Nucleic Acid-Based Tools for Monitoring Bioremediation at Chlorinated Solvent Sites

Erik A. Petrovskis, Ph.D., P.E.
Geosyntec Consultants

Environment, Energy and Sustainability
Denver, May 2009
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>MAY 2009</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
<th>00-00-2009 to 00-00-2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>Nucleic Acid-Based Tools for Monitoring Bioremediation at Chlorinated Solvent Sites</td>
<td>5a. CONTRACT NUMBER</td>
<td>5b. GRANT NUMBER</td>
<td>5c. PROGRAM ELEMENT NUMBER</td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td></td>
<td>5d. PROJECT NUMBER</td>
<td>5e. TASK NUMBER</td>
<td>5f. WORK UNIT NUMBER</td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Geosyntec Consultants, Ann Arbor, MI, 48105</td>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td></td>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION/AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited</td>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13. SUPPLEMENTARY NOTES
Presented at the NDIA Environment, Energy Security & Sustainability (E2S2) Symposium & Exhibition held 4-7 May 2009 in Denver, CO. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT Same as Report (SAR)
18. NUMBER OF PAGES 31
19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
What’s In It For Me?

• Learn the science behind MBTs
• Learn when to use MBTs
• Learn how to sample groundwater for MBTs
• Learn the “Rules of Thumb” for MBT data
• Learn how to save time and money with a smarter bioremediation design and operation—do I bioaugment?
Types of MBTs

• Nucleic acid probes (DNA or RNA)
 ▪ Various targets including
 • 16S rRNA gene
 • Functional genes (e.g., RDase, Hydrogenase, Oxygenase, etc.)

• Protein biomarkers
• Lipid biomarkers
Purpose of MBTs

• Reduce remediation costs and increase effectiveness by
 ▪ Supporting sites where MNA is being evaluated
 ▪ Predicting sites where biostimulation will succeed
 ▪ Identifying sites where bioaugmentation is required
Chlorinated Ethene Reductive Dechlorination

- **PCE** → **TCE** → **cis-DCE** → **VC** → **Ethene**

- **Desulfitobacterium sp. strain Viet1**
- **Desulfitobacterium sp. strain PCE1**
- **Desulfuromonas michiganensis**

Sulfurospirillum, **Desulfitobacterium**, **Dehalobacter**, **Geobacter**
Dehalococcoides (Dhc) Involved in Reductive Dechlorination

Dehalococcoides ethenogenes strain 195

Dehalococcoides sp. strain FL2
He et al. 2005. Environ. Microbiol. 7:1442

Dehalococcoides sp. strain BAV1
Müller et al., 2004, AEM, 70:4880
Sung et al., 2006, AEM, 72:1980

Dehalococcoides sp. strain VS

Dehalococcoides sp. strain GT
16S rRNA Gene Targets for Dhc

- 16S rRNA found in all bacteria
- rRNA part of the ribosome; critical for protein biosynthesis
- Contains variable regions which allows for the differentiation of bacterial species
- *Dhc* has one 16S rRNA gene per cell
- *Dhc* 16S rRNA gene count = number of *Dhc* cells

The 16S rRNA molecule has insufficient information to infer physiological traits
Dhc Reductive Dehalogenases

- **tceA**
 - *Dehalococcoides ethenogenes* strain 195
 - *Dehalococcoides* sp. strain FL2
 - *Dehalococcoides* sp. strain BAV1

- **bvcA**
 - *Dehalococcoides* sp. strain VS
 - *Dehalococcoides* sp. strain GT

- **vcrA**
 - *Dehalococcoides* sp. strain KB-1/VS
qPCR Sensitivity: Detection vs. Quantification

Extract Community DNA

qPCR

PCR

Amplification with universal 16S rRNA gene-targeted primers (for nested PCR)

Dechlorinator targeted primers

Sensitive quantification of dechlorinating bacteria (~10^3 copies/L)

Sensitive detection of dechlorinating bacteria (~10^1 copies/L)

