
1

Scenario-Driven System
Engineering (SDSE) for System

of Systems Acquisition

Ray Paul
ASD NII C2 POLICY

Department of Defense
Raymond.Paul@osd.mil

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Scenario-Driven System Engineering (SDSE) for System of Systems
Acquisition

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Asst Secretary of Defense (Networks & Information Integration),ASD NII
C2 Policy,Washington,DC,20301

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

45

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

Introduction
•••• Knowledge doubles every…
 = 5 years (Gore, Clinton, Bush)
 = 7 years (Harvard Business Review,
 1996)

 ⇒ Knowledge grows exponentially

•••• Technology growth depends on
 ♦ Knowledge Growth
 ♦ Knowledge to technology transfer rate

3

Technology Growth

•••• Technology growth follows knowledge growth.

•••• Corrigan-Kozmetsky shows that:
 ♦ Technology growth follows closely behind knowledge growth
 ♦ Technology growth curve converges to knowledge
 growth in mature technologies (Technologies that are moving their
 physical theoretical limits)

•The above observation is substantiated by Moore’s
 Law & Andrew Grove’s hypothesis of technology-
 growth “inflection points”.

•••• DoD technology developments are constrained by its
 budget.

4

TECHNOLOGY TRANSFER
(Con’t)

•••• DoD technology growth is dependent on its budget
 growth (Augustine’s Law).

•••• Technology Growth ==== 67% / year (Moore’s Law)

•••• Augustine DoD Growth ==== 5-7% / year

•••• The difference between Hi-tech & DoD: growth rates = 60%

5

TECHNOLOGY TRANSFER
(Con’t)

•••• This difference represents growth of obsolescence
 or risk. It is an exponential growth.

 Risk due to
 obsolescence

 Growth % age

•••• The gap between Hi-tech
 Moore growth and Augustine
 DoD growth is an exponentially growing function -
 We shall call it “The Widening Chasm Effect”.

Time

Moore’s Law
(Technology)

Augustine’s Law
(DoD)

6

TECHNOLOGY - THREAT
DUALITY

•••• We maintain technology and threat are duals.
 If one changes, the other follows.

•••• It is a take-off from the theory of evolution -
 The “Container-Content” Duality” -
 As the container grows (in capacity), the contents
 increase to fill it.

•••• In general, the container represents the infrastructure
 and the contents, the systems functions.

MESSAGE: As technology grows so does the threat,
as well as our needs for defense.

7

HI-TECH AND LO-TECH
MISMATCH

•••• Technology growth rates between hi-tech (rapidly
 growing technologies) and lo-tech (stable, static,
 slow growing) elements produces an integration
 mismatch, i.e., systems using a combination of
 hi-tech and lo-tech elements show different parts
 aging; or obsolescing at different desperate rates.
 This mismatch creates a difficult integration,
interoperability, training, maintenance and upgrading
problems. Solution may lie in the future system
design principles.

8

Term of Reference

• System of systems (SOS) is defined as
a federation of systems, whose context,
mission and operational logic are
required for handling the allocation and
coordination of shared integrated
resources.

9

Thesis

• Today’s IT systems development and integration
efforts among heterogeneous subsystems over long
periods of time are ad-hoc as they are designed.
Large scale distributed SoS must be developed from
clear, complete and consistent requirements.

• It is essential for rapid development and evaluation of
new generations of distributed SOS (embedded and
pervasive) be guided by an enterprise level
perspective and decision analysis, and understanding.
The enterprise perspective provides a coherent and
pragmatic framework for designing SOS, acquiring
technologies, and dynamic and adaptable
deployment.

10

Modern Combat Systems: The Need for
Rapid and Agile Engineering Development

• We must reduce the cycle time significantly to fully utilize
Moore’s law.
– The current development process is too rigid and the cycle time

is too long.
– Proposed an Income-Tax Acquisition Model last year to make

the DoD acquisition much flexible and adaptable, and empower
the system owner to make real-time decisions during IT
acquisition.

– Proposal was bold and if implemented can give DoD IT
acquisition the capability to take advantage of Moore’s law.

– However, the model focuses on the acquisition management, it
does not cover IT system engineering development. DoD IT
acquisition needs both agile acquisition management (Income-
Tax model) and agile system engineering development.

– This talk focuses on agile system engineering.

