REVA: A Case Study at a Marine Corps Installation

Julie Dobschuetz
Malcolm Pirnie, Inc.
Environment, Energy, & Sustainability Symposium
May 7, 2009
REVA: A Case Study at a Marine Corps Installation

Malcolm Pirnie, Inc, 630 Plaza Drive, Suite 200, Highlands Ranch, CO, 80126-2377

Presented at the NDIA Environment, Energy Security & Sustainability (E2S2) Symposium & Exhibition held 4-7 May 2009 in Denver, CO. U.S. Government or Federal Rights License
Outline

- Overall Program
- REVA Process
- REVA Case Study
- Next Steps
- Acknowledgements
Program Goals

- Assess the potential for munitions constituents (MC) to migrate off operational ranges and identify potential impacts (human health and the environment)
- Provide information for Range Management Plans
- Enhance Service’s stewardship and outreach programs
- Assist Senior leadership decision making to improve sustainable range management
Primary Program Drivers

- DODD 3200.15
- DODD 4715.11
- DODI 4715.14
- OSD Policy on Required Actions Related to Perchlorate (26 Jan 2006) – in revision
- EPA Perchlorate Memo (8 January 2009)
REVA Process

- Conduct Site Visit / Data Collection
- Develop Conceptual Site Model (CSM)
- Perform Small Arms Range Assessments
- Prepare and employ screening-level fate and transport modeling, if applicable
- Conduct further assessment / field work, if applicable
- Document conclusions
Data Collection

- Total of 47 ranges / training areas assessed
 - Live fire training areas
 - Artillery firing areas
 - Mortar firing positions
 - Maneuver areas
 - Small arms ranges
 - Explosive Ordnance Disposal range

- Of the 47 ranges, three areas were identified for modeling
 - A Impact Area
 - B Impact Area
 - C Impact Area
Basic MC Loading Assumptions

- Expenditure data, where available
- Indicator MC include TNT, RDX, HMX, Perchlorate, and Lead
- Main filler of the munitions considered majority of loading
- MC loading estimated for the entire time the range was operational
- MC Loading areas based upon discussions with range control, GIS/mapping data and target locations
MC Loading

- **A Impact Area**
 - 1938-Present
 - TNT, RDX, HMX, Perchlorate

- **B Impact Area**
 - 1938-Present
 - TNT, RDX, HMX, Perchlorate

- **C Impact Area**
 - 1938-Present
 - TNT, RDX, HMX, Perchlorate
Conceptual Site Model

- Varying topography and slope
- 3 MC loading areas located in 3 different hydrologic watersheds
- 22 inches of precipitation yearly average
- Surface water recharges groundwater
- Groundwater aquifer (up to 30 ft bgs) provides water supply
- Receptors
 - Human – groundwater water supply
 - Ecological – surface water streams
Overview of Screening-Level Surface Water Analysis

MC Mass from Soil to Surface Water

Surface Water Runoff Estimate

“Edge of MC Loading Area”

MC Concentration in Surface Water

\[\text{MC Mass from Soil to Surface Water} \times \text{Down Gradient Mixing Factor} = \text{MC Concentration in Surface Water} \]

Compare to REVA Trigger Values

“Mixed”

MC Concentration in Surface Water

Independent Environmental Engineers, Scientists and Consultants
Overview of Screening-Level Groundwater Analysis

MC Mass
\[\frac{\text{MC Mass}}{\text{Infiltration}} = \text{Concentration of Infiltrating water} \]

Unsaturated Zone Modeling (VS2DTi or VLEACH)
- Vertical movement of MC from surface to GW
- Does MC concentration reach water table above REVA trigger values?

Saturated Zone Modeling (Biochlor)
- Horizontal movement of MC in GW
- Does MC concentration reach receptor or range boundary above REVA trigger values?
A Impact Area
Modeling Results

- Surface water
 - MC predicted below REVA trigger values for all indicator MC

- Groundwater
 - MC predicted below REVA trigger values for all indicator MC
A & B Impact Areas
Modeling Results

- **Surface water**
 - MC predicted above REVA trigger values for TNT and RDX off range

- **Groundwater**
 - MC predicted above REVA trigger values for TNT and RDX at estimated down gradient drinking water supply well locations
C Impact Area
Modeling Results

- **Surface water**
 - MC predicted above REVA trigger values for TNT and RDX off range

- **Groundwater**
 - MC predicted above REVA trigger values for TNT and RDX at estimated down gradient drinking water supply well locations
Further Assessment

Sampling Conducted in 2 Watersheds

- Surface water - sampled up to 4 off-range locations where road intersects streambeds
- Groundwater - sampled up to 7 drinking water supply wells
- Analytes included full explosives suites and lead
Watershed 1 Sampling Results

- **Groundwater**
 - Explosives - Non detect
 - Lead - Below Draft DoD Screening Values

- **Surface Water**
 - Explosives – Non detect
 - Lead - Below Draft DoD Screening Values after specific hardness was calculated
Watershed 2 Sampling Results

- **Groundwater**
 - Explosives - 2-nitrotoluene (2-NT) detected below Draft DoD Screening Values in original samples. Non detect in subsequent samples.
 - Lead – Detected below Draft DoD Screening Values in original samples. Non detect in subsequent samples.

- **Surface Water**
 - Explosives - 2-NT, 3-NT detected below Draft DoD Screening Values. RDX detected below DoD Screening Values in original samples but non detect in subsequent samples.
 - Lead - At the Draft DoD Screening Value after specific hardness was calculated.
Assessment Conclusion

- No current off range migration of MC posing an unacceptable risk to human health or the environment
- Detected MC concentrations decreased over sampling events
- Further actions may be evaluated to continue mitigating the possibility of MC migration
REVA Documentation

- Draft report developed
- Reviewed by outside 3rd party
- Draft Final (publicly releasable document)
 - 60 day courtesy review regulator notification period
 - Sent directly with cover letter to agencies identified by installation
- Final (publicly releasable document)
 - Posted on installation website
Next Steps

- Continue regular surface water monitoring
- Re-assess per DoDI beginning in 2014
- Evaluate best management practices to control MC migration within Watershed 2
Acknowledgements

- Headquarters Marine Corps
 - Ms. Jennifer Simmons
- USMC Training and Education Command (TECOM)
 - Mr. Mike Caras
- USMC Installations
Questions?