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Joint Operations of  
Multiple Autonomous Robots (JOMAR)

PI: Edwin Olson (University of Michigan)

Project Period: 4/20/2011  to 6/20/2015

Project Period Award:  $750,000.00

Project Objective: Formulate and implement methods allowing robust operation of multi-robot 
teams, particularly A) state estimation and B) computer vision. Also investigating several other 
areas; see pubs list.

Highlights
Under this grant, we formulated and implemented a variety of novel algorithms that address 
core problems in multi-robot systems. These contributions roughly fall into two categories: state 
estimation and mapping, and robot perception and computer vision.

1. State Estimation and Mapping:

* Methods for performing non-linear optimization with non-Gaussian error models. This
provides a fundamental advantage over Gaussian methods which are unable to model real-
world sensor failure modes. This “MaxMixture” formulation is the stand-out success of this 
grant based on adoption and citation by the community.

* A characterization of Global Positioning System (GPS) noise models in the MaxMixture
framework, allowing significant improvements in GPS-aided navigation.

* A data-association algorithm with applications to target tracking and computer vision
applications, named the Incremental Posterior Joint Compatibility (IPJC) test, which 
computes optimal data associations in a small fraction of the time required by previous 
methods.

2. Robot Perception and Computer Vision

* A method for learning visual features based on the needs of an application. Previous
approaches rely on humans to design high-performance visual features; we show for the 
first time that such filters can be learned in-situ.

* A new camera calibration system that achieves dramatically more accurate and
consistent calibration results than previous methods.

3. Radio Communication and Mesh Networking
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* New methods for predicting the signal strength between two robots in a mesh network
leveraging both previous robot radio communication attempts and non-radio sensor data 
such as LIDAR.

New Robotics TestBed
Largely developed using equipment budget from this grant, we developed a second-generation 
multi-robot test bed. This testbed is based on our first-place MAGIC 2010 robot design, but has 
a completely re-designed drive train and electronics suite. The new design doubles the ground 
speed to around 6mph and greatly increases the terrain handling capability as well. We have 
built six of these robots and have plans to build additional robots. We have begun talking to 
other researchers interested in using this platform in their own research.
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Evaluation Site
Over the course of this project, we spent a total of 10 days doing real-world evaluation of our 
system at the Muscatatuck Urban Training Center (MUTC) in Indiana. Muscatatuck offers a 
variety of venues, including a subterranean maze complex (top) and a shanty town (bottom) 
which our robots collaboratively mapped.
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Multi-sensor ATTenuation Estimation (MATTE):
Signal-strength prediction for teams of robots

Johannes Strom and Edwin Olson

Abstract— Multi-robot teams are often constrained by com-
munications; better signal-strength models enable more efficient
coordination while still maintaining adequate communication.
This work discusses several prediction algorithms applicable to
this scenario. Whereas previous approaches typically focus on
prediction in the presence of deployed base-stations, we consider
the more general problem where all nodes in the network
can be mobile. Our new algorithm, Multi-sensor ATTenuation
Estimation (MATTE), addresses this problem by leveraging
other forms of sensor data in combination with signal-strength
measurements to infer the locations of attenuating materials in
the robots’ environment. We also extend prior tomographic and
correlation-based approaches to the multi-robot case, allowing
a competitive evaluation. All methods are evaluated on a large
corpus of real-world indoor and outdoor environments.

I. INTRODUCTION

The inherently parallel nature of search-and-rescue mis-
sions creates an opportunity for teams of collaborating robots
to assist in emergency response. However, robot teams that
wish to collaborate must communicate to coordinate effec-
tively. Current approaches to multi-robot coordination typi-
cally only incorporate a simple fixed-radius communication
model as a planning constraint [1], [2], [3]. In environments
with variable attenuation (e.g. urban environments), picking
a single radius may not be appropriate since communication
will be easier in open spaces, and harder in densely-built
neighborhoods.

Attempts to incorporate more complicated models of sig-
nal propagation typically focus on the case where robots
communicate with an exiting fixed base station [4]. Un-
fortunately, many domains lack a usable communications
infrastructure (e.g. disaster zones), forcing robots to deploy
their own. Achieving good performance from fully-mobile
networks is challenging because more complicated signal-
propagation models must be incorporated into the path-
planning process to ensure connectivity. Furthermore, exist-
ing models for fixed-transmitters do not extend directly to
the case where all nodes are mobile. While prediction in the
former case is analogous to regression in a two dimensional
space, the later requires making predictions for a four dimen-
sional space, but without a corresponding increase in data
density. The result is that achieving similar generalization
performance from observed signal-strength measurements
becomes more challenging. This paper explores how existing
methods can be modified to better cope with this reduction

This work was supported by U.S. DoD Grant FA2386-11-1-4024.
The authors are with Department of Computer Science and En-

gineering, University of Michigan, Ann Arbor, MI 48109 USA
{jhstrom,ebolson}@umich.edu

Fig. 1. Attenuation estimation computed from a single traversal of a
160⇥100m environment by 3 robots conducting an exploration mission.
Blue indicates regions where signals are attenuated, white and orange
regions indicate where signals pass more easily. Black denotes building
structure. Our algorithm, MATTE, is designed for predicting signal strength
in the challenging case where all transmitters and receivers are mobile.

in data density, and explores methods for using additional
sensor data to inform a better prior over the locations of
significant attenuators in the environment. Specifically, the
main contributions of this paper are:

• Extension of tomographic and correlative signal predic-
tion techniques to the case of multiple mobile robots
without a base station.

• A new signal-strength prediction method, Multi-sensor
ATTenuation Estimation (MATTE), which additionally
leverages the robots’ LIDAR data to better predict the
location of attenuating objects.

• Extensive evaluation on real world datasets covering
over 40,000 m2 of both indoor and outdoor environ-
ments

II. RELATED WORK

In the robotics domain, planning with guaranteed commu-
nication is a well studied topic [5], [6]. However, commu-
nication between two agents cannot be ensured in general,
so these methods are limited in their application to the real
world. Others have studied collaborative planning under a
fixed-radius communication assumption [1], but such meth-
ods result in unnecessarily conservative strategies because
they fail to exploit long-range links when possible, reducing
the effective speed of the robots. More realistic models can
be obtained by first predicting the signal strength along a
given link, which can then be used to predict packet success
rates. There are two main approaches to signal prediction
in the literature – the first is correlative in nature, that is
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broadcasts from nearby positions are assumed to have similar
signal strengths, allowing prediction at nearby points using
what is essentially a locally-weighted average. The second
technique uses principles from tomography, where changes
in signal-strength are used to infer the presence of attenuating
objects, which can in turn be used to predict signal-strength
at unknown locations.

Malmirchegini and Mostofi have explored correlative
methods of predicting the link quality between a fixed
base station and a mobile robot, taking into account the
spatial correlations of signal strength measurements [7].
Fink and Kumar use a similar approach to allow a robot
to automatically localize a base-station [8]. However, these
approaches, also demonstrated in a simulated robotic domain
in [4], assume signals are uniformly correlated in all direc-
tions without regard to the location of attenuating objects.
Nonetheless, this approach has successfully been applied to
prediction of signal strength in real-world environments, and
forms the basis for one of the methods we benchmark in this
paper. Our extension of their approach addresses the more
general problem when all nodes are potentially mobile. This
makes the problem significantly more challenging because
of a substantial reduction in data density.

An alternative approach to predicting signal strength, using
principles from the field of tomography, is to explicitly
estimate the location and properties of attenuating objects
affecting signal propagation. Knowing the location of atten-
uating objects enables future signal strength to be predicted,
even when they are not spatially adjacent to previous mea-
surements. The central challenge with this technique is that
directly estimating the positions of attenuating objects from
signal-strength measurements results in an ill-posed estima-
tion problem. This is because for any given set of signal
measurements, there are many possible world configurations
which explain the data. Prior work by Wilson and Patwari
has explored the capabilities of RF tomography to recover the
motion of moving people inside a region bounded by a large
number of regularly placed radios [9]. Their work estimated
the derivative of the attenuation over a grid of pixels inside
the perimeters of radios to extract the positions of moving
people. By only estimating the derivative, their signal model
was simplified, allowing a single calibration step to be used
to later recover the target’s position. Despite the large number
of radios (28), their estimation problem was still ill-posed,
requiring application of regularization techniques to make
computing the attenuation-derivative possible [10]. However,
their approach does not directly apply to the case where
multiple robots traverse arbitrary paths, since in such cases
no prior calibration is possible, and the number of links
constraining the attenuation computed at each pixel can
vary considerably. Our signal-strength prediction algorithm
MATTE addresses these problems by employing a novel
fusion of laser range-finder data with signal-strength mea-
surements to better constrain the attenuations estimated at
each pixel. Furthermore, we show that our approach scales
to environments hundreds of meters in diameter.

III. BACKGROUND

Standard macroscopic models of RF propagation describe
the expected signal strength, which depends on the location
of the receiver ~r and transmitter ~t, as having three main
components [2]:

y
dBm

= L0 � a log10(||~r � ~t||)| {z }
path-loss

� g(~r,~t)| {z }
shadowing

� ✏|{z}
multipath

(1)

In simplified, ideal environments, signal-strength can be
determined purely by path-loss which has two degrees of
freedom: L0 corresponds to the power of the transmitter and
a is the path-loss exponent that determines how quickly the
signal attenuates with distance. In real environments both
shadowing and multipath can additionally affect the signal
strength: shadowing corresponds to the attentuation a signal
experiences as it passes through dense objects, and multipath
corresponds to amplification or cancellation which occurs
when waves travel multiple paths of different lengths from
source to destination. In general, multipath is very difficult
to predict because it results from complex reflection and
diffraction interactions. Shadowing, on the other hand, is
easier to predict, since the scale of its effects are larger and
more spatially coherent. For the remainder of this paper, we
will focus on models which predict path-loss and shadowing
but ignore multipath.

Robots are able to measure the signal-strength from each
other robot during the robot’s mission. These noisy values
form a vector ŷ, with corresponding vectors of positions
R and T containing all pairs of receiver and transmitter
positions, respectively. We treat predicting y as a linear re-
gression problem. For the case of the simple path-loss model,
estimating the two variables (L0, a) from the data is sufficient
to predict signal measurements for arbitrary positions. This
can be done using standard least-squares approaches: if
x = [L0 a] and the ith row of A is [1 log10(||~ri�~t

i

||)] then
the least-squared error estimate for x is x̄ = (ATA)�1AT ŷ.
Path-loss-only models are useful due to their simplicity
and correspondence with theoretical propagation equations:
the low degree of freedom reduces the chance of over-
fitting. However, as this model ignores shadowing effects,
its application in environments with varying attenuation is
limited. In our evaluation, we will use this simple log-fit as
a baseline.

Correlative and tomographic methods include the same
path-loss model, but also explicitly incorporate shadowing,
allowing for improved predictive performance. The way in
which shadowing is captured varies between the two types
of models. In the tomographic case, the shadowing function,
g(·) is computed by integrating the effect of all attenuators
between transmitter and receiver. In practice, we model the
individual attenuation of a grid of infinitely tall columns,
represented by a regular 2D grid of pixels. If the signal
passes through a series of p discretized pixels, the shadowing
is computed as [9]:

g(~r,~t) =

pX

i

w
i

v
i

(2)
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where v
i

is the attenuation in the ith pixel and w
i

is the
importance weight of that pixel for that signal’s path. (e.g.
in our implementation, the weights w

i

correspond to the
length of the line between transmitter and receiver which
is contained in the pixel.) In other words, we compute
attenuation per pixel by assuming that signal strength is
reduced linearly according to the sum of the pixels along
the path between receiver and transmitter. Given a set of
signal strength measurements, we can attempt to find the
attenuation values x

i

of each pixel using a similar least-
squares approach as described above. However, there are
many possible attenuation assignments to the pixels which
can adequately explain the signal strength measurements,
resulting in an under-determined system of equations. In the
next section we will discuss applying regularization tech-
niques to encode a prior that prefers real-world environments,
thereby over-constraining the system of equations.

In the correlative case, the shadowing component is con-
sidered to be uniformly correlated in all directions, allowing
predictions to be made by making inferences from spatially-
proximate training points. In particular, prior approaches
have had success modeling shadowing using a Gaussian-
process (GP) [2], [7].

In the case of a fixed base-station (located at ~b), we
first use the log-fit as a mean function, and then use a
standard squared-exponential kernel to specify the expected
covariance between signals at two locations, x and x0:
k(x, x0

) = �2
f

exp{� ||x�x

0||
l

2 }. Using this covariance (kernel)
function, we can apply standard GP regression techniques to
make predictions for a set of sample points [11]:

1) Compute Log-fit: Fit L0 and a using least-squared
approach described above.

2) Fit Hyperparameters: Choose correlation distance l
and function variance �

f

to maximize likelihood of
training data.

3) Compute Covariances: Compute covariance matrix
K

y

of training data, and covariance vector k⇤ of sample
points with respect to training data. K

y

= K
f

+ �2
d

I ,
where each entry k

i,j

2 K
y

= k(x
i

, x
j

).
4) Evaluate prediction: ysample = kT⇤ K

�1
y

(yobserved�y
log

)

These correlative methods have good predictive perfor-
mance, especially in the case when many training points
are available. The main shortcomings of this method are
that prediction assumes signals are uniformly correlated in
all directions – an assumption which breaks down in the
presence of discrete attenuating objects. Direct extension of
this method to the case of mobile nodes is also problematic,
since training points are in R4, requiring significantly more
data to achieve the same performance. Finally, this method
is computationally expensive, requiring the inversion of a
matrix whose dimension is determined by the number of
training points.

IV. METHODS

In this section, we extend both the tomographic and correl-
ative methods to the case of multiple mobile nodes. We will
describe our modifications to these existing approaches, and

introduce our new approach, MATTE, which also leverages
other sensors to infer the location of attenuating objects.

A. Correlative Methods for Mobile Nodes

Extending previous approaches of correlative prediction to
the case of moving nodes exacerbates the data-sparsity prob-
lem. Instead of producing signal predictions for R2 (all points
in the plane), we now must produce predictions in R4 (all
possible pairs of points in the plane). Since we can’t increase
the number of signal-strength observations that robots make
without slowing down the speed of exploration, this means
we have significantly reduced data density. However, we
were able to mitigate this problem somewhat by recognizing
that our signal-strength models are symmetric with regard to
where the transmitter and receiver are – that is, we assume
the signal strength is the same from robot A to B as it is
from robot B to A. This observation allows us to construct a
symmetric distance function,d

s4, which effectively doubles
the data density:

d
s4(~ra,~ta,~rb,~tb) = min

⇢
||~r

a

� ~r
b

||+ ||~t
a

� ~t
b

||
||~r

a

� ~t
b

||+ ||~t
a

� ~r
b

|| (3)

In other words, d
s4 is a distance metric for pairs of lines that

is invariant to rotations of 180 degrees.
In practice, many thousands of observations may be

available for use in training the Gaussian process. Due to
the O(n3

) computation cost of matrix inversion, it quickly
becomes impractical to include all training data. However,
prediction performance is improved as more training points
are used. In the case where K is very sparse, the inversion
can be done more quickly, enabling use of more training
data. However, the squared exponential kernel is not sparse;
two measurements will never have a covariance of exactly
zero, even if they are very far apart. By modifying the kernel
to have compact support – that is, the kernel is exactly zero
once some distance ⇥ is reached – the matrix K becomes
sparse [12]:

k
s

(x, x0
) = max(0, 1� ||x� x0||

⇥

)

� ⇤ k(x, x0
) (4)

The resulting sparsity allows computing K�1 much faster,
enabling the use of more training points. Although sparse
kernels generally have worse performance, we found in prac-
tice the that the speed improvement enabled the incorporation
of enough extra training points to achieve a net improvement
in performance. This sparsification also increases the number
of hyper-parameters that must be estimated to a total of 5.
In principle, we can learn these additional parameters the
same way we learn the parameters for the original covariance
function. However, increasing ⇥ will always result in a lower
training error and an increased computation due to a less-
sparse covariance matrix. To limit worst-case computation
time, we do an offline parameter sweep to estimate the best
⇥ and � subject to a fixed CPU budget.

Together, the symmetric distance metric and the forced
sparsification of the correlation function enabled us to adapt
existing correlative prediction techniques to the case of
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multiple mobile robots, and achieve results competitive with
our proposed method. These additions to existing methods
form the Multi-robot Gaussian Process “MRGP” method
which we include in our evaluation.

B. Multi-robot Tomography (MRT)
Conceptually, extension of the tomographic methods to

the case of multiple robots is relatively straight-forward. The
attenuation of each pixel through which a signal passed is
estimated in least-squares fashion. The number of pixels, p,
is determined by the grid size such that the pixels completely
fill the workspace of the robots. For a grid of width w and
height h, p = w⇥h and pixels are labeled v0,0 · · · vw�1,h�1.
In addition, the two path-loss parameters, L0 and a are also
estimated simultaneously, resulting in n = p+ 2 unknowns:
x = [L0 a v0,0 · · · vw�1,h�1]. Each of the m signal strength
observations y

i

provide one equation partially constraining a
subset of the pixels in addition to the path loss parameters
(See Eqns 2 and 1). Together these equations are stacked
to form the rows of an n ⇥ m matrix A. If A is full rank,
x = (ATA)�1AT y. However, even though m is generally
greater than n, A remains rank deficient, resulting in many
possible solutions for x. Related approaches have solved
this by using Tikhanov regularization that enforces smooth
changes in attenuation between neighboring pixels [9]. This
corresponds to constructing a Tikhanov matrix � whose rows
correspond to equations of the form v

i,j

� v
i+1,j = 0 and

v
i,j

� v
i,j+1 = 0 for each i, j < w, h. The over-constrained

solution for x now takes the form

x = (ATA+ �2
�

T

�)

�1AT y (5)

where � is a parameter to determine the weight of the
smoothness constraints in � relative to the observation equa-
tions in A. In contrast to the correlative methods, which
scale O(m3

) with respect to the number of observations,
the tomographic methods scale O(p3) with respect to the
number of pixels. However, unlike the correlative methods,
ATA is naturally sparse since each pixel is only jointly
constrained with a small number of other pixels. This means
that sparse matrix-inversion methods, such as a Cholesky
decomposition, can perform significantly better than O(p3).
In practice, ATA is still dense enough (95% zeros) that we
are limited to solving grids on the order of 100⇥100 (10000
pixels). For the datasets in our evaluation, this translates to
a grid size between 2 and 4 meters. Such large grid sizes
poorly approximate the sharp spatial changes in attentuation
found in real environments, such as at the border between a
building and neighboring free space. Furthermore, in order
to avoid over-fitting, � must be set large enough to allow
very little spatial gradient in the attenuation of each pixel
(See Fig. 1). In areas where attenuation changes quickly,
the predictive power is limited. Our implementation of this
approach, Mutli-robot Tomography (MRT), is included in our
evaluation.

C. Multi-sensor ATTenuation Estimation (MATTE)
The approaches we’ve discussed so far focus solely on

using signal-strength readings for prediction of future mea-

surements. Many robots already carry additional sensors
for mapping and navigation. Intuitively, since the physical
structure of an environment (the position of walls and other
solid surfaces) influences signal propagation, a map of the
environment should help predict signal propagation. This is
especially true for sensors like laser range-finders, which
tend to have a range of at least 10-30 meters. Incorporating
a map does not solve the problem completely though, since
the attenuation of a wall depends on the material and LIDAR
generally can’t distinguish between a reinforced concrete
wall and drywall.

Specifically, we propose the use of occupancy grids de-
rived from laser range-finders to provide a more informed
regularization constraint to tomographic methods. The occu-
pancy grids collected by our robots label the world with three
classes: known free space, known structure and unknown.
This information can provide a much better prior about the
attenuating properties of the environment – for example, we
generally expect areas which are marked as free space to
pass signals with little interference. Similarly, knowing the
location of structures can provide a prior about where attenu-
ation should increase dramatically. Besides providing a better
prior about the magnitude of attenuation, the occupancy grids
also provide a much finer view of the environment. Using the
MRT method, we are typically limited to coarse grid sizes
(e.g. 3 m for our datasets) due to computational constraints.
On the other hand, LIDAR-based occupancy grids can be
computed cheaply even for fine-grained grid sizes (we used
10 cm grid in our experiments).

Of the many ways of incorporating this data, we explored
explicitly estimating the attenuation of each of the three
classes separately. A simple approach to this problem is to
fit a single attenuation value to all pixel of the same class.
For example, known free space might have an attenuation of
�0.01dBm per meter, whereas structure (e.g. walls) could
have an attenuation of �0.3dBm per meter, and unknown
space could be approximated as somewhere in between. This
approach is notable in its simplicity – it has no parameters to
tune and only 5 degrees of freedom to fit the observed data:
two for path loss parameters and three more for the attenua-
tion assigned to each class in the occupancy grid. In general,
however, it is a poor assumption that all objects detected by
the robots as structure will have the same attenuation. For
example, a wooden fence and a brick building have very
different effects on a signal, but can appear very similar
to a robot’s laser range finder. As our initial experiments
confirmed, this model performed poorly in explaining real-
world data.

Another way to use the occupancy grids is to better
inform regularization methods, for example by enforcing
smoothness constraints only between neighboring pixels of
the same class. Using a more flexible model is difficult,
however, since individually estimating the attenuation for
each pixel in the fine-grained occupancy grid results in
a poorly constrained, computationally prohibitive problem.
The largest map we present has nearly 5 million pixels!
Downsampling to a coarser resolution can make the problem
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more tractable, but reduces the ability to incorporate features
such as doors or walls which may be lost by resampling.

Algorithm 1 MATTE UPDATE(trainPoints, map)
init A, b from bounds(map)
for all p 2 trainPoints do
r  [1, log10(||pr � p

t

||), 0 · · · , 0]
for all locations v

i

2 losPath(p) do
c map.class(v

i

)

r(v
i

, c) 1

end for
A appendRow(r)
b appendElement(p

z

)

end for
{A, b} appendRegularization(A, b)
x cholesky.solve(ATA,Atb)
store x
store map
return

Algorithm 2 MATTE PREDICT(testPoints)
retrieve x
z  vector(testPoints.len)
for all p 2 testPoints do

z
p

 x(0) + log10(||p||)
z
s

 attenuationIntegral(x, p,map)
p append(p, z

p

+ z
s

)

end for
return p

Instead, we propose a method that benefits from the de-
tailed resolution of the map, but has computational complex-
ity comparable to the MRT method. Our technique, called
MATTE, separately estimates spatially-varying attenuation
for each of the three classes in the occupancy grid. These
estimates allow querying any point in the environment and
determining, for example, if there was structure there, what
attenuation it would have. When predicting signal-strength,
we first examine pixels in the occupancy grid to determine
which class they are, and then perform a look-up on the
appropriate attenuation estimate. The benefit of this approach
is that we can estimate the spatially-varying attenuation
at a resolution independent of the resolution required to
adequately map the environment structure. Typically grid
sizes of 10 to 20 cm are required to preserve the presence of
doors or thin walls – but attenuation rates of a particular
material, (e.g. building) tend to vary at a much slower
rate. The computational implications of this approach are
significant – whereas the resolution of the occupancy grid is
typically 10 cm, we have achieved good results with a grid
size of 4 m for the spatially varying per-class attenuations,
resulting in a reduction by a factor of 1600 in the number
of unknowns.

