Operational Range Assessment Program (ORAP) Phase II Overview

Andrea Graham
USACE, Baltimore District
andrea.a.graham@usace.army.mil
Operational Range Assessment Program (ORAP) Phase II Overview

1. REPORT DATE
MAY 2009

2. REPORT TYPE

3. DATES COVERED
00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Operational Range Assessment Program (ORAP) Phase II Overview

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army Corps of Engineers, Baltimore District, 10 South Howard Street, Baltimore, MD, 21201

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the NDIA Environment, Energy Security & Sustainability (E2S2) Symposium & Exhibition held 4-7 May 2009 in Denver, CO.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
20

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std Z39-18
Army Environmental
Military Munitions Programs

- ORAP is part of the Sustainable Range Program (SRP), which also includes Operational Range Inventory Sustainment (ORIS)
 - ORAP is a comprehensive effort to identify and evaluate off-range munitions constituents (MC) impacts from operational ranges (as defined in TC 25-8), and to ensure continuity of training missions at these ranges
 - SRP Tenet: Information Excellence – Ensure the Army has the best available data to support operational ranges

- MMRP is a program element of DERP (September 2001)
 - Documents MC impacts from other than operational military ranges and munitions sites
 - MMRP includes FUDS, BRAC, and CTT sites

Coordination efforts are underway between the two programs to reduce burden to installations
ORAP Assessments use a phased approach and are based on Source – Receptor Interactions.
Phase II Assessment Overview

- Phase II Assessments will occur where Phase I Assessments indicate *Inconclusive* categorization.
- Phase II is planned to start in FY10.
- Sample and analyze migration pathway media:
 - Use accepted processes to determine the number and locations of samples.
 - Analyze for MCOC using approved analytical methods.
Phase II Quantitative Assessment – Pilot Studies

- USACHPPM’s Recommended Phase II Approach
 - Develop installation-specific HSPs
 - Develop DQOs using EPA guidance
 - Develop QAPPs using UFP-QAPP
 - Address SW and GW pathways only
 - Develop detailed Viable Pathway CSMs (discussion and illustration)
 - Incorporate non-range influences and degradation
 - Select effective sample locations
 - GW sampling at/near sources (not on Impact Areas) or exposure points
 - SW sampling
 - Account for temporal variability (wet/dry seasons, high/low flow events)
 - Use SW decision flow chart
Phase II Quantitative Assessment – Pilot Studies

- USACHPPM’s Recommended Phase II Approach (continued)
 - Ecological Risk Assessments – aquatic receptors only
 - Background and 95% UCL of mean results vs. screening levels comparison
 - Benthic macroinvertebrate surveys – false Positive / Negative
 - Human Health Risk Evaluations
 - Initial data screening – direct comparison to screening levels
 - Quantitative data screening – determine need for HHRA
 - Installation-specific Phase II reports categorizing each formerly Inconclusive range as either Unlikely or Referred
 - Referred categorization must be based on Risk Assessment results – not just on Phase II data
Phase II ORAP Roles & Responsibilities

- ISE has overall Army responsibility for Range Assessment Program including funding and guidance
- G3 provides HQDA level operator input
- AEC and NGB are the Program Managers for Phase II Assessments with responsibility for:
 - Upward and downward reporting
 - Disburse funding
 - Implement protocol as guidance
 - Data repository
 - Scheduling
- USACHPPM provides technical oversight
- Contract mechanism for Phase II Assessments will consist of AE IDQ and Multiple Award Military Munitions contracts
ORAP Phase II Pilot
USAG Fort Jackson / McCrady Training Center

Rhonda Stone
Malcolm Pirnie, Inc.
 rstone@pirnie.com
Installation Overview / Fast Facts

- **Fort Jackson** -
 - Army owned/operated 36,971 acres (+15,267 acres operated by SCARNG)
 - Used 1917 to present for Basic & Advanced Infantry Training
 - 29,475 operational acres / 16,471 categorized as Inconclusive
 - 104 operational ranges / 51 categorized as Inconclusive

- **McCready Training Center** -
 - Army owned/NGB operated
 - 15,267 acres in total
 - Used by SCARNG since 1943
 - 14,895 operational acres / 12,243 categorized as Inconclusive
 - 62 operational ranges / 48 categorized as Inconclusive
Combined Installation Phase II Pilot Study Advantages

- Able to obtain additional surface water/sediment data for both installations with minimal added effort - better determine if a source area is up-stream within each watershed

- Same up-stream (background) and down-stream surface water/sediment sample locations used for both installations - additional McCrady TC only locations no longer needed

- Able to add piezometers to better determine groundwater direction, depth, and subsurface geology (= better groundwater sample location siting)

- Additional down-gradient groundwater sample locations can used for both installations

- Provide information on potential impacts migrating off the combined installation boundary rather than just the Fort Jackson or McCrady TC boundary

- Combined sampling effort decreases impacts to training activities
Surface Water Pathway Sampling Locations

Boat Access. Vertical composite Grab Samples. No Benthic Macroinvertebrates.
Groundwater Pathway Sampling Locations - Multi-Phase Groundwater Approach
Pilot Technologies

