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Abstract: Shear wave seismic-acoustic imaging 
incorporating laser Doppler vibrometers (LDV) has been 
successfully used to detect buried landmines using single 
tone excitation.  In this paper, the use of linear frequency 
modulated (LFM) chirps is proposed to exploit wideband 
resonant behavior.  This technique captures more 
information about complex elastic inhomogeneities while 
being more tolerant to noise.  

Keywords: acoustic imaging; acoustic sensors; landmine 
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Introduction 
Shear wave elasticity imaging (SWEI) is a method of 
“remote palpation” used to find cancerous inhomogeneities 
buried deep in healthy tissue[1]-[3].  Similar techniques of 
measuring surface waves have been used by Xiang and 
Sabatier to locate shallow buried landmines [4],[5].  In 
these methods acoustic energy is coupled into the medium 
in the form of a shear wave, and the response of the 
medium to the incident energy reveals information about 
the presence of an inhomogeneity, defined here as a mass 
contained within the homogeneous region with 
substationally different stiffness, density, or Poisson’s ratio.  
The change in these material properties locally changes the 
wave propagation speed and affects the amplitude of 
standing modes and scattered waves, typically appearing as 
an area of reduced vibration amplitude. 

In contrast to typical SWEI applications, which rely on 
contacting shakers and Doppler ultrasound to image 
tumors, this technique strives for standoff detection.  The 
biggest contrast here is the use of low frequency acoustics 
as the excitation source, which produces plane wave 
excitation in the far field of the transmitter.  The boundary 
condition used in [1] must be modified to account for plane 
wave excitation.  Furthermore, due to the longitudinal 
nature of acoustic waves, Gao’s model is modified for 
longitudinal scattering, which is typically ignored due to 
the large wavelengths in biological tissue.  For the test 
material presented in this paper (expanded polystyrene 
foam), the shear and longitudinal waves speeds are almost 
equal allowing the latter to be measured at the surface 
where mode conversion produces a composite of shear and 
longitudinal waves.  Finally, this paper presents a finite 
difference time domain (FDTD) approach utilizing LFM 
chirps as the excitation waveform.  This method captures 
broadband information about resonant modes while being 
more tolerant to noise at any particular frequency.  

Wave Propagation in Inhomogeneous Materials 
Consider a linear, isotropic, elastic material that has a 
longitudinal displacement field vector l  satisfying [6] 
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Here E is the Young’s modulus of elasticity, ρ is the 
density, and ν is Poisson’s ratio.  Within the homogeneous 
region, we insert an elastic ‘inhomogeneity’ as depicted in 
Fig. 1.  This area has dimensions La' × Lb', and is centered 
at (x0,y0), and has propagation speed significantly different 
than the surrounding homogeneous region.  Both the 
homogeneous and inhomogeneous regions have 
displacement field vectors that satisfy (1), but with different 
propagation speeds.  In traditional SWEI, the most 
distinguishable mechanical property that separates tumor 
from normal tissue is the stiffness, but here we utilize the 
change in density and Poisson’s ratio as well.  Utilizing a 
piecewise approach, the homogenous longitudinal wave 
speed is [1] 
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while the inhomogeneous longitudinal wave speed is 
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where x is the position vector.  Utilizing the relation  
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the sound speed for the entire region can be defined as [3] 

  2 2
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Since acoustic plane waves are longitudinal and the shear 
and longitudinal wave speeds are approximately equal in 
our homogenous test case, (1) and (2) will form the basis of 
our FDTD model.  The subscripts ‘s’ and ‘i’ will now be 
used to distinguish scattered and incident waves 
respectively.  We will also limit propagation to the x-y 
plane, effectively making the target infinite in the z axis.  
With the longitudinal sound speed defined over the entire 
region, (2a) is now rewritten as [3] 
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Loss may be added by including a relaxation term so that 
(7) becomes [1]  
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where 0( ) /R Q , and Q is the quality factor of the 

material at the excitation frequency  . 

Finite Difference Time Domain Solution 
The use of LFM chirps does not allow a finite difference 
frequency domain solution or analytic solutions to easily be 
used.  A simple approach to solutions of such scattering 
problems is a finite difference time domain method.  To 
begin with, we split ξ into incident and scattered waves, 

 ,i s     (9) 

where i  is the incident longitudinal wave and s is the 

scattered longitudinal wave.  Substituting (9) into (8) and 
applying 

 2
2 2 2
0 0 0

1
0i i

i

R

tc t c

 



 

   