11

System Engineering Tasks
• Requirements definition capturing, analysis, specification, verification,

validation, simulation, and documentation.
• System design including architecture, design patterns, concurrency analysis

(deadlock and race condition detection, synchronization)
• System analysis include:

– Reliability analysis, estimation, modeling, operational profiling, fault-tolerant
computing, dynamic reconfiguration

– Safety analysis including fault tree analysis, event tree analysis, FMEA (failure
mode and effect analysis), FMECA (failure mode, effect, and criticality analysis)

– Security analysis including vulnerability analysis, encryption, access control (Bell
LaPadula model, Chinese Wall model, Role-based model), firewall, intrusion
detection.

– Performance analysis including throughput-delay analysis, simulation, critical
path analysis

– Timing analysis including scheduling, runtime verification.
– Behavior analysis including model checking, temporal logic analysis,

concurrency control, state model and state analysis.
– Verification and Validation including test script/case generation, coverage,

completeness and consistency analysis.

12

DoD Combat Systems

• Many of these systems are real-time mission-
critical systems.
– The consequence of failures is too great.

• Most DoD systems are Systems of Systems
(SoS).
– Interfaces, Integration, Interoperability, and

Integration are important.
• Many of these systems are legacy systems.
• How can we develop news systems rapidly and

adaptively in this kind of environment?
– The goal is to engineer IT cycle time from years to 6

to 9 months.

13

Rapid and Adaptive System Engineering

• To reduce IT cycle time from years to 6 to
9 months requires us to change the entire
mindset for IT development.
– We must have a process that can capture

requirements rapidly, and verify and validate
requirements thoroughly and rapidly.

– Many of the steps must be automated.
– The entire development must be based on a

fully integrated model for system development,
not just a hodgepodge or quilt of techniques.

14

Other Related Work

• Extreme Programming
– This new process of software development is getting popular

and received significant attention
– It emphasizes the allotment and even encouragement of

frequent changes
– It also emphasizes team work and collaboration, and light on

methodology
– It promotes a test-based development process where testing is

an integrated part of software development
– This process is suitable for commercial software and system

development
– The major problem is that it does not focus on system

engineering issues
– Many of the steps in Extreme Programming are performed

manually, and thus eventually the speed of development will be
limited

15

Other Related Work
• OMG’s MDA is an aggressive program based on UML and related

technologies such as XML
– It emphasizes executable UML
– Engineers specify their systems using executable UML, and follows two

steps:
• Platform Independent Model (PIM)
• Platform Specific Model (PSM)

– Once models are developed, code can be generated. The code
generation is partially automated. For example, to run the executable
UML, engineers must supply detailed code for the model specified with
the code skeleton automatically generated from the UML model.

– The major issues are:
• UML essentially is a design model (primarily based on the class hierarchy

with additional models such as sequence diagrams and state model), and
thus it will take more effort to develop the specification from requirements.

• MDA addressed the system engineering issues partially and indirectly, many
issues such as reliability and security are not addressed or supported as it
is.

16

Scenario-Driven System
Engineering (SDSE)

• Rapid and adaptive scenario-driven
system engineering instead of traditional
documentation driven system engineering.
The SDSE include at least:
– Scenario-driven requirement engineering
– Scenario-driven design and code generation
– Scenario-driven verification and validation

17

Requirements Engineering Process should
be Changed

• Instead of traditional complex requirements engineering,
which takes significant time, we submit a scenario-
driven requirement engineering method, where
system scenarios are specified and evaluated in real
time with instant feedback to the developer and user.

– Scenario language is easier to understand and easy to develop
– Once system scenarios are available, various static and dynamic

analyses should be immediately performed to give the developer
and user instant feedback.

• Analyses such as completeness and consistency analysis,
sequence analysis, timing analysis, performance, concurrency
analysis (such as deadlock analysis), dependency analysis, state
analysis, and pattern analysis

– Scenarios do not need to be complete or consistent for these
analyses to be carried out.

18

Scenario-Driven Requirements
Engineering

• For example, the system can be simulated without any
coding or programming, even if the scenarios are
inconsistent or incomplete.
– In fact, the simulation will identify incompleteness and

inconsistencies.
– The simulation will perform behavior validation as well

as performance evaluation.
– The simulation can also generate the system state

model for further analysis such as reliability and
critical path analysis.

• The key idea is that if system scenarios are changed, the
system can be re-simulated and because it is not
necessary to develop the simulation code, system can
be repeatedly simulated whenever there is a change in
system requirements.

• Is such technology feasible?

19

Scenario Specification Language
• Scenarios can specified using an integrated scenario

(ACDATE) model:
– Actor – the machine or process that performs the

action;
– Condition – the condition that triggers events;
– Data – the data used in computation or conditions;
– Action – the computation;
– Timing – this is related to deadlines or delays;
– Event – an incident or happening.

