The Impact of Conducting ATAM® Evaluations on Army Programs

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Robert L. Nord, John Bergey, Stephen Blanchette, Jr., Mark Klein
May 2009

The Impact of Conducting ATAM Evaluations on Army Programs

Carnegie Mellon University, Software Engineering Institute, Pittsburgh, PA, 15213

Objective of This Study

The Army Strategic Software Improvement Program (ASSIP) is a multiyear effort targeted at improving the way in which the Army acquires software-intensive systems.

As part of the ASSIP, the Army funded the Carnegie Mellon® Software Engineering Institute (SEI) to conduct software architecture evaluations using the SEI Architecture Tradeoff Analysis Method® (ATAM®). When a system’s architecture did not exist or was not ready to evaluate, the Army sponsored SEI Quality Attribute Workshops (QAWs). Other Army programs funded their own ATAM evaluations and QAWs.

The objective of this study¹ was to determine the value the Army programs received from using the ATAM and the QAW.

This impact data will enable the Army to decide whether these practices should be considered for broad adoption across the Army.

Army Programs

12 Army programs conducted 11 ATAMs and 5 QAWs from 2002 through 2007.

<table>
<thead>
<tr>
<th>Army Programs (in alphabetical order)</th>
<th>ATAM</th>
<th>QAW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial Common Sensor (ACS)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Army Battle Command System (ABCS)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Command Post of the Future (CPoF)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Common Avionics Architecture System (CAAS)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Distributed Common Ground Station – Army (DCGS-A)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Force XXI Battle Command, Brigade-and-Below (FBCB2)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Future Combat Systems (FCS)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Integrated Fire Control (IFC)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Joint Tactical Common Operational Picture Workstation (JTCW)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Manned/Unmanned Common Architecture Program (MCAP)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>One Semi-Automated Forces (OneSAF)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Warfighter Information Network – Tactical (WIN-T)</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
The purpose of the ATAM is to assess the consequences of architectural decisions in light of quality attribute requirements and business goals. The ATAM helps stakeholders ask the right questions to discover architectural risks.

The QAW is a facilitated method that engages system stakeholders early in the life cycle to discover the driving quality attributes of a software-intensive system.

Assessing Impact

<table>
<thead>
<tr>
<th>Measurement Category</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs/Indicators</td>
<td>Measures inputs into meetings including the number of meetings, attendees, audience, costs, and efficiencies</td>
</tr>
<tr>
<td>Reaction and Perceived Value</td>
<td>Measures reaction to, and satisfaction with, the experience, ambiance, contents, and value of meeting</td>
</tr>
<tr>
<td>Learning</td>
<td>Measures what participants learned in the meeting-information, knowledge, skills, and contacts (takeaways)</td>
</tr>
<tr>
<td>Application and Implementation</td>
<td>Measures progress after the meeting-the use of information, knowledge, skills, and contacts</td>
</tr>
<tr>
<td>Impact and Consequences</td>
<td>Measures changes in business impact variables such as output, quality, time, and cost-linked to the meeting</td>
</tr>
<tr>
<td>ROI</td>
<td>Compares the monetary benefits of the business impact measures to the costs of the meeting</td>
</tr>
</tbody>
</table>

Criteria for Evaluating Impact of ATAM/QAW

<table>
<thead>
<tr>
<th>Quality Improvements</th>
<th>ATAM/QAW Preparation and Execution</th>
<th>ATAM/QAW Post-Engagement Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmatic (Schedule)</td>
<td>Effective in terms of • cost • effort</td>
<td>Improved • program schedule performance • program cost performance</td>
</tr>
<tr>
<td>Product (Software)</td>
<td>Clarification, discovery, and use of • quality attribute requirements • architecture documentation • risks and risk themes</td>
<td>Improved • software architecture • system qualities/capabilities • warfighter effectiveness</td>
</tr>
<tr>
<td>Practices (Development)</td>
<td>Foster communication among program office, suppliers, and stakeholders to • understand and control cost and schedule • communicate quality attribute requirements • evaluate the architecture • improve the architecture</td>
<td>Organizational changes • use of the results • use of the practices in the short term • adoption of the concepts • adoption of the methods • training personnel to conduct the methods</td>
</tr>
</tbody>
</table>

Questionnaire

The questionnaire was organized into four sections:

1. **Conducting the ATAM/QAW** - elicited information about product and practice improvements during preparation and execution of the method.