Similar to the previous tomographic approach, we simul-
taneously estimate the path-loss parameters and the spatially

(a) nw1
(b) nw2

(c) bbb3
(d) eecs4

(e) dc1

Fig. 2. Maps collected in each of the five datasets we used in our evaluation.
From left to right they are: two outdoor sections of the Northwood
residential housing complex, the 3rd floor of the Bob and Betty Beyster
Building, the 4th floor of the Electrical Engineering and Computer Science
Building and the first floor of the Duderstadt Library. White is unexplored,
gray is known free-space and black is structure. Each evaluation set consists
of back-to-back traversals of three of these environments; meta-parameters
are tuned using the remaining two.

varying attenuation. For a workspace w⇥h pixels in dimen-
sions, we estimate a total of 2 + 3 ⇤ w ⇤ h variables that
comprise x. Although this represents a threefold increase
in the number of degrees of freedom over our previous
approach, ATA is generally more sparse (e.g. 99% sparse
in our datasets), ultimately requiring less time to compute
a result. An overview of the update and prediction steps
are shown in Algorithms 1 and 2. The MATTE algorithm
has several important parameters which can either be tuned
by hand or estimated automatically from training data. The
most important parameter is the relative weight � given to the
smoothing regularizer we described in Eqn. 5. In addition we
introduce three parameters to govern the expected attenuation
in areas where we have not collected any signal data: a
weighting factor � determines the relative weight of this
prior, and prior attentuation values in units of dBm per meter
for each class are ⇢

f

, ⇢
s

, ⇢
u

, for free-space, structure, and
unknown space respectively. In practice, we set ⇢

s

= ⇢
u

,
allowing free space to have a distinct prior from other areas.

An additional potential advantage of MATTE is that
new occupancy grids can be incorporated cheaply, as the
underlying spatially varying attenuation does not necessarily
need to be updated when the map changes. For example, our
approach might encode the knowledge that a structure-class
pixels in a particular area tend to have an attenuation of X
dBm per meter. If the map of that area is later expanded,
that information will be able to provide an estimate for the
attenuation expected there, without needing to recompute x.
This allows our approach to potentially be adapted to run
online.
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Eval. Method Meta-parameters

1 Train: {nw2,bbb3} Test: {eecs4,dc1,nw1}
MATTE �=2.0 �=.2 ⇢f=-.1 ⇢u,s=-.3
MRT �=0.1375

2 Train: {eecs4,dc1} Test: {bbb3,nw2,nw2}
MATTE �=1.225 �=0.05 ⇢f=0.2125 ⇢u,s=-0.2875
MRT �=0.1125

3 Training: {bbb3,eecs4} Test: {nw2,nw1,dc1}
MATTE �=2.0 �=0.275 ⇢f=0.2875 ⇢u,s=-0.4875
MRT �=0.1250

4 Train: {nw1,eecs4} Test: {nw2,dc1,bb3}
MATTE �=1.38 �=0.3 ⇢f=-.1 ⇢u,s=-.3
MRT �=0.1125

5 Train: {dc1,nw1} Test: {eecs4,bbb3,nw2}
MATTE �=2.0 �=0.1 ⇢f=-0.15 ⇢u,s=-.3
MRT �=0.5875

TABLE I
AUTOMATICALLY DETERMINED PARAMETER SETTINGS FOR EACH

EVALUATION USING COORDINATE DESCENT ON THE TRAINING SET.
Some parameters were fixed for performance reasons, including the grid

sizes for MATTE and MRT methods, at 4.0 meters and 3.0 meters
respectively. For MRGP, the number of training points was set to

min(600, .05 ⇤m), ⇥ was fixed to 20.0, and � to 3. Also �d and �f

were fixed for numerical stability reasons at 1.5 and 1.0 respectively. For
MRGP, coordinate descent fixed l to 28.75 on all training data.

V. EVALUATION

We evaluated the three primary methods we have discussed
to determine which methods were most successful at pre-
dicting real-world signal-strength measurements. The main
purposes of our evaluation is to show that previous signal-
strength predictions methods using a fixed base station can
be extended to the more general case where all nodes are
mobile. We also show that in many cases sensor data can
be effectively leveraged to further improve signal-strength
predictions. Several of our models have many degrees of
freedom, so our evaluation also seeks to show that the
methods we present can generalize well from previous ob-
servations to the prediction of future signal measurements.

A. Test Apparatus

We used a robot platform our lab custom designed for
urban reconnaissance [13]. We outfitted three of our 14
robots with additional 2.4 GHz TP-Link WiFi radios which
were programmed to report signal-strength measurements at
20 Hz. Our robots are equipped with 3D laser range finders,
in addition to IMUs and odometers, enabling them to produce
high-quality globally consistent maps using Simultaneous
Localization and Mapping (SLAM) algorithms [14], [15],
[16]. This capability allows us to quickly collect large
amounts of signal-strength data that is co-registered with a
global grid.

We used these three robots to collect a series of 5 datasets
in various indoor and outdoor environments, spanning a total
area over 40,000 m2. The datasets consist of three indoor
environments, bbb3, eecs4 and dc1 for short, as well as two

larger outdoor environments, abbreviated nw1 and nw2 (See
Fig. 2 for details). Real-world rescue robots must operate
in mixed indoor-outdoor urban environments. In order to
mimic these conditions, we randomly selected a sequence
of three of the environments for testing, guaranteeing a mix
of indoor and outdoor datasets. Each of the datasets consist
of exploration missions so very few sensor measurements can
be considered duplicates, since robots do not tend to retrace
their steps. This enables us to explicitly test the predictive
performance of each method, rather than their recall abilities.

For each randomly-selected set of three areas, we replayed
the signal-strength observations and corresponding maps in
two second increments. After each step, the methods were
tested on their prediction performance of the next 10 intervals
of future signal strength data (e.g from 0-2 seconds, 2-
4 seconds, 4-6 seconds, etc.). As the traversal played out,
methods had access to an increasing amount of training
data, but the amount of testing data was relatively similar
at each step. Several of the methods also have meta- or
hyper- parameters which need to be tuned before the start
of a traversal. We used the two remaining areas not selected
for the test set to train meta parameters using a compass
search. We include results for 5 such randomly generated
traversals. The parameters selected by the compass search
for each method on each evaluation are shown in Table I. All
of the methods we presented were tuned to use comparable
amounts of computational resources. While each method
exhibits significantly different asymptotic growth, we set
parameters which resulted in roughly equal CPU use over the
course of an evaluation set. Run-times for MATTE ranged
between 2 seconds to process the bbb3 dataset up to 30
seconds for the significantly larger nw2 dataset. For the GP
method, times varied between 15 seconds for bbb3 datasets
and 20 seconds on nw2.

B. Results

The testing results for the five evaluation sets are displayed
in Fig. 3. As expected, all methods are better at making
short-term rather than long-term predictions. This is a result
of the fact that measurements nearer in the future are more
likely to be similar to existing measurements, or the fact that
attenuating objects impacting observations in the near future
are likely to be correlated with sensor data the robots have
just now collected.

All of the methods we have implemented show competitive
performance, especially for predictions between 0 and 10
seconds in the future. However, MATTE significantly out-
performs the other methods in evaluations 1 and 5. In eval-
uations 2 and 4, it performs comparable to the tomographic
method. However, in evaluation 3, our method exhibits worse
performance than the other methods. An examination of
the meta-parameters determined via compass search show
evidence of over-fiting the training set, which by nature
of our randomly selected test sets, happened to both be
exclusively indoors. This is manifest as a positive attenuation
prior for free-space (⇢

f

), consistent with the wave-guide
effect sometimes seen in hallways. In the other evaluation
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(a) Eval 1 {eecs4,dc1,nw1}
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(b) Eval 2 {bbb3,nw2,nw1}
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(c) Eval 3 {nw2,nw1,dc1}
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(d) Eval 4 {nw2,dc1,bbb3}
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(e) Eval 5 {eecs4,bbb3,nw2}

Fig. 3. MSE of prediction accuracy for each method evaluated on 5 randomly chosen sequences over the testing datasets. Error bars are bounded by 0.8
dBm2 and are omitted for clarity. Our proposed method, MATTE, is compared to extensions of previous methods MRGP and MRT. Our method exploits
generally performs better for near-term predictions where the robots’ sensor data provides an informative prior. Poor performance of MATTE in evaluation
3 is attributable to the randomly generated training set which contains only indoor datasets, while the testing set contains both indoor and outdoor sets.

sets, there was at least one outdoor dataset used for training,
which helped to mitigate this type of over fitting. In most
of the evaluation sets, we see that MATTE can out-perform
the correlative method for short-term predictions up to ten
seconds in the future. For longer-term predictions, where
training data is mostly useless, it is difficult to beat the log
baseline.

VI. CONCLUSION

In this work, we have explored the difficult problem
of predicting signal strength when all nodes are actively
exploring a variety of real world environments. This prob-
lem is challenging because robots typically only sample
the possible signal propagation paths very sparsely, making
generalization beyond a naive log-fit difficult. We extended
several existing signal strength prediction methods to the case
of multiple robots conducting exploration-style missions in
mixed indoor-outdoor urban environments. We additionally
suggested a new method for signal prediction which uses
additional sensors already in use by many autonomous
robots to better estimate the regions of attenuation in an
environment. Our methods performs competitively with the
other approaches, and in some cases performs much better.
Key to our approach is the ability to estimate the attenuation
properties of the environment at a coarse level, but still use
a fine-grained spatial model of an environment derived from
additional sensors. It is interesting that both correlative and
tomographic methods exhibit such similar performance, as
they employ very different approaches to the same problem.
This suggests that both methods are exploiting similar as-
pects of signal strength propagation.

Our work has important applications to autonomous robot
teams which are collaborating to achieve a joint goal. By
introducing more advanced signal-strength modeling tech-
niques, such teams can better predict when robots can expect
to communicate, allowing them to plan their future actions

by explicitly including communication as a constraint.
In the future we look to continue exploring methods for

effectively predicting signal strength. In particular, it may be
possible to leverage additional sensing modalities to improve
prediction. Incorporating this predictor in an online planning
system would also serve to further validate our approach.
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IPJC: The Incremental Posterior Joint Compatibility Test
for Fast Feature Cloud Matching

Edwin B. Olson1 and Yangming Li2

Abstract— One of the fundamental challenges in robotics is
data-association: determining which sensor observations corre-
spond to the same physical object. A common approach is to
consider groups of observations simultaneously: a constellation
of observations can be significantly less ambiguous than the
observations considered individually. The Joint Compatibility
Branch and Bound (JCBB) test is the gold standard method
for these data association problems. But its computational
complexity and its sensitivity to non-linearities limit its practical
usefulness.

We propose the Incremental Posterior Joint Compatibility
(IPJC) test. While equivalent to JCBB on linear problems, it
is significantly more accurate on non-linear problems. When
used for feature-cloud matching (an important special case),
IPJC is also dramatically faster than JCBB. We demonstrate
the advantages of IPJC over JCBB and other commonly-used
methods on both synthetic and real-world datasets.

Index Terms— Data association, joint compatibility test,
SLAM

I. INTRODUCTION

Data association is the problem of determining which
observations correspond to the same object. It is at the
core of the Simultaneous Localization and Mapping (SLAM)
problem and visual navigation: it is only by re-observing a
landmark that a map becomes over-constrained and therefore
more robust to the errors associated with any single obser-
vation.

SLAM systems are often described in terms of the two
“halves” of the problem: the front-end performs the sensor
processing and data association, while the back-end com-
putes the maximum-likelihood map subject to the observa-
tions and data-associations output by the front-end. In recent
years, the raw computational performance of back-ends has
increased dramatically: maps with millions of landmarks and
observations can be optimized [1].

While back-end systems are now very fast, the quality
of their output is entirely dependent on the accuracy of
the front-end. In particular, an incorrect data association (in
which the front-end erroneously asserts that two physically-
distinct landmarks are in fact the same landmark) forces the
back-end to distort the map to bring those two landmarks
closer together. Even a single data-association error can lead
to divergence of the entire map.

Consequently, the quality of a front-end system has an
enormous impact on the quality of the resulting map. Too
many loop closures (i.e., false positives) lead to catastrophic

1 Department of Electrical Engineering and Computer Science, University
of Michigan, Ann Arbor, MI 48109 ebolson@umich.edu

2 Institute of Intelligence Machines, Chinese Academy of Sciences,
Hefei, Anhui, 230031 ymli@iim.ac.cn

Fig. 1. IPJC Overview. A robot observes “feature clouds” from two
different poses (top left), and IPJC matches them by searching a tree and
computing a compatibility cost. The rigid-body transformation that results
from the matching process can be used in a pose-graph SLAM formulation.
IPJC is similar to JCBB, but when applied to feature cloud matching,
produces better results in less time.

failures, while too few loop closures (false negatives) lead
to a less-constrained map of lower overall quality.

A common approach to improving the quality of data-
association systems is to consider multiple observations as a
set. A reasonable analogy is that it is difficult to recognize
a star given an image of it, but recognizing a constellation
is much easier and less error-prone. When matching groups
of features, it is critical to consider the correlations between
measurements. In general, the set of observations will not
match perfectly with the prior estimates of the landmark
locations. Due to the correlations between these observa-
tions, some misalignments are more likely than others. For
example, suppose an image of a constellation of stars is
taken. The individual positions of the stars in the image are
highly correlated: they all depend on where the camera was
pointing. If all of the stars appeared to be shifted uniformly
with respect to their a priori estimated positions, the errors
could be easily explained in terms of a camera pointing
error. On the other hand, if the stars were shifted randomly
with respect to their a priori estimated positions, one might
instead conclude that the image is of a different set of
stars. In other words, proper consideration of the correlations
between observations can have a significant effect on the data
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association process.
The gold standard method is the Joint Compatibility

Branch and Bound (JCBB) test [2], which searches for the
largest set of data associations subject to a bound on the
χ2 error. Conceptually, JCBB builds an “interpretation tree”;
at each level of the tree, an observation is associated with
one of the landmarks in the map (or to a “null” hypothesis
representing the possibility that no landmark matches the
observation.) A path from the root of the tree to any node
encodes a set of data-associations, and JCBB explicitly
computes a cost related to the probability of that set of data-
associations.

The computational cost of JCBB can be substantial; at
every node in the tree, the joint compatibility must be
computed. Even when computed in a clever incremental
fashion, this involves an operation of cost O(m2) at level m
in the tree. This cost can be prohibitive in some applications
and has led to a number of alternative approaches.

Several authors have suggested faster but less
probabilistically-motivated methods for validating data-
association hypotheses. One trend has been to implicitly
identify groups of compatible hypotheses by considering
their pairwise-consistency; this can be viewed as a max-
clique [3] or spectral graph partitioning [4] problem. Finding
loop closures, a common task in pose-based SLAM, is
an application of data-association. A recurring idea is to
look for sequences of loop closures that form a closed
topological loop: the composition of the loop closures in
the loop should approximately be the identity matrix [5],
[6], [7].

In addition to high computational cost, JCBB is sensitive
to non-linearities. JCBB estimates the joint compatibility by
linearizing around the prior and considering the entire set of
data associations as a single large linear update. However,
more accurate results could generally be obtained by actually
computing the posterior after each observation; this results in
a better estimate of the posterior and will generally improve
the linearization point used to estimate the compatibility of
successive data association pairings.

Many data association algorithms target the case where the
location of the landmarks is explicitly estimated—i.e., where
the state vector is enlarged to contain the position of each
landmark. Alternatively, as seen in pose-based SLAM algo-
rithms and in many camera-based applications, the landmarks
are not added to the state vector. Instead, the motion between
two poses is found by matching the feature observations
between those two poses. Each pose records a cloud of
features observed from that pose, and the problem becomes
one of “feature cloud” matching (see Fig. 1). This approach
is often used when each pose observes a large number of
landmarks: adding all of these landmarks to the state vector
can quickly tax even very fast back-end systems. Systems
using cameras or 3D LIDAR sensors can extract hundreds
of features from a single robot pose, for example.

In this paper, we propose a new data association method
that, like JCBB, is probabilistically rigorous. However, it
provides better accuracy in non-linear settings and, in the

case of feature cloud matching, dramatic runtime speedups.
The contributions of this paper are:

• We propose a posterior-based data association test,
motivate it in terms of the χ2 of a least-squares op-
timization, and show that it is equivalent to JCBB. This
algorithm, Posterior Joint Compatibility (PJC), serves
as the basis for the remainder of our algorithms.

• We propose the Incremental Posterior Joint Compatibil-
ity (IPJC) test, which exploits the probabilistic structure
of feature cloud matching. This method is both more
accurate in non-linear settings and dramatically faster
than JCBB. We further show how to accelerate the
process further, leading to the IPJC-Fast algorithm.

• We demonstrate our proposed methods along side
JCBB, RANSAC, and SCNN on a range of synthetic
and real-world problems. This data supports our claim
that IPJC and IPJC-Fast out-perform other methods.

II. A REVIEW OF JCBB

Our method is similar in most respects to JCBB [2]:
given a set of m observations of n features, we search an
“interpretation tree”. This tree has m levels, and at each level
of the tree, we consider n+ 1 possible data-associations for
the mth observation. (Each observation could match any of
the n landmarks, or could match none of them.) A path from
the root to any node represents a set of data-associations.
Our goal is to find a “good” data-association for every
observation.

How is the “goodness” of a set of data-associations
evaluated? Given a state estimate x with covariance P , we
use a domain-specific sensor model (assumed known) to
compute predicted observations ẑ. Given the matrix H of
partial derivatives of x with respect to ẑ, the uncertainty
of the predicted observations due to our uncertainty of x is
simply HPHT .

We assume that our actual observations z are contaminated
by noise with covariance V , and that the matrix of partial
derivatives of the noise variables with respect to z is G. The
uncertainty of the actual observations due to this underlying
sensor noise is simply GV GT . The combined uncertainty of
our prior and observation is given by:

C = HPHT +GV GT (1)

The discrepancy between our actual and predicted obser-
vations is e = z − ẑ. We can now write the cost function
used by JCBB as a Mahalanobis distance:

χ2 = eTC−1e (2)

In principle, we might wish to identify the maximum
likelihood set of data-associations (or equivalently, the set of
data associations with the minimum Mahalanobis distance).
To compute this, we would need to know the likelihood
of an observation not matching any landmark— a quantity
typically not known. Instead, JCBB searches for the largest
set of non-null data-associations such that the Mahalanobis
distance is less than a threshold. This threshold is typically
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expressed in terms of the χ2 distribution for an appropriate
number of degrees of freedom.

A naive approach would be to consider each leaf of
the tree, compute its Mahalanobis distance, and select the
best. However, the interpretation tree is quite large: it has
(n + 1)m leaves. Fortunately, the search space can be
pruned by employing the branch-and-bound method. The key
idea is that the Mahalanobis distance can be computed for
any partial set of data-associations. Since the Mahalanobis
distance can only increase with additional data associations,
this serves as an admissible lower-bound for all of the node’s
children. Consequently, we can prune any sub-tree that could
not be better than the best-known solution. A more careful
description of JCBB can be found in [2].

The major computational cost in JCBB is to the cubic
cost of inverting the C matrix in Eqn. 2. As pointed out by
the original JCBB paper, the inverse of C at level m can be
computed in terms of the inverse of C at level m−1, reducing
the complexity to quadratic. Even with this optimization,
the cost of repeatedly evaluating the Mahalanobis distance
quickly becomes a bottleneck— particularly if there are a
large number of observations.

III. PROPOSED METHOD

A. Posterior Joint Compatibility

We begin by deriving a different way of writing the
Mahalanobis cost function used by JCBB. Given a putative
set of data-associations, suppose we compute the posterior
value of x, which we denote as x+. (For clarity, we will
denote the prior value of x as x−.) This posterior can be
computed in a variety of ways, including Extended Kalman
Filtering [8], non-linear optimization [9], etc. In this work,
we use the Iterated Extended Kalman Filter [10].

Suppose that we update the state estimate using the
Extended Kalman Filter as follows:

C = HPHT +GV GT (3)
K = PHTC−1 (4)
e = z − ẑ (5)
d = Ke (6)

x+ = x− + d (7)

We can compute the χ2 of the posterior as the sum
of the χ2 of the observations and the prior evaluated at
x+. Note that the posterior residual for the observations is
not e (because ẑ reflects the prior estimate of z); due to
the change in our state estimate, the posterior observation
residual becomes: z − (ẑ +Hd) = e−Hd.

In summary, the posterior χ2 can be written as:

χ2 = (e−Hd)T (GV GT )−1(e−Hd) + dTP−1d (8)

We now show that this expression is equivalent to the one
used by JCBB. To see this, we begin by substituting d = Ke:

χ2 = (e−HKe)T (GV GT )−1(e−HKe) + (Ke)TP−1(Ke) (9)

And now factoring out eT to the left and e to the right:

χ2 = eT
[
(I −HK)T (GV GT )−1(I −HK) +KTP−1K

]
e (10)

We’ll now consider the cost function used by JCBB,
showing that it can be simplified to the same expression as
Eqn. 10. Recall that the Mahalanobis distance used by JCBB
can be written as χ2 = eTC−1e. Let us begin by focusing
on the inner term C−1.

C−1 (11)[
I + KTHT − (HK)T )

]
C−1 (12)

[
KTHT + (I − HK)T (GVGT )−1(GVGT )

]
C−1 (13)

[
KTHT + (I − HK)T (GVGT )−1(C − HPHT )

]
C−1 (14)

[
KT (P−1PHTC−1C) + (I − HK)T (GVGT )−1(I − HK)C

]
C−1 (15)

[
KTP−1KC + (I − HK)T (GVGT )−1(I − HK)C

]
C−1 (16)

KTP−1K + (I − HK)T (GVGT )−1(I − HK) (17)

In Eqn. 12, note that (HK)T = KTHT . In Eqn. 13,
we multiply by GV GT and its inverse; note also that I −
(HK)T = (I −HK)T . In Eqn. 14, we substitute GV GT =
C−HPHT , which follows from Eqn. 3. In Eqn. 15, we use
P−1P = I and C−1C = I , and we factor (C − HPHT )
as (I −HK)C. In Eqn. 16, we substitute K = PHTC−1.
Finally, in Eqn. 17, we distribute the C−1 factor.

We can now write the cost function used by JCBB in terms
of this final expression for C−1:

χ2 = eT
[
(I −HK)T (GV GT )−1(I −HK) +KTP−1K

]
e (18)

Eqn. 10 and Eqn. 18 are identical; thus, both formulations
compute the same value. In some ways, the posterior-based
test is more intuitive, since it corresponds to an explicit
minimization of the same metric function used by non-linear
SLAM systems.

B. Feature Cloud Matching
In a standard landmark-based SLAM system, the position

of each landmark is added to the state vector, and each
observation of that landmark improves the estimate of its
position. The position of the landmarks become correlated,
due to the fact that different sets of landmarks are observed
at different points in time.

In contrast, a feature-cloud matching approach does not
add landmarks to the state vector, and thus does not attempt
to compute optimal estimates of their positions. Instead,
landmark detections from two poses A and B are used to
estimate the motion of the robot between A and B.