 (10) 

yields 
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Since the amplitude of s is much smaller than that of i , we 

may utilize the Born approximation and discard the 

s terms in the right side of  (11) resulting in [1] 
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Gao, Parker, and Alam derived a similar equation for shear 
waves [1].  Using several more simplifying assumptions, 
they were able to derive a complicated closed form 
solution.  In contrast, this paper presents a simple FDTD 
solution for LFM chirp excitations at the boundary 
resulting from plane waves in the farfield of an acoustic 
source.  The finite difference method may be applied to 
(12) yielding 
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Examination of (12) and (16) reveals that the scattered 
displacement vector created by an inhomogeneity is 
dependent upon the incident displacement vector i , which 

has non-zero amplitude regardless of whether an 
inhomogeneity is present.  Setting ( ) 0 x in (8) or (12) 

reduces the wave equation to that describing only the 
incident wave, (i.e. 0s  ).  The solution for the incident 

displacement field vector may be computed by a similar 
finite difference method yielding 
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Figure 1. Two dimensional geometry of 

longitudinal scattering.  The size of the homo-
geneous region is La × Lb, with inhomogeneity 

located at (x0, y0) of dimension La’ × Lb’. 
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The total displacement field vector, as given in (9) is 
simply the sum of the incident and scattered fields.  The 
next section will discuss boundary conditions as they 
pertain to the solutions of (13) and (14) in the context of the 
experimental setup depicted in Fig. (2). 

Boundary Conditions and Experimental Setup 
Fig. 2 depicts the experimental setup used to capture SWEI 
images of both homogeneous and inhomogeneous targets.  
A loudspeaker and scanning LDV are positioned at one end 
of an anechoic chamber.  The target is positioned 
approximately 2.5 m away at the opposite end of the 
chamber.  While distances depicted here are not sufficient 
for field applications, the maximum standoff capability of 
the LDV is 30 m and loudspeakers such as a long range 
acoustic device (LRAD) can easily generate 80-100 dB 
sound pressure level (SPL) at 1 km. 

Imaging of the target’s surface is done using a raster scan 
with each pixel value corresponding to the vibration energy 
at that point.  The excitation used is an LFM chirp from 
0.050 – 2.5 kHz with duration of 100 ms.  The LDV 
measures the frequency response of the target at each pixel 
point, integrating the square of the measured signal in the 
frequency domain over the bandwidth specified.  The 
energy value measured for each pixel is recorded and the 
LFM chirp is repeated at the next point. 

As depicted in Fig. 2, the farfield distance for the 2.5 kHz 
stop frequency is 0.24 m, placing the target well into the 
zone dominated by spherical spreading where wave fronts 

can be assumed to be planar.  For this reason, the boundary 
conditions for the FDTD simulation of the target’s response 
are 
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(15) 
where 0p is the incident sound pressure in Pascals, ( )t is 

the instantaneous frequency, and air airairZ c is the 

acoustic impedance of air.  The zero amplitude boundary 
condition for left, top, and bottom edges is appropriate for a 
solid-air boundary where the vast difference in densities 
results in almost total reflection.  As with any FDTD 
method, stability is ensured by correctly specifying the time 
step.  Each time step must be short enough to allow 
propagation of the wave’s energy from one grid segment to 
another.  Utilizing the velocity equation, a conservative 
limit for the time step t is 
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Results and Discussion 
Figs. 3(a) and 3(b) show the simulated results of 
longitudinal scattering from a 100 ms acoustic LFM chirp.  
Fig. 3(a) gives the inhomogeneous sound speed, 1( )c x , for 

a 2.5×5×7 cm steel parallelepiped embedded in a 
15×23×23 cm block of expanded polystyrene foam, which 
matches the size and location of the actual test sample 
shown in Fig. 4.  The elasticity, density, and Poisson ratio 
of the foam is 1 MPa, 10 kgm-3 and 0.03 respectively while 
that of the steel is 200 GPa, 8 kgm-3, and 0.27.  Fig. 3(b) 
shows the energy (sum of the squared time domain 
samples) resulting from longitudinal scattering in the x-y 
plane.  A null in the vibration response is clearly visible 
adjacent to the inhomogeneity and due to its proximity to 
the surface, this null can be measured by the LDV as 
depicted in Fig. 4.  The inhomogeneity is affectively 
creating an acoustic “shadow” as wave energy bounces 
back and forth within the homogeneous medium.  The 
depth to which inhomogeneities can be detected depends 
on both its lateral area (parallel to y-z plane) and sound 
amplitude used. 

Fig. 4 shows the measured surface response (parallel to the 
y-z plane) for the 2.5×5×7 cm inhomogeneity located at x = 
11.75 (2 cm deep), y = 0.12, z = 0.15.  The null in vibration 
energy is clearly visible as the dark blue area directly over 
the inhomogeneity.  Several more experiments were 
conducted with inhomogeneities farther from the surface 
with a maximum detection depth of 5 cm for the same 80 
dB SPL LFM waveform. 

 

 
Figure 2. Measurement setup shows collocated 
LDV and loudspeaker.  Plane wave is incident on 

target surface parallel to y-z plane. 
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Figure 3. FDTD simulation results:  (a) 

inhomogeneous region sound speed depicts 
location of 2.5×5×7 cm steel inhomogeneity; and  

(b) simulation results show weak longitudinal 
energy at La = 0.15 surface due to inhomogeneity. 

 
Figure 4. Measurement results show decrease in 
longitudinal energy caused by 2.5×5×7 cm steel 
inhomogeneity located at x = 11.75 (2 cm deep), 

y = 0.12, z = 0.15. 
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