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ABSTRACT

Runge-Kutta (RK) methods are an important family of iterative methods for ap-
proximating the solutions of ordinary differential equations (ODEs) and differential
algebraic equations (DAEs). It is common to use an RK method to discretize in
time when solving time dependent partial differential equations (PDEs) with a
method-of-lines approach as in Maxwell’s Equations. Different types of PDEs
are discretized in such a way that could result in a high dimensional ODE or
DAE. We use a low-storage RK (LSRK) method that stores two registers per ODE
dimension, which limits the impact of increased storage requirements. Classical RK
methods, however, have one storage variable per stage. In this thesis we compare
the efficiency and accuracy of LSRK methods to RK methods. We then focus on
optimizing the truncation error coefficients for LSRK to discover new methods.
Reusing the tools from the optimization method, we discover new methods for
low-storage half-explicit RK (LSHERK) methods for solving DAEs.
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CHAPTER 1:
Introduction

Runge-Kutta (RK) methods are an important family of iterative methods for ap-
proximating the solutions of ordinary differential equations (ODEs) and differential
algebraic equations (DAEs). ODEs involve differential equations whereas a DAE
involves both differential equations and algebraic constraints. RK methods are
single step methods that advance the ODE or DAE through a series of intermediate
stage computations. For example, in the method of lines approach to discretizing
time dependent partial differential equations (PDEs) like Maxwell’s Equations, it
is common to use RK methods to discretize in time. Depending on the PDE this
can result in a large system of ODEs or DAEs. Storage requirements for standard
RK methods are proportional to the number of stage computations. Low storage
RK (LSRK) methods are a subclass of RK methods whose storage requirements are
independent of the number of stage computations. This allows the increase of the
number of stages without increasing storage expense. Some research proposed that
we should increase the number of stages in order to increase the time step size thus
speeding up time to solution for solving PDEs.

The goal of this thesis is to explore this idea for ODEs and to generate new LSRK
methods for both ODEs and DAEs. In this work, we implement and test fourth order
LSRK methods. We verify the accuracy conditions for the implemented methods.
We also look at the efficiency of the LSRK methods along with the classic fourth
order RK method using a simple ODE as well as a method of lines discretization of
Maxwell’s Equation in 2D. We explore the development of new LSRK schemes and
attempt to optimizes them by minimizing the terms in local truncation error. We
conclude this work by developing and testing half-explicit RK methods with a low
storage format for solving DAEs.

1



THIS PAGE INTENTIONALLY LEFT BLANK

2



CHAPTER 2:
Building a Low-Storage Runge-Kutta Method

This chapter focuses on the elements required to build and check an LSRK method.
We introduce RK methods and what a low-storage implementation of RK means.
We then show how to derive an accuracy condition while we list out the order
conditions up to fifth order. We show how to construct a Butcher Tableau from
an LSRK tableau of coefficients. Next, we bring the order conditions and the
Butcher Tableau from an LSRK method together in order to ensure the LSRK method
satisfies the accuracy conditions. We then compare methods that satisfy the same
order conditions using the truncation error coefficient (TEC), a surrogate for local
truncation error. The last section deals with the stability region of the RK method.

2.1 Runge-Kutta Methods
We consider the initial value problem (IVP)

y′(t) = f (t, y(t)), y(t(0)) = y0, (2.1)

where f and y are vector functions. We want to find the numerical approximation
of the solution y(t) of the IVP over the time interval t ∈ [t0, t f ]. We subdivide
the interval [t0, t f ] into M equally spaced subintervals in which we integrate the
solution; this choice of an equally spaced grid is not required for RK. Thus we have
approximation points

h =
t f − t0

M
, (2.2)

tn =t0 + nh, n = 0,1, . . . ,M, (2.3)

where h is the time step size. We use an RK method to obtain an approximation of
y(tn) using the solution value at y(tn−1). One step of a general, explicit RK method

3



c1 0
... a2,1

. . .
...

...
. . .

cs as,1 . . . as,s−1 0
b1 . . . bs

Table 2.1: A general, explicit Butcher Tableau, from [1].

for numerically solving Equation (2.1) is

Ki = f

tn−1 + cih, yn−1 + h
i−1∑
j=1

ai jK j

 , i = 1, ...,s, (2.4)

yn = yn−1 + h
s∑

i=1

biKi. (2.5)

The variable s is the number of stages. The ai j coefficients are the intermediate
weights at each RK stage, b j are the final stage weights, and ci are the intermediate
time levels. We require that

ci =

s∑
j=1

ai j, (2.6)

since we want the RK integration of Equation (2.1) and its associated autonomous
version to be discretely equivalent. The autonomous version of Equation (2.1) is

ŷ′(t) = f̂ (ŷ(t)), (2.7)

where

ŷ =

y
t

 , f̂ =

 f
1

 . (2.8)

One way to represent an explicit RK scheme with s stages is with a Butcher Tableau 
[1]. Table 2.1 shows the general, explicit Butcher Tableau for Equations (2.4) and 
(2.5), which encompass various RK methods. One of the most widely used RK 
methods is a fourth order, four stage method, referred to as RK4. The tableau for 
RK4 is given in Table 2.2 and Algorithm 2.1 gives a MATLAB implementation.

4



1 function [yn,t] = RK4(yn,f,t,h,M)

% yn = initial y

3 % f = anonymous function f = @(t,y)

% t = time

5 % h = time step size

% M = number of steps

7 for n = 1:M

K1 = f(t,yn);

9 K2 = f(t + h/2,yn + h/2*K1);

K3 = f(t + h/2,yn + h/2*K2);

11 K4 = f(t + h ,yn + h *K3);

yn = yn + h/6 * (K1+2*K2+2*K3+K4);

13 t = t + h;

end

15 end

Algorithm 2.1: Method for RK4.

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

Table 2.2: The Butcher Tableau formulation of RK4.

In Algorithm 2.1 we evaluate the right-hand side function, f , four different times.
We also store a total of five different variables, one for each iteration of RK4. LSRK
methods are a specific class of RK methods, which require fewer storage registers.
Williamson [2] demonstrated that some RK schemes can be implemented in a
2N-storage format, where N is the dimension of the ODE. This format requires only
two registers of length N to implement. One step of the general s-stage 2N LSRK
method is

S[1]
1 = yn, (2.9)

S[i+1]
2 = AiS

[i]
2 + h f (tn + cih,S

[i]
1 ),

S[i+1]
1 = S[i]

1 + BiS
[i]
2 ,

 i = 1, . . . ,s, (2.10)

yn+1 = S[s]
1 . (2.11)

5



As shown in Algorithm 2.2, only two variables S1 and S2 are required to implement
the LSRK method. Algorithm 2.2 gives an implementation of this LSRK method [3].

1 function [S1] = LSRK(f,y0,A,B,c,t,h)

% f = anonymous function f = @(t,y)

3 % y0 = initial condition

% A = A coefficients from the LSRK tableau

5 % B = B coefficients from the LSRK tableau

% c = c coefficients derived from the Butcher tableau

7 % t = time

% h = the time step size

9 s = length(A);

S1=y0;

11 S2=zeros(size(y0));

for i = 1:s

13 S2 = A(i)*S2+h.*f(t+c(i)*h,S1’)’;

S1 = S1+B(i)*S2;

15 end

end

Algorithm 2.2: Method for implementing LSRK methods.

Much like the Butcher Tableau, we display the coefficients of an LSRK scheme in
two arrays

A1 B1
...

...

As Bs

.

We do not list the ci terms since they come from Equation (2.6). In order to determine
the LSRK coefficients, we define the relationship between the Butcher coefficients
and the new LSRK coefficients with the equations

B j = a j+1, j when j ,M, (2.12)

BM = bm, (2.13)

A j =


b j−1−B j−1

b j
if j , 1 and b j , 0

ai+1, j−1−c j
B j

if j , 1 and b j = 0
, (2.14)

6



for i, j = 1, . . . ,s [4]. For low-storage explicit RK methods, A1 will always equal to
zero. While equations (2.12), (2.13) and (2.14) do give us a relationship between
the Butcher and LSRK coefficients, they do not show that all RK methods have a
low storage implementation. Therefore, we utilized those equations to build an
algorithm that can transform an LSRK coefficient array into a Butcher Tableau.

2.2 LSRK to Butcher Tableau
In order to analyze any LSRK method, it is useful to convert the LSRK tableau to
the equivalent Butcher Tableau. Converting Equation (2.10) to standard RK form in
Equations (2.4) and (2.5) gives the conversion Algorithm 2.3.

function [a,b,c] = ConvertLSRK(A_vec,B_vec)

2 % A_vec = A vector of coefficients from low storage RK

% B_vec = B vector of coefficients from low storage RK

4

s = length(A_vec);

6 a = zeros(s,s);

b = zeros(1,s);

8 c = zeros(s,1);

b(1,s) = B_vec(s);

10

for p = s:-1:2

12 b(1,p-1) = A_vec(p)*b(1,p)+B_vec(p-1);

end

14 for i = s:-1:1

for j = s-1:-1:1

16 if j>=i

a(i,j) = 0;

18 elseif i == j+1

a(i,j) = B_vec(j);

20 else

a(i,j) = A_vec(j+1)*a(i,j+1)+B_vec(j);

22 end

end

24 end

for i = 1:s

26 c(i) = sum(a(i,:),2);

end

28 end

Algorithm 2.3: Converts the LSRK method from Equation (2.10) to standard RK form in
Equations (2.4) and (2.5) and using (2.6).

7



The two fourth order LSRK methods we use throughout this work are NRK14C [5]
and RK54 [4]. Table 2.3 lists all of the coefficients for RK54 and Table 2.4 lists the
coefficients for NRK14C.

0 0.149659021999229
-0.417890474499852 0.379210312999627
-1.19215169464268 0.822955029386982
-1.69778469247153 0.699450455949122
-1.51418344425716 0.153057247968152

Table 2.3: The A j and B j coefficients for RK54, from [4].

0 0.0367762454319673
-0.718801208672410 0.313629660755396
-0.778533117342157 0.153184869186903
-0.00532827966540440 0.00300970868181820
-0.855297993402928 0.332629379064611
-3.95641382457746 0.244025140535086
-1.57805753805874 0.371887923959228
-2.08370945525741 0.620412622158244
-0.748333418276161 0.152404317302874
-0.703286110656336 0.0760894927419266
0.00139170961176810 0.00776042140409780
-0.0932075369637460 0.00246472847553820
-0.951420047087595 0.0780348340049386
-7.11515716939226 5.50597772702696

Table 2.4: The A j and B j coefficients for NRK14C, from [5].

2.3 Order Conditions for RK Methods
By using the model ODE shown in Equation (2.1), the order conditions for RK
methods come about starting with the Taylor series expansion of y in the neigh-
borhood of tn [1]. By comparing the Taylor series expansion of y to one step of
the RK method, where the exact solution is used as the initial condition, the order
conditions come from matching corresponding terms in the expansions. These
order conditions must be satisfied for the method to be consistent and accurate.
Here a more concise notation is introduced from Butcher [1]. For example, if we
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assume (2.1) is autonomous with dimension m, then we differentiate it and we have

y′′(t) = f ′(y(t))y′(t). (2.15)

To simplify this notation, we used the fact that f = y′, and we dropped the function
arguments so that our derivative now corresponds to

y′′(t) = f ′ f . (2.16)

Remember that f ′ is a matrix since f is a vector valued function. When we take the
derivative of (2.15), we get

y′′′(t) = f ′′( f , f ) + f ′ f ′ f , (2.17)

where f ′′ is a bilinear operator with components

[
f ′′( f , f )

]
i =

m∑
j=1

m∑
k=1

∂2 fi
∂yk∂y j

fk f j, i = 1, . . . ,m. (2.18)

The Taylor series expansion of the exact solution, y(t + h), about t is

y(t + h) = y + h f +
h2

2
f ′ f +

h3

6

[
2 f ′′( f , f ) + f ′ f ′ f

]
+

h4

24

[
6 f ′′′( f , f , f ) + 3 f ′′( f ′ f , f ) + f ′ f ′ f ′ f + 2 f ′ f ′′( f , f )

]
+O(h5),

(2.19)

where the higher order derivatives are multilinear operators defined similarly to
f ′′( f , f ) in Equation (2.17) [1].