Genomic DNA
Dhc Rules of Thumb in the Field

<table>
<thead>
<tr>
<th>Dhc 16S rRNA gene copies per L</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^3 or lower</td>
<td>Suboptimal Dhc to sustain dechlorination rates</td>
</tr>
<tr>
<td>$10^4 - 10^6$</td>
<td>May sustain appreciable dechlorination rates</td>
</tr>
<tr>
<td>10^7 or greater</td>
<td>Often associated with high rates of dechlorination and ethene production</td>
</tr>
</tbody>
</table>
MBT Sampling

• Groundwater sampling preferred
 ▪ Difficulties with repetitive soil sampling
 ▪ Spatial variability in soil
• Sampling method influences results
• Use SOP that complements VOC sampling methods
Groundwater Sampling

Shipping groundwater samples is problematic
- Heavy, costly
- Leakage/breakage
- Biomarker integrity
- Groundwater disposal

Improved procedure: Filtration in the field
- Economical
- No leakage/breakage
- Biomarker stability?
- GW remains on-site

ESTCP Project ER-0518: Sterivex™ filters are a viable alternative!
Sampling Considerations

- Sampling biases
- Ratio of planktonic vs. attached cells

Results

- Biomarker stability?
- Efficiency of each step?
- Method biases?
- No standards!
- No guidelines for results interpretation
• Low-flow purge
 ▪ Wait for stabilization of geochemical parameters to obtain a sample representative of formation groundwater

• Surging
 ▪ Increases particulate matter in sample for recovery of associated (i.e., attached) biomass

• Field filtration
 ▪ Sterivex™ filters for biomass collection in the field
 • Economical, no leakage/breakage, groundwater remains onsite

• Shipping
 ▪ Secure samples for overnight shipment to laboratory
 ▪ Maintain samples at 4°C

Sampling protocol should be defined and maintained for the duration of the monitoring effort for a particular site
Sampling Locations

- Key sampling locations should include
 - Source area(s)
 - Downgradient plume locations where biodegradation products observed
 - Vertical stratification
 - Where possible, use discrete sampling zones and avoid sampling wells with extended screen intervals
• **Seasonal variability**
 - Geochemical conditions and biomarker abundance can be affected by seasonal changes (e.g., rain events, temperature changes, etc.)...be aware!

• **Bioremediation field implementation**
 - Baseline and 1-2 months after injections
 - Quarterly in first 12-18 months
 - Collect with VOC, geochemical and TOC data
Cost

• Field labor
 ▪ Biomass collection can be performed concurrently with sampling events planned for assessment of contaminants
 ▪ Minimal additional time is needed for collection of samples for biomarker analysis

• Laboratory
 ▪ Microbiology labs specializing in biomarker analysis are typically independent from chemical laboratories used for other analyses
 ▪ Typical cost for quantification of *Dehalococcoides* in a sample of groundwater is approximately $250
Cost for Not Using MBTs

- Unnecessary bench tests
- Poorly designed pilot tests
- Inefficient full-scale treatment
 - Application of bioaugmentation and/or biostimulation when MNA would be appropriate
 - Bioaugmentation when sufficient Dhc are present to meet remediation goals
 - Failure to bioaugment when Dhc populations are insufficient
Case Study – NASA MLP/VAB Site

- **TCE Source Area**
 - (~4,000 gal release 1960’s)
- **Biostimulation**
 - Ethyl lactate
- **Performance monitoring**
 - Every other month
 - TCE, cDCE, VC, ethene
 - Dhc and vcrA
 - ~6 data points from each well

![Monitoring Well](30,000 \mu g/L TCE)
![Injection Well](3,000 \mu g/L TCE)
![Injection Well](1,000 \mu g/L TCE)
Groundwater VOCs and Dhc: SAMW-02

Dhc data indicated no need to bioaugment!
Groundwater DHGs and Sulfate: SAMW-02

Sulfate did not inhibit reductive dechlorination!
Correlation of Dhc/vcrA to VOCs and Ethene