• This model has been used to model a variety of
applications including DoD Command and Control
applications and real-time embedded systems.

20

Example Command and Control (C2)
Scenario

• A Strike Group (SG, a actor, consisting of a total of 10
warships) is rapidly deployed from a forward base in the
Gulf in response to a threat. While in transit, the SG
conducts Rapid Response Planning (RRP, an action),
developing Initial Plan of the Battle (IPB, data) and Time
Critical Strike (TCS, data) packages. The SG's shore-to-
ship data transmission experiences minimal impact as
the Carrier Battle Group (CBG, a complex actor)
transfers MILCOM connectivity between various
MILCOM links (CAK is a satellite and is an actor). The
SG completes the downloading of weather information
files (data) over an expanded 10 MB CAK MILCOM
circuit via Joint Processing System (JPS, an actor), …….

• This sample scenario highlights only actors and actions
only.

21

System Analyses Based on
Scenarios

• Once system scenarios are available, these analyses can be carried out
rapidly:

• Static analyses
– Dependency analysis
– Completeness and consistency
– Control flow analysis
– Sequence diagram generation
– Reliability modeling and estimation
– Pattern analysis

• Dynamic Analyses
– Simulation
– State model generation
– Event tree analysis
– Failure tree analysis
– Security analysis
– Runtime verification
– Timing analysis

22

ACDATE Model and Simulation

• The semantics of ACDATE can be represented as a state transition (‎above figure): if
an actor is in the pre-condition, and it receives a triggering event that satisfies the
guard condition, it will perform an action and change its state to the post-condition.
The action performed may generate events that can be sent to other actors.

• Because the scenario model has a built-in semantic model, once the system
scenarios are specified, the system can be simulated right away without any
programming.

• If the system requirement is changed, once the scenarios are updated, the system
can be simulated again without additional effort. Thus it is suitable for rapid and
adaptive system engineering.

• The OMG’s MDA program is different. The MDA’s model cannot be executable until
the detailed code is supplied. And this will take significant time and effort.

Pre-
condition

Post-
condition

Event(s)

Action

Event Sender: actor
Event types: internal/external
Arrival patters/distribution
Arrival timing constraint
Mode: single/multiple

Attributs

Actor: internal, external
Timing constraint: start/finish time

Duration: execution time
Sending Event(s): argument, target

Resource requirement: H/w, S/w, data

Attributs

Time span

States of objects after the action
Timer after the action

States of objects before event
Timer before event

AttributsAttributs

Time span

23

Automated Flow Chart and Sequence
Diagram Generation from Scenarios

• Flowchart Diagram: • Sequence Diagram:

24

Automated State Model Generation
from Scenario Simulation

• State diagram in Excel:

25

Generating UML State Charts

• Create UML state chart from scenario
simulation:

Driver

Driver Idle

Hood

Hood
Closed

Hood Open

Engine

Engine Off Engine On

Trunk

Trunk
Closed

Trunk
Open

Car Alarm System

CAS On

CAS Off CAS
Alarming

Passenger's Door

Passenger's
Door Closed

Passenger's
Door Locked

Passenger's
Door Open

Generate

Driver's Door

Driver's Door
Locked

Driver's Door
Closed

Driver's Door
Open

Driver's Door
Locked

Driver's Door
Closed

Driver's Door
Open

(1) / CAS_trigger
(17) / CAS_off

(6) / CAS_off

(17) / CAS_off(17) / CAS_OFF

(16)[Guard] / CAS_on && LOCK

Guard: PD_status != OPEN && TK_status == CLOSED && HD_status == CLOSED && IG_status == CLOSED

(11)

(1) | (6)

(16)[Guard] / CAS_on

26

Automated Event Tree Generation

* Event 45 : Unlock Driver’s Door with Car Key

Unlock Driver’s Door
by Car Key

(event id: 45)