We define z(h) to be one step of the RK method using the exact solution y(t) as the

9



initial condition, where

z(h) = y + h
s∑

i=1

biFi(h), (2.20)

Fi(h) = f (Yi(h)), (2.21)

Yi(h) = y + h
s∑

j=1

ai jF j(h). (2.22)

In order to find the order conditions, we compare Equation (2.19) with the derivatives
of z(h). We drop the function arguments from Equations (2.20) through (2.22) for a
more concise notation. The first five terms of the Taylor series expansion about zero
of Equation (2.20) are

z(h) = z(0) + hz′(0) +
h2

2
z′′(0) +

h3

6
z′′′(0) +

h4

24
z(4)(0) +O(h5). (2.23)

For a method to be of global order p, the terms of the Taylor series of the exact
solution y(t + h) and the numerical solution z(h) must match up to O(hp+1). In
Equations (2.19) and (2.23) we have only kept up through the fourth order terms
because we are looking for order conditions for fourth order methods. If we
compare equations (2.19) and (2.23), we begin to find the order conditions. We see
that z(0) = y, which is the exact solution at t. Now we start to look at the higher
order terms. For the first derivative of z, we have

z′(h) =

s∑
i=1

biFi(h) + h
s∑

i=1

biF′i (h). (2.24)

At h = 0 the second term disappears, and using Equation (2.21), Equation (2.24)
becomes

z′(0) =

s∑
i=1

biFi(0) =

s∑
i=1

bi f . (2.25)

Again, comparing this result to the order h term in Equation (2.19), we find the first
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order condition
s∑

i=1

bi = 1. (2.26)

This condition is required for RK methods to be globally first order or consistent. To
go any further, we must find the derivatives of Equations (2.21) and (2.22). Therefore
we have

F′i (h) = f ′Y′i (h), (2.27)

Y′i (h) =

s∑
j=1

ai jF j(h) + h
s∑

j=1

ai jF′j(h). (2.28)

Continuing to take derivatives of Equation (2.20), we have

z′′(h) = 2
s∑

i=1

biF′i (h) + h
s∑

i=1

biF′′i (h). (2.29)

At h = 0 the second term disappears. Substituting Equation (2.28) into (2.27) and
after using Equation (2.6) to convert a row sum of ai j to ci, Equation (2.29) becomes

z′′(0) =

s∑
i=1

biF′i (0) =

s∑
i=1

bici f ′ f . (2.30)

Using z′′(0) and comparing the order h2 terms in the two Taylor series expansions,
we find the second order condition

s∑
i=1

bici =
1
2
. (2.31)

For the next derivative, we have

z′′′(h) = 3
s∑

i=1

biF′′i (h) + h
s∑

i=1

biF′′′i (h). (2.32)

Now we need to find the second derivatives of Equations (2.21) and (2.22), which
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are
F′′i (h) = f ′′(Y′i (h),Y′i (h)) + f ′Y′′i (h), (2.33)

Y′i (h)′ = 2
s∑

j=1

ai jF′j(h) + h
s∑

j=1

ai jF′′j (h). (2.34)

Substituting Equation (2.33) into (2.34), Equation (2.32) at h = 0 yields

z′′′(0) = 3
s∑

i=1

bi

c2
i f ′′( f , f ) + 2

s∑
j=1

ai jc j f ′ f ′ f

 . (2.35)

This results in two third order conditions

s∑
i=1

bic2
i =

1
3

(2.36)

and
s∑

i=1

s∑
j=1

biai jc j =
1
6
. (2.37)

As we have seen from the derivations of the first through third order conditions,
this process is tedious. Deriving the fourth order conditions is more involved. We
have to use the chain rule multiple times, which ends up generating four terms.
Computing the fourth derivative of (2.20), we have

z(4)(h) = 4
s∑

i=1

biF′′′(h) + h
s∑

i=1

biF(4)(h). (2.38)

Our next step is finding the third derivative of Equations (2.21) and (2.22), which
are

F′′′i (h) = f ′′′(Yi(h),Yi(h),Yi(h)) + 3 f ′′(Y′′i (h),Y′′i (h)) + f ′Y′′′i (h), (2.39)

Y′′′i (h) = 3
s∑

j=1

ai jF′′j (h) + h
s∑

j=1

ai jF′′′j (h). (2.40)
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Substituting Equations (2.39) and (2.40) into z(4)(h), yields

z(4)(0) = 4
s∑

i=1

bi

(
c3

i f ′′′( f , f , f ) + 2
s∑

j=1

ciai jc j f ′′( f ′ f , f )

+ 6
s∑

j=1

s∑
k=1

ai ja jkck f ′ f ′ f ′ f + 3
s∑

j=1

ai jc2
j f ′ f ′′( f , f )

)
.

(2.41)

Comparing this with the h4 term from Equation (2.19), gives the fourth order
conditions:

s∑
i=1

bic3
i =

1
4
,

s∑
i=1

s∑
j=1

biciai jc j =
1
8
, (2.42)

s∑
i=1

s∑
j=1

s∑
k=1

biai ja jkck =
1

24
,

s∑
i=1

s∑
j=1

biai jc2
j =

1
12
. (2.43)

2.3.1 Using Trees to Derive Order Conditions

An equivalent and much less tedious method devised to derive order conditions for
RK methods is by drawing rooted trees. We initially use rooted trees to derive the
Taylor series coefficients in Equation (2.19). In this we label each node of the tree
with f (q), where q equals the number of children. Later we use the rooted trees to
compute the RK order conditions. Figure 2.1 shows a first order rooted tree that we
label f , which corresponds to y′ = f . To get the second order tree, we take a root
and connect a copy of the first order tree to it. The leaf is then labeled as f while
the root is labeled f ′ as in Figure 2.2. The second order tree then corresponds to
y′′ = f ′ f . There are two third order trees. We generate one by connecting a root to
two copies of the first order tree and the other by connecting a root to the second
order tree. Figure 2.3 shows these new trees. Together these two trees correspond
to y′′′ = f ′′( f , f ) + f ′ f ′ f . Using the previous trees, we form the order four trees in
Figure 2.4.

The rooted trees correspond to each term of y(4) = f ′′′( f , f , f )+3 f ′′( f ′ f , f )+ f ′ f ′ f ′ f +

f ′ f ′′( f , f ) in order from left to right. You may notice the three coefficient on the
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f

Figure 2.1: Single node as the first rooted tree corresponding to Equation (2.26).

f

f’

Figure 2.2: Second rooted tree corresponding to Equation (2.31).

f”

f f

f’

f’

f

Figure 2.3: Rooted trees for the order three order conditions corresponding in order to Equation (2.36)
and (2.37).

second term. This corresponds to number of ways we can label the tree with an
ordered set and is shown in Figure 2.5. This is also known as the α(τ) value for a
given rooted tree τ.

The order conditions follow from the same trees; we just label them differently as
in Figures 2.6 and 2.7. We label the root with the i index while each leaf is left
unlabeled on the tree and takes the index of the node it is attached to. Any node(s)
between the root and leaf are labeled in alphabetical order along the branches until
all node are labeled. From each tree, we derive equations (2.26) through (2.37) and
the fourth order equations in (2.42) and (2.43). As in Butcher [1], we represent the
order conditions as

Φ(τ) =
1
γ(τ)

, (2.44)

where the index i represents order and τ is a single tree in the set of all trees. Here
Φ(τ) is defined from the tree τ to give the dependence of the order conditions on
coefficients a, b and c. To do this we let the root of each tree start with bi, and we
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Figure 2.4: Rooted trees for the order four order conditions corresponding in order to Equations (2.42)
and (2.43).

i

j

l

k

i

j

k

l

i

k

l

j

Figure 2.5: The number of ways we can label tree two from Figure 2.4.

i i i i

j

Figure 2.6: First, second and third order rooted trees with node labels for indexing.

let each leaf correspond to c, where c takes on the index of its parent. Any nodes
between the root and terminal leaf are a coefficients, where a takes on the indices of
itself and its parent. For example, the last two trees in Figure 2.7 use all of the rules
to determine the order conditions. The second to last tree gives us bi, ai j, a jk and ck

terms in as we move from root to leaf, while the last tree results in bi, ai j and two c j

terms as we see from Equation (2.43). Once we have all of the terms, we multiple
them together and find their sum over the indices from one to s.

To find the number γ(τ), we assign a value of one to each node in the trees. We
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Figure 2.7: Order four rooted trees with node labels for indexing.
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3
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j

k
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j

Figure 2.8: Example of rooted trees labeled to find the γ values.

then add the value on each node starting from the leaf nodes and traveling down
to the root. The total sum on the root equals the order of the tree. An example
is provided in Figure 2.8. Multiplying all of the numbers from the tree gives the
number γ(τ), which for the trees in Figure 2.8 equals 24 and 12. These match up
with Equation (2.43). The other order conditions follow accordingly.

2.3.2 Fifth Order Conditions
As seen previously, algebraically deriving the order conditions for RK methods
is no trivial task. Therefore, we will rely on the tree derivation of the fifth order
condition. To generate the fifth order trees we connect a root to copies of lower
order trees. We show all of the fifth order trees in Figures 2.9–2.11. These figures
are labeled to determine γ(τ). We derive Φ(τ) as shown in Section 2.3.1. The order
conditions for the trees in Figure 2.9 are

s∑
i=1

bic4
i =

1
5
,

s∑
i=1

s∑
j=1

bic2
i ai jc j =

1
10
,

s∑
i=1

s∑
j=1

biciai jc2
j =

1
15
. (2.45)
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Figure 2.9: Order five order conditions one through three labeled to find γ.
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Figure 2.10: Order five order conditions four through six labeled to find γ.
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Figure 2.11: Order five order conditions seven through nine labeled to find γ.

The order conditions for the trees in Figure 2.10 are

s∑
i=1

s∑
j=1

s∑
k=1

biciai ja jkck =
1

30
,

s∑
i=1

s∑
j=1

s∑
k=1

biai jaikc jck =
1

20
,

s∑
i=1

s∑
j=1

biai jc3
j =

1
20
. (2.46)
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The order conditions for the trees in Figure 2.11 are

s∑
i=1

s∑
j=1

s∑
k=1

biai jc ja jkck =
1

40
,

s∑
i=1

s∑
j=1

s∑
k=1

biai ja jkc2
k =

1
60
,

s∑
i=1

s∑
j=1

s∑
k=1

s∑
l=1

biai ja jkaklcl =
1

120
.

(2.47)

2.4 Checking Order Conditions for LSRK Methods
Now that we have the order conditions, we verify that our chosen LSRK schemes
indeed satisfy. Since both RK54 and NRK14C are fourth order methods, we check
through the fourth order conditions laid out in Section 2.3. We use Algorithm 2.4 to
check all the order conditions.

function [c,norms] = OrderCondition(s,p,a,b,tol)

2 % s = number of stages

% p = order of method

4 % a = tableau

% b = weights of a

6 % tol = tolerance

8 c = sum(a,2);

10 condition_vector = zeros(1,17);

for i = 1:s % single summation order conditions

12 condition_vector(1) = condition_vector(1) + b(i);

condition_vector(2) = condition_vector(2) + b(i)*c(i);

14 condition_vector(3) = condition_vector(3) + b(i)*(c(i)^2);

condition_vector(5) = condition_vector(5) + b(i)*(c(i)^3);

16 condition_vector(9) = condition_vector(9) + b(i)*(c(i)^4);

for j= 1:s % double summation order conditions

18 condition_vector(4) = condition_vector(4) + b(i)*a(i,j)*c(j);

condition_vector(6) = condition_vector(6) + b(i)*c(i)*a(i,j)*c(j);

20 condition_vector(7) = condition_vector(7) + b(i)*a(i,j)*(c(j)^2);

condition_vector(10) = condition_vector(10) + b(i)*(c(i)^2)*a(i,j)*c(j);

22 condition_vector(11) = condition_vector(11) + b(i)*c(i)*a(i,j)*(c(j)^2);

condition_vector(14) = condition_vector(14) + b(i)*a(i,j)*(c(j)^2);

24 for k = 1:s % triple summation order conditions

condition_vector(8) = condition_vector(8) + b(i)*a(i,j)*a(j,k)*c(k);

26 condition_vector(12) = condition_vector(12) + b(i)*c(i)*a(i,j)*a(j,k)*c(k);

condition_vector(13) = condition_vector(13) + b(i)*a(i,j)*a(i,k)*c(j)*c(k);

28 condition_vector(15) = condition_vector(15) + b(i)*a(i,j)*c(j)*a(j,k)*c(k);

condition_vector(16) = condition_vector(16) + b(i)*a(i,j)*a(j,k)*(c(k)^2);
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30 for l = 1:s % quadruple summation order conditions

condition_vector(17) = condition_vector(17) ...

32 + b(i)*a(i,j)*a(j,k)*a(k,l)*c(l);

end

34 end

end

36 end

conditionsRHS = [1 1/2 1/3 1/6 1/4 1/8 1/12 1/24 1/5 ...

