2009 E2S2 Symposium

Designing, Integrating, and Operating a Microgrid
07 May, 2009

Clark B. Boriack, Manager
Power Management and Distribution
Designing, Integrating, and Operating a Microgrid

Performing Organization Name(s) and Address(es):
Concurrent Technologies Corporation, Power Management Distribution, 100 CTC Drive, Johnstown, PA, 15904

SPONSOR/MONITOR’S ACRONYM(S):

PERFORMING ORGANIZATION REPORT NUMBER:

DISTRIBUTION/AVAILABILITY STATEMENT:
Approved for public release; distribution unlimited

SUPPLEMENTARY NOTES:
Presented at the NDIA Environment, Energy Security & Sustainability (E2S2) Symposium & Exhibition held 4-7 May 2009 in Denver, CO. U.S. Government or Federal Rights License

ABSTRACT:

SUBJECT TERMS:

SECURITY CLASSIFICATION OF:
| a. REPORT | b. ABSTRACT | c. THIS PAGE |
| unclassified | unclassified | unclassified |

LIMITATION OF ABSTRACT:
Same as Report (SAR)

NUMBER OF PAGES:
27

NAME OF RESPONSIBLE PERSON:

Notes:

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Outline

• Microgrid Definition

• Microgrid Benefits

• Testbed Requirements

• Technical Approach

• Results
What is a Microgrid?

General Definition:

- A microgrid is an integrated energy system consisting of interconnected loads and distributed energy resources that can operate in parallel with the grid or in an intentional island mode.

Key Defining Characteristics:

- Integrated distributed energy resources (DERs), capable of providing sufficient and continuous energy to mission critical loads
- Independent controls; island and reconnect with minimal disruption
- Flexible configuration and operation of the power delivery system
- Optimized local DERs, large network loads, and broader power system
What a Microgrid is NOT

• One microturbine in a commercial building

• A group of individual generation sources that are not coordinated, but run optimally for a narrowly defined load

• A load or group of loads that cannot be easily separated from the grid or controlled

• A system that can only operate in isolation from the grid

• Does not have to have thermal (whereas CHP by definition has thermal)
Microgrid Overview

Integration Technology
- SYSTEM METERING
- SOURCE CONTROL
- LOAD CONTROL
- SYSTEM PROTECTION
- DISTRIBUTION HARDWARE
- POWER CONDITIONING

Gen Sets
VAC

Renewable Sources
VDC/VAC

Base Camp
VAC

Installation
VAC

CTC
Concurrent Technologies Corporation
Microgrid Potential Benefits

- **IMPROVED RELIABILITY**
 - Critical load support
 - Integration of multiple generation sources (legacy and renewable)

- **RISK MITIGATION**
 - Eliminate dependence upon local utility
 - Integrating available energy sources for backup power

- **ELECTRICAL COST REDUCTION**
 - Intelligent control for peak shaving
 - Renewable Energy Integration
 - Improved asset utilization by integrating distributed sources
Objective – Design, install, and test a scalable microgrid with distributed generation sources and loads

1. Modeling and Simulation – Software tool to confirm design strategies and solutions
2. System Controllers – Combination Distribution Management System and Internet resource
3. Renewable Energy Sources – Combined generation of conventional generation with renewable energy sources.
Microgrid Testbed Requirements

• Improve System Reliability
 – Eliminate single points of failure by using redundant controls
 – Intelligently control sources to meet load requirements
 – Intelligently control loads to avoid system overloads
 – Develop software modeling to predict system limitations and develop appropriate controls
 – Simplify generator synchronization controls by using one controller as opposed to three independent relays (typical scheme)
 – Integrate IEE1547 intertie relay for parallel operation with the utility
 – COTS parts for quick support, replacement
Microgrid Testbed Requirements

• Benefit from System Modeling
 – Develop software models to simulate component and system performance to identify performance limitations and control solutions
 – Use developed models to design and implement future microgrids or improve existing systems

• Improve Asset Utilization
 – Integrate distributed sources and loads into one distribution system to allow for efficient use of generation assets
 – Improving asset utilization reduces fuel consumption and associated logistics requirements
 – Integrate renewable sources as available
Microgrid Approach

- Microgrid Master and Local Controllers
 - Programmable Logic Controllers (PLCs) to coordinate and implement intelligent control of distributed sources and loads.
 - Redundant controllers to avoid single points of failure.
 - LabView based-HMI to provide oversite and configure testing
 - COTS components

- Generator Controls
 - One main controller per generator simplifies synchronization of conventional generation sources compared to configuring and integrating three additional control relays per generator.
 - COTS components
Microgrid Approach

• Software Modeling -
 – Prepare software models of individual sources and loads to predict impact to electrical system.
 – Create a microgrid system model from the individual component models to predict system performance.
 – Validate accuracy and correct simulation models
 – Create test cases and control strategies based upon system performance/limitations predicted and validated by models.