Perhaps the most canonical example of feature-cloud
matching is scan-matching: two scans are aligned in order
to recover the motion of the robot, but the scans do not
update a global model of the underlying structure that led to
the observations. Iterative Closest Point (ICP) is often used
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for both 2D and 3D [11]. However, ICP methods require
good initial estimates, which are not always available. In this
case, features can be extracted from the data and the features
are explicitly associated with each other. The relationship
between the two poses can then be computed from the feature
correspondence. Feature-cloud matching examples include
matching camera data for navigation [12], and computing
a rigid-body transformation to align two 3D LIDAR point
clouds [13]. The latter case demonstrates how the same
feature-cloud matching process applies to object recognition
(matching an observation to a model).

A feature-cloud matching system is generally a good
choice when many landmarks are detected at every pose.
First, it can be impractical to add them all to the state vector:
adding hundreds of landmarks at every robot pose would
quickly bog down even the fastest SLAM implementations.
Second, it is often unnecessary for accurate mapping: when
many landmarks are detected simultaneously, the rigid-body
transformation relating the two poses tends to be highly over-
constrained, which greatly reduces the impact of noise in
individual observations.

Feature-cloud matching can be performed using JCBB, but
it is expensive to do so. First, the quadratically-increasing
cost of incrementally computing the Mahalanobis distance
at each level in the interpretation tree quickly becomes a
bottleneck. Second, the depth of the interpretation tree is
equal to the number of observations, which can measure in
the hundreds.

C. Incremental Posterior Joint Compatibility
The posterior joint compatibility test suggests an alter-

native approach for performing data association on feature
clouds. The basic idea is to exploit the fact that feature
observations are conditionally independent given the rigid-
body transformation that relates poses A and B. In other
words, the critical quantity that needs to be estimated is
the rigid-body transformation T that projects points from
coordinate frame B into coordinate frame A. Everything else
needed to compute the posterior joint compatibility can be
recovered once T is known.

Our approach is summarized below. For clarity, we provide
example matrix and vector dimensions assuming that a robot
is operating in the plane, i.e., that rigid-body transformations
have three degrees of freedom and that landmarks are 2D
point features; however, our method is not limited to this
case.

1) Assume a prior on T , or alternatively, descend suffi-
ciently far down the interpretation tree such that an
initial solution to T can be computed. The state vector
is 3× 1 and the covariance matrix is 3× 3.

2) At level i of the interpretation tree:
a) Initialize a landmark based on observation i from

pose A. This enlarges the state vector to 5×1 and
the covariance to 5× 5. Because this observation
was made from position A, it does not depend
on T . Consequently, the covariance matrix will
be block diagonal.

b) When associating observation i from pose A
with observation j from pose B, perform an
EKF-like update. This will update the posterior
value of T and the landmark location. Because
the observation model is a function of both T
and the landmark position, the covariance matrix
becomes dense.

c) We do not need to maintain a full state estimate
over T and the landmark position, so we now
marginalize out the landmark position. The state
vector is now reduced to its original size of 3×1.

This method incrementally computes the posterior rigid-
body transformation T as we traverse the interpretation tree.
Critically, the computational time required at each node in
the tree is constant, as opposed to quadratically increasing
with JCBB1.

An advantage of this approach is that the posterior is
improving in quality as we travel down the interpretation
tree. This means that if the initial estimate of T was poor,
JCBB might encounter significant error due to linearization
effects. Because JCBB does not update the prior as it
traverses the interpretation tree, this error will affect every
computation in the tree. With the approach above, the quality
of the estimate improves as we traverse the tree, decreasing
the effect of linearization errors.

However, in order to use this method in a branch-and-
bound type of search, we need to be able to compute the
posterior χ2 at each level of the tree. This might seem to be
problematic, since we have marginalized-out the posterior
positions of the landmarks. However, as we’ve shown previ-
ously, the desired χ2 error can be computed as a sum of the
χ2 of both individual sets of observations with respect to the
posterior. In other words, the posterior χ2 can be computed
in terms of the posterior T using the following procedure:

1) Compute the χ2 error associated with the prior on T
(characterized by mean µT and covariance ΣT ), χ2

T =
(x− µT )TΣ

−1
T (x− µT ).

2) For each associated pair of observations i and j

a) Compute the posterior position of the landmark
given the two observations and T . We do this
by projecting observation j into coordinate frame
A using rigid-body transformation T . Note that
for the purposes of this projection, T has no
uncertainty: it is already the desired posterior
transformation.

b) Combine the uncertain observation i and the
projected uncertain observation j using an EKF
update-like step.

c) Compute the χ2 of both observations with respect
to this posterior, and add it to the total.

3) Return the sum of all χ2 terms computed.
Note that each time we wish to compute the χ2 error for

the set of data associations, we re-compute the posterior po-

1The computational complexity can be further reduced by modifying the
EKF update step so that the values discarded during marginalization are
never actually computed.
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sitions for each landmark. This is because the posterior value
of T is updated at each level of the tree, and this affects the
χ2 error associated with each of the landmark pairs. If we had
not marginalized out the landmark positions at each level of
the tree, this re-computation would not be necessary. Despite
the seeming inefficiency of this procedure, we have traded
the quadratic cost of maintaining the landmark posteriors for
a linear cost associated with the algorithm above.

In summary, the IPJC algorithm follows the same general
pattern as JCBB; an interpretation tree is constructed, and a
search is conducted to find the best set of data associations.
The principle difference is that the χ2 error is computed
in terms of the posterior, rather than the prior. On linear
problems, IPJC computes exactly the same result, but IPJC
produces better quality results on non-linear problems due
to the steady improvement in the quality of the posterior.
Even more usefully, we show that by formulating the χ2 in
terms of the posterior, the complexity of the computations
performed at each node can be reduced from quadratic
asymptotic complexity to linear.

D. IPJC-Fast

The dominant computational cost of IPJC results from
constantly recomputing the posterior positions of the land-
marks and the resulting χ2 scores. We now describe an
improvement to IPJC that dramatically decreases computa-
tional complexity without compromising the accuracy of the
method.

The essential observation is that the χ2 strictly increases
as we progress down the interpretation tree. (This follows
from the fact that, at each level of the tree, we compute
the state estimate with the minimum χ2 error. Any future
modifications to the state estimate can only increase the
error.)

During the first few data associations, the state estimate
for T often changes significantly. But as we traverse farther
down the interpretation tree, T becomes more confident and
the state changes grow smaller. As a result, the χ2 for earlier
observations do not change very much.

This suggests a simple strategy: instead of recomputing the
χ2 cost of each observation at every node in the tree, simply
cache the values from the previous level. The resulting χ2

estimate will be strictly smaller than the true χ2. If this
lower-bound of the χ2 cost is greater than the χ2 threshold
used in the branch-and-bound search, the sub-tree rooted at
that node can be pruned.

Recall also that the branch-and-bound search also prunes
nodes whose χ2 error is worse than the best-known solution.
Whenever a node appears to be the new “best” solution, we
need to recompute the correct χ2 error in order to ensure
that it is correct.

As our results demonstrate, this “lazy” strategy pays off:
this algorithm, which we call IPJC-Fast, produces exactly the
same results as IPJC, but does so in a fraction of the time.
Neglecting the occasional need to recompute the full χ2 cost,
the asymptotic complexity at each node in the interpretation

tree is now O(1). This is in comparison to the quadratic costs
of JCBB.

IV. RESULTS

A. Simulation Results
In this experiment, and the other synthetic experiments that

follow, we simulated a planar robot operating in a field of
randomly-placed landmarks. In the linear experiments, the
robot has no orientation (or equivalently, has a “perfect”
compass) and observes the distance in the x̂ and ŷ direc-
tions to landmarks. In the non-linear experiments, the robot
acquires range-bearing observations. The sensor range and
obstacle density are configured so that around 15 landmarks
are visible from any given position. The robot trajectory is
sampled such that, between adjacent poses, there are around
10 matching landmarks.

B. Accuracy in comparison to the ideal χ2 distribution
We now wish to demonstrate that IPJC computes better

estimates of the true compatibility cost in non-linear prob-
lems. Our methodology relies on synthetic datasets in which
the magnitude of noise and data association can be known
with certainty. In this case, the compatibility cost of the true
data associations should obey a χ2 distribution.

Fig. 2 shows histograms of the computed compatibility
cost on a large number of trials versus the ideal distribution
(given by a χ2 distribution of the appropriate parameters).
Results are shown for JCBB, PJC, and IPJC, for both
low-noise and high-noise situations. All algorithms produce
reasonable results in low-noise situations, which is sensible
since linearization effects are minimized when noise is low.

However, in high-noise situations, the performance of the
algorithms is radically different. IPJC’s compatibility costs
follow the correct distribution much more closely than either
JCBB or PJC. (Recall that PJC does not incrementally update
the posterior, and so does not have the robustness to noise
that IPJC has.)

We can quantify the similarity of the histograms to
the ideal χ2 distributions by computing the likelihood of
sampling the empirical distribution from the ideal distri-
bution. These likelihoods substantiate our claims: IPJC’s
log-likelihood is -110.9, whereas JCBB’s log-likelihood is
-5748.6.

It is clear from Fig. 2 that JCBB has a tendency to
over-estimate the compatibility cost of true data associations
due to the effects of non-linearities. This effect is further
demonstrated by Fig. 3, which plots the compatibility costs
computed by our method versus JCBB. The high compati-
bility cost peaks computed by JCBB exceed the χ2 threshold
and result in false negative data associations. In high-noise
settings, JCBB incorrectly rejects many of the correct data
associations.

C. False vs True Positives
False negatives are problematic since they deprive a

SLAM solution of information that could improve the quality
of the map. However, false positives can be catastrophic,
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(a) k = 5, likelihood = -56.6 (b) k = 15, likelihood = -5748.6

PJ
C

(c) k = 5, likelihood = -88.1 (d) k = 15, likelihood = -12153.2

IP
JC

(e) k = 5, likelihood = -40.1 (f) k = 15, likelihood = -110.9

Fig. 2. Compatibility costs versus the ideal distribution. Given ground
truth, it is possible to determine the distribution of compatibility costs
that a data association algorithm should compute; this ideal distribution is
shown as a red line. For each algorithm we plot the empirical distribution
for two noise levels (algorithms span across rows; noise levels span
columns). At low noise levels (left column), each algorithm does fairly well.
However, at higher noise levels (right column), IPJC is dramatically more
accurate. The log likelihood is shown in each sub-caption and quantifies the
similarity between the empirical and ideal distribution; numbers closer to
zero represent greater similarity.

leading to divergence. We show the false positive and true
positive rates in Fig. 4. The performance of the algorithms is
plotted as a function of the noise magnitude, which increases
in the x axis. The figure demonstrates that IPJC and IPJC-
Fast produce higher fidelity results: both lower false positive
rates and higher true positive rates. Users can trade-off
performance in these categories by adjusting the χ2 data
association threshold.

We have included Sequential Compatibility Nearest
Neighbor (SCNN), which greedily matches features one at
a time (see [2] for more details). We have also included
RANSAC [14] for comparison. For RANSAC, we report re-
sults for the consensus threshold that maximized RANSAC’s
performance, and for two different iteration limits: one which
maximized accuracy (15000), and a second that represents a
reasonable compromise between quality and speed (5000).

D. Computational Cost

We now consider the computational cost of our methods
versus other data association methods. Fig. 5 demonstrates
that IPJC-Fast is consistently faster than JCBB, and that it

Fig. 3. Comparison of joint compatibility costs. Correct hypotheses are
used to calculate the compatibility costs in the proposed methods and
JCBB for two different noise levels. Linearization effects cause JCBB and
PJC to dramatically over-estimate the compatibility cost, which ultimately
causes errors in data association. IPJC computes lower and more accurate
compatibility costs.

does not suffer from the spikes in computational complexity
arising from linearization error that affect JCBB.

SCNN, as one of the simplest possible data association
algorithms, is the fastest method. However, it produces
significantly inferior data associations.

The time complexity of JCBB and IPJC-Fast are depen-
dent on the noise level in the problem: as noise increases,
more data association hypotheses appear plausible. As a re-
sult, more nodes in the interpretation tree must be expanded.
As shown by Fig. 6, IPJC and IPJC-Fast are both faster
in absolute terms, and exhibit slower growth in time. As
expected, SCNN and RANSAC are unaffected by the noise
level.

E. Victoria Park

Finally, we demonstrate our algorithm on a real-world
dataset: Victoria Park. We use the standard tree detection
method described in [15] for landmark observations. We
established ground truth based on the minimum-error con-
figuration using manually-verified data associations.

In order to make the fairest possible comparison to
RANSAC, we tuned the RANSAC parameters to optimize
its performance. Beginning with a very large number of
iterations, we searched for the consensus threshold that
minimized the error in the map, arriving at a value of
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False Positive Rate

True Positive Rate

Fig. 4. False and true positive rates. False positives can cause catastrophic
errors, but a high true positive rate is necessary to produce accurate maps.
For a given χ2 threshold, IPJC generates fewer false positives (excluding
RANSAC) and more true positives than the other methods. Note that IPJC
and IPJC-Fast produce precisely the same data. While RANSAC produces
fewer false positives at high noise levels, this comes at the cost of much
higher computational costs.

1.0 m. We then reduced the number of iterations in order
to improve runtime until the quality of the map started
increasing rapidly. In this way, we arrived at 5000 RANSAC
iterations, which is sensible given that each pose observes
around 15 landmarks, and two associations are required to
compute a rigid-body transformation.

F. Victoria Results
We built maps using several different data association

algorithms and then compute the posterior map using a sparse
Cholesky factorization method [16].

TABLE I
VICTORIA PARK MAP ACCURACY. The mean squared error is computed

versus a hand-annotated ground truth. IPJC and IPJC-Fast, which produce
the same results, are the most accurate of the tested methods.

SCNN RANSAC JCBB PJC IPJC IPJC-Fast
X Diverged 1.0470 0.5334 0.5731 0.2159 0.2159
Y Diverged 2.0367 0.9017 0.9934 0.5801 0.5801
θ Diverged 0.0074 0.0002 0.0001 0.0001 0.0001

The resulting maps are shown in Fig. 7. SCNN makes
data association errors that cause the maps to diverge. The

Fig. 5. Computational complexity. Spikes occur when large numbers of
features are detected. SCNN is the fastest method, but its accuracy makes it
unusable in most problems. IPJC-Fast consistently outperforms JCBB and
RANSAC.

Fig. 6. Computational complexity versus noise level. Joint compatibility
methods (including IPJC) tend to require more computation in high noise
environments, since more hypotheses appear plausible. However, the growth
rate for IPJC-Fast is much lower than for JCBB. RANSAC’s complexity is
independent of the level of noise, as expected.

remaining methods, RANSAC, JCBB, PJC, IPJC, and IPJC-
Fast produce visually indistinguishable maps. However, the
maps are not identical: due to differing true and false positive
rates, the quality of the maps varies between methods. Table I
shows the mean squared error for the various methods. IPJC-
Fast (which produces the same results as IPJC, just faster)
produces a higher-quality result than the other methods.

These performance differences can be explained by the
true and false positive rates; see Table II. IPJC and IPJC-
Fast have the highest true positive rate and the lowest false
positive rate of any of the methods considered.

We also show the computational costs associated with
the different data association methods in Fig. 8. Naturally,
SCNN is the fastest (though its quality is poor); IPJC-Fast
outperforms all other methods.

TABLE II
VICTORIA PARK TRUE/FALSE POSITIVE RATES. On this real-world data,
IPJC and IPJC-Fast outperform all other methods in both true positives

and false positives.

SCNN RANSAC JCBB PJC IPJC IPJC-Fast
True pos. 0.2410 0.9132 0.9565 0.9623 0.9818 0.9818
False pos. 0.0608 0.0121 0.0044 0.0018 0.0004 0.0004
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(a) SCNN (b) RANSAC

(c) JCBB (d) PJC, IPJC, IPJC-Fast

Fig. 7. Victoria Park posterior maps. We used each data association
algorithm to produce a pose graph that was then optimized using sparse
Cholesky decomposition. The graph generated by SCNN fails to converge
due to erroneous data associations. The remaining methods generated
visually reasonable graphs (visually indistinguishable in the case of PJC,
IPJC, and IPJC-Fast), though a numerical comparison to ground-truth shows
that IPJC-Fast’s map was the most accurate.

Fig. 8. Victoria Park Computational Complexity. IPJC-Fast was the fastest
of the methods that produced a reasonable map. SCNN ran in less time, but
the resulting map diverged due to data association errors.

V. CONCLUSION

We have presented IPJC-Fast, a new method for comput-
ing data associations that is both fast and accurate. It is
equivalent to the gold-standard JCBB on linear problems,
but is formulated in terms of the posterior distribution. It
exploits the probabilistic structure present in feature cloud
matching, a task common in both SLAM and in object
recognition, to achieve significant speed savings over JCBB.
Further, by updating the posterior distribution at each level
of the interpretation tree, IPJC-Fast computes more accurate
compatibility costs.

We demonstrated IPJC-Fast’s performance in both simu-
lation and on real data. With the help of ground-truth data,

we were able to show that the accuracy of the compati-
bility scores were significantly more consistent with those
predicted by a χ2 distribution. We also demonstrated our
method on the Victoria Park dataset, illustrating that it is
effective on real-world data.

On feature-cloud matching problems, IPJC-Fast rep-
resents significant improvements over existing methods,
including JCBB, RANSAC, and SCNN. Reference im-
plementations are available at the authors’ website,
http://april.eecs.umich.edu.
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Abstract

The central challenge in robotic mapping is obtaining reliable data associations (or “loop
closures”): state-of-the-art inference algorithms can fail catastrophically if even one erroneous
loop closure is incorporated into the map. Consequently, much work has been done to push
error rates closer to zero. However, a long-lived or multi-robot system will still encounter errors,
leading to system failure.

We propose a fundamentally different approach: allow richer error models that allow the
probability of a failure to be explicitly modeled. In other words, rather than characterizing loop
closures as being “right” or “wrong”, we propose characterizing the error of those loop closures
in a more expressive manner that can account for their non-Gaussian behavior. Our approach
leads to an fully-integrated Bayesian framework for dealing with error-prone data. Unlike earlier
multiple-hypothesis approaches, our approach avoids exponential memory complexity and is fast
enough for real-time performance.

We show that the proposed method not only allows loop closing errors to be automatically
identified, but also that in extreme cases, the “front-end” loop-validation systems can be un-
necessary. We demonstrate our system both on standard benchmarks and on the real-world
datasets that motivated this work.

1 Introduction

Robot mapping problems are often formulated as an inference problem on a factor graph: vari-

able nodes (representing the location of robots or other landmarks in the environment) are related

through factor nodes, which encode geometric relationships between those nodes. Recent Simulta-

neous Localization and Mapping (SLAM) algorithms can rapidly find maximum likelihood solutions

for maps, exploiting both fundamental improvements in the understanding of the structure of map-

ping problems [Newman, 1999, Frese, 2005, Dellaert, 2005], and the computational convenience

afforded by assuming that error models are simple uni-modal Gaussian [Smith et al., 1988].

Despite their convenience, Gaussian error models often poorly approximate the truth. In the

SLAM domain, perceptual aliasing can lead to incorrect loop closures, and the resulting error can

lead to divergence of the map estimate. Similarly, the wheels of a robot may sometimes grip and

1
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Figure 1: Recovering a map in the presence of erroneous loop closures. We evaluated the robustness
of our method by adding erroneous loop closures to the Intel data set. The top row reflects the
posterior map as computed by a state-of-the-art sparse Cholesky factorization method with 1, 10,
and 100 bad loop closures. The bottom row shows the posterior map for the same data set using
our proposed max mixture method. While earlier methods produce maps with increasing global
map deformation, our proposed method is essentially unaffected by the presence of the incorrect
loop closures.

sometimes slip, leading to a bi-modal motion model. Similar challenges arise throughout robotics,

including sonar and radar (with multi-path effects), target-tracking (where multiple disjoint hy-

potheses may warrant consideration), etc.

In the specific case of SLAM, it has become standard practice to decompose the problem

into two halves: a “front-end” and “back-end”. The front-end is responsible for identifying and

validating loop closures and constructing a factor graph; the back-end then performs inference

(often maximum likelihood) on this factor graph. In most of the literature, it is assumed that the

loop closures found by the front-end have noise that can be modeled as Gaussian.

For example, the front-end might assert that the robot is now at the same location that it was

ten minutes ago (it has “closed a loop”), with an uncertainty of 1 meter. Suppose, however, that

the robot was somewhere else entirely— a full 10 meters away. The back-end’s role is to compute

the maximum likelihood map, and an error of ten standard deviations is so profoundly unlikely

2
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that the back-end will almost certainly never recover the correct map: it is compelled to distort

the map so as to make the erroneous loop closure more probable (see Fig. 1).

The conventional strategy is to build better front-end systems. Indeed, much effort has been

devoted to creating better front-end systems [Neira and Tardos, 2001, Bailey, 2002, Olson, 2009b],

and these approaches have succeeded in vastly reducing the rate of errors. But for systems that

accumulate many robot-hours of operation, or robots operating in particularly challenging environ-

ments, even an extremely low error rate still results in errors. These errors lead to divergence of

the map and failure of the system.

Our recent efforts at building a team of robots that can cooperatively explore and map an urban

environment [Olson et al., 2012] illustrate the challenges, and motivated this work. At the time,

we modeled the uncertainty of odometry and loop closing edges with simple Gaussians, but despite

extensive validation of these edges prior to optimization, some of these edges had large errors that

were virtually impossible given their noise model. Even with a novel interface allowing a human to

help untangle the resulting map [Crossman et al., 2012], errors were still evident (see Fig. 7). Our

subsequent analysis revealed that odometry edges were often to blame. We had assumed a 15%

noise model, but our robots, driving under autonomous control, would occasionally get caught on

small, unsensed obstacles. As a result, the robot actually encountered 100% error—five standard

deviations given our prior noise model. The resulting error in our position estimates exacerbated the

perceptual aliasing problem: our incorrect position prior would argue against correct loop closure

hypotheses, and would favor some incorrect hypotheses.

In this paper, we propose a novel approach that allows efficient maximum-likelihood inference

on factor graph networks that contain arbitrarily complex probability distributions. This is in

contrast to state-of-the-art factor graph based methods, which are limited to uni-modal Gaussian

distributions, and which suffer from the real-world problems described above. Specifically, we

propose a new type of mixture model, a max -mixture, which provides similar expressivity as a

sum-mixture, but avoids the associated computational costs. With such a mixture, the “slip or

grip” odometry problem can be modeled as a multi-modal distribution, and loop closures can be

accompanied by a “null” hypothesis. In essence, the back-end optimization system serves as a part

of the front-end— playing an important role in validating loop closures and preventing divergence

of the map.

We will demonstrate our system on real data, showing that it can easily handle the error rates

of current front-end data validation systems, allowing robust operation even when these systems
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produce poor output. We will also illustrate that, in extreme cases, no front-end loop validation

is required at all: all candidate loop closures can simply be added to the factor graph, and our

approach simultaneously produces a maximum likelihood map while identifying the set of edges

that are correct. This is an interesting development, since it provides a fully integrated Bayesian

treatment of both mapping and data association, tasks which are usually decoupled.

It has previously been shown that exact inference on even poly-trees of mixtures is NP-hard [Lerner and Parr, 2001].