38 1/10 1/15 1/30 1/20 1/20 1/40 1/60 1/120];

for z = 1:length(condition_vector)

40 if abs(condition_vector(z)-conditionsRHS(z)) <= tol

success = [’Passes order condition ’,num2str(z),’.’];

42 display(success)

end

44 end

% Truncation Error Coefficient

46 Tc = 17;

phi = condition_vector(1,1:Tc);

48 gamma = conditionsRHS(1,1:Tc);

alpha = [1 1 1 1 1 3 1 1 1 6 4 4 3 1 3 1 1];

50 rho = [1 2 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5];

upsilon = (phi.*gamma -1).*(alpha./factorial(rho));

52 norms = [norm(upsilon ,2);norm(upsilon,Inf)];

Algorithm 2.4: Checks order conditions for 1st through 5th order methods.

If we satisfy all of the order conditions up to order four for a certain user defined
tolerance, then we have a valid LSRK method. Now we can test RK54 and NRK14C
against RK4.

2.5 Truncation Error Coefficients
One way to compare RK methods used in Chapter 3, is with truncation error
coefficients (TEC). The TEC for the tree τ is defined as

Υ(τ) =
(
Φ(τ)γ(τ)−1

) α(τ)
ρ(τ)!

. (2.48)

We generate this equation by matching terms and equations from the Taylor series
expansions of the exact and numerical solutions [6]. We saw all of the variables
used in Equation (2.48) in Section 2.3 except ρ(τ), which is the order of the tree.

Equation (2.48) gives us value corresponding to each tree. We form a vector where
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each component is Equation (2.48) evaluated for one tree; we consider the l2 norm
and the l∞ norm of this vector. Recall that Φ(τ) depends on the coefficients of the
RK method. The closer that Φ(τ)γ(τ) is to one the smaller the magnitude of the TEC.
Furthermore, Γ(τ) will be zero when an order condition is satisfied, so any fourth
order scheme will have zero TEC values for the first eight trees. This does not tell
us the whole story though as we will see in the next chapter.

Algorithm 2.4 contains the TEC calculation at the end of the code. To test the
implementation, we compared the TEC values we found to those in Cameron’s
work [6] for the Bogacki-Shampine 3(2) method [7]. Since our code reproduced
published results, we have confidence in our implementation.

2.6 Stability Region
Consider the one-dimensional model ODE

y′ = λy, (2.49)

where the exact solution is
y = Ceλt. (2.50)

As described in Ascher and Petzold [8], we find the values of z = hλ where the
numerical solution to Equation (2.49) does not increase in magnitude. Starting with
Equations (2.4) and (2.5) and using the model ODE, a full single step update to go
from yn to yn+1 we now have

yn+1 =

1 + z +
z2

2
+ ...+

zp

p!
+

s∑
j=p+1

z jba j−1
1

 yn =

 s∑
j=0

ξ jz j

 yn, (2.51)

ξ =

[
1,

1
2!
,

1
3!
, . . . ,

1
p!
,ba j−1

1, . . . ,bas−1
1

]
. (2.52)

If we let K be coefficient in front of yn from Equation (2.51), then |K| is the growth
factor of our solution. We can then say that if |K| is greater than one, then the
modulus of the solution grows exponentially. If |K| equals one, then the modulus
of the solution does not change. However, if |K| is less than one, the modulus of
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the solution decays, which is called absolutely stable [8]. With this in mind, we can
plot the region where we would expect the solution to remain stable. Figure 2.12
shows the region where each method will remain stable if their respective z values
are within the boundary. If z are outside of the boundary, the solution is not stable.

Equation (2.51) along with MATLAB’s contour plot function led us to build the
following algorithm to plot stability regions for each LSRK method used within this
work.

% Create the R(z) equation to determine the stability region

2 load(’NRK14C’)

A_vec = NRK14C(:,1);

4 B_vec = NRK14C(:,2);

[a,b,c] = ConvertLSRK(A_vec,B_vec);

6 p = 4;

s = length(A_vec);

8

% Define the mesh

10 xv = linspace(-20,10,100);

yv = linspace(-11,11,100);

12 [x,y] = meshgrid(xv,yv);

14 z = x + 1i*y;

w = 0;

16

Rz = 1 + z + z.^2/2 + z.^3/6 + z.^4/24;

18 for k = (p+1):s

w = w + z.^k*(b*a^(k-1)*ones(s,1));

20 end

22 Rz = Rz + w;

contour(x,y,abs(Rz),[1 1],’b’)

Algorithm 2.5: Algorithm that plots the stability region for a given LSRK scheme.

Figure 2.12 shows the scaled stability regions for each method. We scaled each
stability region by the number of stages for that method. We scale the plot by the
number of stages as this is the number of times f must be evaluated in the schemes.
You will notice from Figure 2.12 that RK4 includes a larger portion of imaginary
axis, but NRK14C includes a much larger stability region. Knowing the region of
absolute stability for each method used to solve an ODE is useful for determining
an appropriate time step size that will yield a useful solution. This proves to be a
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useful property for the problems solved in the following sections.
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Figure 2.12: This figure shows the scaled stability regions for NRK14C, RK54 and RK4. Any
eigenvalues of the problem solved that are within the region will remain stable.
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CHAPTER 3:
Testing RK Methods

This chapter shows two examples of using the RK methods from Chapter 2 to solve
a system of ODEs. First, we analyze the results for a simple ODE, which we used
for all calculations in the first section. Secondly, we analyze the results of the LSRK
methods used to solve Maxwell’s equations in 2D. This chapter shows how well
each RK method solves the equations by comparing the numerical results to the
exact solution. We also show how many operations it takes each method to achieve
a specific level of accuracy. The last metric we use to compare the methods is how
large the time step can be in each case.

3.1 Comparing LSRK to RK4 Using an ODE
To understand the power of using a low storage method, we start with the following
ODE and initial condition

y′ = Fy =

 0 20
-20 0

y, y(0) =

0
1

.

We compute the numerical solution of this ODE from the initial condition, t = 0, to a
final time, t = 10. We use RK4, Algorithm 2.1, and LSRK, Algorithm 2.2, to solve the
ODE. To compare the methods, we use the l2 norm of the difference between the
exact solution,

y(t) =

sin(20t)
cos(20t)

,

and the numerical solution at t = 10. We plot the error against the time step size
to see if the results are as expected. Figure 3.1 shows the log-log error plot for
NRK14C, RK54 and RK4. We use a log-log scale to determine the order. From
Figure 3.1 we have fourth order convergence for all three methods, and we see that
each simulation has order one error around h = 0.1. Upon further investigation,
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Figure 3.1: Error between the exact and numerical solution for various time step sizes. Also shows
that our methods have fourth order convergence.

we see in Figure 3.2 that the error for each method grows exponentially at some
critical h. However, the range of stable time step sizes is different for each method.
For NRK14C method, we note that we can take a larger time step while remaining
stable. Similarly, RK54 allows a larger stable time step than RK4. As mentioned at
the end of Chapter 2, the stability region should give us an indicator of the time step
size required to have a stable solution. If we look at the unscaled stability regions in
Figure 3.3, it is immediately apparent that NRK14C has the largest stability region
followed by RK54 and RK4 has the smallest. Figure 3.2 is then expected given the
time step sizes for each method and their respective stability regions.

The computational cost of an RK method is related to the number of times f must
be called. This is especially true for high dimensional ODEs such as those from the
discretization of PDEs. To examine this cost, we show the operation count (number
of f evaluations) versus the step size in Figure 3.4. If we use a larger time step,
we decrease the number of times we evaluate f, which reduces the computational
cost of solving the problem. Let us now look at what the potential savings are for
this problem. Table 3.1 shows the number of operations required to reach a certain
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Figure 3.2: Log-log plot of the error for h > 0.1 where the stability of the time step is different for each
method.

RK4 RK54 NRK14C
Error h Operations h Operations h Operations

0.01 0.01408 2841 0.01786 2800 0.03448 4060
0.0001 0.004525 8840 0.005682 8800 0.01099 12739
0.000001 0.001437 27836 0.001805 27701 0.003571 39205

Table 3.1: Shows the number of operations each method takes to reach the error level in column one.

level of error for each of the three methods used to solve the ODE. You can see that
NRK14C requires about 30% more operations than RK4 to reach the same error
level. Even though RK54 has one more stage evaluation than RK4, it takes fewer
operations to attain the same error level. This savings is one reason why some low
storage methods are an attractive alternative to the standard RK4.

3.2 Solving Maxwell’s Equation in 2D
As in the previous section, we want to analyze the differences between RK methods.
In this section we will focus on a more complex problem, namely solving Maxwell’s
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Figure 3.3: Unscaled stability region for RK4, RK54 and NRK14C.

Equation in 2D

µ
∂H̃x

∂t̃
= −

∂Ẽz

∂ỹ
,

µ
∂H̃y

∂t̃
= −

∂Ẽz

∂x̃
,

ε
∂Ẽz

∂t̃
=
∂H̃y

∂x̃
−
∂H̃x

∂ỹ
.

(3.1)

Here, we have the magnetic fields H̃x and H̃y, the electric field Ẽz, magnetic
permeability µ and the electric permittivity ε, which are all functions of x̃, ỹ, z̃ [9].
In order to discretize Maxwell’s Equation in 2D, we utilized the Discontinuous
Galerkin (DG) codes available from Hesthaven and Warburton [9]. This method
uses a method-of-lines (MOL) approach where we use high order polynomials on
triangular elements for the spatial discretization. For the temporal discretization,
we compare RK54 and NRK14C. We used the domain [−1,1]× [−1,1] meshed as
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Figure 3.4: Inverse relationship between the time step and number of operations.

shown in Figure 3.7(a) and integrated from t = 0 to t = 1. We define the error using
the L2 norm of the difference between the solver’s solution vector for Ez and the
exact solution Ez = sin(πx)sin(πy)cos(ωt), where ω = π

√
2 and t = 1.

3.2.1 Results
By changing only the size of the time step for each error calculation, we identified
where temporal or spatial error dominated. We also ran the code with different
polynomial orders (N = 4,6,8,10) to show how the spatial error interacts with time
step size. The solution converged for a small time step size, but it becomes unstable
when the time step size increased. The time step size where the solution becomes
unstable is different for each polynomial order. From Table 3.2 we discern what
level of accuracy the methods achieve for a stable time step size. A graphical
representation of this data is also shown in Figures 3.5 and 3.6. Even though we
are able to take a larger step size with NRK14C, RK54 is more efficient because it
has a lower operations count and target error for each polynomial order as seen in
Table 3.2.
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RK54 NRK14C
Polynomial

Order Error h
Operations

Count h
Operations

Count
N = 10 1.0×10−10 0.0020606 2430 - -

1.0×10−9* - - 0.0071174 1974
1.0×10−9 0.0036701 1365 0.0093645 1498
1.0×10−8 0.0053442 940 0.0132506 1064

N = 8 1.0×10−10 0.0020439 2450 - -
1.0×10−9* - - 0.0071174 1974
1.0×10−9 0.0036659 1365 0.0093645 1498
1.0×10−8 0.0065232 770 0.0132506 1064
1.0×10−7 - - 0.0226398 630

N = 6 1.0×10−7 0.0115735 435 0.0225682 630
1.0×10−6 - - 0.0403282 392

N = 4 1.0×10−6 - - 0.0628060 224
1.0×10−5 0.0219035 230 - -

Table 3.2: Number of right hand side calls for the specified time step size and polynomial order. *This
error level happens before the NRK14C plot anomaly.

3.2.2 Ensuring Spatial Error Dominance
The previous section used the mesh as shown in Figure 3.7(a). To ensure spatial
error dominance, which is typically the case when solving Maxwell’s Equations
using the MOL, we decreased the mesh resolution to what is shown in Figure 3.7(b).
Changing the mesh decreases the spatial resolution for this problem. Let us solve
Maxwell’s Equations using the coarse mesh, but now we only use polynomials of
order N = 4 and N = 6. For N = 4 spatial error dominates the solution error. The
solution remains stable for each method up to a certain time step size as we have
discussed previously. For this problem, the limit of stability for NRK14C was a time
step of h = 0.1708 for N = 4 and h = 0.09849 for N = 6. For RK54 the limit of stability
was a time step of h = 0.04125 for N = 4 and h = 0.02398 for N = 6. If we calculate
the operations required for each method, we find that NRK14C is more efficient
for both polynomial orders as shown in Table 3.3. Thus, even though NRK14C has
larger error when the solution is well resolved spatially, it may be the preferred
method for simulations which are under-resolved, which is arguably where most
practical calculations are preformed.
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Figure 3.5: RK54 with N = 4, 6, 8, 10 polynomial orders.