- Correlation results:
 - Dhc or vcrA to TCE, DCE or VC
 - Weak correlation ($r_s < 0.33$) for all comparisons
 - Dhc or vcrA to ethene
 - Dhc to ethene = strong correlation ($r_s = 0.66; n = 10; p = 0.05$)
 - $vcrA$ to ethene = strong correlation ($r_s = 0.67; n = 10; p = 0.05$)
Correlation of Dhc/vcrA to Dechlorination Rates

Spearman Test

\[\text{TCE rate (yr}^{-1}\text{)} \quad \text{DCE rate (yr}^{-1}\text{)} \quad \text{VC rate (yr}^{-1}\text{)} \quad \text{Dhc} \quad \text{DCE rate (yr}^{-1}\text{)} \quad \text{VC rate (yr}^{-1}\text{)} \quad \text{vcrA} \]

- Correlation results:
 - Strong correlations (rs = 1.00) for all comparisons to Dhc
 - Medium correlations (rs = 0.50) for all comparisons to vcrA
- Limited validity to results (only three data points)
Case Study – Milledgeville

- TCE Source (18,000 ppb)
- Bioaugmentation Pilot Testing
 - 3 injection wells and 2 recovery wells oriented perpendicular to the prevailing direction of groundwater flow (southwest)
 - Soluble electron donor (lactate) and dechlorinating culture distributed by recirc
Dehalococcoides and chloroethenes

- PCE
- TCE
- cis-DCE
- VC
- Ethene
- Methane
- 16S rRNA
- Dhc
Correlation of Dhc or RDases to VOCs

• *Dhc or RDases to VOCs*
 - No correlations to *Dhc*
 - Strong correlation of *bvcA* (rs = 0, n = 10, p = 0.02)
 - Strong correlation of *vcrA* to cDCE (rs = -0.80, n = 10, p = 0.01)
 - Strong correlation of *tceA* to VC (rs = 0.76, n = 10, p = 0.02)
 - No other correlations identified
Survey: Correlation of Dhc/vcrA to Ethene

Gene copies/L

For vcrA testing:
- below 2 $\times 10^5$/L ethene not normally detected
- above 1 $\times 10^7$/L ethene commonly detected
- above 1.8 $\times 10^8$/L ethene always detected

Dhc Tests % with Ethene
vcrA Tests % with Ethene

N= 121 Samples vcrA
N=244 samples Dhc

Courtesy: SiREM
Biostimulation/Bioaugmentation Flowchart

1. **Will MBT analysis support biostimulation or bioaugmentation?**
 - No
 - Yes
 - Degradation desired in < 6 months?
 - No
 - Yes

2. **Are geochemical conditions favorable?**
 - No
 - Yes

3. **VOC concentrations > 100 μg/L?**
 - No
 - Yes

4. **Biodegradation products?**
 - No
 - Yes

5. **Dhc > 10^4/L - 10^5/L in groundwater?**
 - No
 - Yes

6. **Sample for MBTs**
 - Add donor only
 - Add donor and microbes
Dhc 16S rRNA gene copies per L | Interpretation

<table>
<thead>
<tr>
<th>Copy Count</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^3 or lower</td>
<td>Suboptimal Dhc to sustain dechlorination rates</td>
</tr>
<tr>
<td>10^4 – 10^6</td>
<td>May sustain appreciable dechlorination rates</td>
</tr>
<tr>
<td>10^7 or greater</td>
<td>Often associated with high rates of dechlorination and ethene production</td>
</tr>
</tbody>
</table>
Summary

- MBTs are valuable tools to monitor biodegradation of chlorinated ethenes.
- SOPs are available for MBT sampling. Field filtration is reliable.
- Biomarker genes (bvcA, vcrA) are indicators of field dechlorination activity.
- Rules of thumb and draft guidance are available.
- Understand limitations of the data.
Acknowledgments

Geosyntec

Dr. Rebecca Daprato
Dr. Wayne Amber

Georgia Tech

Dr. Frank Löffler
Dr. Kirsti Ritalahti

Tetra Tech

Keith Henn

NAVFAC

Carmen Lebrón

Support provided by ESTCP project ER-0518 and NAVFAC SE