Our method avoids exponential complexity at the expense of guaranteed convergence to the maxi-

mum likelihood solution. In this paper, we explore the robustness of our method, and characterize

the error rates that can be handled.

In short, the contributions of this paper are:

• We formulate a new mixture model that provides significant computational advantages over

the more traditional sum-of-Gaussians mixtures, while retaining similar expressive power.

• We develop an algorithm for fast maximum-likelihood inference on factor graph networks

containing these max-mixtures.

• We demonstrate how robot mapping systems can use these methods to robustly handle errors

in odometry and loop-closing systems.

• We characterize the robustness of our method to local minima, identifying factors (like error

rate and overall graph degree) and their impact. We show that the basin of convergence is

large for a variety of benchmark 2D and 3D datasets over a range of plausible parameter

values.

• We evaluate our algorithm on real-world datasets to demonstrate its practical applicability

both in terms of the quality of results and the computation time required.

2 Related Work

We are not the first to consider estimation in the presence of non-Gaussian noise. Two well-

known methods allow more complex error models to be used: particle filter methods and multiple

hypothesis tracking (MHT) approaches.

Particle filters, perhaps best exemplified by FastSLAM [Montemerlo, 2003], approximate ar-

bitrary probability distributions through a finite number of samples. Particle filters attempt to
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explicitly (and non-parametrically) describe the posterior distribution. Unfortunately, the poste-

rior grows in complexity over time, requiring an ever-increasing number of particles to maintain the

quality of the posterior approximation. This growth quickly becomes untenable, forcing practical

implementations to employ particle resampling techniques [Hähnel et al., 2003, Kwak et al., 2007,

Stachniss et al., 2005]. Unavoidably, resampling leads to a loss of information, since areas with

low probability density are effectively truncated to zero. This loss of information can make

it difficult to recover the correct solution, particularly after a protracted period of high uncer-

tainty [Bailey et al., 2006, Grisetti et al., 2005].

Multiple Hypothesis Tracking approaches [Durrant-Whyte et al., 2003, Blackman, 2004] pro-

vide an alternative approach more closely related to mixture models. These explicitly represent the

posterior using an ensemble of Gaussians that collectively encode a mixture. However, the size of

the ensemble also grows rapidly: the posterior distribution arising from N observations each with

c components is a mixture with cN components. As with particle filters, this exponential blow-up

quickly becomes intractable, forcing approximations that cause information loss and ultimately

lead to errors.

In the special case where errors are modeled as uni-modal Gaussians, the maximum likelihood

solution of the factor graph network can be found using non-linear least squares. Beginning with

the observation that the information matrix is sparse [Thrun and Liu, 2003, Walter et al., 2005,

Eustice et al., 2006], efforts to exploit that sparsity resulted in rapid improvements to map inference

by leveraging sparse factorization and good variable-ordering heuristics [Dellaert and Kaess, 2006,

Kaess et al., 2008, Konolige, 2010, Agarwal and Olson, 2012]. While the fastest of these meth-

ods generally provide only maximum-likelihood inference (a shortcoming shared by our proposed

method), approximate marginal estimation methods are fast and easy to implement [Bosse et al., 2004,

Olson, 2008]. It is highly desirable for new methods to be able to leverage the same insights that

made these approaches so effective.

Sum-mixtures of Gaussians have been recently been explored [Pfingsthorn and Birk, 2012]. The

mixtures are converted into uni-modal Gaussians via a “pre-filtering” step, yielding a problem that

can be approximately solved using standard sparse methods. Another approach for increasing

robustness is to use the χ2 of individual measurements in order to identify clusters of mutually-

consistent loop closures [Latif et al., 2012b]. This mutual consistency can be re-evaluated as new

information arrives [Latif et al., 2012a]. The “max-mixture” approach described in this paper dif-

fers from these approaches in that the challenging process of approximating a sum-mixture is
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avoided, and that the set of activated modes is intrinsically re-evaluated at every iteration.

One method similar to our own explicitly introduces switching variables whose value determines

whether or not a loop closure is accepted [Sunderhauf and Protzel, 2012]. This work is notable for

being the first to propose a practical way of dealing with front-end errors. In comparison to

our approach, they penalize the activation/deactivation of a loop closure through a separate cost

function (as opposed to being integrated into a mixture model), and must assign initial values

to these switching variables (as opposed to our implicit inference over the latent variables). Our

approach does not introduce switching variables, instead explaining poor quality data in the form

of a non-Gaussian probability density function which can be arbitrarily complex (including having

multiple maxima).

Robustified cost functions [Hartley and Zisserman, 2004] provide resilience to errors by reducing

the cost associated with outliers, and have been widely used in the vision community [Strasdat et al., 2010,

Sibley et al., 2009]. Our proposed max-mixture model can approximate arbitrary probability dis-

tributions, including those arising from robustified cost functions.

Our proposed method avoids the exponential growth in memory requirements of particle filter

and MHT approaches by avoiding an explicit representation of the posterior density. Instead, like

other methods based on sparse factorization, our method extracts a maximum likelihood estimate.

Critically, while the memory cost of representing the posterior distribution grows exponentially,

the cost of storing the underlying factor graph network (which implicitly encodes the posterior)

grows only linearly with the size of the network. In other words, our method (which only stores the

factor graph) can recover solutions that would have been culled by particle and MHT approaches.

In addition, our approach benefits from the same sparsity and variable-ordering insights that have

recently benefited uni-modal approaches.

3 Approach

Our goal is to infer the posterior distribution of the state variable (or map) x, which can be written

in terms of the factor potentials in the factor graph. The probability is conditioned on sensor

observations z; with an application of Bayes’ rule and by assuming an uninformative prior p(x), we

obtain:

p(x|z) ∝
∏

i

p(zi|x) (1)

Prior to this work, it is generally assumed that the factor potentials p(zi|x) can be written as
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Gaussians:

p(zi|x) =
1

(2π)n/2|Λ−1
i |1/2

e−
1
2 (fi(x)−zi)TΛi(fi(x)−zi) (2)

Further, while fi(x) is generally non-linear, it is assumed that it can be approximated using a

first-order Taylor expansion such that fi(x) ≈ Ji∆x+ fi(x0).

The posterior maximum likelihood value can be easily solved in such cases by taking the log-

arithm of Eqn. 1, differentiating with respect to x, then solving for x. This classic least-squares

approach leads to a simple linear system of the form Ax = b. Critically, this is possible because

the logarithm operator can be “pushed” inside the product in Eqn. 1, reducing the product of N

terms into a sum of N simple quadratic terms. No logarithms or exponentials remain, making the

resulting expression easy to solve.

We might now consider a more complicated function pi(x|z), such as a sum-mixture of Gaus-

sians:

p(zi|x) =
∑

i

wiN(µi,Λ
−1
i ) (3)

In this case, each N(µi,Λ
−1
i ) represents a different Gaussian distribution. Such a sum-mixture

allows great flexibility in specifying the distribution p(zi|x). For example, we can encode a robus-

tified cost function by using two components with the same mean, but with different variances.

More complicated distributions, including those with multiple maxima, can also be represented.

The problem with a sum-mixture is that the maximum likelihood solution is no longer simple:

the logarithm can no longer be pushed all the way into the individual Gaussian components: the

summation in Eqn. 3 prevents it. As a result, the introduction of a sum-mixture means that it is

no longer possible to derive a simple solution for x.

3.1 Max-Mixtures

Our solution to this problem is a new mixture model type, one based on a max operator rather

than a sum:

p(zi|x) = max
i

wiN(µi,Λ
−1
i ) (4)

While the change is relatively minor, the implications to optimization are profound. The loga-

rithm can be pushed inside a max mixture: the max operator acts as a selector, returning a single

well-behaved Gaussian component.

A max mixture has much of the same character as a sum mixture and retains a similar ex-
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Figure 2: Mixture Overview. Given two mixture components (top left), the max- and sum- mixtures
produce different distributions. In both cases, arbitrary distributions can be approximated. A
robustified cost function (in this case a corrupted Gaussian, bottom) can be constructed from two
Gaussian components with equal means but different variances.
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pressivity: multi-modal distributions and robustified distributions can be similarly represented (see

Fig. 2). Note, however, that when fitting a mixture to a desired probability distribution, different

components will result for sum- and max- mixtures. Assuring that the distributions integrate to

one is also handled differently: for a sum mixture,
∑

wi = 1 is a necessary and sufficient condi-

tion; for a max mixture, proper normalization is generally more difficult to guarantee. Usefully,

for maximum likelihood inference, it is inconsequential whether the distribution integrates to 1.

Specifically, suppose that some normalization factor γ is required in order to ensure that a max

mixture integrates to one. Since γ is used to scale the distribution, the log of the resulting max

mixture is simply the log of the un-normalized distribution plus a constant. The addition of such a

constant does not change the solution of a maximum-likelihood problem, and thus it is unnecessary

for our purposes to compute γ.

3.2 Cholesky-MM

We now show how max mixture distributions can be incorporated into existing graph optimization

frameworks. The principle step in such a framework is to compute the Jacobian, residual, and

information matrix for each factor potential. As we described previously, these are trivial to

compute for a uni-modal Gaussian distribution.

For the max-mixture case, it might seem that computing the needed derivatives for the Jaco-

bian is difficult: the max-mixture is not actually differentiable at the points where the maximum-

likelihood component changes. While this makes it difficult to write a closed-form expression for

the derivatives, they are none-the-less easy to compute.

The key observation is that the max operator serves as a selector: once the mixture component

with the maximum likelihood is known, the behavior of the other mixture components is irrelevant.

In other words, the solver simply iterates over each of the components, identifies the most probable,

then returns the Jacobian, residual, and information matrix for that component. If the likelihood

of two components are tied—an event which corresponds to evaluating the Jacobian at a non-

differentiable point—we pick one of the components arbitrarily. However, these boundary regions

comprise an area with zero probability mass.

The resulting Jacobians, residuals, and information matrices are combined into a large least-

squares problem which we subsequently solve with a minimum-degree variable ordering heuristic

followed by sparse Cholesky factorization using Gauss-Newton steps, in a manner similar to that

described by [Dellaert, 2005]. With our modifications to handle max-mixtures, we call our system
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Cholesky-MM.

It is often necessary to iterate the full least-squares problem several times. Each time, the

best component in each max-mixture is re-evaluated: in essence, as the optimization proceeds, we

dynamically select the best mixture component as an integral part of the optimization process.

Even in the non-mixture case, this sort of non-linear optimization cannot guarantee convergence

to the global optimal solution. It is useful to think of a given inference problem as having a “basin

of convergence”— a region that contains all the initial values of x that would ultimately converge

to the global optimal solution. For most well-behaved problems with simple Gaussian distributions,

the basin of convergence is large. Divergence occurs when the linearization error is so severe that

the gradient points in the wrong direction.

The posterior distribution for a network with N mixtures, each with c components, is a mixture

with as many as cN components. In the worst-case, these could be non-overlapping, resulting in

cN local minima. The global optimal solution still has a basin of convergence: if our initial solution

is “close” to the optimal solution, our algorithm will converge. But if the basin of convergence is

extremely small, then the practical utility of our algorithm will be limited.

In other words, the key question to be answered about our approach is whether the basin of

convergence is usefully large. Naturally, the size of this basin is strongly affected by the properties

of the problem and the robustness of the algorithm used to search for a solution. One of the main

results of this paper is to show that our approach yields a large basin of convergence for a wide

range of useful robotics problems.

4 Applications and Evaluation

In this section, we show how our approach can be applied to several real-world problems. We

include quantitative evaluations of the performance of our algorithm, as well as characterize its

robustness and runtime performance.

4.1 Uncertain loop closures

We first consider the case where we have a front-end that produces loop closures with a relatively

low, but non-zero, error rate. For each uncertain loop closure, we introduce a max-mixture con-

sisting of two components: 1) the front-end’s loop closure and 2) a null hypothesis. The null

hypothesis, representing the case when the loop closure is wrong, is implemented using a mixture
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component with a very large covariance. In our experiments, we set the mean of the null-hypothesis

component equal to that of the other component. Weights and variances are assigned to these two

components in accordance with the error rate of the front-end.

In practice, the behavior of the algorithm is not particularly sensitive to the weights associated

with the null hypotheses. The main benefit of our approach arises from having a larger probability

associated with incorrect loop closures, as opposed to the exponentially-fast decreasing probability

specified by the loop closer’s Gaussian. Even if the null hypothesis has a very low weight (for

example 10−5), it will provide a sufficiently plausible explanation of the data to prevent a radical

distortion of the graph. Second, once the null hypothesis becomes dominant, its large variance

results in a very weak gradient for the edge. As a result, the edge plays virtually no role in

subsequent optimization. We set the mean of the null hypothesis equal to that of the front-end’s

hypothesis so that the small amount of gradient that remains produces a slight bias back towards

the front-end’s hypothesis. If subsequent observations re-affirm the front-end’s hypothesis, it can

still become active in the future. Unlike particle filter or MHT methods which must eventually

truncate unlikely events, no information is lost.

A two-component mixture model in which both components have identical means but different

variances can be viewed as a robustified cost function. In particular, parameters can be chosen so

that a two-component max mixture closely approximates a corrupted Gaussian [Hartley and Zisserman, 2004]

(see Fig. 2).

To evaluate the performance of our approach, we added randomly-generated loop closures to

two standard benchmark datasets: the 3500 node Manhattan set [Olson, 2008] and the Intel data

set [Howard and Roy, 2003]. These were processed in an online fashion, adding one pose at a time

and potentially one or more loop closures (both correct and incorrect). This mimics real-world

operation better than a batch approach, and is more challenging due to the fact that it is easier

to become caught in a local minimum since fewer edges are available to guide the optimization

towards the global optimum.

For a given number of randomly-generated edges, we compute the posterior map generated

by our method and a standard non-mixture method, using a laser-odometry solution as the ini-

tial state estimate. The mean-squared error of this map is compared to the global optimal solu-

tion [Olson, 2011], and listed in Fig. 3.

Our proposed method achieves dramatically lower mean squared errors (MSE)1 than standard

1We report MSE based on translational error, i.e. MSExy for 3dof and MSExyz for 6dof problems.
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Manhattan Data Set
True False True False Avg. MSE MSE
Edges Edges Pos. Pos. FP Err. (Our method) (Non-mixture)

2099 0 2099 0 NaN 0.6726 0.6726
2099 10 2099 0 NaN 0.6713 525.27
2099 100 2099 1 0.0208 0.6850 839.39
2099 200 2099 2 0.5001 0.6861 874.67
2099 500 2099 3 0.6477 0.6997 888.82
2099 1000 2099 10 0.7155 0.7195 893.98
2099 2000 2099 22 0.5947 0.7151 892.54
2099 3000 2099 36 0.5821 0.7316 896.01
2099 4000 2099 51 0.6155 0.8317 896.05

Intel Data Set
True False True False Avg. MSE MSE
Edges Edges Pos. Pos. FP Err. (Our method) (Non-mixture)

14731 0 14731 0 NaN 7.122x10−10 1.55x10−9

14731 10 14731 0 NaN 7.123x10−10 0.044
14731 100 14731 2 0.1769 4.431x10−6 2.919
14731 200 14731 9 0.1960 5.583x10−6 8.810
14731 500 14731 19 0.1676 1.256x10−5 34.49
14731 1000 14731 29 0.1851 5.840x10−5 71.86
14731 2000 14731 64 0.1937 2.543x10−4 86.37
14731 3000 14731 103 0.1896 3.307x10−4 91.04
14731 4000 14217 146 0.1699 0.014 95.36

Figure 3: Null-hypothesis robustness. We evaluate the robustness of our method and a standard
Gaussian method to the presence of randomly-generated edges. As the number of randomly-
generated edges increases, the mean squared error (MSE) of standard approaches rapidly degener-
ates; our proposed method produces good maps even when the number of randomly-generated edges
is large in comparison to the number of true edges. Our approach does accept some randomly-
generated edges (labeled “false positives” above), however the error of these accepted edges is
comparable to that of the true positives. In each case, the initial state estimate is that from the
open-loop odometry.

non-mixture versions. While the true positive rate is nearly perfect in both experiments, some

randomly-generated edges (labeled false positives) are accepted by our system. However, since the

false positives are randomly generated, some of them (by chance) are actually close to the truth.

Such “accidentally correct” edges should be accepted by our algorithm2.

We can evaluate the quality of the accepted edges by comparing the error distribution of the

true positives and false positives (see Fig. 4). As the histogram indicates, the error distribution

is similar, though the error distribution for the false positives is slightly worse than for the true

positives. Still, no extreme outliers (the type that cause divergence of the map) are accepted by

2We favor generating “false positives” in a purely random way, even though it leads to “accidentally” correct
edges. Any filtering operation to reject these low-error edges would introduce a free parameter (the error threshold)
whose value could be tuned to favor the algorithm.

12
Distribution A: Approved for public release. Distribution is unlimited



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

Difference between true distance and
 false positive edge length (meters)

to
ta

l n
um

be
r o

f f
al

se
 p

os
itiv

es

Analysis of false positive edges

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2000

4000

6000

8000

10000

12000

Difference between true distance and
 true positive edge length (meters)

to
ta

l n
um

be
r o

f t
ru

e 
po

sit
ive

s

Analysis of true positive edges

Figure 4: Error distribution for true and false positives. Our method accepts some randomly-
generated “false positives”, but an analysis of the error of those edges indicates that they (left) are
only slightly worse than the error of true edges (right).

our method.

4.1.1 Extension to 6DOF

While many important domains can be described in terms of planar motion (with three-dimensional

factor potentials reflecting translation in x, translation in y, and rotation), there is increasing

interest in 6 degree-of-freedom problems. Rotation is a major source of non-linearity in SLAM

problems, and full six degree-of-freedom problems can be particularly challenging.

To evaluate the performance of our method on a six degree-of-freedom problem, we used the

benchmark Sphere2500 dataset [Kaess et al., 2008]. This dataset does not contain incorrect loop

closures, and so we added additional erroneous loop closures. In Fig. 5, we show the results of a

standard Cholesky solver and our max mixture approach applied to corrupted Sphere2500 dataset

with an additional 1, 10, and 100 erroneous edges. As in previous examples, the maps produced

by a standard method quickly deteriorate. In contrast, the proposed method produces posterior

maps that are essentially unaffected by the errors. In this experiment, each loop closure edge in

the graph (both correct and false) was modeled as a two-component max mixture in which the

second component had a large variance (107 times larger than the hypothesis itself) and a small
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Figure 5: Recovering a map in the presence of outliers. We evaluated the robustness of our method
by adding erroneous loop closure edges to the Sphere2500 dataset, a dataset with a full 6 degrees-
of-freedom. The top row reflects the posterior of the map with a standard least square Cholesky
solver with 1, 10, and 100 wrong edges. The bottom row shows the corresponding map for the
same dataset using max mixtures method.

weight (10−7). The method is relatively insensitive to the particular values used: the critical factor

is ensuring that, if the hypothesis is incorrect, the null hypothesis provides a higher probability

explanation than the putative (incorrect) hypothesis, and that the null hypothesis is sufficiently

weak so as to not distort the final solution. The impact of the relative strength of the null hypothesis

on the basin of convergence is explored experimentally in Sec. 4.5.

4.2 Multi-modal distributions

In the previous sections, we demonstrated that our method can be used to encode null hypotheses, or

equivalently, implement robustified cost functions—a capability similar to earlier work [Sunderhauf and Protzel, 2012].

In that case, the probability distributions being approximated by each mixture have only a sin-

gle maximum. Our use of a mixture model, however, also allows multi-modal distributions to be

encoded. The ability to directly represent multi-modal distributions is a feature of our approach.
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4.2.1 Slip or Grip problem

One of the original motivating problems of this work was dealing with the “slip or grip” problem:

the case where a robot’s wheels occasionally slip catastrophically, resulting in near zero motion.

With a typical odometry noise model of 10-20%, such an outcome would wreak havoc on the

posterior map.

Our approach to the “slip or grip” problem is to use a two-component mixture model: one

component (with a large weight) corresponds to the usual 15% noise model, while the second

component (with a low weight) is centered around zero. No changes to our optimization algorithm

are required to handle such a case. However, since the distribution now has multiple local maxima,

it poses a greater challenge in terms of robustness.

Of course, without some independent source of information that contradicts the odometry data,

there is no way to determine that the wheels were slipping. To provide this independent information,

we used a state-of-the-art scan matching system [Olson, 2009a] to generate loop closures. We

manually induced wheel slippage by pulling on the robot. Despite the good loop closures, standard

methods are unable to recover the correct map. In contrast, our method determines that “slip”

mode is more likely than the “grip” mode, and recovers the correct map (see Fig. 6).

As part of our earlier multi-robot mapping work [Ranganathan et al., 2010, Olson et al., 2012],

Figure 6: Slip or Grip Example. We evaluate the ability of our algorithm to recover a good map in
the presence of catastrophically slipping wheels. In this case, the robot is obtaining loop closures
using a conventional laser scanner front-end. These loop closures are of high quality, but the
odometry edges still cause significant map distortions when using standard methods (left). When a
small probability is added to account for slippage, our mixture approach recovers a much improved
map (right).
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we employed a team of 14 robots to explore a large urban environment. Wheel slippage contributed

to a poor map in two ways: 1) the erroneous factor potentials themselves, and 2) the inability to

identify good loop closures due to a low quality motion estimate. By using a better odometry

model, our online system produced a significantly improved map (see Fig. 7).

4.2.2 Simplifying the Front End with “one-of-k” Formulation

In current approaches, front-end systems are typically responsible for validating loop closures prior

to adding them to the factor graph network. However, if the back-end can recover from errors, is

it possible to omit the filtering entirely?

In certain cases, our inference method can eliminate the need for loop validation by the front-

end. This is desirable from a conceptual standpoint: in principle, a better map should result

from handling loop closing and mapping from within an integrated Bayesian framework. The

conventional decoupling of mapping into a front-end and back-end, while practical, prevents a fully

Bayesian solution.

We evaluated this possibility using the Intel data set. At every pose, a laser scan matcher

attempts a match to every previous pose. The top k matches (as measured by overlap of the two

scans) are formed into a mixture containing k + 1 components. (The extra component remains a

null hypothesis to handle the case where all k matches are incorrect.) To push the experiment as

far as possible, no position information was used to prune the set of k matches. Larger values of

Figure 7: Online results using odometry mixture model. The left figure shows a map of a 30m
× 25m area in which our multi-robot urban mapping team produced a poor map due to wheel
slippage and the ensuing inability to find loop-closures. With our odometry mixture model (right),
the wheel slippage is (implicitly) detected, and we find additional loop closures. The result is a
significantly improved map.
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k provide robustness against perceptual aliasing, since it increases the likelihood that the correct

match is present somewhere within the set of k components.

Map

Scan alignments

Figure 8: Data-association as a mixture. Given a query pose (red square at bottom of map), we
perform a brute-force scan matching operation to all previous poses. The best 4 scan match results,
based on overlap, are added to a max-mixture model that also includes a null hypothesis. The
position of the best matches are shown as blue circles, and the corresponding scan matches shown
at the bottom. The similarity in appearance between the blue poses represents a significant degree
of perceptual aliasing. The scan matcher finds two correct matches and two incorrect matches.
The two correct matches are the two blue circles at the bottom of the map and the first two scan
alignments.
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An example of one mixture with k = 4 putative matches is shown in Fig. 8. The weight of the

components is set in proportion to the score of the scan matcher.