RK54 NRK14C
Polynomial Order h Operations Count h Operations Count

N = 4 0.04125 120 0.1708 84
N = 6 0.02398 210 0.09849 140

Table 3.3: Operations count for RK54 and NRK14C using the coarse mesh and polynomials order
N= 4, 6.

3.2.3 Stability Region and Eigenvalues

Now that we have the time step values for which the error begins to grow expo-
nentially, we take another look at the stability region. The spatial discretization
operator used above yields the semi-discrete ODE system y′ = Ly. The eigenvalues
of L that control the stability of the problem. We found the eigenvalues for N = 4
with the coarse mesh using Algorithm C.1. Figures 3.9 and 3.10 show how the
scaled eigenvalues, hλ, fill the stability region. If we increased the time step size in
either plot by the tiniest fraction, the scaled eigenvalues move out of the stability
region and the error grows. If we instead chose a much smaller time step size, the
scaled eigenvalues remain in the stability region and we still have a stable solution.
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Figure 3.6: NRK14C with N = 4, 6, 8, 10 polynomial orders.

Method l2 Norm l∞ Norm
RK4 0.01298 0.00833
RK54 0.00787 0.00556
NRK14C 0.00560 0.00556

.

Table 3.4: Table of TECs for RK4, RK54 and NRK14C.

3.3 Truncation Error Coefficients and Conclusions
For each of the methods explored in this chapter, we compute the associated TECs.
As you can see from Table 3.4, the l2 norm of the TEC vector reveals that NRK14C
has the lowest value while the l∞ norm shows that RK54 and NRK14C are the same.
With the l2 norm, RK4 has an order of magnitude larger value. From only the TEC
information, we might conclude that NRK14C is the best method. However, the
TECs are the coefficients of the error terms from the Taylor series. Since these are
fourth order methods, the leading error terms are order h5. The TEC is smaller for
NRK14C, but when multiplied by h5, it becomes clear that large time steps lead to
larger errors.

For the examples in this chapter, the analysis shows that LSRK is more efficient
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(a) Example mesh used for initial simulations.
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(b) An example of the coarse mesh used for a
less resolved solution.

Figure 3.7: Comparison of the two meshes used in this problem. Notice that the coarser mesh on the
right forced the problem to be dominated by spatial error, which is typical for the MOL approaches to
solving Maxwell’s Equations, from [9].

than RK4. We take advantage of storing fewer registers over the standard RK
implementation to increase efficiency. We investigated the potential benefits LSRK
methods by comparing RK54 and NRK14C when solving Maxwell’s Equation. We
saw that in some cases NRK14C is more efficient than RK54 particularly when the
problem is under-resolved. Additionally, we pay for using a larger time step when
we consider the higher order error terms. All of this analysis shows that we must
consider both error and stability together when choosing a method for a particular
problem.
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Figure 3.9: The unscaled NRK14C stability region with scaled eigenvalues (N = 4 and h = 0.1708).
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Figure 3.10: The unscaled RK54 stability region with scaled eigenvalues (N = 4 and h = 0.04125).
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CHAPTER 4:
Optimization for a New LSRK Method

Having analyzed the potential benefits of LSRK methods, we present a method
for discovering new LSRK methods. In this chapter, we show how the MATLAB
optimization solver fmincon is used to find new LSRK coefficients. The optimization
problem we consider is

argmin
x

F (x)

subject to E(x) = 0,

l < x < u,

(4.1)

where

x =



A2

A3
...

As

B1

B2
...

Bs



. (4.2)

Our strategy for finding new methods is to minimize F (x), a measure of the fifth
order conditions, while enforcing the first though fourth order conditions as equality
constraints, E. The thought process behind this was that if we can reduce the error
of the fifth order terms, the new LSRK method would be more accurate. We discuss
the bounds l and u below. The collection of MATLAB codes using fmincon are in
Appendix D. We also demonstrate how the stability region plays a role in shaping
the performance of the method. We add a constraint to ensure we achieve a similarly
large stability region akin to the one for the NRK14C used previously in this work.
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4.1 Implementing the Optimization without Shape

Constraints
To begin the optimization, fmincon requires a number of constraints, options and
starting guesses. We changed the default options for maximum function evaluations
and maximum iterations to 600000 and 30000, respectively. We also changed the
tolerance on the constraints and function to 1×10−10. We start by defining the initial
guess x, the LSRK coefficients, for the solver. We started with the coefficients from
NRK14C and ran separate optimizations scaling one coefficient at a time by 0.9. The
bounds, l and u, we used are ±20, which are a little larger than the coefficients from
NRK14C.

The stability regions for a few of the 14 stage methods that fmincon found are
compared with NRK14C in Figure 4.1. Figure 4.1 shows three of the methods
discovered, but each one has a completely different shape. Compared to NRK14C,
each has a smaller region of stability. Therefore, the three new methods would
require a smaller time step than that of NRK14C, which would be less efficient.

4.2 New LSRK
Now that we know we are able to use fmincon to find new 14 stage LSRK methods,
we want to match the large stability region of NRK14C. In the paper by Niegemann
et al. [5], the authors show a set of values for ξi from Equation (2.51) that force
a method to take on a specific shape. These are included along with the order
conditions as equality constraints in the optimization problem. For the 14 stage
method, we use their ξi values, which we include in Algorithm D.3. This ensures that
any new 14 stage LSRK method we find has the now familiar circular stability region
for NRK14C. Including all of the new constraints for shape, we run Algorithm D.1.
We found that perturbing individual coefficients from NRK14C for the initial guess
x0 gave us good results. After many initial guesses, one method stood out. The new
method in Table 4.2 satisfied the first through fourth order conditions to the same
tolerance as NRK14C. We call the method ORK14, which is short for optimized RK
14 stage. If we plot the stability region for both NRK14C and ORK14, we see that
they are virtually indistinguishable. If we magnify the boundary region, there are
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i ξi
1 1
2 1/2
3 1/3
4 1/6
5 1/4
6 1/8
7 1/12
8 1/24
9 8.0971474827892589×10−3

10 1.2380169165300218×10−3

11 1.4920544370587013×10−4

12 1.4105197862197588×10−5

13 1.0338060754675449×10−6

14 5.7551620074656494×10−8

15 2.3518316167532871×10−9

16 6.6527970264862166×10−11

17 1.1639946786449694×10−12

18 9.4910013085549050×10−15

Table 4.1: The shape constraints from Equation (2.51).

portions of the plot where one stability region is fraction larger than the other, but
this is a negligible. Now we must look to see if there is any advantage to using
this new LSRK method by using it to solve the Maxwell’s Equation from Chapter 3.
We run the code again using both NRK14C and ORK14 to graph the error versus
the time step size, which results in Figure 4.3. There is no discernible difference
between the methods as shown in Figures 4.2 and 4.3.

4.3 TECs and Conclusions
Now we calculate the TEC norm for our new method for another method of
comparison. The TEC information for ORK14 along with previously discussed
methods is in Table 4.3. We postulate that NRK14C and ORK14 are essentially the
same despite having different coefficients. What we take away from this analysis
is that it is difficult to find a 14 stage method and even harder to find one that
matches the performance of NRK14C. The fact that we did find another method
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0 0.011836003073137
-0.690728081645704 0.351015813936534
-1.234996309208810 0.063118128360741
-0.004609176627937 0.003932652530549
-0.858269465072828 0.455569623390910
-3.958588101464950 0.233901712708693
-1.650438770236550 0.487748443848318
-2.259100953376070 0.602337879585889
-0.536934229063860 0.095602003443996
-0.654598864540301 0.122569752673352
0.002105760404814 0.010112843394072
-0.110069481428190 0.003775965860034
-0.970342181377515 0.119011380003210
-7.112965306572070 5.520471813276850

Table 4.2: The A j and B j coefficients for ORK14.

Method l2 Norm l∞ Norm
RK4 0.01298 0.00833
RK54 0.00787 0.00556
NRK14C 0.00560 0.00556
ORK14 0.00560 0.00556

.

Table 4.3: Table including new ORK14 TEC information.

indicates that there are other 14 stages methods out there for discovery. In this
chapter we relied only on MATLAB’s fminconwith the options changed to using
a higher tolerance and allowing more function evaluations and iterations. Other
approaches may yield better results.
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Figure 4.1: Three different LSRK methods found using fmincon.
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Figure 4.2: Stability region plot for NRK14C and ORK14. Note that the lines are on top of each
other.
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CHAPTER 5:
Half-Explicit Methods

Now that we have developed a method for finding and testing LSRK methods,
we want to explore another class of RK methods called half-explicit Runge-Kutta
(HERK) methods. The HERK methods are of use when solving differential-algebraic
equations (DAEs). We introduce both DAEs as well as HERK methods and show
how HERK methods solve DAEs. We give a new low storage half-explicit method
and solve a DAE using it. The associated algorithms and MATLAB code for this
chapter are located in Appendicies E and F.

5.1 Differential-Algebraic Equations
A DAE is essentially an ODE with algebraic constraints. The addition of a constraint
is what makes this a DAE [10]. For example, we model some mechanical systems
using DAEs. We focus on index-2 DAEs, which are systems of equations with the
general form

y′ = f (y,z), (5.1)

0 = g(y), (5.2)

where f and g are smooth enough and gy(y) fz(y,z) is nonsingular in the neighbor-
hood of the solution. The index of the problem refers to the number of times we
differentiate the constraint to reduce the problem to an ODE [11]. For example, if
we take the first derivative of Equation (5.2), we get

g′(y)y′ = 0→ g′(y) f (y,z) = 0. (5.3)

We simplify this expression by dropping the function arguments. Next, we take the
second derivative of Equation (5.2) and we get

g′′ f 2 + fyy′+ fzz′ = 0→ g′′ f 2 + fy f + fzz′ = 0. (5.4)
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We write the DAE constraint as

z′ = −
g′′ f 2 + fy f f

fz
. (5.5)

Combing this with Equation (5.1) we obtain an equivalent ODE for the DAE
system. We differentiated the algebraic constraint twice, thus the DAE is of index-2.
Differentiation is not generally used as a computational technique because properties
of the original DAE, namely Equation (5.2), are often lost in numerical simulations
of the differentiated equations [12].

5.2 What are Half-Explicit Methods
Half-explicit RK methods are explicit RK methods that enforce the algebraic con-
straint in an accurate way. For the numerical solution to a DAE of the form in
Equations (5.1) and (5.2), we use the HERK method [10]

Yi = yn−1 + h
i−1∑
j=1

ai j f (Y j,Z j), i = 1, ...,s, (5.6)

0 = g(Yi), (5.7)

yn = yn−1 + h
s∑

i=1

bi f (Yi,Zi), (5.8)

0 = g(yn). (5.9)

We also have the initial conditions y0 and z0 where g(y0) = 0. The difference between
RK and HERK is that we now have a Zi component to our function f where we
did not have one before. Also, we have a constraint function g(Yi). This system of
equations is explicit for y′, but it is implicit for g(y), hence the name half-explicit
RK [10]. Table 5.1 shows the Butcher Tableau of a particular HERK method of order
three, which we call HERK3. We now work out the first few terms necessary to
implement a third order, three stage HERK method where i = 1,2,3. We start by
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0
1/3 1/3
1 -1 2

0 3/4 1/4

Table 5.1: The HERK3 method, from [10].

setting Y1 = y0 and note that g(Y1) = g(y0) = 0. Given

Y2 = yn + ha2,1 f (Y1,Z1), (5.10)

g(Y2) = 0 (5.11)

we find Z1 such that
g(yn + ha2,1 f (Y1,Z1)) = 0. (5.12)

Since Equation (5.12) is nonlinear, we use Newton’s Method as our solver, which
Brasley and Hairer [10] show converges if we use the initial guess Z1 = z0. Once we
find Z1, we use Equation (5.10) to find Y2. We follow a similar procedure for Y3 and
Z3, where

g(Y3) = g(y0 + h(a3,1 f (Y1,Z1) + a3,2 f (Y2,Z2))) = 0. (5.13)

For the Newton solve, we have to take the derivative of g(Yi). For this derivative,
we take the derivative with respect to Zi. To alleviate some notation confusion, we
define G(Z1) = g(Y2) and G(Z2) = g(Y3) and find the derivative with this notation.
The general case for this derivative is

G′i (Zi) = g

y0 + h
i−1∑
j=1

ai j f (Y j,Z j)

 (hai j fZi(Yi,Zi)). (5.14)

Now that we have determined all of the pieces required for our HERK methods, we
present a low storage implementation.