X-50 Mobile XRF

Specifications:
- 50kV, 200mA x-ray tube for up to 25X power over a handheld instrument
- High resolution Si PIN diode detector that delivers < 190 eV resolution (FWHM Mn K-alpha line) in a proven, field-ready package
- Rugged, injection molded, sealed carrying case and sealed test platform
- Powerful Pentium processor, embedded XP and sealed, field-hardened color touchscreen
- Multiple analysis modes including Fundamental Parameters, Compton Normalization, Empirical Calibration models, Spectral Matching
- 6-position primary beam filters for optimal performance across the periodic table
- Sample platform with interlocked testing cover
- AC Power or 3-hour Li-ion battery power with optional battery pack (typical duty cycle)
- Total weight 20 lbs/9 kg
- Dimensions (approx.) 12” x 13” x 8” in / 30 x 33 x 20 cm
- Sample chamber dimensions 12” x 8” x 5” / 30 x 20 x 12.5 cm

Active cooling in a portable sampler!

Iisco’s Glacier® Sampler combines the small size, light weight, and mobility of a portable with an exclusive active temperature control system. Its revolutionary design gives you the best of all worlds: easy transport, quick setup, and accurate sample preservation – without reliance on ice or utility power!

Glacier can be powered by 12V DC or AC line voltage. In the field, Glacier delivers 48 hours or more of refrigeration from a 12 volt deep cycle battery. Its power-saving cooling system stands by until the first sample is drawn. Glacier can wait patiently for days or weeks to collect event-triggered samples, and then preserve them until a convenient pickup time.
Pilot Schedule

<table>
<thead>
<tr>
<th>Activity</th>
<th>Anticipated Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kick-off Meeting</td>
<td>September 2008</td>
</tr>
<tr>
<td>Reconnaissance Walk/Coordination Meeting</td>
<td>October 2008</td>
</tr>
<tr>
<td>Work Plan Preparation</td>
<td>October 2008 – February 2009</td>
</tr>
<tr>
<td>Review Period</td>
<td>February 2009</td>
</tr>
<tr>
<td>Final Work Plan (with UFP-QAPP)</td>
<td>March 2009</td>
</tr>
<tr>
<td>Field Sampling</td>
<td>March 2009 – July 2009</td>
</tr>
<tr>
<td>Review Period</td>
<td>December 2009</td>
</tr>
<tr>
<td>Final Quantitative Assessment Report</td>
<td>January 2010</td>
</tr>
</tbody>
</table>
ORAP Phase II Pilot
Fort A.P. Hill

Dave Mercadante
EA Engineering, Science, and Technology
dmercadante@eaest.com
Installation Overview / Fast Facts

Fort A.P. Hill, Virginia

- U.S. Army owned/operated
- Active since 1941
- 228 operational ranges
- 74,262 acres

Phase I Conclusions

- Unlikely - 128 operational ranges, 47,641 acres
- Inconclusive - 100 operational ranges, 26,621 acres
Piloting the Protocol

- The identified sources, pathways, and receptors at installation allow full testing of Technical Protocol
 - Training history means typical programmatic constituents potentially present on site
 - Main programmatic transport pathways identified from multiple source types
 - Well defined surface water flow and discharge points for multi-seasonal sampling
 - Groundwater sampling at both source discharge and potential exposure points
 - Habitat conditions present for testing application of benthic macroinvertebrate dip net sampling

- Site location allows comparisons of protocol application between Fort A.P. Hill and USACHPPM pilot site in Virginia

- Site is easily accessible for evaluation by USAEC, USACHPPM, and USACE program managers and technical oversight
Proving the Concept

- **Application of Worst Case Scenario application**
 - Similarities in models of source, pathway, and receptor between watersheds allow for a focused approach

- **Establishing a baseline for storm event sampling**
 - Installation of rain gauges, transducers and barometers in multiple watersheds to identify parameters necessary for true storm transport

- **Comparison of multi-seasonal benthic sampling results**
 - Measure application of a single season approach
 - Measure application of using historical benthic data
 - Assess value of AVS-SEM analysis

- **Cost-Benefit analysis of USEPA Method 1638**
Project Schedule – Fort A.P. Hill

<table>
<thead>
<tr>
<th>Activity</th>
<th>Anticipated Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kick-off Meeting</td>
<td>September 2008</td>
</tr>
<tr>
<td>Reconnaissance Walk/Coordination Meeting</td>
<td>October 2008</td>
</tr>
<tr>
<td>Work Plan Preparation</td>
<td>October 2008 - February 2009</td>
</tr>
<tr>
<td>Review Period</td>
<td>February 2009</td>
</tr>
<tr>
<td>Final Work Plan (with UFP-QAPP)</td>
<td>March 2009</td>
</tr>
<tr>
<td>Field Sampling</td>
<td>March 2009 - July 2009</td>
</tr>
<tr>
<td>Data Validation / Quantitative Assessment Report Preparation</td>
<td>May 2009 - December 2009</td>
</tr>
<tr>
<td>Review Period</td>
<td>December 2009</td>
</tr>
<tr>
<td>Final Quantitative Assessment Report</td>
<td>January 2010</td>
</tr>
</tbody>
</table>