Running our system in an online fashion, we obtain the final map shown in Fig. 9. Online

operation is more difficult than batch operation, since there is less information available early on

to correct erroneous edges. Our system recovers a consistent global map despite the lack of any

front-end loop validation.

The quality of the open-loop trajectory estimate plays an important role in determining whether

the initial state estimate is within the basin of convergence. In this case, our open-loop trajectory

estimate is fairly good, and our method is able to infer the correct mode for each mixture despite

the lack of any front-end loop validation.

The robustness of our method is amplified by better front-end systems: with better quality loop

closures, the basin of convergence is enlarged, allowing good maps to be computed even when the

open-loop trajectory is poor.

Figure 9: Intel without front-end loop validation. Our system can identify correct loop closures and
compute a posterior map from within a single integrated Bayesian framework (right); the typical
front-end loop validation has been replaced with a k+ 1 mixture component containing the k best
laser scan matches (based purely on overlap) plus a null hypothesis. In this experiment, we used
k = 5. For reference, the open-loop trajectory of the robot is given on the left.
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4.2.3 Performance Impact of Uncertainty Modeling

In the previous section, uncertain data associations were modeled as “one-of-k” mixtures, in which

multiple candidate loop closures were grouped together in a single edge. Alternatively, each can-

didate loop closure could be encoded as a two-component mixture in a “null-hypothesis” style

mixture; this approach is well-suited to the case where little is known about alternatives to a pu-

tative loop closure, while still allowing for the possibility that it is incorrect. (It is also possible

that the mixture components have no obvious semantic meaning: the mixture model could simply

be approximating a more complex distribution. For example, a max mixture could be fit to an

empirically derived cost function from a correlation-based scan matcher [Olson, 2009a]).

In this section, we explore the performance impact of “one-of-k” mixtures versus “null-hypothesis”

mixtures. Consider a “one-of-k” mixture consisting of three candidate loop closures plus a null

hypothesis: {L1, L2, L3, null}. This can be transformed into three “null-hypothesis” mixtures:

{L1, null}, {L2, null}, and {L3, null}. These two formulations are not exactly equivalent: the “one-

of-k” encodes mutual-exclusion between the hypotheses, whereas the k separate “null-hypotheses”

would permit solutions in which more than one of the loop closures was accepted. In many practical

situations, however, the semantic difference is relatively minor. In this section, we show that the

performance impact of this choice can be dramatic.

In Table 1, we show results from an experiment in which both formulations were used. We

consider the case where loop hypotheses are generated in pairs and in triples; this leads to “one-of-k”

mixtures with three and four components respectively once a null hypothesis is added. For the “one-

of-k” formulation, the null hypotheses has a mean chosen randomly from one of the k constraints

and a large variance roughly the size of the whole map. An alternative graph, constructed from

“null-hypothesis” mixtures is constructed from the same sets of loop closure hypotheses; naturally,

each of these has two components.

An obvious difference between the two formulations is the number of edges in the graph: the

“null-hypothesis” approach creates many more edges. That alone can be expected to increase

computational time versus a “one-of-k” encoding. However, a more critical scaling issue becomes

apparent: the “null-hypothesis” formulation leads to dramatically higher fill-in due to the fact that

more nodes are connected to factor potentials. In contrast, a “one-of-k” edge does not contribute

the same fill-in, since only one of the components in the mixture has any effect during a single

Cholesky iteration. In other words, the max operator in the max mixture formulation effectively
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Dataset Switchable constraints bi-modal MM k-modal MM
manhattan iter time (s) 0.90 s 0.74 s 0.13 s
with k = 2 fill-in (%) 1.50 % 2.89 % 0.17 %

outliers = 2099 #loop edges 4198 4198 2099
#components - 2 3

manhattan iter time (s) 1.5 s 1.2 s 0.13 s
with k = 3 fill-in (%) 1.70 % 4.30 % 0.17 %

outliers= 4198 #loop edges 6277 6277 2099
#components - 2 4

Table 1: Runtime comparison between switchable constraints, “null-hypothesis”, “one-of-k” for-
mulations. Groups of related hypotheses were generated and either grouped as a single set of
mutually-exclusive edges (one-of-k), individually associated with a null hypothesis, or individually
associated with a switching variable [Sunderhauf and Protzel, 2012]. Using the one-of-k formulation
reduces the effective connectivity in the graph, reducing fill-in, and resulting in faster computation
time.

severs edges corresponding to sub-dominant mixture components, improving the sparsity of the

information matrix.

The difference in fill-in leads to significant increases in runtime: on the Manhatten-3500 dataset

with groups of three candidate hypotheses, moving from a “one-of-k” to a “null-hypothesis” for-

mulation causes an increase in non-zero entries from 0.17% to 4.3%, with a corresponding increase

in computation time from 0.13 s to 1.2 s.

Table 1 also reports runtimes for Sünderhauf’s switchable constraints approach [Sunderhauf and Protzel, 2012],

which adds an additional “switching” variable for every edge. In this way, it is semantically compa-

rable to the “null-hypothesis” approach, though the formulation is somewhat different. The runtime

of the switchable constraints approach, 1.5 s, is somewhat worse than “null-hypothesis” approach

and much worse than the “one-of-k” approach. (Note, for this comparison, all methods were imple-

mented in the g2o [Kummerle et al., 2011] framework using CHOLMOD with a COLAMD variable

ordering.)

These results suggest that, when semantically reasonable to do so, it is preferable to use “one-

of-k” mixtures rather than either “null-hypothesis” mixtures or switchable constraints.

4.3 Robustness

We have identified two basic factors that have a significant influence on the success of our method:

the number of incorrect loop closures and the node degree of the graph. The node degree is an

important factor because it determines how over-determined the system is: it determines the degree
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Figure 10: Effect of error rate and node degree on robustness. We evaluate the quality of posterior
maps (in terms of mean squared error) as a function of the percentage of bad edges and the node
degree of the graph. Each data point represents the average of 3,000 random trials; the standard
error is also plotted showing that the results are significant. The quality of the posterior graph is
robust to even high levels of error, and is improved further by problems with a high node degree.
Our methods, regardless of settings, dramatically out-perform non-mixture methods (black dotted
line).

to which correct edges can “overpower” incorrect edges.

To illustrate the relationship between these factors and the resulting quality of the map (mea-

sured in terms of mean squared error), we considered a range of loop-closing error rates (ranging

from 0% to 100%) for graphs with an average node degree of 4, 8, and 12. Note that an error rate

of 80% means that incorrect loop closures outnumber correct loop closures by a ratio of 4:1. In

each case, the vehicle’s noisy odometry is also provided. For each condition, we evaluate the perfor-

mance of our method on 100,000 randomly-generated Manhattan-world graphs (see Fig. 10). Our

method produces good maps even when the error rate is very high, and the performance improves

further with increasing node degree. In contrast, a standard non-mixture approach diverges almost

immediately.

4.4 Runtime Performance

The performance of our method is comparable to existing state-of-the-art sparse factorization meth-

ods (see Fig. 11). It takes additional time to identify the maximum likelihood mode for each mixture,

but this cost is minor in comparison to the cost of solving the resulting linear system.
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Figure 11: Runtime performance. Using the Intel dataset, we plot the time required to compute
a posterior map after every pose, using a batch solver. Our Intel dataset contains 875 nodes and
15605 edges, and each edge is modeled as a two-component max-mixture with a null hypothesis.
The additional cost of handling mixtures is quite small in comparison to the total computation
time. Run times were computed using the Java-based april.graph library, which is slower than g2o,
but exhibits the same scaling behavior as other methods.

4.5 Basin of Convergence

A key issue in non-linear optimization methods is whether the globally optimal solution will be

found, or whether the optimization process will get stuck in a local minimum. This is a function

of the initial solution as well as the parameters of the problem. In this section, we describe the

effects of these parameters on the robustness of our method, as well as an experiment to empirically

evaluate the magnitude of these effects.

The effect of the initial solution is relatively straight-forward: some initial solutions provide a

better path for the optimization system to follow. In high-noise cases, some initial solutions may

be far from the desired solution and in a different basin of convergence, leading to a poor solution.

We consider two initializations: 1) open-loop odometry (well-suited to online optimization) and

2) an approach which initializes each node relative to its oldest neighbor (a heuristic used by

TORO [Grisetti et al., 2007] and implemented within g2o [Kummerle et al., 2011], most useful in

batch processing).

The type of errors that occur also affect the robustness of the method. In this analysis, we

consider four types of erroneous loop closures based on the Vertigo package [Sünderhauf, 2012]:

1) random errors, 2) locally clustered (but not mutually consistent) errors, 3) randomly grouped
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errors in which the groups are mutually consistent (group size = 10), and 4) locally grouped errors

(group size = 10).

The relative “strength” of the null hypothesis in comparison to the putative hypothesis also

has an effect on the optimization. This strength can be described in terms of two parameters.

The weight parameter (w) is the mixing parameter associated with the null-hypothesis component.

Larger values of w increase the likelihood of the null hypothesis and cause the system to reject more

of the putative hypotheses. If w is too small, and the system will accept incorrect hypotheses.

The second parameter, s, is the scale factor used in generating the information matrix associated

with the null hypothesis from the information matrix associated with the putative hypothesis.

When s = 1, both mixture components are identical and thus no robustness from the method can

be expected. Smaller values (closer to zero) of s yield null hypotheses that are less certain than the

putative hypothesis. This is equivalent to increasing its covariance, which pushes more probability

mass away from the mean. This not only allows the null-hypothesis to produce a higher probability

explanation of observed data, but also results in less curvature in the cost function. As s gets

smaller, the cost function becomes increasingly flat, decreasing any influence of the mixture on the

posterior solution.

We explore the effect of these parameters in Fig. 12. Columns of the table represent the four

different outlier generation strategies and rows represent different data sets and initializations (not

all combinations are presented for space reasons). Within each cell, the parameters w and s are

swept resulting in a two-dimensional grid of map scores. At each data point, a graph was constructed

and solved using the max mixture method and the log of the mean squared error (evaluated with

respect to ground truth) is plotted according to color.

The data in Fig. 12 shows graphically how to tune the free parameters w and s to maximize

the quality of the resulting map. Across virtually all of the experiments, the best performance

is generally found in the lower right corner of the parameter sweep. This area corresponds to

null-hypotheses with relatively large weights and low-information (equivalently large covariances).

However, it is also evident that the region of good performance (which we subjectively appraise to

be mean squared errors less than about about −1) is quite large in almost all cases. From these

results, we conclude that the method is robust across many orders of magnitude of w and s, and

that in general, w should be made relatively close to 1 and s relatively close to zero.
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Figure 12: Robustness of method over a range of parameters. We consider five different data
set+initial conditions (rows), four data association error generation methods (columns), and a
parameter sweep over w and s within each grid cell. Colors correspond to the log of the mean
squared error; maps less than −0.1 are relatively good and maps less than −1 are excellent. These
plots show that the basin of convergence for the max mixture method is quite large. A total 1000
outliers of each error type was added for each dataset. For the grouped errors it resulted in 100
groups, each with 10 mutually consistent outliers.
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5 Conclusion

We have described a method for performing inference on networks of mixtures, describing an

application of our method to robot mapping. Our method consists of a novel mixture model based

on a “max” operator that makes the computation of the Jacobian and residual fast, and we show

how existing sparse factorization methods can be extended to incorporate these mixtures. We

believe that such an approach is necessary for long-lived systems, since any system that relies on a

zero error rate will fail.

We demonstrate how the mixture model allows null hypotheses and robustified cost functions

to be incorporated into a maximum likelihood inference system. We show that our system is robust

to a large error rates far in excess of what can be achieved with existing front-end loop validation

methods. We further demonstrate a multi-modal formulation, addressing the “slip or grip” problem

and showing that our system can make loop validation unnecessary in some cases.

Our algorithm cannot guarantee convergence to the global optimum, but we characterized

the basin of convergence, demonstrating the relationship between error rate, node degree, and

convergence to a good solution.

Finally, we demonstrate that the runtime performance of our algorithm is similar to that of

existing state-of-the-art maximum likelihood systems. In comparison to other robust formulations,

including those based on switching constraints, the ability of our method to encode “one-of-k”

mixtures provides a significant performance advantage. Further, while we have explored the case of

batch solvers, our method can be equally-well adapted to incremental systems [Kaess et al., 2008].

An open source implementation can be downloaded from [Agarwal et al., 2012]
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Learning Convolutional Filters for Interest Point Detection

Andrew Richardson Edwin Olson

Abstract— We present a method for learning efficient feature
detectors based on in-situ evaluation as an alternative to hand-
engineered feature detection methods. We demonstrate our
in-situ learning approach by developing a feature detector
optimized for stereo visual odometry.

Our feature detector parameterization is that of a convolu-
tional filter. We show that feature detectors competitive with
the best hand-designed alternatives can be learned by random
sampling in the space of convolutional filters and we provide a
way to bias the search toward regions of the search space that
produce effective results. Further, we describe our approach for
obtaining the ground-truth data needed by our learning system
in real, everyday environments.

I. INTRODUCTION

In this paper, we present a method to automatically learn
feature detectors that perform as well as the best hand-
designed alternatives and are tailored to the desired appli-
cation. Most current feature detectors are hand-designed.
Creating feature detectors by hand allows the designer to
leverage human intuition to create intricate and efficient
detectors that would be hard to replicate automatically.
However, many feature detectors tend to be reused across
multiple applications with subtle differences that could be
leveraged to improve performance. Automatically-learned
detectors have the potential to exploit these differences
and improve application performance, as well as help us
better understand the properties of top-performing feature
detectors. Such a learning process, however, comes with
its own challenges, such as defining a sufficiently general
parameterization in which good detectors can be found and
tractably exploring such a parameter space.

This work approaches automatic feature detector learn-
ing by learning fast and effective feature detectors based
on convolutional filters. Convolutional filters make up an
expressive space of feature detectors yet possess favorable
computational properties. We specifically learn these detec-
tors for use in stereo Visual Odometry (VO), an application
in which the full set of feature detector invariances, such as
affine invariance, are not required to achieve good motion
estimates and efficiency is key. Unlike feature detection
and matching evaluations limited to planar scenes, these
detectors are learned on realistic video sequences in everyday
environments to ensure the relevance of the learned results.
Learning high-performance feature detectors also requires
a good source of training data, which can be difficult or
expensive to obtain. We detail our method for generating

The authors are with the Computer Science and Engi-
neering Department, University of Michigan, Ann Arbor,
MI 48104, USA {chardson,ebolson}@umich.edu
http://april.eecs.umich.edu

Fig. 1: When using convolutional feature detectors, which
filter is best? Reasonable examples include the corner and
point detectors used in [8] (top, both) and a Difference-
of-Gaussians (DOG) filter (bottom left) like those used for
scale-space search in SIFT [12]. We automatically generate
filters for feature detection to improve the 3D motion esti-
mation of a stereo visual odometry system. Bottom right: the
most accurate filter in this work.

ground truth data — instrumenting an environment with 2D
fiducial markers known as AprilTags [17]. These markers can
be robustly detected with low false-positive rates, allowing
us to extract features with known data association across an
entire video. We can then solve for the global poses of all
cameras and AprilTags and use this information to evaluate
the motion estimate when using natural feature detections.
Importantly, we also use this global reconstruction to reject
any natural feature detections on or near AprilTags, ensuring
that we do not bias the learning process to detect fiducial
markers.

The feature detectors learned with our method are efficient
and accurate. Processing times are comparable to FAST, a
well-known method for feature detection, and reprojection
errors for stereo visual odometry are lower than those with
FAST in most cases [18]. In addition, because our filters
use a simple convolutional structure, processing times are
reduced by both increases in CPU clock rates and SIMD
vector instruction widths.

The main contributions of this paper are:
1) We propose a framework for learning a feature detector

designed to maximize performance of a specific appli-
cation.

2) We propose convolutional filters as a family of fea-
ture detectors with good computational properties for
general-purpose vector instruction hardware (e.g. SSE,
NEON).

3) We present a sampling-based search algorithm that can
incorporate empirical evidence that suggests where high
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quality detectors can be found and tolerate both a large
search space and a noisy objective function. We detail
both the search algorithm and a set of experiments used
to steer the search towards effective portions of the
search space.

4) We present a method to evaluate the performance of
learned filters with easily-collected ground truth data.
This enables evaluation of the end application in arbi-
trary 3D environments.

In Section II, we discuss background material and prior
work. We then discuss the general principles of our method
for detector learning in Section III. Section IV focuses
on the specifics of our application, stereo visual odometry,
and ground-truthing method. Finally, our experiments and
evaluation are presented in Section V.

II. BACKGROUND

Many feature detectors have been designed to enhance fea-
ture matching repeatability and accuracy through properties
such as rotation, scale, lighting, and affine-warp invariance.
Some well known examples include SIFT [12], SURF [2],
Harris [9], and FAST [18]. While SIFT and SURF aim to
solve the scale-invariant feature detection problem, Harris
and FAST detect single-scale point features with rotation
invariance at high framerates. Other detectors aim to also
achieve affine-warp invariance to better cope with the effects
of viewpoint changes [14].

Many comparative evaluations of feature detectors and
descriptors are present in the literature [14], [16]. Breaking
from previous research, Gauglitz et al. evaluated detectors
and descriptors specifically for monocular visual tracking
tasks on video streams [7]. This evaluation is beneficial, as
continuous motion between sequential frames can limit the
range of distortions, such as changes in rotation, scale, or
lighting, that the feature detectors and descriptors must han-
dle, especially in comparison to image-based search meth-
ods that can make no such assumptions. Our performance-
analysis mechanism is similar; however, whereas [7] focused
on rotation, scale, and lighting changes for visual tracking,
we focus on non-planar 3D scenes.

An alternative to hand-crafted feature detectors and de-
scriptors is automated improvement through machine learn-
ing. FAST, which enforces a brightness constraint on a
segment of a Bresenham circle via a decision tree, is a hand-
designed detector that has been optimized for efficiency via
ID3 [18]. An extension of FAST, FAST-ER, used simulated
annealing to maximize detection repeatability [19]. In con-
trast to these approaches, we focus on learning a detector to
improve the output of our target application using a method
with a low and nearly-constant feature detection time.

Detector-learning work by Trujillo and Olague used ge-
netic programming to assemble feature detectors composed
of primitive operations, such as Gaussian blurring and
equalization [20]. Their results are promising, though the
training dataset size was small. Additionally, they attempt
to maximize detector repeatability, whereas our method is

focused on the end-to-end system performance of our target
application.

In addition to the detector-learning methods, descriptor
learning methods like those from Brown et al. learn local
image descriptors to improve matching performance [4].
They use discriminative classification and a ground-truthed
3D dataset. Their resulting descriptors perform significantly
better than SIFT on the ROC curve, even with shorter
descriptors. As this paper focuses on detector learning, we
use a common descriptor for all detectors. This descriptor
uses a standard pixel-patch representation and allows an even
comparison between all detectors evaluated in this work.

III. LEARNING A FEATURE DETECTOR

Feature detector learning requires three main components:
a parameterization for the detector, an evaluation metric,
and a learning algorithm. The parameterization defines a
continuum of detectors, ideally capable of describing the
range from fixed-size point or corner detectors to scale-
invariant blob detectors, as well as concepts like “zero
mean” filters. The evaluation harness computes the error
of a proposed detector, which we want to minimize. Given
these components, we can construct a method to generate
feature detectors that maximize our learning objective. While
iterative optimization through gradient or coordinate descent
are popular ways to solve such problems, these approaches
are problematic in learning feature detectors due to the high-
dimensional search space and noise in the objective function.
Random sampling allows us to evaluate far more filters than
with iterative methods, find good filters despite numerous
local minima, and develop an intuition for the constraints on
the filter design that yield the best performance.

A. Detector parameterization

We parameterize our feature detector as a convolutional
filter [15]. This is an attractive representation due to the
convolutional filter’s flexibility and the ability to leverage
signal processing theory to interpret or constrain the qualities
of a detector. In addition to a convolutional filter’s flexibility,
these filters can also be implemented very efficiently on
vector instruction hardware, such as Intel SSE, AVX, and
ARM NEON. This hardware is commonly available in
modern smartphone processors, as rich media applications
can benefit significantly from SIMD parallelism.

We want to find the convolutional filter that yields the most
accurate result for our target application. This is different
from the standard metrics for feature detector evaluation
like repeatability, as the best features may not in fact be
detectable under all rotations. Our objective function (which
we minimize) measures the error in the motion estimate
against ground truth. This is in contrast to methods which
maximize an approximation of end-to-end performance like
repeatability [19], [20]. The advantage of our approach is the
potential to exploit properties specific to the application. In
stereo visual odometry, for example, edges that are vertical
from the perspective of the camera are easy to match between
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(a) 4⇥ 4 DCT basis set (b) 4⇥ 4 Haar basis set

Fig. 2: Basis sets representing each frequency-domain trans-
form for (a) the Discrete Cosine Transform (DCT) and (b)
the Haar Wavelet Transform on a 4 ⇥ 4 image patch. Each
patch corresponds to a single coefficient in frequency space.
The top left basis corresponds to the DC component of the
filter. Note that we use 8⇥ 8 filters in this work.

the left and right frames due to the epipolar geometry con-
straints. This property is not captured by standard measures
like repeatability, so methods which use these measures
cannot be expected to exploit them.

Our detection method can be summarized as follows:
1) Convolve with the filter to compute the image response
2) Detect points exceeding the filter response threshold,

which is updated at runtime to detect a constant user-
specified number of features

3) Apply non-extrema suppression using the filter response
over a 3⇥ 3 window

This work focuses on 8⇥ 8 convolutional filters. A naı̈ve
parameterization would simply specify the value of each
entry in the filter, a space of size R64. In the following
section, we detail alternative parameterizations which allow
us to learn filters which both perform better and require less
time to learn.

B. Frequency domain parameterizations

Within the general class of convolutional filters, we param-
eterize our feature detectors with frequency domain repre-
sentations. In this way, we can apply meaningful constraints
on the qualities of these filters that would not be easily
specified in the spatial domain. In doing so, we learn about
the important characteristics for successful feature detectors
built from convolutional filters.

We use the Discrete Cosine Transform (DCT) and Haar
Wavelet transform to describe our filters [1], [15]. Unlike the
Fast Fourier Transform (FFT), the DCT and Haar Wavelets
only use real-valued coefficients and are known to repre-
sent image data more compactly than the FFT [3]. This
compactness is often exploited in image compression and
allows us to sample candidate filters more efficiently. These
transformations can be easily represented by orthonormal
matrices and computed through linear matrix products.

In this work, we make use of three representations for
filters — a straightforward pixel representation, the Discrete
Cosine Transform (DCT), and the Haar Wavelet Transform.

(a) Bandpass (b) Block-diagonal

Fig. 3: Example frequency-domain filter constraints for 8⇥8
filters. Coefficients rendered in black are suppressed (forced
to zero). White coefficients can take any value. A typical
bandpass filter is shown in (a). We propose the use of the
block-diagonal region of support in (b), which exhibited
superior performance in our tests.