5.2.1 Low Storage Implementation of HERK Methods
In Chapter 2, we gave Equation (2.10) as the low storage implementation of the
standard RK method. At this point, we do a similar transformation of Equations (5.6)
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and (5.9). The resulting equations yield

S[1]
1 = yn, (5.15)

S[i+1]
2 = AiS

[i]
2 + h f (S[i]

1 ,Z
[i]
1 ),

S[i+1]
1 = S[i]

1 + BiS
[i]
2 ,

g(S[i+1]
1 ) = 0,

 i = 1, . . . ,s, (5.16)

yn+1 = S[s]
1 . (5.17)

We use

Gi(Z) = g
(
S1 + Bi

(
AiS2 + h f (S1,Z)

))
= 0, (5.18)

G′i (Z) = g′
(
S1 + Bi

(
AiS2 + h f

(
S1,Z

)))
Bi

(
h f ′

(
S1,Z

))
, (5.19)

for i = 1, . . . ,s together with the Newton’s Method solver listed in Appendix F to find
Z1. We initialize the Newton solver with an initial guess for Z1 from the previous
time step.

5.2.2 Order Conditions

The order conditions for index-2 systems using HERK methods are formed in much
the same way as we derived them in Chapter 2. We start with the Taylor expansion
of the exact solution of (5.1). Next, we look at just one step of the method and
rewrite (2.5) using

Fi(h) = f (Yi,Zi) (5.20)

in (2.20). We take the first derivative of (2.20) and set h = 0 to get

z′(0) =

s∑
i=1

biFi(0) =

s∑
i=1

bi f (Yi,Zi). (5.21)
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This is associated with the first order condition as shown in Equation (2.26). We
then take the derivative of Equation (5.21) and set h = 0 to find

z′′(0) = 2
s∑

i=1

biF′i (0) =

s∑
i=1

bi( fyY′i + fzZ′i ). (5.22)

For higher order methods, the additional derivates terms correspond to additional
order conditions. For methods of order three, the order conditions that result are
those already shown in Chapter 2 with two additional order conditions

s∑
i=1

s∑
j=1

biciωi jc2
j+1 =

2
3
, (5.23)

s∑
i=1

s∑
j=1

s∑
k=1

biωi jc2
j+1ωikc2

k+1 =
4
3
. (5.24)

When solving for Z′, we take an inverse. This results in the two new order conditions
for third order half-explicit methods, where

ωi j =



a2,1

a3,1 a3,2
...

...
. . .

as,1 as,2 · · · as,s−1

b1 b2 · · · bs−1 bs



−1

. (5.25)

Algebraically determining the order conditions is tedious. Therefore, we determine
the order conditions from the rooted trees in much the same way as before. We
represent the additional constraints by adding a fat node to the rooted tree that
corresponds to ω. The remaining nodes in the rooted tree are known as meagre
nodes. The two new half-explicit trees from Brasley and Hairer [10] are shown in
Figure 5.1.
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Figure 5.1: Third order half-explicit rooted trees.

To build the order conditions as we did with (2.44), we use ωi j if the fat node j lies
immediately above the meagre node i [10]. We add one to the index on each ci that
lies directly above a fat node. Note that we then define cs+1 = 1. We implement this
in the code by artificially adding a one onto the end of the c vector [10]. As described
in Hairer et al. [13] we are able to determine the order of each tree containing fat
nodes by subtracting the number of fat nodes from the number of meagre nodes.
Therefore, the two new trees are indeed third order rooted trees. We also needed
the 14 order conditions for a fourth order method. The first eight fourth order
conditions for HERK methods are

s∑
i=1

bic3
i =

1
4
, (5.26)

s∑
i=1

s∑
j=1

biciai jc j =
1
8
, (5.27)

s∑
i=1

s∑
j=1

biai jc2
j =

1
12
, (5.28)

s∑
i=1

s∑
j=1

s∑
k=1

biai ja jkck =
1
24
, (5.29)

s∑
i=1

s∑
j=1

bic2
iωi jc2

j+1 =
1
2
, (5.30)

s∑
i=1

s∑
j=1

s∑
k=1

biciωi jc2
j+1ωikc2

k+1 = 1, (5.31)
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s∑
i=1

s∑
j=1

s∑
k=1

s∑
l=1

biωi jc2
j+1ωikc2

k+1ωilc2
l+1 = 2, (5.32)

s∑
i=1

s∑
j=1

s∑
k=1

biciωi jc3
j+1 =

3
4
. (5.33)

For the six remaining order conditions, we need the relationship [10]

as+1,i = bi, i = 1, . . . ,s. (5.34)

Then we can write out the final six fourth order HERK order conditions

s∑
i=1

s∑
j=1

s∑
k=1

sbiciωi jc j+1a j+1,kck =
3
8
, (5.35)

s∑
i=1

s∑
j=1

biai jc jωi jc2
j+1 =

1
4
, (5.36)

s∑
i=1

s∑
j=1

s∑
k=1

biωi jc2
j+1ωikc3

k+1 =
3
2
, (5.37)

s∑
i=1

s∑
j=1

s∑
k=1

s∑
l=1

biωi jc2
j+1ωikc2

k+1ak+1,lcl =
3
4
, (5.38)

s∑
i=1

s∑
j=1

s∑
k=1

biai jc jω jkc2
k+1 =

1
6
, (5.39)

s∑
i=1

s∑
j=1

s∑
k=1

s∑
l=1

biai jω jkc2
k+1ω jlc2

l+1 =
1
3
. (5.40)

(5.41)

These order conditions are used in Algorithm E.5.

5.3 Discovery and Optimization of LSHERK Methods
In order to find and optimize new LSHERK methods, we modified the code from
Chapter 4. We focused on finding 14 stage methods, but now we change the order
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to three due to the growing number of constraints. We incorporated the new order
conditions into the equality constraint to ensure our method is third order. We
now minimize a norm of the fourth order conditions. From the outset we chose
to enforce the shape of the stability region using the ξi values from Table 5.2. As

i ξi
1 1
2 1/2
3 1/3
4 1/6
5 2/3
6 4/3
7 1/24
8 8.0971474827892589×10−3

9 1.2380169165300218×10−3

10 1.4920544370587013×10−4

11 1.4105197862197588×10−5

12 1.0338060754675449×10−6

13 5.7551620074656494×10−8

14 2.3518316167532871×10−9

15 6.6527970264862166×10−11

16 1.1639946786449694×10−12

17 9.4910013085549050×10−15

Table 5.2: The shape constraints.

before, we bounded the coefficients to be between ±20.

To start the solver, we chose a random vector for x using a uniform distribution
between ±2. However, the solver found no methods after numerous iterations. We
then tried using the coefficients from NRK14C as a starting point for the initial guess.
We perturbed a single coefficient for each optimization run by multiplying it by
0.9. The algorithm began returning usable results. However, this did not satisfying
the order conditions to a high degree. Therefore, we tried another constrained
nonlinear solver namely the SLSQP algorithm [14] from NLopt package [15]. We
implemented the same constraints and used the coefficients returned by fmincon
as the initial guess. Using this new solver, we were able to find coefficients that
satisfied the order conditions to a high degree. The three best LSHERK methods we
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found are listed in Tables 5.3 and 5.4.

OLSH14
A j B j

0 0.198689721501046
-1.536667718687070 0.092522019786294
-0.879071090817558 0.093317061742132
-0.336692132909897 0.015528392886136
-0.600875872026652 0.878595138450973
2.239571574791190 0.004847626739214
-0.922318030882955 0.489527826447674
0.429883109156452 0.738858611689567
-1.138227267743760 0.062964926879279
-2.645375146302570 0.018346991944929
0.208745274690937 0.323378610323469
-0.059235131779961 -0.023865839672009
-1.151123706135920 -0.294277657787366
-3.484587447077940 0.088153263710972

Table 5.3: The A j and B j coefficients for OLSH14.

5.4 Testing the DAE Solvers
We use Example 10.2 from Ascher and Petzold [8] as our DAE to test our new
methods,

y′1 =
(
10−

1
2− t

)
y1 + (20−10t)z +

(3− t
2− t

et
)
,

y′2 =
(
−9

t−2

)
y1− y2−9z + 2et,

0 = (t + 2) y1 +
(
t2
−4

)
y2−

(
t2 + t−2

)
et.

(5.42)

This is an index-2 DAE. With the initial conditions y1(0) = y2(0) = 1, the exact solution
is

y1 = y2 = et, z = −
et

2− t
. (5.43)

We solve the DAE using HERK3 and the three LSHERK methods in Tables 5.3
and 5.4. For HERK3 Algorithm F.1 serves as the time integrator function. We
substituted the coefficients for each LSHERK method into Algorithm F.2.
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O2LSH14 O3LSH14
A j B j A j B j

0 0.011606689535157 0 0.014228528646347
-0.74010204639345 0.193066237278654 -0.540982381029102 0.078478779562501
-2.54894597845811 2.05996751979073 -1.90680618151065 0.227585121053788
-13.7949081207664 0.212149307999438 -0.827743469943132 -1.49874337715584
-0.04878202484971 -0.080035183413218 -0.185077624731133 -0.00013227499321
-2.63597878427013 0.0692716851680793 -1.00299461809176 2.04238148887346
-10.8875767128353 0.0051616175210833 -2.17017565530989 0.000443666451349
0.04725137020767 0.0385851201335014 -0.989740743780935 2.78886431623001
1.57203594009144 -0.018839012403482 -2.62259296775679 5.57975124288274
-1.04849207573332 -0.024601846784907 -1.45037001707618 0.006220939198531
0.337171967245509 -2.28597480785815 -0.751383734763218 0.312734159646005
0.386611706418743 0.234175546664746 -0.782895050228605 0.137349425837006
0.474603255163912 0.203028289094254 0.285250619479765 1.01020457177164
-0.37187230970070 0.174243901777455 -14.1582458230965 0.049493455361853

Table 5.4: The coefficients for O2LSH14 and O3LSH14.

Figure 5.2 shows the solution error and convergence for each HERK method at the
final time of t = 1. The best method was OLSH14 by a small margin, however, as h
increases, O2LSH14 becomes the best method. We checked how well the numerical
solution satisfies the constraint in Equation (5.9). Figure 5.3 shows the result of
Equation (5.9) at the last time step of the HERK methods. All of the methods satisfy
the constraint to near machine zero.
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Figure 5.2: Error between the exact and numerical solutions. This plot also shows us that the
methods have third order convergence.
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Figure 5.3: Plot of the DAE constraint g(y) = 0 evaluated at the solution y1 for each method in this
chapter.
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CHAPTER 6:
Conclusions and Future Work

For this thesis, we wanted to learn about and discover LSRK methods. To do
this, we needed an understanding of the RK order conditions that make the
methods consistent and accurate. Algebraically deriving these order conditions
was difficult. For example, ninth order RK methods have 286 order conditions!
Thus we explored generating the order conditions with rooted trees, which we
found to be straightforward. After gaining a knowledge base of order conditions,
we chose to evaluate the performance characteristics of RK4 compared with two
LSRK methods, RK54 and NRK14C. For MOL PDE discretization of Maxwell’s
Equation, we found that NRK14C is more efficient when spatial error dominates.
This validated the claim of Niegemann et al. [5] for when LSRK methods are more
efficient. Niegemann et al. did not optimize the truncation error coefficients, which
gave us the idea to do that. We discovered new LSRK methods, but the methods
were not more efficient.

Reusing the tools from the optimization method, we looked at discovering methods
for index-2 DAEs. First, we implemented and tested HERK3 as a baseline method
for solving a DAE. We then ran the optimization method, which led to the discovery
of three new LSHERK methods. Although the methods were accurate, their error
levels were comparable to HERK3.

Areas for future work are:

• When optimizing for a new LSHERK method, different solvers could be used
to produce better results. We stuck with fmincon for most of our work, but
we did see a benefit using NLopt to condition the LSHERK coefficients further.
Perhaps using a combination of solvers one could discover better performing
LSHERK methods.

