ESTTCP Project WP-0801, UV Curable Powder Coatings for Military Applications

Presenter: Mr. Christopher W. Geib, Science Applications International Corporation (SAIC)
937.431.4332
geibc@saic.com
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>MAY 2009</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
<th>00-00-2009 to 00-00-2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>ESTCP Project WP-0801, UV Curable Powder Coatings for Military Applications</td>
<td>5a. CONTRACT NUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b. GRANT NUMBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d. PROJECT NUMBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e. TASK NUMBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f. WORK UNIT NUMBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Science Applications International Corp, 4031 Colonel Glenn Highway, Beavercreek, OH, 45431</td>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION/AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td>Presented at the NDIA Environment, Energy Security & Sustainability (E2S2) Symposium & Exhibition held 4-7 May 2009 in Denver, CO.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
<td>b. ABSTRACT</td>
<td>unclassified</td>
<td>c. THIS PAGE</td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT</td>
<td>Same as Report (SAR)</td>
<td>18. NUMBER OF PAGES</td>
<td>19</td>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
</tr>
</tbody>
</table>
Outline

- UV-Curable Powder Coatings Overview
- Robotics as an aid to Curing
- Current Status of ESTCP Project WP-0801
- Future UVCPC efforts
UV-Curable Powder Overview

- Previous ways of thinking about powder
 - Coating cure temperatures – typically above 428°F
 - Prohibitive for use on tempered metals (Al, Mg, Ti)
 - Prohibitive to use on composites
 - Powder coatings were designed as barrier protection
UV-Curable Powder Overview

- Modern powder coatings can be formulated to have:
 - Lower melt & flow temperatures (< 225°F)
 - UV or EB cure functionality can be added
 - Various advanced non-chrome corrosion inhibitors
Advantages of UV-cure powder coating:

- Elimination of volatile organics (VOC)
- Elimination of hazardous air pollutants (HAP)
- Reduction/elimination of hazardous waste
- Transfer efficiencies as high as 95% (w/reclaim)
- Decrease in thermal exposure.
- Large bulky parts that cannot fit into existing ovens can be coated and cured.
- UV-cure powder requires less energy because the energy is focused to a specific part only as long as needed.
Robotics as an Aid to Curing

- Why Use Robots?
Robotics as an Aid to Curing

- Light tunnel approach using various size UV lamps to optimize cost and exposure
Robotics as an Aid to Curing

- **Drawbacks of fixed lamp approach**
 - High Capital Costs
 - Lamps, cooling, fixtures, integration
 - High Operating Costs
 - Replacement parts
 - Energy
 - Downtime
 - Technical Adequacy
 - Complete cure
 - Proper Re-alignment
 - Mixed product
Robotics as an Aid to Curing

Advantages of Robotic Curing

- Robots ensure repeatability
- Robots with UV sources can maintain extremely close target distances
- Robots can be re-programmed in seconds
- Robotic curing is well suited to large or complex parts
- Robots eliminate need for many lights
The Problem:

- DoD spends millions of dollars annually on solvent-based coatings
- Hexavalent chrome primer use still very widespread
- Contains or requires volatile solvent use
- Significant hazardous waste costs
- Hazardous materials pose risks to human health and environment
- Process times measured in hours to days
- Transfer rates are less than 60%
Current Status of ESTCP Project
WP-0801

The WP-0801 Objectives are:

- Demonstrate a VOC/HAP-free, Ultraviolet cure powder coating (UVCPC) on DoD hardware
- Demonstrate state-of-the-art robotics for curing
Current Status of ESTCP Project
WP-0801

- Requirements of a UVCPC for military use:
 - Must perform at least as well as MIL-PRF-23377 primer
 - Must also perform as well as MIL-PRF-85285 topcoat
 - Can be prepared in gloss, semi-gloss, and flat finishes
Current Status of ESTCP Project

WP-0801

- Planned demonstration weapon systems:
 - EA-6B wheels, landing gear
 - HH-65 helicopter
 - P-3 wheels, landing gear, radomes
 - Mk-48 ADCAP torpedo
 - HC-130 main landing gear doors
 - KC-135 wing flap, refueling boom
Current Status of ESTCP Project

WP-0801

- Planned demonstration weapon systems (cont.):

 - Submarine icecaps
 - EA-18G wheels, landing gear
 - Ammunition and storage cases
 - Submarine communication buoys
 - Submarine interior components
Current Status of ESTCP Project
WP-0801

- **Powders:**
 - Currently considering two vendors
 - Two colors, gloss white, semi-gloss gray
 - All will undergo strict validation testing at CTIO

- **Robotics system:**
 - Robot carries the IR and Hg vapor UV lamps
 - Evaluation of alternative UV sources continue
 - Evaluation of alternative application methods continue
Current Status of ESTCP Project
WP-0801

- Major Program Milestones:
 - Joint Test Protocol submitted Sept 2008
 - Robot acquired and integration underway
 - Component identification complete
 - Powder and substrates order Jan 2009
 - Validation testing starts Feb 2009
 - Draft Demonstration Plan June 2009
 - Field Service/Demonstration begins Mar 2010
 - Joint Test Report draft Sept 2010
 - Final Report Mar 2012
Future UVCPC Efforts

- Future follow on efforts include large marine applications
Future UV CPC Efforts

Future efforts in alternative UV light sources

- High Energy UV LEDs
- Pulsed Xenon lamps
Thank You!

Points of contact for UV-curable Powder Coatings ESTCP Project WP-0801:

Mr. Corey Q. Bliss
Principal Investigator
Air Force Research Laboratory/RXSSO
Wright-Patterson AFB, OH 45433
Corey.Bliss.wpafb.af.mil
(937) 255-0943

Mr. Christopher W. Geib
Co-Principal Investigator
Science Applications International Corp.
4031 Colonel Glenn Highway
Beavercreek, OH 45431
Christopher.W.Geib@saic.com
(937) 431-4332