• Control Algorithms –
 – Monitor system health and intelligently control sources and loads
 – Coordinated control between controllers for system stability
Distributed Sources and Loads

• Distributed Sources
 – (1) 35 kW Diesel Generator
 – (1) 35 kW Natural Gas Generator
 – (1) 40 kW Renewable Energy Inverter
 – (1) 400A Utility Service
 – (1) 50 kW Grid Simulator

• Distributed Loads
 – (4) 5 hp three phase motors
 – (1) 20hp dynamometer
 – (1) 225 kW Resistive Load Bank
Test Plan

• Component Model Validation
 – (1) 35 kW Diesel Generator
 – (1) 35 kW Natural Gas Generator
 – (1) 40kW Renewable Energy Inverter
 – (1) 50kW Grid Simulator
 – (4) 5 hp three phase motors
 – (1) 20hp dynamometer
 – (1) 225 kW Resistive Load Bank

– System Model Validation and Analysis

– System Stability Testing and Analysis
Test Results Summary

Steady State Accuracy: 90+%

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Real Power % Accuracy</th>
<th>Reactive Power % Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1-1</td>
<td>RLB Component Validation Test</td>
<td>>91% (steady state at load bus)</td>
<td>N/A</td>
</tr>
<tr>
<td>TC1-2</td>
<td>MLB Component Validation Test</td>
<td>N/A</td>
<td>>95% (steady state at load bus)</td>
</tr>
<tr>
<td>TC1-3</td>
<td>20 hp Motor w/ Dynamometer Component Validation Test</td>
<td>>95% (steady state at load bus)</td>
<td>>90% (steady state at load bus)</td>
</tr>
<tr>
<td>TC1-4</td>
<td>Inverter Component Validation Test</td>
<td>>99% (steady state at inverter bus)</td>
<td>N/A</td>
</tr>
<tr>
<td>TC1-5</td>
<td>DG Component Validation Test</td>
<td>>92% (steady state at load bus)</td>
<td>>90% (steady state at load bus)</td>
</tr>
<tr>
<td>TC1-6</td>
<td>NGG Component Validation Test</td>
<td>>92% (steady state at load bus)</td>
<td>>90% (steady state at load bus)</td>
</tr>
<tr>
<td>TC2-1</td>
<td>Grid-connected System Validation Test</td>
<td>>97% (steady state at load bus)</td>
<td>>92% (steady state at load bus)</td>
</tr>
</tbody>
</table>
Dyno Component Test One-line
Connected: Utility, 20Hp Dynamometer
Dyno Component Test Results
Model kW vs Actual - 95+% Accurate

TC1-3 Load Bus Total Real Power

- HS kW tot (Testbed) [kW]
- Ptot,load (Model) [kW]
- Real Power accuracy [%]

Real Power [kW]/Percent Accuracy [%]

Time [s]
Dyno Component Test Results
Note: Identify System Stress Points, VAR Requirements

TC1-3 Load Bus Total Reactive Power

- HS kVAR tot (Testbed)
- Qtot,load (Model)

Reactive Power [kVAR]

0.00 0.12k 0.24k 0.36k 0.48k 0.60k 0.72k 0.84k 0.96k 1.08k 1.20k

Time [s]

0 30 60 90 120 150

0.48k 0.60k 0.72k 0.84k 0.96k 1.08k
Inverter Component Test One-Line
Connected: Utility, Inverter
Inverter Component Test Results

Initial Model kW vs Actual -

Note: False Output Ringing Predicted by Model

TC1-4 Inverter Total Real Power

Inverter Output Ringing Predicted
Inverter Component Test Results
Revised Model kW vs Actual

Note: Model Configuration Impacts Simulation Software Results
System Test One-line

Connected: Utility, Gensets, Inverter, RLB, MLB, Dyno
System Test Results

Utility Current THD Measurements

Note: Confirm THD

DG brought online

DG taken offline
System Test Results
Utility Neutral Current Measurements
Note: Confirm Neutral Current Direction
System Test Results

Note: Neutral Current Solutions

• Transformer Isolation
 – Delta-Wye Transformer traps 3rd order harmonics

• Three Phase Harmonic Filter
 – Wye – Delta Transformer to eliminate zero sequence currents

• Neutral Reactor
 – Tuned reactor to block 3rd order currents only

• Neutral Grounding
 – Establish one neutral path to ground
 – Confirm neutral grounding when isolated from utility
Acknowledgements

• ERDC-CERL Contract No.
 – W9132T-07-R-0017

• ERDC-CERL Technical Monitor – Frank Holcomb
 (217) 373-5864
 Franklin.H.Holcomb@erdc.usace.army.mil
Contact Information

Clark Boriack
Concurrent Technologies Corporation
Manager, Power Management Distribution
(814) 262-2381
Email: boriackc@ctc.com
Web Address: http://www.ctc.com