Figure 2 shows a set of basis patches for the two frequency-
domain representations. The pixel values of a filter in the
spatial domain can be uniquely described by a weighted lin-
ear combination of these basis patches, where the weights are
the coefficients determined by each frequency transformation.
For convenience, we refer to both the spatial values of the
filters (pixel values) and frequency coefficients as w for the
remainder of this paper.

C. Error minimization

In our application, our goal is to find a convolutional
filter which yields the best motion estimate for a stereo
VO system. We represent the error function that evaluates
the accuracy of a proposed filter by E(w). As described
further in Section IV-B, our error function is the mean
reprojection error of the ground truth data, the four corners of
the AprilTags, using the known camera calibrations and the
camera motion estimated using the detector under evaluation.

While iterative optimization via gradient or coordinate
descent methods is a straightforward approach for learning
with an error function, we found that such iterative methods
get caught in local minima too frequently. We propose
instead to learn detectors by randomly-sampling frequency
coefficient values while varying the size and position of a
coefficient mask that zeroes all coefficient values outside of
the mask. We refer to our mask of choice as a block-diagonal
constraint, as illustrated in Figure 3. We also evaluate the
performance of sampling with bandpass constraints and
sampling raw pixel values via the naı̈ve approach. In all
cases, sampled values are taken from a uniformly-random
distribution in the range [-127,127].

The constraints illustrated in Figure 3 are defined by
low and high frequency cutoffs, which define the filter’s
bandwidth. The filters shown have low and high frequency
cutoffs of 0.250 and 0.625, respectively1. Thus, the filters
have a bandwidth of 0.375.

Iteratively-optimizing filters can be very expensive. Steep-
est descent methods that use the local gradient of the error
function require at least n error evaluations for square filters

1Note that we use frequency ranges normalized to the interval (0, 1)
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of width
p
n. After gradient calculation, multiple step lengths

may be tried in a line-search minimization algorithm. At
a minimum, n + 1 error evaluations are required for every
update. Coordinate descent methods require at least 2n evalu-
ations to update every coefficient once. Both methods require
more calculations in practice. Because the error surface
contains a high number of local minima, step sizes must
be small and optimization converges quickly. This results
in a great deal of computation for only small changes to
the filter. We found that 95% of our best randomly-sampled
filters did not reduce their error significantly after iterative
optimization. Many did not improve at all.

In contrast to iterative methods, computing the error for
a new filter only requires one evaluation. The result is that
in the time it would take to perform one round of gradient
descent for an 8 ⇥ 8 filter, we can evaluate a minimum of
65 random samples.

IV. STEREO VISUAL ODOMETRY

In this section, we describe aspects of our application
domain, stereo visual odometry. In principle, our in-situ
training methods apply to other stereo visual odometry
pipelines and other applications. We use a custom stereo
visual odometry pipeline for feature detector learning. Prior
work in this area has yielded accurate and reliable results
with high-framerate VO using corner detectors [13], [11]. A
number of system architectures are possible and have been
demonstrated in the literature, including monocular [11], [5]
and stereo approaches [13], [8].

A. Visual Odometry overview

Our approach to stereo visual odometry can be divided
into a number of sequential steps:

1) Image acquisition - 30 Hz hardware-triggered frames
are paired using embedded frame counters before stereo
rectification via bilinear interpolation.

2) Feature detection - Features are detected in grayscale
images with non-extrema suppression. Zero-mean, 9⇥9
pixel patch descriptors are used for all features.

3) Matching - Features are matched between paired im-
ages using a zero-mean Sum of Absolute Differences
(SAD) error score. To increase robustness to noise,
we search over a +/-1 pixel offset when matching.
Unique matches are triangulated and added to the map.
Previously-mapped features are projected using their
last known 3D position and matched locally.

4) Outlier rejection - We provide robustness to
bad matches with both Random Sample Consensus
(RANSAC) and robustified cost functions during op-
timization (specifically, the Cauchy cost function with
b = 1.0) [6], [10].

5) Motion estimation - We initialize the motion estimate
to the best pose from RANSAC. We then use nonlinear
optimization to improve the point positions and camera
motion estimates, iterating until convergence.

The result is an updated 3D feature set and an estimate of
the camera motion between the two sequential updates.

(a) Reconstructed ground truth trajectory

(b) Reprojected ground truth features

Fig. 4: Ground truth reconstruction using AprilTags. Stereo
camera trajectory (orange) in (a) is reconstructed using
interest points set on the tag corners determined by the tag
detection algorithm. Shaded region (blue) corresponds to the
scene viewed in (b). The mask overlays (red) in (b) are
the result of reprojecting the tag corners using the ground
truth reconstruction and are used to ensure that no features
are detected on the AprilTags added to the scene. Example
feature detections from the best filter learned in this work
are shown for reference (green).

B. Ground truth using AprilTags

We compute our ground truth camera motion by instru-
menting the scene with AprilTags and solving a global non-
linear optimization over all of the tags and camera positions.
Specifically, we treat the four tag corners as point features
with unique IDs for global data association. During learning,
we explicitly reject any feature detections on top of or within
a small window around any AprilTag so that we do not bias
the detector learning process. In other words, our system
rejects detections that would otherwise occur because of the
AprilTags in the scene so that we learn to make use of the
natural features in the environment. This is illustrated in
Figure 4b, where red overlays correspond to regions where
all feature detections are discarded. By using the reprojected
AprilTag positions, we can reject features on AprilTags even
when a tag is not detectable in the current frame.

Once the ground truth has been computed, we can compute
the error of a motion estimate computed with an arbitrary
feature detector. For every sequential pair of poses in the
dataset, we compute the 3D position of the AprilTag corners
with respect to the first of the two poses, transform from the
first to the second pose’s reference frame with the motion
estimate from the arbitrary feature detector, and compute the
reprojection error of these points in the images from the
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(a) Office (b) Conference room

(c) Cubicle (d) Lobby

Fig. 5: Images from the four datasets used in this work.
AprilTag masks described previously are shown in red.

second pose. E(w) is the mean reprojection error over all
pairs of poses in the dataset using this method. It measures
how well, on average, the ground truth features are aligned
with their observations when using the candidate detector.

V. EXPERIMENTS

Our experiments focus on randomly-sampling filters under
different constraints and computing the mean reprojection
error when using these filters across multiple datasets. In
addition, we compare both error and computation time to
existing and widely-used feature detectors.

A. Implementation Details

Training and testing take place on four datasets between 23
and 56 seconds in length with 30 FPS video. These datasets
were collected in various indoor environments, including an
office, conference room, cubicle, and lobby. In each case,
we randomly selected 15 seconds of video for training.
Figures 4 and 5 show camera trajectories and imagery from
these datasets. Our stereo rig uses two Point Grey FireFly
MV USB2.0 color cameras at a resolution of 376 ⇥ 240.
Experiments were run on a pair of 12-core 2.5 GHz Intel
Xeon servers, each with 32 GB of memory. Sampling 5,000
filters takes approximately 7 hours at 9.7 seconds per filter.

In contrast to the substantial computational resources
used in learning, our target application is limited to the
compute available on a typical mobile robot. A mobile-
grade processor such as the OMAP4460, a dual-core ARM
Cortex-A9 device, used as an image preprocessing board, is
a compelling and scalable computing solution to our needs.
With a convolution implementation optimized via vector
instructions, specifically ARM NEON, we can detect around
300 features per 376 ⇥ 240 image in 3.65 ms for a 8 ⇥ 8
filter. In comparison, the ID3-optimized version of the FAST
feature detector performs similarly, requiring 3.20 ms. For
both methods, we dynamically adjust the detection threshold
to ensure the desired number of features are detected even
as the environment changes.

Fig. 6: Time comparison between FAST-9 and an 8 ⇥ 8
convolutional filter feature detector. Times represent the
combined detection and non-extrema suppression time and
were computed on the PandaBoard ES (OMAP 4460) over
30 seconds of video with 376x240, grayscale imagery.

(a) Desk dataset (b) Conference room dataset

Fig. 7: Mean reprojection error for the best filter sampled
so far (running minimum error) over 5,000 samples. Ground
truth system error shown in red.

While both methods are efficient enough for real-time
use, the difference in computation time for a large number
of features is dramatic. Figure 6 shows the runtime as a
function of the desired number of features for both methods.
This time measurement includes detection and non-extrema
suppression. While both methods show a linear growth in
computation time, the growth for the convolutional methods
is much slower than for FAST. This is because the con-
volution time does not change as the detection threshold
is reduced. The linear growth is due only to non-extrema
suppression. This result is especially important for methods
where the desired number of detections is high [11], [8].

B. Randomly-sampled filters

We evaluated our approach by running a suite of random-
sampling experiments for block-diagonal filters with both
the DCT and Haar parameterization. We also compare to
sampled bandpass and pixel filters. Figure 7 shows the error
of the best filter sampled so far as 5,000 filters are sampled.
In all four datasets, the pixel and bandpass filters never
outperformed the best block-diagonal filter. The final filters
of each type and from each dataset2 are shown in Figure 8.

Figure 9 shows the error distributions for each of the
three constraints on the conference room dataset. For each
experiment, 5,000 filters were randomly generated with the

2Final coefficients available at umich.edu/~chardson/icra2013feature.html
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Fig. 8: Best learned filter for every type and dataset combi-
nation. Best viewed in color.

(a) Pixels (b) Bandpass (c) Block-diagonal

Fig. 9: Histogram of mean reprojection errors for three
filter generation methods on the conference room dataset.
While randomly-generated bandpass filters yield better per-
formance, on average, than filters with uniformly-random
pixel values, block-diagonal filters have both better average
performance and a lower error for the best filters. 79%
and 72% of sampled bandpass and block-diagonal filters,
respectively, had errors under 2.5 pixels, while only 30% of
random pixel filters had such low errors.

appropriate set of constraints. For the bandpass and block-
diagonal constraints, we generated filters for all combinations
of the DCT or Haar transform, low frequency cutoff and filter
bandwidth, defined previously. Of the 27 combinations of
low and high-frequency mask cutoffs available for both DCT
and Haar filters of size 8⇥ 8 (in total,

�8
2

�
� 1 combinations

each for DCT and Haar), only 6 of them include the DC
component and, in the case of the block-diagonal filters, the
vertical and horizontal edge components.

From these plots, it is clear that limiting the search
for a good filter through the bandpass and block-diagonal
sampling constraints significantly improved the percentage of
filters which yield low reprojection errors. Our interpretation
of this result is that filters are very sensitive to nonzero values
for specific frequency components. By strictly removing
these components in 21 of the 27 constraint combinations,
the average filter performance improves significantly.

Figure 10 shows separate distributions for block-diagonal
filters for each of the possible low-frequency cutoffs for
filters with the most narrow filter bandwidth (0.250). One
plot is shown for each frequency transformation (DCT and
Haar). From these figures, it is clear that filters perform

(a) Distributions for sampled DCT block-diagonal filters

(b) Distributions for sampled Haar block-diagonal filters

Fig. 10: Distributions for block-diagonal filters with a band-
width of 0.250 as a function of the low frequency cutoff
on the conference room dataset. For both (a) and (b), the
filters which include the DC and vertical/horizontal edge
components (LF cutoff of 0) have reprojection errors greater
than 4 pixels 84% and 87% of the time for DCT and Haar
filters, respectively. Beyond the DC components, only the
DCT filters with low-frequency cutoff of 0.5 or greater have
such large reprojection errors. The remaining distributions
progress smoothly from low error (left) to high error (right)
as the frequency increases. Best viewed in color.

significantly worse when the DC and edge coefficient values
are not zero. Beyond that, we see a trend of low error for
low-frequency filters, and an increasing error as frequency
increases. Finally, the DCT filters seriously degrade when
they begin to contain high frequency components; however,
the Haar filters do not. Our interpretation of this result is that,
because Haar basis patches are not periodic, a simple step
transition in an image will often result in a unique maxima. In
contrast, the periodic DCT basis patches will yield multiple
local maxima, causing a cluster of detections around edges.
Similar trends exist for filters with higher bandwidths.

The performance of the best sampled block-diagonal filters
is compared to baseline methods such as FAST, Shi-Tomasi,
a Difference of Gaussians filter, and filters used by Geiger et
al in Table I. The best result from every testing dataset (row)
is shown in bold. All detector evaluations were performed
with the same system parameters: detect 300 features after
non-extrema suppression and filtering with the AprilTag
masks, use RANSAC and a Cauchy robust cost function
(b = 1.0), etc. These parameters were set via parameter
sweeps using the FAST feature detector on the office and
conference room dataset. As such, these represent best-case
conditions for FAST. Mean values over 25 trials are reported
due to variability induced by RANSAC. The differences
in the means between the trained filters and FAST were
statistically significant in 10 of the 12 cases with p values
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Testing dataset Filters trained on specified dataset Linear baseline methods Nonlinear baseline methods

Office Conf rm. Cubicle Lobby DOG Geiger Corner Geiger Blob FAST Shi-Tomasi SURF

Office 0.447 0.466 0.471 0.468 40.281+ 0.492 0.595 0.470 2.060 1.322⇤
Conf rm. 0.981 0.929 0.996 0.981 1.505 1.047 1.218 0.953 1.141 1.584⇤
Cubicle 1.292 1.142 1.134 1.368 2.962 2.131 4.042 1.441 4.550 0.795⇤
Lobby 1.593 1.552 1.628 1.482 1.974 1.573 1.927 1.654 1.938 2.032⇤

TABLE I: Testing error on each dataset using the learned feature detectors and baseline methods. Reported numbers are
mean values over 25 trials to compensate for the variability of RANSAC, except for the training errors (gray). Bolded values
are the best result for every row. ⇤SURF generated features adjacent to AprilTags that could not be easily filtered out because
of SURF’s scale invariance. As such, the SURF results are not considered a fair comparison to the other methods. +Large
errors are the result of data association failures with the specified features.

less than 0.01 for a two-tailed t-test.
These results reinforce the notion that learned convolu-

tional filters can compete with nonlinear detection methods,
like the FAST feature detector. Only on the conference
room dataset did FAST perform better than a learned filter.
On average, learned filters had a lower reprojection error
than FAST by a small amount, 0.05 pixels. For other
baseline methods, such as Shi-Tomasi, the improvement in
reprojection error was substantial. Note that while SURF
outperformed all methods on the cubicle datasets, this is
due to SURF detections adjacent to AprilTags that cannot
be rejected as easily due to SURF’s scale invariance.

For the linear baseline methods, the results vary greatly.
Geiger et al’s corner filter performs the best of the three, and
yet it and the other linear baselines perform quite poorly on
the cubicle dataset, unlike the learned filters. Interestingly,
these linear detectors (or an equivalent 8⇥8 filter) are simply
a few of the convolutional filters that could have been learned
in our framework.

These results also suggest that dataset choice, not learned
filter, was the best predictor of testing errors. The cubicle
dataset had a high error in a number of cases. From inspect-
ing the video stream, this is not surprising — the cubicle
is generally featureless except for a few smooth edges and
a narrow strip at the top where the camera sees over the
cubicle wall.

VI. SUMMARY

We have presented a framework for automatically learning
feature detectors that can be efficiently computed on modern
architectures and result in performance that is generally
better than existing methods, sometimes substantially so. By
sweeping over frequency-domain constraints on the filters
during sampling, we learn detectors that outperform obvious
alternatives and prior work. In addition, our results indicate
that the best detectors are typically those that respond pri-
marily to the lowest non-DC frequency components. These
learned detectors perform well on all datasets, despite only
using one dataset during training.
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AprilCal: Assisted and repeatable camera calibration

Andrew Richardson Johannes Strom Edwin Olson

Abstract— Reliable and accurate camera calibration usually
requires an expert intuition to reliably constrain all of the
parameters in the camera model. Existing toolboxes ask users
to capture images of a calibration target in positions of
their choosing, after which the maximum-likelihood calibration
is computed using all images in a batch optimization. We
introduce a new interactive methodology that uses the current
calibration state to suggest the position of the target in the next
image and to verify that the final model parameters meet the
accuracy requirements specified by the user.

Suggesting target positions relies on the ability to score candi-
date suggestions and their effect on the calibration. We describe
two methods for scoring target positions: one that computes
the stability of the focal length estimates for initializing the
calibration, and another that subsequently quantifies the model
uncertainty in pixel space.

We demonstrate that our resulting system, AprilCal, consis-
tently yields more accurate camera calibrations than standard
tools using results from a set of human trials. We also
demonstrate that our approach is applicable for a variety of
lenses.

I. INTRODUCTION

Applications such as visual odometry [14], dense recon-
struction [8], [15], and colored point cloud segmentation [20]
are fundamentally dependent on accurate calibrations in
order to extra metrical data from images. The MATLAB and
OpenCV packages are two popular systems for calibrating
lenses [3], [4]. However, they can be error prone, especially
for lenses with significant distortion. This stems from the fact
that the quality of a calibration is dramatically affected by
the user’s choice of calibration images. A user who chooses
poor calibration target positions may find the resulting model
generalizes poorly to unseen examples. This challenge is
particularly acute for novice users, who are not aware of
the properties of the underlying estimation and optimization
methods, or end-users in dramatically different fields [2].
Even experts may be unsure that the positions they have
chosen will yield a sufficiently accurate calibration, as the
number of images needed is not constant across lenses and
should vary with the quality of the constraints. Consequently,
standard practice is to collect many more images than
necessary and verify that the model parameter uncertainty
and training error are low; if the results are unsatisfactory,
the calibration is repeated or updated with additional images.
This process is unreliable, and not very satisfying from a
theoretical standpoint.

Therefore, the primary goal of this work is to increase
calibration repeatability and accuracy in a more principled

The authors are with the Computer Science and Engineering
Department, University of Michigan, Ann Arbor, MI 48104,
USA {chardson,jhstrom,ebolson}@umich.edu
http://april.eecs.umich.edu

Fig. 1: The AprilCal GUI. Our system combines the ability
to reason about unseen targets and a novel quality metric
to make suggestions to the user about where to place the
target. The user is notified that calibration is complete once
the desired accuracy has been reached, typically achieving
< 1 pixel of error after 6-8 images.

fashion. We introduce a paradigm where fit quality is explic-
itly considered at each stage during a live calibration process.
Specifically, we automatically consider many unseen target
positions and suggest positions that will best improve the
quality of the calibration. This is achieved using a novel
quality metric based on the uncertainty of the calibration as
measured in pixels. Previous toolboxes report the uncertainty
of the model parameters, but the effect of these parameter
uncertainties on pixel coordinates can be complex. We argue
that worst-case uncertainty in pixels is more relevant for
application performance and more natural for the user. Worst-
case pixel uncertainty also serves as a principled basis to
automatically determine when enough images have been
collected.

We also introduce a new method for robustly bootstrapping
a calibration that enables our system to make sensible
recommendations even when little or no prior information
is available about the lens. Our system also makes use of a
calibration target composed of AprilTags [16], which, unlike
previous approaches, can still be detected when individual
markers are occluded. This enables a wider variety of target
positions, which our method successfully exploits when
making suggestions to the user.

We validated our camera calibration toolbox via a 16-
participant study mostly compromised of users who had
never calibrated a camera. Despite their lack of expertise,
they were consistently able to use our software to produce
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accurate calibrations. The same novice users also used the
OpenCV calibration toolbox and invariably produced poorer
calibrations, in some cases yielding errors of tens of pixels.
In addition, we show that our toolbox can calibrate a wide
range of lenses with an explicit accuracy guarantee.

The contributions of this work include:

• A framework for generating target position suggestions
to guide users during camera calibration

• A new evaluation metric for camera calibration that
enables high confidence in calibration parameters ev-
erywhere in the image

• A bootstrapping setup to enable interactive calibration
even before all parameters are fully constrained

• An evaluation that demonstrates the robustness of our
approach using a human-subjects study of 16 people,
mostly novices.

AprilCal is released as part of the APRIL Robotics Toolkit
and is available at http://april.eecs.umich.edu

II. BACKGROUND

A wide variety of camera calibration approaches exist,
spanning different optimization methods, calibration target
styles and intrinsic model designs. Many previous methods
have used multiple views of a planar target [22], [3], [4]
or a single view of a carefully constructed 3D target [13].
Other methods have used laser pointers or other bright
lights to facilitate calibration of networks of cameras. Such
approaches typically still require bootstrapping by calibrating
some cameras in the network with a constructed target [1],
[21]. All of these prior methods share the same approach
to calibration: a user first collects a set of images, then
runs a batch calibration process on that data. This is in
contrast to our approach, where the entire calibration process
is interactive and additional data is solicited until the desired
accuracy has been achieved.

A dominant paradigm for calibration involves capturing
several images of a planar target. These approaches (ours
among them) make associations between points detected in
the image and corresponding world points on the target
whose relative position are known by construction [22].
Simultaneous optimization over the intrinsic parameters for
the camera model and the extrinsics for each target yield an
estimate of the model parameters. Using such an approach
requires the choice of 1) optimization method and 2) lens
model.

Among the many possible optimization techniques, we
adopt a standard, iterative non-linear-least-squares approach,
using a sparse matrix solver as the back-end. This method
is roughly analogous to standard approaches in GraphSLAM
and bundle adjustment [5], [12], [11]. Our calibration vector
x consists of all the model parameters (roughly 10) for the
camera, in addition to the 6-DOF position of each calibration
target. For each image containing k extracted 2D image
points, we add 2k linearized constraints as rows in the
Jacobian matrix J . Each row-pair corresponds to projecting
a feature from a known 3D coordinate on the calibration
target into pixel coordinates, capturing both the unknown

position of the camera and the unknown camera parameters.
Iterative solutions to Eqn 1 yield a locally-optimal set of
model parameters for x.

JTΣ−1
z J∆x = JTΣ−1

z r (1)

xi+1 = xi +∆x (2)

Here, Σz is the matrix of prior covariances for the target de-
tector, and r is the residual, the observed minus the predicted
pixel coordinates for each point. The correct convergence of
x to the global minimum is sensitive to initialization of x0;
we will discuss our approaches to this in Section III-A.

There are also a wide variety of models for camera
intrinsics, starting with the fundamental pinhole model [7].
However, using the ideal pinhole model in isolation will
poorly capture the dynamics of most real world lenses,
especially those with a wide field of view. Therefore, many
models extend this method by accounting for the lens dis-
tortion explicitly. For example, the MATLAB toolbox uses a
polynomial Taylor series with 3-5 distortion terms to approx-
imate these effects after projecting with the pinhole camera
model [3]. In contrast, we have found that a polynomial as
a function of θ, the angle from the principle axis, yields as
good or better1 calibrations, often with fewer distortion terms
for the lenses tested, increases the stability of the calibration
process, and handles Z ≤ 0. This is a reduced version of
the model by Kannala and Brandt [10], which also includes
tangential distortion.

The details of this angular polynomial model are shown in
Equations 3-8, where X , Y , and Z represent the 3D position
of a point, θ the angle from the principal axis, ψ the angle
around the principal axis, xdn the distorted point before
converting to distorted pixel coordinates, xdp, via the matrix
K. The number of distortion coefficients is variable, though
we use three to four in this work.