• In all of the optimization problems, determining the initial guess was a limiting
factor. A more efficient method for exploring the high dimensional parameter
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space would be beneficial.
• The next idea for the HERK problem would be to explore minimizing the TEC

coefficients.
• The exploration of LSHERK for MOL discretization of PDEs.
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APPENDIX A:
List of RK Order Conditions

Here is a list of the RK order conditions for first through fifth order. This list is in
the order used throughout this work and used in the vector of γ values. The first
through third order conditions are:

s∑
i=1

bi = 1 (A.1)

s∑
i=1

bici =
1
2

(A.2)

s∑
i=1

bic2
i =

1
3

(A.3)

s∑
i=1

s∑
j=1

biai jc j =
1
6
. (A.4)

The fourth order conditions are:

s∑
i=1

bic3
i =

1
4

(A.5)

s∑
i=1

s∑
j=1

biciai jc j =
1
8

(A.6)

s∑
i=1

s∑
j=1

biai jc2
j =

1
12

(A.7)

s∑
i=1

s∑
j=1

s∑
k=1

biai ja jkck =
1

24
. (A.8)
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The fifth order conditions are:

s∑
i=1

bic4
i =

1
5

(A.9)

s∑
i=1

s∑
j=1

bic2
i ai jc j =

1
10

(A.10)

s∑
i=1

s∑
j=1

biciai jc2
j =

1
15

(A.11)

s∑
i=1

s∑
j=1

s∑
k=1

biciai ja jkck =
1

30
(A.12)

s∑
i=1

s∑
j=1

s∑
k=1

biai jaikc jck =
1

20
(A.13)

s∑
i=1

s∑
j=1

biai jc3
j =

1
20

(A.14)

s∑
i=1

s∑
j=1

s∑
k=1

biai jc ja jkck =
1

40
(A.15)

s∑
i=1

s∑
j=1

s∑
k=1

biai ja jkc2
k =

1
60

(A.16)

s∑
i=1

s∑
j=1

s∑
k=1

s∑
l=1

biai ja jkaklcl =
1

120
. (A.17)
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APPENDIX B:
Changes to the Maxwell’s Equation in 2D Code

This appendix includes the two codes from Hesthaven and Warburton [9] that we
changed to run our LSRK methods.

B.1 Time Integrator Function for Maxwell’s Equation
This function runs the time integrator using the RK method of choice. We introduced
the dtfactor here so we could iterate on different time step sizes.

1 function [Hx,Hy,Ez,time,dtscale,rhsevals] = Maxwell2D(Hx,Hy,Ez,FinalTime ,dtfactor,RKmethod

)

3 % function [Hx,Hy,Ez] = Maxwell2D(Hx, Hy, Ez, FinalTime)

% Purpose :Integrate TM-mode Maxwell’s until FinalTime starting with

5 % initial conditions Hx,Hy,Ez

7 Globals2D;

time = 0;

9

% Runge-Kutta residual storage

11 resHx = zeros(Np,K); resHy = zeros(Np,K); resEz = zeros(Np,K);

13 % compute time step size

rLGL = JacobiGQ(0,0,N); rmin = abs(rLGL(1)-rLGL(2));

15 dtscale = dtscale2D; %dt = min(dtscale)*rmin*2/3

17 %control dt size with dtfactor introduced below 30JAN15

%Matthew Fletcher thesis

19 dt = min(dtscale)*rmin*dtfactor;

% outer time step loop

21 rhsevals = 0;

while (time<FinalTime)

23

if(time+dt>FinalTime), dt = FinalTime -time; end

25

for INTRK = 1:length(RKmethod)

27 % compute right hand side of TM-mode Maxwell’s equations

[rhsHx, rhsHy, rhsEz] = MaxwellRHS2D(Hx,Hy,Ez);

29 rhsevals = rhsevals + 1;

%rhsHx=0; rhsHy=0; rhsEz=0; %for eigenvalue part only

31 % initiate and increment Runge-Kutta residuals

resHx = RKmethod(INTRK ,1)*resHx + dt*rhsHx;

33 resHy = RKmethod(INTRK ,1)*resHy + dt*rhsHy;
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resEz = RKmethod(INTRK ,1)*resEz + dt*rhsEz;

35

% update fields

37 Hx = Hx+RKmethod(INTRK ,2)*resHx; Hy = Hy+RKmethod(INTRK ,2)*resHy;

Ez = Ez+RKmethod(INTRK ,2)*resEz;

39 end;

% Increment time

41 time = time+dt;

end

43 return

Algorithm B.1: Function for solving Maxwell’s Equation.

B.2 Driver File for Maxwell’s Equation
This algorithm serves as the driver file for all of the codes associated with Maxwell’s
Equation in 2D. Here we iterated on the polynomial order. We also changed which
RK method depending on the test at hand.

% Driver script for solving the 2D vacuum Maxwell’s equations on TM form

2 Globals2D;

a=1;

4 b=1;

% Polynomial order used for approximation

6 tic

for k = [1 2]

8 if k == 1

RKmethod = NRK14C;

10 elseif k == 2

RKmethod = RK54;

12 end

for N = [4 6];% 8 10];

14

% Read in Mesh

16 [Nv, VX, VY, K, EToV] = MeshReaderGambit2D(’Maxwell05.neu’);

18 % Initialize solver and construct grid and metric

StartUp2D;

20

% Set initial conditions

22 mmode = 1; nmode = 1;

icEz = sin(mmode*pi*x).*sin(nmode*pi*y); icHx = zeros(Np, K); icHy = zeros(Np, K);

24

% Solve Problem

26 FinalTime = 1;

%RKmethod = NRK14C; %RK54; NRK14C; new14stage

28 % compute time step size
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rLGL = JacobiGQ(0,0,N); rmin = abs(rLGL(1)-rLGL(2));

30 dtscale = dtscale2D;

% Exact Solution at FinalTime

32 omega = pi*sqrt(mmode^2+nmode^2);

exactHx = -pi*nmode/omega.* sin(mmode*pi*x).* cos(nmode*pi*y).* sin(omega*

FinalTime);

34 exactHy = pi*mmode/omega.* cos(mmode*pi*x).* sin(nmode*pi*y).* sin(omega*

FinalTime);

exactEz = sin(mmode*pi*x).* sin(nmode*pi*y).* cos(omega*

FinalTime);

36 z=1;

for dtfactor = 0.5:0.01:5%0.01:0.01:3%0.5:0.01:5

38 [Hx,Hy,Ez,time,dtscale,rhsevals] = Maxwell2D(icHx,icHy,icEz,FinalTime ,dtfactor

,RKmethod);

40 ez_error = Ez - exactEz;

MMez_error = MassMatrix*(J.*ez_error);

42 l2ez_error = sqrt(ez_error(:)’*MMez_error(:));

44 graph(z,a) = min(dtscale)*rmin*dtfactor;

graph(z,a+1) = l2ez_error;

46 opsct(z,b) = rhsevals;

% line below needed if comparing ops count for one polynomial order

48 % graph(z,a+2) = rhsevals;

z=z+1;

50 end

a=a+2;

52 b=b+1;

end

54 end

toc

56

loglog(graph(:,1),graph(:,2),graph(:,3),graph(:,4),graph(:,5),graph(:,6),graph(:,7),graph

(:,8))

58 title(’dt vs. error’,’FontSize’,14)

xlabel(’dt’,’FontSize’,14)

60 ylabel(’error’,’FontSize’,14)

legend(’N=4; NRK14C’,’N=6; NRK14C’,’N=4; RK54’,’N=6; RK54’)

Algorithm B.2: Driver script for solving the 2D vacuum Maxwell’s Equation.
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APPENDIX C:
Finding the Eigenvalues of the Discretization

Operator for Maxwell’s Equation

Our code uses L like this:

d
dt

qn = Lqn, where qn =


Hx

Hy

Ez

 . (C.1)

We need to write the code to return L in order to eventually find the eigenvalues.
First, we remove the dtfactor loop from the original driver file and create a loop
through n, where n is now the degrees of freedom per element (Np) multiplied by
the number of elements (K) times three. The variables L and Q are then defined
as a square matrix of size Np · K · 3 and 3D matrix Np by K by 3. We then solve
MaxwellRHS2D.m using Hx, Hy, and Ez set equal to Q. Q is a matrix of all zeros
except for the index of n, which is set to one. Therefore, as we loop through n, L
is built from the output of MaxwellRHS2D.m. Once the algorithm is complete, we
have the differentiation matrix, L. We then use Matlab’s function eig to compute
the eigenvalues of L. Taking the eigenvalues of L, we multiply by the time step size
on the edge of stability for a specific method. To compute and plot the eigenvalues,
we use the following code:

% Driver script for solving the 2D vacuum Maxwell’s equations on TM form

2 Globals2D;

% Polynomial order used for approximation

4 N = 4;

for k = [1]

6 if k == 1

RKmethod = RK54;

8 elseif k == 2

RKmethod = NRK14C;

10 end

% Read in Mesh

12 [Nv, VX, VY, K, EToV] = MeshReaderGambit2D(’Maxwell05.neu’);

% Initialize solver and construct grid and metric

14 StartUp2D;
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% Set initial conditions

16 mmode = 1; nmode = 1;

icEz = sin(mmode*pi*x).*sin(nmode*pi*y); icHx = zeros(Np, K); icHy = zeros(Np, K);

18 FinalTime = 0;

% compute time step size

20 rLGL = JacobiGQ(0,0,N); rmin = abs(rLGL(1)-rLGL(2));

dtscale = dtscale2D;

22 L = zeros(Np*K*3);

Q = zeros(Np, K, 3);

24 for n = 1:Np*K*3

Q(n) = 1;

26 Hx = Q(:,:,1); Hy = Q(:,:,2); Ez = Q(:,:,3);

[rhsHx, rhsHy, rhsEz] = MaxwellRHS2D(Hx,Hy,Ez);

28 L(:,n) = [rhsHx(:);rhsHy(:);rhsEz(:)];

Q(n) = 0;

30 end

end

32 evs = eig(L); dt = 0.04125; scaledEV = dt*evs;

norm(real(scaledEV(real(scaledEV) > 0)), ’inf’)

34 hold on

plot(scaledEV ,’r*’)

36 hold off

Algorithm C.1: Calculates and plots the eigenvalues of L.
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APPENDIX D:
Optimization Algorithms for a New 14-Stage

LSRK Method

This appendix covers the algorithms required to run fmincon to optimize a new 14
stage LSRK method.

D.1 Driver File for the Optimization
This algorithm functions as the driver file for the other algorithms in this appendix.
We choose how we want to initialize the initial guess for fmincon. Included are
three different options: NRK14C, zeros, or random numbers.

load(’NRK14C.mat’);

2 % initialize random number generator

rng(0,’twister’);

4 % set upper and lower bounds for random numbers

var.m = -2; var.n = 0; var.o = 0; var.p = 2;

6

options = optimset(’diffmaxchange’,Inf,’diffminchange’,0, ...

8 ’MaxFunEvals’,600000,’TolX’,0,’TolCon’,1e-10,...

’TolFun’,1e-10,’MaxIter’,30000);

10 for i = 1

% initial guess using a uniform distribution

12 randA = (var.n-var.m).*rand(13,1)+var.m;

randB = (var.p-var.o).*rand(14,1)+var.o;

14 % Choose initial guess for x0 starting with NRK14C, all zeros or random numbers

% [NRK14C(2:end,1);NRK14C(1:end,2)];%zeros(27,1);%[randA;randB]

16 x0 = [randA;randB]

[x,error] = condition_opt_driver(x0,options)

18 % Check to see if new x satisfies the order conditions

xA = [0;x(1:13)];

20 xB = x(14:27);

[a,b,c] = ConvertLSRK(xA,xB);

22 for tol = [1e-13 1e-12 1e-10 1e-9]

tol

24 [satisfied ,~] = OrderCondition(14,4,a,b,tol)

end

26 end

Algorithm D.1: Driver algorithm for the optimization function.
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D.2 Optimization Function
This algorithm sets the function we want to minimize, which in this case is the set
of order conditions for fifth order methods.

function [ scalar ] = condition_opt_func( x0,var )

2

var.A_vec = [0;x0(1:13)];

4 var.B_vec = x0(14:27);

[A,b,c] = ConvertLSRK(var.A_vec,var.B_vec);

6 condition_vector5 = zeros(9,1);

for i = 1:var.s % single summation order conditions

8 condition_vector5(1) = condition_vector5(1) + b(i)*(c(i)^4);

for j= 1:var.s % double summation order conditions

10 condition_vector5(2) = condition_vector5(2) + b(i)*(c(i)^2)*A(i,j)*c(j);

condition_vector5(3) = condition_vector5(3) + b(i)*c(i)*A(i,j)*(c(j)^2);

12 condition_vector5(6) = condition_vector5(6) + b(i)*A(i,j)*(c(j)^2);

for k = 1:var.s % triple summation order conditions

14 condition_vector5(4) = condition_vector5(4) + b(i)*c(i)*A(i,j)*A(j,k)*c(k);

condition_vector5(5) = condition_vector5(5) + b(i)*A(i,j)*A(i,k)*c(j)*c(k);

16 condition_vector5(7) = condition_vector5(7) + b(i)*A(i,j)*c(j)*A(j,k)*c(k);

condition_vector5(8) = condition_vector5(8) + b(i)*A(i,j)*A(j,k)*(c(k)^2);

18 for l = 1:var.s

condition_vector5(9) = condition_vector5(9) + b(i)*A(i,j)*A(j,k)*A(k,l)*c(

l);

20 end

end

22 end

end

24 conditionsRHS = [1/5 1/10 1/15 1/30 1/20 1/20 1/40 1/60 1/120]’;

scalar = norm(condition_vector5 -conditionsRHS ,2);

26 end

Algorithm D.2: OPtimization function for fmincon.