System Starting Status
Driver Door: Closed Not Locked

Passenger Door: Closed Not Locked
Hood: Closed
Trunk: Closed

Ignition: Off
Alarm: On

Alarm Outcome

OK, alert the user

Unlock Action cannot be
performed

Door

Alarm cannot be turned off

Alarm cannot be turned off
and unlock action cannot be

performed

Success

Success

Success

Failure

Failure

Failure

27

Example of Causality Analysis

28

Sample Effect-Cause Diagram

Ignition sensor is not
working Alarm is not working

Trunk is not working

Cannot Alarm User about Burglary

Alarm is not working

Driver’s door sensor is
not working

Passenger’s door
sensor is not working

Hood sensor is not
working

Alarm is not working

Alarm is not working

Hood sensor is not
working Alarm is not working

Passenger’s door
sensor is not working

Driver’s door sensor is
not working

Ignition sensor is not
working

Trunk sensor is not
working

Alarm is not working

Open any parts by force

Open driver’s door by
force

Open passenger’s door
by force

Open hood by force

Open trunk by force

Turn on ignition by
force

Open driver’s door by
force

Open passenger’s door
by force

Open hood by force

Open trunk by force

Turn on ignition by
force

29

Reliability Analysis and Estimation

• It is also possible to estimate the system
reliability for the system specified using
ACDATE/scenario model.

• System performance can be evaluated by
simulation, and system reliability can also be
estimated by establishing an operational profile
to guide the simulation program.

• Different failure distribution functions can be
incorporated into the scenario tool.

30

A rapid, agile and adaptive process
is feasible

• Several commercial companies are now developing this set of technologies,
and the goal is to reduce the cycle time to few months and in some cases to
a few days for real-time mission-critical system development.

• The process looks like:
– Rapid requirement capture and specification using a user-friendly GUI;
– Rapid system scenario evaluation including various static and dynamic

analyses including system simulation;
– If the results are positive, the system will generate code automatically

possibly using reusable components and design patterns;
– Test scripts are automatically generated from system scenarios to test

the generated code, and the testing will be performed in an integrated
environment with both legacy code and new code. The testing may be
performed on the simulated environment first before trying on the actual
environment;

– If the test results are positive, it will be deployed immediately as the new
code already has been tested with the legacy code. The code will be
distributed to the remote sites via a network.

– If the system requirement is changed, the entire process will be
repeated. The goal is to have the entire process completed within a few
days.

31

Security Analysis

• By attaching security classification information to the
scenario model elements such as actors and data, it is
possible to perform security analysis at the system
specification level before implementation.
– For example, Bell and LaPadula model, Chinese Wall model,

Role-based Security model can be used to verify the system
specified using the ACDATE/scenario model.

• Because the analysis is automated, if the system is
changed, the security analysis can be repeated as
needed, even at runtime during system reconfiguration.
This supports rapid and adaptive system engineering.

32

Scenario-Driven Design and Code
Generation

• Instead of traditional documentation driven
manual design, we can have:
– Automated initial design (such as

class/method/algorithm/pattern) generation from
system scenarios

– Automated system design refinement using a
catalogue of reusable design components and
patterns based on system scenarios

– Automated design constraint verification
– Automated code generation from system scenarios

33

Scenario-Driven Verification and Validation

• Instead of the traditional verification and validation
process, which is often complex, expensive and time
consuming.
– Various V&V can be carried out immediately when

system scenarios are specified:
• Simulation (without simulation programming) of

system scenarios
• Test script/case generations based on scenario

patterns
• Automated completeness analysis based on

combinatorial analysis on conditions and events
• Automated model checking for various properties

such as deadlock-free, live ness, constraint
checker.

34

Rapid and Adaptive Test Script
Generation

• Even though a typical system may have hundreds of
thousand scenarios, often only few patterns are needed
to cover most of the scenarios. For example,
– eight scenarios patterns are sufficient to cover 95% of system

scenarios for an industrial safety-critical implantable medical
device

– Four scenario patterns cover 100% of anti-theft car alarm system
• The idea is that a test script template can be used and

reused to test all the scenarios belonging to the same
pattern. Because we have few scenario patterns only,
test scripts can be rapidly developed.

• If a system scenario is changed, once the scenario is
updated, its corresponding test script can be rapidly
generated by reusing test script template.

35

Scenario Patterns for a large Industrial
Safety-Critical System

Pattern Coverage (%)

Basic requirement pattern 40
Key-event driven requirement pattern 15
Timed key-event driven requirement pattern 5
Key-event driven time-sliced requirement pattern 7
Command-response requirement pattern 8
Lookback requirement pattern 6
Mode-switch requirement pattern 8
Interleaving requirement pattern 6
Total 95

36

Rapid, Agile and Adaptive Process;
Key Ideas

• Systems must be developed with
designers and end user’s Joint point of
view from the beginning;

• Most of steps in system engineering
development are automated;

• Give system designers, developers, and
user’s instant feedback so that changes
can be immediately evaluated and
incorporated.

37

Cycle Time Reduction

• Most of system development time is involved in
re-work (to handle changes), verification, t&e
and validation.

