1. REPORT DATE
01 AUG 2015

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Hydrogen cyanide related deaths and detection in the blood

5a. CONTRACT NUMBER
-

5b. GRANT NUMBER
-

5c. PROGRAM ELEMENT NUMBER
-

5d. PROJECT NUMBER
-

5e. TASK NUMBER
-

5f. WORK UNIT NUMBER
-

6. AUTHOR(S)
Bebarta V. S.,

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX

8. PERFORMING ORGANIZATION REPORT NUMBER
-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
-

10. SPONSOR/MONITOR’S ACRONYM(S)
-

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
-

12. DISTRIBUTION/AFPABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
-

14. ABSTRACT
-

15. SUBJECT TERMS
-

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a</th>
<th>REPORT</th>
<th>unclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>ABSTRACT</td>
<td>unclassified</td>
</tr>
<tr>
<td>c</td>
<td>THIS PAGE</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
2

19. NAME OF RESPONSIBLE PERSON
-

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
LETTER TO THE EDITOR

Hydrogen cyanide related deaths and detection in the blood

Vikhyat S. Bebarta

Department of Emergency Medicine, San Antonio Military Medical Center, San Antonio, TX, USA

We read with interest the manuscript by Stamyer et al. which describes the cyanide levels of deceased patients exposed to structural fires [1]. This unique paper is important and adds more scientific support to what many clinicians feel is true, that cyanide is a common cause of toxicity and death after smoke inhalation. For many reasons, detection of cyanide toxicity is difficult, including accessibility of obtaining cyanide levels, ambiguity of cyanide related symptoms, and other reasons described by authors.

However, we felt two questions require clarification by the authors. The authors state that spectrophotometric method was used to detect cyanide levels prior to 2002. However, many patients in Europe received hydroxocobalamin prehospital and in the hospital for presumed cyanide toxicity [2]. Hydroxocobalamin has light absorption characteristics that interfere with colorimetric and spectrophotometric laboratory measurements [3]. As examples, artificial elevations in creatinine, glucose, and bilirubin have been reported, as decrease alanine aminotransferase, and unpredictable results for creatine phosphokinase, phosphate, and lactate dehydrogenase [4]. Urinalyses are often uninterruptable [3]. Thus, we are concerned that deceased patients in the database may have received hydroxocobalamin before death that could have caused spectrophotometric interference. They authors did not state if hydroxocobalamin interferes with their spectrophotometric cyanide assay used for detection before 2002.

Secondly, hydroxocobalamin binds cyanide well. In particular, investigators have reported that once this antidote is infused in sufficient doses, cyanide levels are undetectable [5]. If patients in this study had received hydroxocobalamin, their cyanide levels may be reduced or undetectable as measured by either analytical method used for cyanide detection. The authors did not report which, if any, patients received an antidote, specifically hydroxocobalamin and thus potentially underestimating the proportion of patients that had detectable cyanide levels.

References

Address for Correspondence: Dr. Vikhyat S. Bebarta, Department of Emergency Medicine, San Antonio Military Medical Center, 23239 Crest View Way, San Antonio, 78261 TX, USA. E-mail: vikbebarta@yahoo.com

(Received 27 June 2012; accepted 06 July 2012)