D.3 Options and Inputs Required to Run fmincon
Here we include any other constraints on the unknown variables. The upper and
lower bounds limit the range of values fmincon can check to find a new LSRK
method.

function [ cineq, ceq ] = condition_opt_constraints( x0, var )

2 %split x into A and B

var.A_vec = [0;x0(1:13)];

4 var.B_vec = x0(14:27);

6 [A,b,c] = ConvertLSRK(var.A_vec,var.B_vec);
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condition_vector = zeros(18,1);

8 for i = 1:var.s % single summation order conditions

condition_vector(1) = condition_vector(1) + b(i);

10 condition_vector(2) = condition_vector(2) + b(i)*c(i);

condition_vector(3) = condition_vector(3) + b(i)*(c(i)^2);

12 condition_vector(5) = condition_vector(5) + b(i)*(c(i)^3);

for j= 1:var.s % double summation order conditions

14 condition_vector(4) = condition_vector(4) + b(i)*A(i,j)*c(j);

condition_vector(6) = condition_vector(6) + b(i)*c(i)*A(i,j)*c(j);

16 condition_vector(7) = condition_vector(7) + b(i)*A(i,j)*(c(j)^2);

for k = 1:var.s % triple summation order conditions

18 condition_vector(8) = condition_vector(8) + b(i)*A(i,j)*A(j,k)*c(k);

end

20 end

end

22 for k = (var.p+1):var.s

condition_vector(k+4) = condition_vector(k+4) + (b*A^(k-1)*ones(var.s,1));

24 end

conditionsRHS = [1 1/2 1/3 1/6 1/4 1/8 1/12 1/24 ...

26 8.0971474827892589e-3 1.2380169165300218e-3 ...

1.4920544370587013e-4 1.4105197862197588e-5 ...

28 1.0338060754675449e-6 5.7551620074656494e-8 ...

2.3518316167532871e-9 6.6527970264862166e-11 ...

30 1.1639946786449694e-12 9.4910013085549050e-15]’;

cineq = [];

32 ceq = abs(condition_vector -conditionsRHS);

end

Algorithm D.3: Sets the equality and inequality constraints for fmincon.

D.4 Optimization Constraints
The last algorithm contains the constraints on the first through fourth order condi-
tions as well as the shape constraints.

1 function [x,error] = condition_opt_driver(x0, options)

% build vector for fmincon of initial conditions

3 % load LSRK method

load(’NRK14C.mat’);

5 var.s = length(NRK14C(:,:));

var.p = 4;

7

% fmincon constraints

9 A = []; B = []’; % inequality constraints

Aeq = []; Beq = []; % equality constraints

11 LB = [-20*ones(13,1);-20*ones(14,1)]’; % lower bound on the unknown variables

UB = [20*ones(13,1);20*ones(14,1)]’; % upper bound on the unknown variables

13
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[x,error] = fmincon(@condition_opt_func ,x0,A,B,Aeq,Beq,LB,UB, ...

15 @condition_opt_constraints ,options,var)

Algorithm D.4: Sets the options for fmincon.
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APPENDIX E:
Optimization Algorithms for a New Third Order

LSHERK Method

This appendix covers the algorithms required to run fmincon to optimize a new 14
stage LSRK method.

E.1 Driver File for the Optimization
This algorithm functions as the driver file for the other algorithms in this appendix.
We choose how we want to initialize the initial guess for fmincon. Included are
three different options: NRK14C, zeros, or random numbers.

1

% initialize random number generator

3 rng(0,’twister’);

% set upper and lower bounds for numbers

5

var.m = -2; var.n = 0; var.o = 0; var.p = 2;

7 options = optimset(’diffmaxchange’,Inf,’diffminchange’,0, ...

’MaxFunEvals’,500000,’TolX’,0,’TolCon’,1e-10,...

9 ’TolFun’,1e-10,’MaxIter’,30000);

for i = 1:10

11 % initial guess using a uniform distribution

randA = (var.n-var.m).*rand(13,1)+var.m;

13 randB = (var.p-var.o).*rand(14,1)+var.o;

% Choose initial guess for x0 starting with NRK14C, all zeros or random numbers

15 % [NRK14C(2:end,1);NRK14C(1:end,2)];%zeros(27,1);%[randA;randB]

x0 = [randA;randB]

17 [x,error] = condition_opt_driver_half(x0,options)

% Check to see if new x satisfies the half-explicit order conditions

19 xA = [0;x(1:13)];

xB = x(14:27);

21 [a,b,c] = ConvertLSRK(xA,xB);

for tol = [1e-7 1e-6]

23 tol

[satisfied ,~] = OrderCondition_HalfExplicit(14,3,a,b,tol)

25 end

end

Algorithm E.1: Driver algorithm for the optimization function.
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E.2 Optimization Function
This algorithm sets the function we want to minimize, which in this case is the set
of order conditions for fifth order methods.

function [ scalar ] = condition_opt_func_half( x0,var )

2

var.A_vec = [0;x0(1:13)];

4 var.B_vec = x0(14:27);

[A,b,c] = ConvertLSRK(var.A_vec,var.B_vec);

6 c = [c;1];

var.omega = inv([A(2:end,:);b]);

8 condition_vector5 = zeros(14,1);

for i = 1:var.s % single summation order conditions

10 condition_vector5(1) = condition_vector5(1) + b(i)*(c(i)^3);

for j= 1:var.s % double summation order conditions

12 condition_vector5(2) = condition_vector5(2) + b(i)*c(i)*A(i,j)*c(j);

condition_vector5(3) = condition_vector5(3) + b(i)*A(i,j)*(c(j)^2);

14 condition_vector5(5) = condition_vector5(5) + b(i)*(c(i)^2)*var.omega(i,j)*(c(j+1)

^2);

condition_vector5(8) = condition_vector5(8) + b(i)*c(i)*var.omega(i,j)*(c(j+1)^3);

16 condition_vector5(10) = condition_vector5(10) + b(i)*A(i,j)*c(j)*var.omega(i,j)*(c

(j+1)^2);

for k = 1:var.s % triple summation order conditions

18 condition_vector5(4) = condition_vector5(4) + b(i)*A(i,j)*A(j,k)*c(k);

condition_vector5(6) = condition_vector5(6) + b(i)*c(i)*var.omega(i,j)*(c(j+1)

^2)*var.omega(i,k)*(c(k+1)^2);

20 if j == var.s

condition_vector5(9) = condition_vector5(9) + b(i)*c(i)*var.omega(i,j)*c(j

+1)*b(k)*c(k);

22 else

condition_vector5(9) = condition_vector5(9) + b(i)*c(i)*var.omega(i,j)*c(j

+1)*A(j+1,k)*c(k);

24 end

condition_vector5(11) = condition_vector5(11) + b(i)*var.omega(i,j)*(c(j+1)^2)

*var.omega(i,k)*(c(k+1)^3);

26 condition_vector5(13) = condition_vector5(13) + b(i)*A(i,j)*c(j)*var.omega(j,k

)*(c(k+1)^2);

for l = 1:var.s % quadruple summation order conditions

28 condition_vector5(7) = condition_vector5(7) + b(i)*var.omega(i,j)*(c(j+1)

^2)*var.omega(i,k)*(c(k+1)^2)*var.omega(i,l)*(c(l+1)^2);

if k == var.s

30 condition_vector5(12) = condition_vector5(12) + b(i)*var.omega(i,j)*(c

(j+1)^2)*var.omega(i,k)*(c(k+1)^2)*b(l)*c(l);

else

32 condition_vector5(12) = condition_vector5(12) + b(i)*var.omega(i,j)*(c

(j+1)^2)*var.omega(i,k)*(c(k+1)^2)*A(k+1,l)*c(l);

end

34 condition_vector5(14) = condition_vector5(14) + b(i)*A(i,j)*var.omega(j,k)
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*(c(k+1)^2)*var.omega(j,l)*(c(l+1)^2);

end

36 end

end

38 end

conditionsRHS = [1/4 1/8 1/12 1/24 1/2 1 2 3/4 3/8 1/4 3/2 3/4 1/6 1/3]’;

40 scalar = norm(condition_vector5 -conditionsRHS ,2);

end

Algorithm E.2: Sets the optimization function according to the 3rd and 4th order half-explicit RK
coefficients.

E.3 Options and Inputs Required to Run fmincon
Here we include any other constraints on the unknown variables. The upper and
lower bounds limit the range of values fmincon can check to find a new LSRK
method.

1 function [ cineq, ceq ] = condition_opt_constraints_half( x0,var )

3 %split x into A and B

var.A_vec = [0;x0(1:13)];

5 var.B_vec = x0(14:27);

% Constraints for the Half-Explicit coefficients and circular shape

7 conditionsRHS = [1 1/2 1/3 1/6 2/3 4/3 1/24 ...

8.0971474827892589e-3 1.2380169165300218e-3 ...

9 1.4920544370587013e-4 1.4105197862197588e-5 ...

1.0338060754675449e-6 5.7551620074656494e-8 ...

11 2.3518316167532871e-9 6.6527970264862166e-11 ...

1.1639946786449694e-12 9.4910013085549050e-15]’;

13 [A,b,c] = ConvertLSRK(var.A_vec,var.B_vec);

c = [c;1];

15 var.omega = inv([A(2:end,:);b]);

condition_vector = zeros(length(conditionsRHS),1);

17 for i = 1:var.s % single summation order conditions

condition_vector(1) = condition_vector(1) + b(i);

19 condition_vector(2) = condition_vector(2) + b(i)*c(i);

condition_vector(3) = condition_vector(3) + b(i)*(c(i)^2);

21 for j= 1:var.s % double summation order conditions

condition_vector(4) = condition_vector(4) + b(i)*A(i,j)*c(j);

23 condition_vector(5) = condition_vector(5) + b(i)*c(i)*var.omega(i,j)*(c(j+1)^2);

for k = 1:var.s % triple summation order conditions

25 condition_vector(6) = condition_vector(6) + b(i)*var.omega(i,j)*(c(j+1)^2)*var

.omega(i,k)*(c(k+1)^2);

end

27 end

end
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29 for l = (var.p+1):var.s

condition_vector(l+3) = condition_vector(l+3) + (b*A^(l-1)*ones(var.s,1));

31 end

33 cineq = [];

ceq = abs(condition_vector -conditionsRHS);

35

end

Algorithm E.3: Sets the constraints for 3rd order half-explicit RK coefficients as well as the shape
constraints.

E.4 Optimization Constraints
The last algorithm contains the constraints on the first through fourth order condi-
tions as well as the shape constraints.

function [x,error] = condition_opt_driver_half(x0, options)

2

var.s = 14;% length(NRK14C(:,:));

4 var.p = 3;

% fmincon constraints

6

A = []; B = []’; % inequality constraints

8 Aeq = []; Beq = []; % equality constraints

LB = [-20*ones(13,1);-20*ones(14,1)]’; % lower bound on the unknown variables

10 UB = [20*ones(13,1);20*ones(14,1)]’; % upper bound on the unknown variables

12 [x,error] = fmincon(@condition_opt_func_half ,x0,A,B,Aeq,Beq,LB,UB, ...

@condition_opt_constraints_half ,options,var)

Algorithm E.4: Runs the fmincon optimization function.

E.5 Check Order Conditions and Truncation Error Co-

efficient
This algorithm is similar to the previous algorithms where we check all of the order
conditions for a given RK method. Here we use up to the fourth order half-explicit
RK order conditions. The last few lines comprise the truncation error coefficient
calculation.

