is an acceptable methodology, yielding a high producer accuracy. 
This methodology provides an assessment based on regional areas, avoiding results that could be skewed by 
unrepresentative fractions of the surveyed area. The methodology addresses the following concerns: 

• ability to assess terrestrial materials and vegetation independent of site accessibility and weather, 
• rapid assessment of terrestrial ecosystems in terms of generalized characterization of material composition, 
• reduction in the number of in-situ field measurements required, and 
• reduction of the vegetation abundance assessment studies. 
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