• The SDSE handles re-work by built-in analysis
tools that allow analyses to be repeated as often
as needed, and often in real time and at runtime
including simulation, safety analysis, security
analysis, reliability analysis, and completeness
and consistency analysis.

• The SDSE handles V&V and t&e by using a
pattern-oriented approach.

38

Risks

• Do we have all the technologies or tools
for 6-9 month cycle time?

• No, even though we have a good start we
need to run faster.

• But the risk of not working towards this
goal is much greater!
– This means that DoD will not be able to

capture Moore’s law while under the
constraint of Augustine's law.

39

Conclusion

• SDSE can be one of several key enablers for
rapid and adaptive system development to
reduce DoD IT cycle time from years to 6 to 9
months.

• Other key enablers include an agile and
adaptive acquisition process model such as the
Income-Tax model.

• It is possible to have SDSE without the Income-
Tax model or vice versa, but we need both to
achieve the leapfrog that we needed to capture
the Moore’s law under the Augustine’s budget.

40

Appendix

41

Completeness and Consistency Checking of
Scenarios

• Scenarios can be checked for completeness and consistency (C&C)
with respect to the ACDATE information, the result of C&C can be
used to add new scenarios to complete the description, and to
generate test scripts using the verification pattern approach.
– SDSE automatically enumerates various combinations of conditions to

ensure complete coverage.
– Even for a small problem, the completeness analysis will produce

numerous cases for examination. This is the well-known state explosion
problem in disguise.

– The key is not to examine all the combination of cases, doing so will
require too much effort.

– The idea is to identify those “don’t care” cases, and delete them from
consideration to avoid the state explosion problem, and also use a
hierarchical classification algorithm to identify and partition all relevant
cases.

– This process is rather technical but can be automated for rapid
development.

42

Scenario Pattern

• Timed Key-Event Driven Pattern
– Within the duration t1 after the key event, if P

then R is expected (before t2).

Key-Event

Timeline
Key Timeout

R

t0

t1
P

Pre-Condition

Timeout (optional)

t2

43

Scenario Specification Process
Original System Requirements

Separate System and Environment

System Decomposition

ACDATE Decomposition

Construct System Scenarios with
ACDATE information

Generate Scenarios Based on Scenario
Templates

Scenario-Based Analyisis

If appropiate Scenario Template
is found in the Template Library

Create New Scenario Templates
If cannot find appropriate Scenario
Template in the Template Library

44

Sample Scenario Specification

(ATOMIC)
[CAS_RC_concurrently_disarm_unlock_handler_SCNR]

(Trigger Event --- eTurnOffAlarmAndUnlockByRC)
using ACTOR:Alarm
using ACTOR:DriverDoor
if (true)
then
{
• do ACTION: Alarm.TurnOffAlarm
• do ACTION: DriverDoor.UnlockDriverDoor
}

45

Illustration of Actor

Actors

	Scenario- Driven System Engineering (SDSE) for System of Systems Acquisition
	Introduction
	Technology growth
	DoD technology growth is dependent on its budget growth (
	Exponential Growth
	Duals.
	Integration Mismatch
	Term of Reference
	Thesis
	Modern Combat Systems: The Need for Rapid and Agile Engineering Development
	Untitled
	DoD Combat Systems
	Rapid and Adaptive System Engineering
	Other Related Work
	Other Related Work 2
	Scenario- Driven System Engineering (SDSE)
	Requirements Engineering Process should be Changed
	Scenario- Driven Requirements Engineering
	Scenario Specification Language
	Example Command and Control (C2) Scenario
	System Analyses Based on Scenarios
	ACDATE Model and Simulation
	Automated Flow Chart and Sequence Diagram Generation from Scenarios
	Automated State Model Generation from Scenario Simulation
	Generating UML State Charts
	Automated Event Tree Generation
	Example of Causality Analysis
	Sample Effect- Cause Diagram
	Reliability Analysis and Estimation
	A rapid, agile and adaptive process is feasible
	Security Analysis
	Scenario- Driven Design and Code Generation
	Scenario- Driven Verification and Validation
	Rapid and Adaptive Test Script Generation
	Scenario Patterns for a large Industrial Safety- Critical System
	Rapid, Agile and Adaptive Process; Key Ideas
	Cycle Time Reduction
	Risks
	Conclusion
	Appendix
	Completeness and Consistency Checking of Scenarios
	Scenario Pattern
	Scenario Specification Process
	Sample Scenario Specification
	Illustration of Actor