1 function [satisfied ,c,upsilon] = TEC_HalfExplicit(s,p,A,b,tol)

% s = number of stages
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3 % p = order of method

% A = tableau

5 % b = weights of A

% tol = tolerance

7 if p == 3

Tc = 6;

9 elseif p == 4

Tc = 20;

11 end

c = sum(A,2);

13 Cmatrix = diag(c);

one = ones(s,1);

15 satisfied = true;

omega = inv([A(2:end,:);b]);

17 % add on 1 to c for the j+1 and k+1 index from (3.3) in Brasey and Hairer

c = [c;1];

19 for l = 1:p

for k = 0:(p-l)

21 cond = b * A^k * Cmatrix^(l-1) * one;

ans2 = factorial(l-1)/factorial(k+l);

23 %introduced tolerance condition

if abs(cond-ans2) > tol

25 satisfied = false;

end

27 end

end

29 conditionsRHS = [1 1/2 1/3 1/6 2/3 4/3 1/4 1/8 1/12 1/24 1/2 1 2 3/4 3/8 1/4 3/2 3/4 1/6

1/3];

condition_vector = zeros(1,length(conditionsRHS));

31 for i = 1:s % single summation order conditions

condition_vector(1) = condition_vector(1) + b(i);

33 condition_vector(2) = condition_vector(2) + b(i)*c(i);

condition_vector(3) = condition_vector(3) + b(i)*(c(i)^2);

35 condition_vector(7) = condition_vector(7) + b(i)*(c(i)^3);

for j= 1:s % double summation order conditions

37 condition_vector(4) = condition_vector(4) + b(i)*A(i,j)*c(j);

condition_vector(5) = condition_vector(5) + b(i)*c(i)*omega(i,j)*(c(j+1)^2);

39 condition_vector(8) = condition_vector(8) + b(i)*c(i)*A(i,j)*c(j);

condition_vector(9) = condition_vector(9) + b(i)*A(i,j)*(c(j)^2);

41 condition_vector(11) = condition_vector(11) + b(i)*(c(i)^2)*omega(i,j)*(c(j+1)^2);

condition_vector(14) = condition_vector(14) + b(i)*c(i)*omega(i,j)*(c(j+1)^3);

43 condition_vector(16) = condition_vector(16) + b(i)*A(i,j)*c(j)*omega(i,j)*(c(j+1)

^2);

for k = 1:s % triple summation order conditions

45 condition_vector(6) = condition_vector(6) + b(i)*omega(i,j)*(c(j+1)^2)*omega(

i,k)*(c(k+1)^2);

condition_vector(10) = condition_vector(10) + b(i)*A(i,j)*A(j,k)*c(k);

47 condition_vector(12) = condition_vector(12) + b(i)*c(i)*omega(i,j)*(c(j+1)^2)*

omega(i,k)*(c(k+1)^2);
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if j == s

49 condition_vector(15) = condition_vector(15) + b(i)*c(i)*omega(i,j)*c(j+1)*

b(k)*c(k);

else

51 condition_vector(15) = condition_vector(15) + b(i)*c(i)*omega(i,j)*c(j+1)*

A(j+1,k)*c(k);

end

53 condition_vector(17) = condition_vector(17) + b(i)*omega(i,j)*(c(j+1)^2)*omega

(i,k)*(c(k+1)^3);

condition_vector(19) = condition_vector(19) + b(i)*A(i,j)*c(j)*omega(j,k)*(c(k

+1)^2);

55 for l = 1:s % quadruple summation order conditions

condition_vector(13) = condition_vector(13) + b(i)*omega(i,j)*(c(j+1)^2)*

omega(i,k)*(c(k+1)^2)*omega(i,l)*(c(l+1)^2);

57 if k == s

condition_vector(18) = condition_vector(18) + b(i)*omega(i,j)*(c(j+1)

^2)*omega(i,k)*(c(k+1)^2)*b(l)*c(l);

59 else

condition_vector(18) = condition_vector(18) + b(i)*omega(i,j)*(c(j+1)

^2)*omega(i,k)*(c(k+1)^2)*A(k+1,l)*c(l);

61 end

condition_vector(20) = condition_vector(20) + b(i)*A(i,j)*omega(j,k)*(c(k

+1)^2)*omega(j,l)*(c(l+1)^2);

63 end

end

65 end

end

67

for z = 1:length(condition_vector)

69 if abs(condition_vector(z)-conditionsRHS(z)) <= tol

success = [’Passes order condition ’,num2str(z),’.’];

71 display(success)

%satisfied = 0;

73 end

end

75 c = sum(A,2);

% Truncation Error Coefficient Calculation

77 upsilon = zeros(1,Tc);

phi = condition_vector(1,1:Tc); gamma = conditionsRHS(1,1:Tc);

79 alpha = [1 1 1 1 1 1]; rho = [1 2 3 3 3 3];

upsilon = (phi.*gamma -1).*(alpha./factorial(rho));

Algorithm E.5: Checks the order conditions for a given half-explicit RK method and outputs the TEC.
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APPENDIX F:
Algorithms for Solving a DAE

This appendix covers the algorithms required to solve the DAE using a Newton’s
solve in the integrator for both HERK3 and the LSHERK methods.

F.1 HERK3 Method
This algorithm functions as the driver file for the other algorithms in this appendix.
We choose how we want to initialize the initial guess for fmincon. Included are
three different options: NRK14C, zeros, or random numbers.

1 function [y1,z1,t1] = HERK3(y0,z0,f,g,df,dg,t0,h,n)

% t0, y0 and z0 are the initial conditions

3 % f and g are anonymous function from the DAE

% df is the derivative of f with respect to z

5 % dg is the derivative of g with respect to y

% h is the step size

7 % n is the number of iterations

9 a = [0 0 0;1/3 0 0;-1 2 0];

b = [0 3/4 1/4];

11 c = sum(a,2);

for k = 1:n

13 tol = 1e-7;

Y1 = y0;

15 t1 = t0;

t2 = t0 + h*c(2);

17 t3 = t0 + h*c(3);

19 G1 = @(z) g(t2,y0 + h * a(2,1) * f(t1,Y1,z));

dG1 = @(z) h * a(2,1) * (dg(t2,y0 + h * a(2,1) * f(t1,Y1,z)) * df(t1,Y1,z));

21 [Z1,~] = newton(G1,dG1,z0,tol,10001,0);

23 Y2 = y0 + h * a(2,1) * f(t1,Y1,Z1);

G2 = @(z) g(t3,y0 + h * (a(3,1) * f(t1,Y1,Z1) + a(3,2) * f(t2,Y2,z)));

25 dG2 = @(z) h * a(3,2) * (dg(t3,y0 + h * (a(3,1) * f(t1,Y1,Z1) + a(3,2) * f(t2,Y2,z)

)) * df(t2,Y2,z));

[Z2,~] = newton(G2,dG2,z0,tol,10001,0);

27

Y3 = y0 + h * (a(3,1) * f(t1,Y1,Z1) + a(3,2) * f(t2,Y2,Z2));

29 G3 = @(z) g(t0 + h,y0 + h *(b(2) * f(t2,Y2,Z2) + b(3) * f(t3,Y3,z)));

dG3 = @(z) h * b(3) * (dg(t0 + h,y0 + h *(b(2) * f(t2,Y2,Z2) + b(3) * f(t3,Y3,z)))*

df(t3,Y3,z));
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31 [Z3,~] = newton(G3,dG3,z0,tol,10001,0);

33 y1 = y0 + h * (b(2) * f(t2,Y2,Z2) + b(3) * f(t3,Y3,Z3));

z1 = Z3;

35 t1 = t0 + h;

y0 = y1;

37 z0 = z1;

t0 = t1;

39 end

end

Algorithm F.1: This function evaluates a function using the HERK3 method, from [10].

F.2 LSRK Method
This algorithm sets the function we want to minimize, which in this case is the set
of order conditions for fifth order methods.

function [S1,t0] = LSHERK(f,y0,z0,g,df,dg,A,B,c,t0,h,n,tol)

2 % t0, y0 and z0 are the initial conditions

% f and g are anonymous function from the DAE

4 % df is the derivative of f with respect to z

% dg is the derivative of g with respect to y

6 % h is the step size

% n is the number of iterations

8 % A, B, and c are the LSRK coefficients

% tol is the tolerance for the Newton solve

10 s = length(A);

c = [c;1];

12 S1 = y0;

S2 = zeros(size(y0));

14 Z1 = z0;

for i = 1:n

16 for j = 1:s

18 G = @(z) g(t0+c(j+1)*h,S1+B(j)*(A(j)*S2+h.*f(t0+c(j)*h,S1,z)));

dG = @(z) dg(t0+c(j+1)*h,S1+B(j)*(A(j)*S2+h.*f(t0+c(j)*h,S1,z)))*B(j)*(h.*df(t0+c

(j)*h,S1,z));

20 [Z1,~] = newton(G,dG,z0,tol,10001,0);

22 S2 = A(j)*S2+h.*f(t0+c(j)*h,S1,Z1);

S1 = S1+B(j)*S2;

24

end

26 t0 = t0 + h;

z0 = Z1;

28 end

end
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Algorithm F.2: This function takes evaluates a function using the LSHERK method.

F.3 Newton’s Solver
The last algorithm contains the constraints on the first through fourth order condi-
tions as well as the shape constraints.

1

% NEWTON Newton’s method for finding the roots of a scalar equation

3 % inputs:

% f function handle for the function f(x)

5 % fp function handle for the derivative function f’(x)

% x0 initial guess for the root

7 % tol absolute tolerance

% N maximum number of iterations

9 % output a boolean that if true causes the program to display the number

% of the iterations , the absolute convergence criterion , and the

11 % function value, i.e.,

% disp([n,abs(xk-xk1),f(xk)]);

13 % outputs:

% X found value for the root

15 % n number of iterations (return value of N+1 indicates failure to

% find the root in N iterations)

17

function [X,n] = newton(f,fp,x0,tol,n,output)

19 loop = 0;

if output

21 disp(’ Iterations Abs Error Value ’)

end

23 for k=1:n

x1=x0-(f(x0)/fp(x0));

25 % Algorithm from "A First Course in Numerical Methods" by Ascher and Grief;

% Chapter 3.4 page 51.

27 if output

disp([k,abs(x1-x0),f(x0)]);

29 end

if abs(x1-x0)<tol

31 n=k;

X=x1;

33 break;

elseif (k == n)

35 error( ’Newtons method did not converge’ );

end

37

x0=x1;

39 end
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Algorithm F.3: This algorithm is the Newton’s Method we used to solve for the Zi of our function.

F.4 Driver File for Solving the DAE
This algorithm is similar to the previous algorithms where we check all of the order
conditions for a given RK method. Here we use up to the fourth order half-explicit
RK order conditions. The last few lines comprise the truncation error coefficient
calculation.

1

% Parameters

3 a = 10;

t0 = 0;

5 Yp = @(t) [(a-(1/(2-t))) 0;(1-a)/(t-2) -1];

Zp = @(t) [(2-t)*a;a-1];

7 f = @(t,y,z) Yp(t)*y+Zp(t)*z+[(3-t)/(2-t)*exp(t);2*exp(t)];

9 g = @(t,y) [(t+2) (t^2-4)]*y-(t^2+t-2)*exp(t);

df = @(t,y,z) Zp(t);

11 dg = @(t,y) [t+2 t^2-4];

13 y0 = [1; 1];

z0 = -exp(t0)/(2-t0);

15 tf = 1;

17 %load LSRK coefficients

load(’OHERK14.mat’)

19 [~,~,c1] = ConvertLSRK(OHERK14(:,1),OHERK14(:,2));

A1 = OHERK14(:,1);

21 B1 = OHERK14(:,2);

23 q = 1;

25 for n = 1:10:1001

h = (tf-t0)/n;

27 err1(1,q) = h;

[y1,z1,t1] = HERK3(y0,z0,f,g,df,dg,t0,h,n);

29 %[S1,t] = LSHERK(f,y0,z0,g,df,dg,A1,B1,c1,t0,h,n,1e-7);

yexact = [exp(tf);exp(tf)];

31 err1(2,q) = norm((y1-yexact),inf);

err1(3,q) = g(tf,y1);

33 q=q+1;

end

35

hold on
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37 figure(1)

loglog(err1(1,:),err1(2,:),’r-’)

39 title(’Error’,’FontSize’,14)

xlabel(’dt’,’FontSize’,14)

41 ylabel(’Error Norm’,’FontSize’,14)

legend(’OHERK14’,’O2HERK14’,’O3HERK14’,’HERK3’)

43

figure(2)

45 loglog(err1(1,:),err1(3,:),’bo’)

title(’Error’,’FontSize’,14)

47 xlabel(’dt’,’FontSize’,14)

ylabel(’g(t_{final},y_{1})’,’FontSize’,14)

49 legend(’OHERK14’,’O2HERK14’,’O3HERK14’,’HERK3’)

Algorithm F.4: This algorithm sets up the DAE and solves it using either a LSHERK method or
HERK3.
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