θ = arctan 2
(√

X2 + Y 2, Z
)

(3)

ψ = arctan 2 (Y,X) (4)

r(θ) = θ + k1θ
3 + k2θ

5 + k3θ
7 + k4θ

9 + . . . (5)

xdn =
[
r(θ) cos(ψ), r(θ) sin(ψ)

]T
(6)

K =

⎡

⎣
fx 0 cx
0 fy cy
0 0 1

⎤

⎦ (7)

xdp = K ·
[
xdn, ydn, 1

]T
(8)

In a similar spirit to this paper, several others have sought
to make calibration easier, less time consuming and less error
prone. For example, the ROS calibration package for the
PR2 now has specific guidelines for the user about which
checkerboard positions are required for getting a “good”
calibration [18]. However, even with good rules of thumb, it
is still possible that a user will collect “bad” frames that

1The details of this analysis are omitted due to space limitations. However,
AprilCal can perform model selection to evaluate all available models as a
post-processing step. See http://april.eecs.umich.edu for details.
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lead to an inaccurate calibration. While it is possible to
manipulate a calibration target automatically using a robotic
arm [17], our approach can be used to choose desired target
views during calibration. Others have shown that in some
cases, it can be possible to calibrate a distorted camera using
only a single image [2]. However, this approach does not
explicitly constrain the accuracy of the resulting calibration,
and works with only a very specific distortion model. In
contrast, our method ensures that the user takes sufficient
images to meet their desired level of accuracy, typically 6-8
images to achieve a < 1 pixel confidence.

Finally, as suggested in Ranganathan’s work on non-
parametric intrinsics models [19], we adopt the use of a strict
testing set to provide a more rigorous evaluation of the actual
accuracy of the proposed method. This is in contrast to the
standard practice of reporting only the training error.

III. PROPOSED METHOD

As outlined in Section I, our proposed method improves on
the state of the art by offering a virtual calibration assistant
that provides suggestions to users and automatically notifies
them when the calibration has reached the specified accuracy.
Our approach leverages a calibration target consisting of a
mosaic of AprilTags [16], which can be detected robustly on
the live video stream, even if parts of the target are occluded.
Users interact with a GUI to match target positions suggested
by our software. After each target position is achieved, the
next best position is computed, repeating until the desired
accuracy is achieved.

Our system divides the calibration into two sequential
phases: bootstrapping, and uncertainty reduction. In the
bootstrapping phase, we start with a restricted camera model
with very few parameters, relaxing to the full model as new
images of the target are added. Once all model parameters
are fully constrained (typically after 3 images), we switch to
the uncertainty reduction phase until the desired accuracy
is achieved. Transition from the first to second phase is
transparent: in both cases, the UI remains the same.

A. Bootstrapping a live calibration from scratch

Suggesting target positions is an inherently cyclic process:
making good proposals that are actually realizable given the
lens distortion requires a reasonably accurate calibration.
However, a good calibration relies on having already cap-
tured several target positions to properly constrain all model
parameters [22]. Therefore, to initialize the model parameters
as quickly as possible, we initially use a reduced camera
model; at the start of each calibration we assume that the
focal center is at the center of the image and that there is no
image distortion. This allows us to estimate the focal length
after a single frame.

We can use this limited model immediately to choose
the next-best target position, relaxing the reduced model
to the full model, shown in Eqns. 3 - 8, as more frames
are taken. This method is intended to select the target
positions that best constrain the calibration while avoiding
degenerate combinations [22]. We compute the calibration

initialization using a standard intrinsics matrix estimation
technique – estimating the Image of the Absolute Conic
(IAC) from perpendicular vanishing points and then decom-
posing it to estimate the intrinsics matrix [22], [9]. Using
this initialization method, we score potential suggestions by
sampling from the observation model to empirically compute
the uncertainty of the intrinsics estimate. In other words, we
prefer suggestions that yield intrinsics estimates with low
variance. In our implementation, we estimate the focal length
over 20 trials, each time adding uniformly-random, zero-
mean noise to the image coordinates of the tag detections.

Some lenses generate too much distortion for IAC intrin-
sics matrix estimation. However, methods exist to remove
the distortion from a single image [6], [2]. Such methods
could be easily added to AprilCal, but this was unnecessary
for the moderately distorted, wide field of view lenses tested
in this work (see Figure 9).

Before the first suggestion can be shown to the user, we
must obtain a cursory estimate of the camera calibration.
We achieve this by automatically selecting the first image
“behind the scenes” as the user moves the target to the
center of the screen. However, the very first frame may not
provide a robust initialization. To make this initialization
robust, we score the live image stream and replace the first
frame (removing the previous one) every time we find a
new frame with a lower intrinsics uncertainty, either until
a threshold is met, or the first suggestion has been computed
and captured. This method reliably picks a satisfactory first
frame because the user is guided to move the calibration
target to a suggestion as soon as any frame has been captured
and the intrinsics matrix has been estimated.

Once the calibration has been initialized, we can con-
sider the effect of observing an unobserved frame on the
uncertainty of the parameter estimates. For each candidate
target position drawn from a coarse grid in pose space, we
score the intrinsics estimate resulting from the combination
of 1) the frames acquired so far (ignoring initial frames
that were replaced) and 2) the projection of the candidate
calibration target with the current estimates of the calibration
parameters. As before, we sample from the observation
model to estimate the uncertainty of the intrinsic parameters,
choosing the suggestion that reduces the parameter variance
the most.

In addition to providing full-rank constraints for all pa-
rameters of the complete camera model, the bootstrapping
process also provides a good initialization for x0 in the
optimization described in Eqn.1. As the model is succes-
sively relaxed, we pass through the initialization from the
previous step, yielding good estimates for all the intrinsics
parameters. Once the distortion parameters are introduced,
we initialize them to zero. Given sane intrinsics estimates,
these parameters converge well in practice.

B. Pixel-based calibration error metric

Once all intrinsic parameters are fully constrained, the
next goal is to find enough additional target observations so
that we are confident that the resulting model parameters are
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Fig. 2: Computing the Max Expected Reprojection Error
(Max ERE) from the test points, and resulting error dis-
tributions after 3 and 5 images. Our sampling-based error
metric can be used with any intrinsics model and allows us
to automatically ensure the calibration is well constrained
everywhere without requiring the user to collect a test set.
The set of samples with the Max ERE are circled in red.

Algorithm 1 COMPUTE MAX ERE(currentCalibration)

(x,Σ) = getModelPosterior(currentCalibration)
meanCal = makeCal(x)
testPointsXYZ = makeTestGrid(meanCal, 5, 5)
calSamples = [sampleCal0(x,Σ), · · · , sampleCaln(x,Σ)]
MaxERE = 0
for all t⃗ ∈ testPointsXYZ do

ERE = 0
for all sampCal ∈ calSamples do

ERE += 1
n
|meanCal.project(⃗t) - sampCal.project(⃗t)|

end for
MaxERE = max(ERE, MaxERE)

end for
return MaxERE

accurate. Previous approaches have used Mean Reprojection
Error (MRE) and Mean Squared Error (MSE) as primary
indicators of calibration quality. However, this is problematic
because these are training errors, rather than testing errors.
Using one of the prior works, if the training images are
selected poorly, the resulting MRE could be low, yet the
generalization performance (e.g. as measured on a test set)
could be very poor. Unfortunately, collecting a proper testing
set can be onerous – for our evaluation we use an expert-
selected set of 60 or more images from all over the camera’s
field of view. Especially for novice users, it is not reasonable
to expect they would be able to collect a “good” testing set.
Even for expert users, this process is time-consuming and
requires careful attention.

Therefore, our approach is to derive a more principled esti-
mate of the testing error that can be computed automatically
given an intermediate state of the calibration. Our proposal
is called “Max Expected Reprojection Error” (Max ERE),
which we can compute at any stage during the calibration
by sampling from the current posterior distribution over the
model parameters. We then project a series of 3D points
through each sampled calibration, producing a distribution
of pixels for each test point, whose mean error is the “ERE”.
Finally, we take the max of the EREs over all the test points.
This ensures that we will properly weight the part of the

image where the model is currently the most uncertain. We
choose the fixed 3D points carefully so that they will project
into all parts of the image. Our current implementation uses
a 5 x 5 grid of test points distributed so their projections will
uniformly cover the image (see Figure 2). See Alg. 1 for an
overview of the implementation.

Computation of the Max ERE uses the estimate of the
marginal posterior covariance of the model parameters:
P̄ (m|z0, · · · , zn). This distribution is derived by first com-
puting the joint distribution of the model parameters and each
target extrinsics, given all the observations of those targets.
Suppose we have collected n images of targets, then we can
“marginalize-out” the target extrinsics:

P̄ (m|z0, · · · zn) =

∫

T0,··· ,T1

P (m,T0, · · ·Tn|z0, · · · zn)

(9)
where m = {fx, fy, · · · , k1, · · · }, Ti is a 6DOF rigid-body
transform, and zi contains the x, y pixel locations of the
centers of every AprilTag in image i. In practice, we assume
the joint distribution in Eqn. 9 can be approximated as multi-
variate Gaussian:

N(x,Σ) =

N

⎛

⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎣

m
T0
...
Tn

⎤

⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

Σm,m Σm,T0 · · · Σm,Tn

ΣT0,m

. . .
...

...
. . .

ΣTn,m · · · ΣTn,Tn

⎤

⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎠
(10)

This allows the marginal P (m|z0, · · · ) = N(m,Σm,m)
to be computed trivially by dropping the other rows and
columns of the covariance matrix. Computation of Σ requires
inverting the sparse dim(x) by dim(x) information matrix I,
which is derived from the observed target positions (similar
to Eqn 1):

I = JTΣ−1
z J (11)

where each row of J is the linearized projection equation
describing how a point on the target projects into the image,
given the model parameters m and target position Ti. Cru-
cially, this process depends on an estimate for the detector
accuracy in pixels, σz , which must be known in advance.
For AprilTag, we have empirically found the accuracy to
be relatively constant across lenses with image width as a
satisfactory predictor. Proper focus of the lens is assumed.

σz = 7× 10−5 × width (12)

Detector accuracy was fit independently for a number of
camera configurations (see Figure 8) using 60+ image cali-
bration datasets for each. The resulting accuracies were then
used to compute the linear model in Eqn. 12.

IV. IMPLEMENTATION

AprilCal is implemented in Java and runs at 25 FPS
with 640 × 480 images on a quad-core Intel i7-3740QM
@ 2.7GHz. Using a mosaic of AprilTags as our calibration
target allows us to automatically detect the target at video
rates, with processing time typically dominated by AprilTag
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detection. We have found that rigid mounting at an office
supply store is inexpensive and yields a target durable enough
for many uses. In addition, we can detect and recognize
individual tags without observing the entire target. This
makes it possible to add constraints in the corners of images,
even for highly distorted lenses. In the multi-camera case,
this allows calibration of cameras with adjacent, but non-
overlapping, fields of view.

In addition to target detection, our implementation requires
significant CPU when determining the next suggestion. In
our implementation, we score a fixed set of about 60 tar-
get positions regularly distributed throughout the field of
view. This process depends on incorporating hypothetical
observations into the calibration optimization framework,
and then estimating the marginal distribution over the model
parameters. As more images are acquired, and the size of the
joint distribution grows, this can take up to 1 or 2 seconds.
However, this scoring process only occurs a small number
of times: once after each suggestion has been achieved by
the user.

The AprilCal user interface is designed primarily to allow
the user to correctly match the target positions suggested
by the system. As shown in Figure 1, we use a set of
unique colors to show how the desired target position (hollow
rectangles) should be matched by the live detections (solid
rectangles). The UI also automatically offers basic advice to
the user via textual prompts about how to move the target
to match the desired pose. When the calibration is deemed
complete, the user is then automatically presented with the
rectified video stream. This allows the user to qualitatively
verify that the calibration is accurate, primarily by checking
for straightness of projected lines.

V. HUMAN TRIALS

We conducted a series tests with human subjects2 to
measure the effectiveness of AprilCal and to compare it to the
widely used OpenCV method. Our user population consisted
of undergraduate students at the University of Michigan.
Only 3 of the 16 subjects reported any previous experience
with camera calibration.

Our experiment protocol was as follows: each partici-
pant was asked to calibrate the same camera and medium-
distortion lens with two different methods (see Figure 3).
We used a Point Grey Chameleon CMLN-13S2M-CS in
648 × 482 8-bit grayscale mode with a 2.8mm Tamron
lens (Model 13FM28IR). This lens has a medium amount
of distortion – significant enough that several Taylor series
terms are required to model it, but still with a moderate field
of view (only 93° horizontal FOV).

The two methods we evaluated were OpenCV’s calibration
using automatic checkerboard detection and AprilCal using a
mosaic of AprilTags. Participants were given a set of printed
instructions. If they asked questions to the experimenter,
they were given comprehension-level clarification on the

2Our study was reviewed by the University of Michigan Humanities
Institutional Review Board and designated “exempt” with oversight number
HUM00066852.

(a) (b)

Fig. 3: Example images taken by the participants for both
Method A (Open CV) and Method B (AprilCal).

instructions or advised to re-read the instructions. Partici-
pants then followed a checklist to first collect four samples
using OpenCV, followed by four samples using AprilCal.
Additionally, participants watched a video demonstrating
calibration with each method. In Method A (OpenCV),
participants interacted with a GUI showing live detections of
the chessboard, using the “space” key on a wireless keyboard
to capture a frame. In Method B (ApriCal), the frames are
automatically taken when the participants move the targets
close enough to the suggested pose.

In contrast to AprilCal, which provides detailed guidance
throughout the calibration, OpenCV’s calibrate.cpp

provides no in-application suggestions. Therefore, we de-
signed a set of instructions for calibrating with their software.
Our goal was primarily to emulate the experience of a first-
time user who downloads this software from the Internet.
Therefore, we provided users with some example pictures
from the MATLAB Toolbox web page. The best written in-
structions we found were on the ROS tutorial for monocular
camera calibration [18], which we also included. These are:

• checkerboard on the camera’s left, right top and bottom
of field of view

• checkerboard at various sizes
• close (fill the whole view)
• far (fill ~1/5 of the view)
• checkerboard tilted to the left, right top and bottom

After reading these instructions, participants were then in-
structed to take 10-16 images in each of the 4 trials (on the
same lens).

VI. EVALUATION

We evaluated AprilCal on several fronts. First, we report
the results from our human subjects study to demonstrate
the robustness of our approach to user error. Then, we
demonstrate that our novel Max ERE metric is a good proxy
for testing error. Finally, we demonstrate that AprilCal can
be successfully used on a variety of lenses.

A note on evaluation of calibration quality: in all of
our evaluations, we use testing error to indicate calibration
quality. Each testing set is a collection of 60+ images from
all over the field of view, including the corners of the images
and at various scales. Because we do not have ground truth
positions for the targets in the testing set, the error we
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Dataset Lens Model Reprojection Error

Mean Max

OpenCV Radial, 3 distortion terms 0.728 38.646
AprilCal Radial, 3 distortion terms 0.229 1.651
AprilCal Angular, 4 distortion terms 0.203 1.444

TABLE I: Mean and max testing errors averaged over all
human subject trials in comparison to a 65 image reference
dataset for the same lens. Results are significant with p <
6.3 × 10−7 for both mean and max errors and all pairs of
rows.

report is after we optimize the target extrinsics to best fit the
fixed model parameters for a given calibration. While this
in general results in lower reprojection errors, it ensures that
all models are fairly evaluated and still allows discrimination
between good and bad calibrations.

Furthermore, Mean Reprojection Error (MRE) is typically
reported as a summary of calibration quality, as it is simple to
understand and robust to detector error. However, it can also
often mask systematic errors in the underlying calibration.
Therefore, we also report Max Reprojection Error on the
test set – this ensures that calibrations are evaluated by their
performance everywhere in the image.

A. Novice Calibrators using AprilCal and OpenCV

Our study results show that novices do a significantly
better job calibrating when using AprilCal than when using
OpenCV (p < 6.3 × 10−7). For example, with testing
set errors averaged over all participants, the testing MRE
using OpenCV is approximately three times that when using
AprilCal (see Table I). The disparity is even greater when
considering the Max Reprojection Errors – OpenCV aver-

ages 38 pixels (6% of the image), whereas AprilCal averages
a much lower 1.6 pixels for the same model. Interestingly,
no OpenCV calibration yielded a max reprojection error
better than the worst max reprojection error from AprilCal
(2.02 pixels). This may be because the sorts of images that
novice users capture, even when attempting to follow the
ROS instructions, don’t constrain the whole lens well. With
the target suggestions provided by AprilCal, even new users
of camera calibration software can produce calibrations with
very low worst-case reprojection errors. The error histograms
for both populations is shown in Figure 4.

The human study results can also help us understand where
in the image the calibrations disagree. Figure 6 depicts the
expected error between the human trials and a 65 image
reference calibration. From the images shown, it is clear that
the OpenCV calibrations fail to capture the lens model in
the image corners. This can be explained by both the need
to observe the whole calibration target in OpenCV and the
difficulty for users to predict where constraints are needed.

In addition to showing that AprilCal calibrations are more
accurate, the user study results also show that calibrations
with AprilCal are more consistent. Figure 5 depicts the dis-
tribution of focal lengths and focal centers for both AprilCal
and OpenCV. While both distributions have similar means,

Fig. 4: Mean and Max Reprojection Errors (on a 65-
image test set) for calibrations produced using AprilCal
and OpenCV. Users produced significantly more reliable
calibrations using the proposed method (p < 6.3 × 10−7).
For OpenCV, 3 MREs and 46 MaxREs not visible within
plot extents.

Dataset Focal length (x) Focal center (x)

Mean Std dev Mean Std dev

OpenCV 378.9† 9.0† 327.8† 1.9†

AprilCal 381.7 1.2 328.0 0.8

Fig. 5: Distribution of focal lengths and focal centers for all
trials in the human study. While the mean parameter values
from calibrations with AprilCal and OpenCV are similar, the
standard deviations for the OpenCV calibrations are much
higher. †One OpenCV outlier that would have further skewed
the calculations was omitted from the calculations and is not
visible within the plot extents. Best viewed in color.

the AprilCal standard deviations are 7.5× smaller for focal
lengths and 2.37× smaller for focal centers.

B. Evaluating the Max ERE metric

We designed the Max ERE to be a good measure of
calibration quality. Specifically, we want users to specify
the accuracy they need for their application (e.g. < 1 px),
and if the Max ERE falls below that threshold, then the
calibration can confidently be said to be that accurate. To
validate these claims, we computed several variants of testing
error over a large number of AprilCal trials. After each
image is added, we evaluate the performance using Max
ERE, as well as on an independent testing set using Max
(100th percentile), 99.5th percentile, and mean reprojection
errors. As can be seen in Figure 7, our sampled-MRE metric
corresponds closely to the highest percentiles of testing error.
This shows empirical evidence that our metric is effective.

C. Accuracy of AprilCal on a Variety of Lenses

In addition to performing reliably for a wide range of
users, AprilCal also produces accurate calibrations for a
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(a) OpenCV (Radial, 3 dist. terms) (b) AprilCal (Radial, 3 dist. terms)

(d) Cross section from the focal center to the furthest corner in the image

Fig. 6: Heatmaps and cross section depicting per-pixel mean
reprojection error between test subject calibrations and a 65
image testing set. Reprojection errors were calculated by
projecting a point for every pixel in the reference calibration
through all test subject calibrations, then computing the
pixel distance. The reference calibration used an angular
polynomial model with 4 terms, as it had the lowest mean
and max training errors. AprilCal calibrations show low error
in all parts of the image, while OpenCV calibrations have
very high error in the corners (see arrow).

number of camera and lens configurations. Each lens was
calibrated multiple times by one of the authors using the
guidance provided by AprilCal (typically requiring 6-8 im-
ages in total). A separate 60+ image testing set was collected
to evaluate the accuracy for each configuration. To fairly
compare results from different lenses, we compute each lens’
testing error against a reference calibration computed from
the corresponding test set. This eliminates the effects of
detector error on testing error, which varies for different
images sizes (See Eqn 12). For each target point detected
in the testing set, we project through both the reference
calibration and the calibration using AprilCal, and compute
the Mean, 99.5th percentile and Max Reprojections Errors.
Figure 8 shows the testing error for six configurations that
our lab uses for various robotics applications, including
stereo odometry, object detection and overhead ground truth.
In each case, the testing MRE is significantly below one
pixel. Example images from each configuration are shown
in Figure 9.

VII. SUMMARY

AprilCal is an interactive calibration tool that provides
live feedback on the state of the calibration and produces
tightly-distributed calibration parameters even when used by

3 4 5 6 7 8

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Num. Images

E
rr

o
r 

(p
ix

el
s)

Testing Max−RE
Max ERE
Testing 99.5%−tile
Testing MRE

Fig. 7: Our novel Max Expected Reprojection Error (Max
ERE) metric (red) correlates highly with the 99.5th percentile
of reprojection errors on an independently captured test set.
The Max ERE allows us to automatically compute a rigorous
accuracy score for a partial calibration without needing an
exhaustive test set. Error bars reflect std. error of the mean.
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Lens DFOV Resolution Format

(a) Fujinon YV2.2x1.4A-2 143◦ 648× 482 Gray
(b) Tamron 13FM22IR 146◦ 648× 482 Gray
(c) Tamron 13FM28IR 114◦ 648× 482 Gray
(d) Boowon BW38B 83◦ 752× 480 Color
(e) Boowon BW3M30B 121◦ 648× 482 Gray
(f) Boowon BW3M30B 121◦ 1296× 964 Color

Fig. 8: Testing error for a variety of camera configurations
using AprilCal. The Diagonal Field Of View (DFOV) was
estimated from the testing sets for each configuration. Error
bars reflect std. error of the mean.

novices. We have leveraged a novel calibration quality metric
(Max ERE) to automatically determine whether a calibration
is sufficiently accurate, without requiring a user to collect
a rigorous testing set. We conducted a 16-person human
subjects study to show that even novice users can produce
consistent, quality calibrations using such a system.

We have evaluated AprilCal in a variety of ways, and
demonstrated that it is a suitable replacement for the cur-
rently available calibration toolkits, which use a batch cal-
ibration process and training error as a quality metric. Our
desire is to make accurate camera calibration available to a
wider audience who can use the resulting model parameters
confidently in a range of applications.
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(a) Fujinon YV2.2x1.4A-2 (648× 482) (b) Tamron 13FM22IR (648× 482) (c) Tamron 13FM28IR (648× 482)

(d) Boowon BW38B (752× 480) (e) Boowon BW3M30B (648× 482) (f) Boowon BW3M30B (1296× 964)

Fig. 9: Example images for each of the configurations evaluated in Figure 8. These lenses are representative of those known
to work with AprilCal. Image contrast adjusted for clarity.
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Robust Sensor Characterization via Max-Mixture Models: GPS Sensors

Ryan Morton and Edwin Olson

Abstract— Large position errors plague GNSS-based sensors
(e.g., GPS) due to poor satellite configuration and multipath
effects, resulting in frequent outliers. Due to quadratic cost
functions when optimizing SLAM via nonlinear least square
methods, a single such outlier can cause severe map distortions.
Following in the footsteps of recent improvements in the
robustness of SLAM optimization process, this work presents
a framework for improving sensor noise characterizations by
combining a machine learning approach with max-mixture
error models. By using max-mixtures, the sensor’s noise distri-
bution can be modeled to a desired accuracy, with robustness
to outliers. We apply the framework to the task of accurately
modeling the uncertainties of consumer-grade GPS sensors.
Our method estimates the observation covariances using only
weighted feature vectors and a single max operator, learning
parameters off-line for efficient on-line calculation.