2. **Follow-On ATAM/QAW Activities** - elicited information about practice improvements during the post activities, focusing on how the engagement affected the immediate behavior of the organization.

3. **Adoption of ATAM/QAW** - elicited information about practice improvements during the post activities, focusing on how the engagement affected the long-term acquisition practices.

4. **Overall Impact** - elicited information about short-term and long-term programmatic improvements and long-term product improvements; in addition, it provided survey respondents an opportunity to share comments on how they perceived the overall impact.
Factors Affecting Impact

Context of use for each factor was rated on a three point scale: 1) undesirable, 2) somewhat undesirable/desirable, 3) desirable.

Overview of Results - 1

Overall, the survey results suggest that the Army programs received benefit from the use of the ATAM and QAW. Context of use had a significant impact on these findings, leading us to believe that under appropriate acquisition conditions these practices are very likely to have a positive impact on system quality.

- Six of the 12 programs reported that it cost less to use the ATAM/QAW than the techniques they traditionally have used. Moreover, they all reported results that were at least as good, and often better, than the results they traditionally obtained.
- Ten of the 12 programs reported that the ATAM/QAW provided an informed basis for the program office and the supplier to better understand and control the software development cost and schedule.
Overview of Results - 2

- All programs found that using the ATAM/QAW increased their understanding of the system’s quality attribute requirements, design decisions, and risks.
- Overall, the programs felt that the use of the ATAM/QAW provided a good mechanism for the program office, suppliers, and stakeholders to communicate their needs and understand how they are met.
- A majority of the respondents felt that using the ATAM/QAW led to an improved architecture (8 of 12), and a higher quality system (6 of 10). A minority of the respondents felt that using the ATAM/QAW would result in overall cost and schedule reductions for their respective programs.

Programmatic Improvements

<table>
<thead>
<tr>
<th>Conducting the method</th>
<th>Better (or same)</th>
<th>Lesser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheaper (or same)</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Costlier</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Quality of ATAM/QAW Outputs vs. Other Techniques (shown as number of programs)

Overall, the data shows that the ATAM and QAW are effective techniques for eliciting quality attribute requirements and analyzing software architecture; in some cases, they are more cost-effective than traditional analysis methods.

In the other cases, people reported context of use affected their response and that they would use the methods in the future

- “QAW and ATAM provided benefits deemed substantial enough to warrant adoption for future contracts.”
These results demonstrate that the architecture team is able to use ATAM/QAW to achieve an understanding of stakeholder expectations for the system, the implications of architectural decisions on user needs, and the relevant risks to success.

The significance of these results is that stakeholders, collectively, are able to use ATAM/QAW to achieve a common understanding of the system under development, making it more likely that the completed product will address stakeholder expectations and user needs, thereby improving chances for program success.
Transition

1. All programs reported some use of the artifacts produced by the ATAM/QAW. For example, some put the quality attribute scenarios they developed into a requirements tracking system, others improved their architecture documentation, and others formally tracked risks discovered during the evaluation.

2. Eleven programs reported using the techniques of the ATAM/QAW to uncover additional risks by, for example, refining or analyzing additional scenarios.

3. Nine programs reported adopting the concepts of quality attribute requirements elicitation and architecture evaluation.

4. Seven programs reported adopting the ATAM/QAW methods (i.e., by using or specifying the use of the practices).

5. Three programs reported investment in formal ATAM training.

Conclusion

The data gathered for this study confirms that the use of ATAM evaluations and QAWs are generally beneficial to DoD system acquisitions and suggests that maximal benefit is achievable only if architecture-centric practices are pre-planned and built into the acquisition process.
Impact of Conducting ATAM® Evaluations on Army Programs

System Development and Demonstration Phase

Must be done here

Acquisition Planning RFP / SOW Source Selection

Contract Award

Contract Performance Phase with Government Oversight

System Test and Evaluation

System Development and Demonstration

Reducing Software Acquisition Risk

Major Activities

Legend

Contractual Event/Review Architecture-centric event

SRR – System Requirements Review

PDR – Preliminary Design Review

CDR – Critical Design Review

Technical Planning, Configuration Management, and Risk Management

Contact Information

Presenter
Robert L. Nord
Research, Technology, and System Solutions Program
Telephone: +1 412-268-1705
Email: rn@sei.cmu.edu

World Wide Web:
www.sei.cmu.edu
www.sei.cmu.edu/contact.html

U.S. mail:
Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Customer Relations
Email: customer-relations@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257