I. INTRODUCTION

Most state-of-the-art Simultaneous Localization and Map-
ping (SLAM) algorithms require sensor uncertainties to be
characterized probabilistically. Such characterization is a
straightforward task for many common robot sensors, e.g.,
LIDARs. However, the noise distribution of other sensors
provide a much more challenging characterization task. The
cause of these erroneous observations stems from the in-
ability of the sensor to observe the complete state of the
environment. For example, ground robots’ wheels lose trac-
tion resulting in a slip-or-grip problem and vertical structures
block Global Positioning System (GPS) signals, leading to
multipath effects. Generally, the sensor return is assumed to
reflect the most likely state of the quantity being measured,
e.g., latitude and longitude for a GPS sensor1. The task of
defining the uncertainty of these individual observations is
termed sensor characterization.

The typical approach to sensor characterization uses Max-
imum Likelihood (ML) optimization to find the parameters
that best describe the training data. This off-line process
returns parameters that maximize the average performance
over ground-truthed training data. These parameters can then
be used on-line to calculate observation noise estimates for
use within SLAM.

A single outlier can cause a severe, even irrecoverable,
map distortion due to the quadratic cost surface used by
the nonlinear least squares optimization within many SLAM
algorithms. In this work, we take the view that outliers
arise from overly-simple and optimistic noise models; a
better noise model would assign a higher probability to

The authors are with the Computer Science and Engineering, University
of Michigan, 2260 Hayward Street, Ann Arbor, Michigan, 48109, USA.
{rmorton, ebolson}@umich.edu.

1In this work GPS means any Global Navigation Satellite System (GNSS)

(a) SLAM (b) GPS

Fig. 1: Robot Trajectories for 12 Exploration Robots. Col-
ored to reflect elapsing time (red-green-blue as t increases).

an “outlier”, thus limiting its effect. Simple Gaussian error
models often suffer from this problem, since the tails drop
off exponentially fast. We use max-mixtures of Gaussians to
improve the richness of the sensor characterization models.

To highlight our framework, we show noise models for
GPS sensors, which are particularly prone to large errors;
it is common to receive observations from consumer grade
sensors that are tens to hundreds of meters from the true
location. Specifically, the contributions of this paper include:

• A machine-learning approach for sensor uncertainty
estimation.

• An extension of sensor uncertainty estimation using
max-mixtures.

• A new metric for evaluating the impact of outliers on a
SLAM system.

• Evaluation of a variety of models for consumer-grade
GPS sensor characterization.

In the next section, we give a short overview of related
advancements in SLAM, robust estimation, and GPS error
characterization. We describe the mathematical formulation
of sensor characterization in Section III and show the robust-
ness improvements of the max-mixture models in Section IV.
Then in Section V, we describe features from GPS sensor
data and how to combine them to robustly estimate GPS
uncertainty. In Section VI, we show empirical results for the
noise models on a real-world dataset comprised of 45 hours
of GPS data from a 14-robot team.

II. BACKGROUND

Many modern approaches formulate SLAM in terms of
two components: a front-end that builds a factor graph and
a back-end that optimizes it [1]. For example, the front-end
might add an odometry constraint (edge) representing a rigid-
body-transformation between two sequential robot positions
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(nodes); the constraint’s mean represents the raw encoder
observation while the edge weight is a function of the a
priori uncertainty of the encoder. The back-end periodically
optimizes the graph, producing a ML estimate for all nodes
in the graph, i.e., the best position of the nodes given all the
constraints. When errors are Gaussian this optimization can
be viewed as a least squares method with each constraint
incurring a quadratic cost.

A known problem in SLAM and other nonlinear least
squares optimization problems stems from these quadratic
costs, namely that a single outlier can have significant and
detrimental impact on the solution [2], [3], [4]. The quadratic
costs come directly from assuming constraints have Gaussian
error, which brings computational efficiency.

Improving the robustness of SLAM to these outliers is
currently an active area of research. Some approaches use
switching variables, which can ‘turn off’ constraints and,
thus, handle outliers by modifying the graph structure in
the back-end [2], [5]. Another related approach detects and
rejects outliers via loop consistency checks on small clusters
of nodes [6]. Both of these approaches show promise at
dealing with outliers in the back-end of SLAM. In this paper,
we take the view that outliers arise from modeling errors and
that richer error models can result in systems that are robust
to ouliers and do not require specialized “outlier rejection”
methods.

While mixture models have long been used to approx-
imate complex distributions, they typically result in high
computational costs. Our system uses max-mixtures, which
allows both flexible error models and fast inference [4]. Some
sensors could be characterized with robust cost functions, [7],
[8], but these have been previously shown to be subsumed
by max-mixtures [4].

This paper focuses on models for GPS data, which can be
used both to improve the accuracy of the map and to register
the relative frame to Earth. Even with many loop closures,
SLAM maps can have significant distortion compared to
ground truth, e.g., long hallways may erroneously bend and
GPS sensors can offer the needed constraints even when
global registration is not necessarily needed [9]. Unmanned
Aerial Vehicles (UAVs) and agricultural robots, which gener-
ally have unobstructed satellite line-of-sight, can rely heavily
upon GPS sensors for positioning. In environments with
an unobstructed view of the sky, GPS sensors offer cost-
effective and computationally efficient position estimates
that are, when supplemented with other sensors, sufficient
for many systems [10]. Additional sensors, such as inertial
measurement units or visual odometry have been shown to
reduce errors caused by short blackouts in GPS data, i.e.,
obstruction of satellite view [11], [12], [13].

Early error models for GPS assumed a constant variance
for all GPS returns [11], [14]. Many GPS sensors provide
their own uncertainty estimates, but they can be misleading.
For example, they may report erroneous readings for a period
of time before detecting the loss of satellite locks. This
problem stems from the discrete nature of individual satellite
locks that can cause position estimate discontinuities [15], a

problem that is blamed for a crash during the DARPA Grand
Challenge [16].

Rather than accurately modeling the noise of GPS sen-
sors, a common approach has been binary classification of
(in)valid sensor returns [13], [17], [16]. These systems stop
adding GPS data to SLAM upon detection of a GPS dropout
and/or multipath effects. Some approaches use additional
sensors to improve multipath detection via satellite line-
of-sight calculations by building 3D-models of the local
structure [18], [19].

Some approaches circumvent the GPS sensor’s position
estimate and calculate positions directly from the trilateration
of pseudo-ranges to individual satellites [20]. The most
closely related work uses robust cost function and switch
variables to modify the graph, but their method also requires
a GPS sensor with pseudo-range capabilities [21]. Although
these approaches using sensors equipped with pseudo-ranges
and/or sensor utilizing the local structure have shown signs of
success, we desire a robust approach that uses observations
directly from standard consumer-grade GPS sensors.

III. SENSOR CHARACTERIZATION

Sensor characterization consists of estimating the distri-
bution of observations, zi, returned from the sensor around
the true location, xi. The goal of sensor characterization is a
distribution best defining the zero-mean P (zi|xi). Designers
generally choose the form of the distribution, e.g., Gaussian,
and estimate the parameters of the model using training data,
or by hand-tuning, to maximize log-likelihood. The output
of the characterization is a covariance matrix Σi, which may
be constant or a function of the observation.

A. Simple Gaussian Models

Let ei be the observation error, i.e., ei = (zi − xi).
Assuming a zero-mean uni-modal Gaussian distribution,
parametrized by Σi, the distribution becomes:

P (ei) = N (0,Σi) =
1

(2π)
d
2 |Σi|

1
2

e−
1
2e

T
i Σ

−1
i ei (1)

with d equal to the degree-of-freedom (DOF) of the obser-
vation. The log-likelihood, assuming n independent observa-
tions, can be written:

L = log
n−1∏

i=0

P (ei) =
n−1∑

i=0

logP (ei)

= −
nd

2
log(2π)−

1

2

n−1∑

i=0

log(|Σi|) + eTi Σ
−1
i ei (2)

The last term in (2) explicitly shows the quadratic costs
associated with deviations from the mean.

The sensor characterization task is the definition of Σi,
a function of individual observations, to maximize L. Each
such function can take many forms, but we use a parametriza-
tion where each element is a linear combination of features
of the observation. For example, assuming a 2 DOF sensor
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with independent noise in each DOF, the covariance may be
defined as:

Σi =

[
σ2
i,x 0
0 σ2

i,y

]
=

[
(fT

i,xwx)2 0
0 (fT

i,ywy)2

]
(3)

With feature vectors fi,x and fi,y as functions of each
observation (presumably informing about the error in x and
y respectively) and global weight vectors wx and wy . In
this context, the characterization task would simply be the
definition of the weight vectors.

IV. ROBUST SENSOR CHARACTERIZATION USING
MAX-MIXTURES OF GAUSSIANS

Gaussian mixture models offer a richer representation by
combining multiple Gaussian components, allowing model-
ing of arbitrarily complex distributions. Max-mixture models
define the distribution as the max of k weighted components:

P (ei) = ηi max(α1P1(ei), . . . ,αkPk(ei))

= ηi
k

max
j=1

(
αj

(2π)
d
2 |Σi,j |

1
2

e−
1
2e

T
i Σ

−1
i,j ei

)
(4)

Each components, Pj , is of the form in (1). The log-
likelihood of the data becomes:

L = log
∏

i

P (ei) =
∑

i

logP (ei)

=
∑

i

log

(
ηi

(2π)
d
2

)
+

k
max
j=1

(
log

(
αje

− 1
2e

T
i Σ

−1
i,j ei

|Σi,j |
1
2

))

(5)

Note that ηi becomes an additive constant that does not
effect the minimization and does not generally need to be
computed. The sensor characterization task for max-mixtures
is to define the covariance estimates Σi,j and mixing terms
αj that maximize L.

The most common mixture models are sum-mixtures, i.e.,
P (ei) =

∑k
j=1 αjPj(ei), but our choice of max-mixtures

is motivated by the use of logarithms in (5). The ability to
push the logarithm inside the max operator brings significant
computational advantages [4].

V. GPS SENSOR CHARACTERIZATION

We consider two families of GPS uncertainty predictors
based on uni-modal Gaussians and max-mixtures of Gaus-
sians using non-linear optimization for parameter fitting.
The primary difference between these families is that, for
each observation, uni-modal models have a single covariance
estimate, Σi, and max-mixture models have k of them; plus
k weight vectors.

For mobile ground robots, we assume radial GPS errors,
with x and y errors independent and identically distributed,
i.e., ei = ||ei|| represents the total translation error. Thus,
fi = fi,x = fi,y , w = wx = wy , and each covariance
function becomes:

Σi =

[
σ2
i 0
0 σ2

i

]
=

[
(fT

i w)2 0
0 (fT

i w)2

]
(6)

The global weights are learned off-line and we next describe
some possible GPS feature vectors fi for each observation
zi.

A. GPS Observation Features

An interesting property of GPS receivers is that they
produce a wealth of data that can be used to generate
features. In this section, we explore a variety of features,
beginning with trivial (but still useful) ones and moving to
more complex features.

1) Constant Noise Model: While few real-world systems
today would attempt to characterize all GPS observations as
having the same uncertainty, such a model can serve as a
baseline method for evaluation. Using our framework, we
simply let

fT
i = [ 1 ]

Using this model, the magnitude of the learned weight would
represent the standard deviation for all observations. Since all
observations have equal feature vectors, fi, all observations
will have the same noise estimate fT

i w.
2) Number of Satellites Noise Model: One strategy for

determining the reliability of GPS data is to observe the
number of visible satellites, nsat,i. A simple feature vector
expressing this assumption is given by:

fT
i = [ nsat,i ]

We expect to learn a negative weight for this feature since
more satellites should reduce the observation error. However,
this feature cannot be used alone, because negative σs are
prohibited. Later we’ll see how these simple feature can be
combined with others.

A more effective use of the number of satellites is to
construct the feature vector fi such that the nth

sat,i element
of fi is set to 1, i.e., a “one-hot” encoding. For example,
with 12 possible simultaneous satellite observations and a
reported observation of 5 satellites, the feature vector would
be given by:

fT
i = [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]

This representation allows a different covariance model to
be fit to each number of satellites, but requires more training
data through the whole range of possible nsat,i. We expect
to learn large weights for lower indices and small weights at
the larger indices as the number of satellites should decrease
the error.

3) Dilution of Precision Noise Model: A few standard
outputs from GPS sensors are intended to represent the
positional uncertainty in terms of geometric dilution of pre-
cision. Three such values are typically reported: horizontal
dilution of precision (hdop), positional dilution of precision
(pdop), and time dilution of precision (tdop). Each represents
a multiplicative scaling of the uncertainty as a function of the
geometric configuration of satellites, relative to the sensor,
and should be informative of the true uncertainty. We can
incorporate these values into our feature vector by letting (for
example) fT

i = [ hdopi ]. We expect a positive correlation
between these values and true uncertainty.
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4) Vendor-Provided Noise Model: Many GPS units pro-
vide an uncertainty estimate computed by the sensor. To
evaluate the quality of this estimate, we set our feature vector
to contain just this estimate:

fT
i = [ σvendor,i ]

If the vendor supplied estimates are correct, we would expect
to learn a weight of 1 for this feature.

5) Combination Noise Model: The uncertainty estimate σi
is a linear combination of features and, thus, the aforemen-
tioned features can be combined, with the individual feature
and weight components retaining their original meaning.
For example, combining the constant model, the simplified
number of satellites model, and the vendor-provided estimate
would produce the feature vector:

fT
i = [ 1, nsat,i, σvendor,i ]

We expect this feature to outperform the individual features,
which are subsumed by the combination model, so long as
over-fitting is avoided.

B. Additional Consideration for Max-Mixture Models

The aforementioned models can be used directly as uni-
modal models of GPS uncertainty. However, simple Gaussian
error models for GPS tend to perform poorly, as both earlier
work and our experiments show. Yet, a k = 2 max mixture
model provides significant improvements. With k = 2,
characterization of GPS sensors using max-mixtures requires
maximizing L over a single α value and two w vectors.

Let wj be the dataset-wide weight vector associated with
the jth feature. For observation i, let fi,j be feature j and
standard deviation now given by σi,j = fT

i,jwj . For example,
the features of a 2 component mixture of the constant model
and the combination model (from previous section) are given
by:

fi =

[
fT
i,1

fT
i,2

]
=

[
[ 1 ]

[ 1, nsat,i, σvendor,i ]

]
(7)

With w now defining the k dataset-wide weight vectors wj :

w =

[
wT

1

wT
2

]
=

[
[ w1,0 ]

[ w2,0, w2,1, w2,2 ]

]
(8)

The feature vectors and weights combine, as expected to
produce k standard deviations:

[
σi,1
σi,2

]
=

[
fT
i,1w1

fT
i,2w2

]
(9)

Combining with (5), this leads to a value for σi defined as:

σi = argmax
σi,j

(
log(αj)− 2 log(σi,j)−

e2i
2σ2

i,j

)
(10)

To illustrate the max-mixture approach, suppose that some
GPS measurements are nominal (with errors of a few meters),
while other measurements are “outliers” (with errors of tens
of meters). With a uni-modal approach using f = [ 1 ], we
might learn w = 9. However, by setting f = [ [ 1 ], [ 1 ] ]
(a mixture of two constant variances) we might expect to

learn w = [ [ 2 ], [ 30 ] ] and a value of α in relation to the
frequency of those outliers. While simplistic we will show
that this method works well.

VI. EVALUATION

In this section we evaluate our proposed GPS noise
models on a 14-robot dataset collected within a 220 x 160 m
indoor/outdoor region of the Adelaide Showgrounds in South
Australia using Garmin GPS18x-5Hz sensors during the
MAGIC competition [22].

A. Performance Metrics

To analyze the GPS sensor characterization we analyze
three primary metrics for each model: 1) likelihood of
observed data, 2) robustness to high-error observations, and,
more generally, 3) the distribution of error relative to model-
predicted error.

We use the normalized log-likelihood of the data, given
the model and parameters learned off-line, to measure the
overall fit of the model. This metric represents the expected
log-likelihood of each observation and we desire models that
maximize this metric. Note that the normalization constant
η is not computed, since it does not affect the maximization
of this metric.

In the SLAM context, or any similar non-linear optimiza-
tion problem, a single erroneous measurement can wreak
havoc if not properly modeled. For uni-modal models, out-
liers have low probability and min logP (ei) represents the
worst-case likelihood error.

Since SLAM computes an ML solution via non-linear
optimization and a 1st order Taylor expansion, the gra-
dient magnitude, ||∇i||, is another outlier metric. During
the optimization process ||∇i|| represents the “pull” of the
constraint, relative to other constraints’ gradients. For a given
uni-modal Gaussian, the least likely measurement also has
the maximum gradient, i.e., argmini Li = argmaxj ||∇j ||.
However, with max-mixtures an observation may be expected
with near zero probability, but have virtually no gradient and
thus no ‘pull’ within the optimization process. We desire
models that minimize the “pull” associated with outlier mea-
surements, i.e., we desire small max ||∇i|| = max ||Σiei||.

For each observation, ei/σi represents the number of
standard deviations predicted by the model. If the noise
was truly distributed according to a uni-modal Gaussian
distribution, the ei/σi errors would be distributed as a χ
distribution. Although this metric does not exactly relate
to max-mixtures, we still desire ei/σi distributions that are
quantitatively similar to a χ distribution. For example, we
hope to find models where all observations fall within the
statistically significant region, max(ei/σi) < 6.

B. Analysis

Because our evaluation datasets were dominated by inliers,
the normalized log likelihood of all of our models, including
both simple Gaussian models and max-mixture models, falls
within a relatively small range (from -7.3 to -6.3). These
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TABLE I: Training and Testing Error.

Model Uni-Modal Max-Mixture

Train Test Train Test
1

n

∑
Li max ei

σi
max ||∇i||

1

n

∑
Li max ei

σi
max ||∇i||

1

n

∑
Li max ei

σi
max ||∇i||

1

n

∑
Li max ei

σi
max ||∇i||

constant-hdop -6.855 14.503 2.920 -6.852 17.895 2.750 -6.587 8.810 1.363 -6.623 10.946 1.300
constant-hdop-nsat-vendor -6.299 6.866 2.260 -6.318 11.451 2.127 -6.289 5.142 1.840 -6.306 7.261 1.836
constant-hdop-vendor -6.312 6.342 1.957 -6.325 11.548 1.890 -6.303 4.318 1.631 -6.325 7.932 1.664
constant-nsat-vendor -6.302 6.785 2.208 -6.319 11.595 2.096 -6.271 6.736 2.431 -6.286 10.770 2.275
constant-vendor -6.312 6.331 1.948 -6.326 11.516 1.878 -6.305 4.286 1.737 -6.321 7.292 1.791
constant -7.210 21.106 3.263 -7.321 21.618 3.251 -6.733 12.353 1.118 -6.820 12.653 1.114
vendor -6.329 6.177 2.514 -6.336 9.643 2.331 -6.320 4.204 2.048 -6.330 6.563 2.024

small differences arise from dramatic differences in the log
likelihoods of the relatively-infrequent outlier measurements.

As seen in Table I, for any given feature vector, the
performance of a mixture of two components invariably out-
performed the best single component (simple Gaussian) error
model, according to both training and test error. As measured
by log likelihood, the magnitude of these differences is small,
but again, this is due to the fact that the vast majority of the
measurements were inliers that every model handled well.
As expected, we find that test error is generally somewhat
higher than training error, but the magnitude of the increase
is similar between both the simple Gaussian model and the
more complex max-mixture models.

Unlike the normalized log likelihood, in which the per-
formance of the models on outliers is masked by the large
number of inliers, the worst case standard deviation metric
clearly shows the advantages of the mixture models. The
worst-case standard deviation, max ei/σi, dropped for every
model, often dramatically, e.g., from 21.618 to 12.653 in
the constant-covariance model case. These improvements
highlight a significant improvement in modeling the sensor’s
noise. To be clear, measurements with 12 standard deviations
of error may still have too much influence during optimiza-
tion, but the constant model is a very naive baseline and
ignores any uncertainty indications/features the sensor.

Histograms of the empirical χ error compared to the
model’s predicted density are also revealing (see Fig. 2). In
the case of simple Gaussian models (left column), we see
that the model is consistently conservative with respect to
the inlier data (on the left side of the plots). The outliers
have caused an increase in the covariance estimate, with the
consequence that inliers are given too little weight. Despite
the inflated covariance estimate, outliers still have a very
high gradient (see Table I) due to their distance from the
Gaussian distribution’s mean and will strongly influence the
optimization.

Conversely, the right column of Fig. 2, which plots his-
tograms of the max-mixture models, shows a model error that
more tightly tracks the ideal distribution. Simultaneously,
outliers are shifted closer to the left, indicating that higher
probabilities have been predicted for them. These ouliers still
influence the graph, but have correspondingly smaller “pull”,
which would make a SLAM system more resilient to them.

(a) Constant (b) MM-Constant

(c) Vendor (d) MM-Vendor

(e) Const-HDOP-NSAT-Vendor (f) MM-Const-HDOP-NSAT-Vendor

Fig. 2: Histogram of Empirical vs. Ideal χ-error (for select
models). Ideally, if the underlying Gaussian assumptions
hold, the normalized histogram of ei/σi would fit a 2 DOF χ
distribution (with horizontal units representing standard devi-
ations, σi). The relative movement of the worst-case arrows
to lower standard deviations, uni-modal models (left) versus
max-mixture models (right), highlights the improvements in
modeling capabilities, specifically robustness to outliers.

C. Learned Weights

We next present a few learned parameter settings for
discussion purposes correspond to the respective models
shown in Table I.

The constant models learned weights of [9.29] for uni-
modal and [[5.2], [16.2]] with α = [0.98, 0.02] for the
max-mixture model. This reflects the fact that the sensor
performs well most of the time, but a uni-modal model
must compensate for the high-error observations with an
overestimate of σ to fit the Gaussian assumption.

We were pleasantly surprised by the quality of the vendor’s
uncertainties both in terms of likelihood and in terms of
max ei/σi. The vendor model learned weights of [0.8] and
[[0.73], [1.16]] with α = [0.97, 0.03], reflecting only modest
adjustment of their estimates. However, we were still able to
improve upon them with our method.

VII. CONCLUSION

We have described a general approach for computing sen-
sor uncertainty estimates using a machine learning approach.
Feature vectors are constructed from observations and a

Distribution A: Approved for public release. Distribution is unlimited



weight vector is learned from a ground-truthed data set, via
maximizing the log-likelihood of the training data set.

We showed how this approach can be extended to more
expressive error models using max-mixtures. We take the
view in this paper that “outliers” arise from mismatches
between the empirical performance of a system and its error
model: better models assign higher probabilities to outliers
and thus mitigate their impact. Versus an explicit outlier
rejection phase, the max-mixture approach both provides an
integrated Bayesian mechanism for robust estimation and
removes the need for a near-perfect outlier detector.

In evaluating the performance of these models we use
standard log-likelihood metrics and introduce a metric that
reflects the impact of an outlier on a SLAM system. Our
work was evaluated on a large multi-robot dataset and
we demonstrated significant performance improvements us-
ing our methods on the task of characterizing error-prone
customer-grade GPS sensors. Related methods attempting to
add robustness to the back-end of SLAM would also benefit
from improved robustness on the front-end provided by the
approach presented here.
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