

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

MULTIPLE ROBOTS LOCALIZATION VIA DATA
SHARING

by

Cheng Leong Ng

September 2015

Thesis Advisor: Oleg Yakimenko
Co-Advisor: Roberto Cristi

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2015

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
MULTIPLE ROBOTS LOCALIZATION VIA DATA SHARING

5. FUNDING NUMBERS

6. AUTHOR(S) Ng, Cheng Leong

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis applies a systems engineering approach to identify the critical issues in using a robot localization technique
for a swarm of unmanned systems operating in an urban environment. It starts by presenting a concept of operations
requiring data sharing between multiple robots operating in a confined environment, and proceeds with the development
of a localization technique based on observing the relative position of neighbor vehicles and then sharing this information
with them. The centroids of the measured positions are fed into a Kalman filter as the measurement inputs. The Kalman
filter merges measurement data with a predicted state from a simple kinematic model. A simulation developed in Python
is used to compare the performance of developed data-sharing localization technique with the individual robot odometry.
The simulation results show a significant improvement of robot localization precision while the simple odometry
technique results with continuing growth of the estimation error.

14. SUBJECT TERMS
robotics, robot localization, collaborative robotics, urban environment, Kalman filter, data
sharing

15. NUMBER OF
PAGES

105
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

MULTIPLE ROBOTS LOCALIZATION VIA DATA SHARING

Cheng Leong Ng
Civilian, Singapore Technologies Dynamics, Singapore

B.Eng (Electrical), National University of Singapore, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2015

Approved by: Oleg Yakimenko
Thesis Advisor

Roberto Cristi
Co-Advisor

Ronald Giachetti
Chair, Department of Systems Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis applies a systems engineering approach to identify the critical issues in

using a robot localization technique for a swarm of unmanned systems operating in an

urban environment. It starts by presenting a concept of operations requiring data sharing

between multiple robots operating in a confined environment, and proceeds with the

development of a localization technique based on observing the relative position of

neighbor vehicles and then sharing this information with them. The centroids of the

measured positions are fed into a Kalman filter as the measurement inputs. The Kalman

filter merges measurement data with a predicted state from a simple kinematic model. A

simulation developed in Python is used to compare the performance of developed data-

sharing localization technique with the individual robot odometry. The simulation results

show a significant improvement of robot localization precision while the simple odometry

technique results with continuing growth of the estimation error.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. MOBILE ROBOTS ...1
C. AUTONOMOUS ROBOT...2
D. ROBOT NAVIGATION ..3
E. ROBOT LOCALIZATION...3
F. DISTRIBUTED INTELLIGENCE ..4
G. PROBLEM FORMULATION AND ORGANIZATION OF

THE THESIS ..6
H. BENEFITS OF STUDY ...7

II. KALMAN FILTERS ...9
A. BACKGROUND ..9
B. APPLICATIONS ...9
C. CONCEPTS ..10

1. State Estimator ...11
2. Conditional Probability ...11
3. Prediction-Correction ..12

III. SYSTEM ENGINEERING OF ROBOT LOCALIZATION15
A. PROBLEM DEFINITION OF ROBOT LOCALIZATION................15

1. Problem ...15
2. Uncertainty ...16

B. BOUNDARIES ...17
1. Physical ...17
2. Functional ...18
3. Behavioral ...19

C. LIMITATIONS AND CONSTRAINTS ..20
1. Limitations ..20
2. Constraints..21

D. STAKEHOLDER ANALYSIS ...22
1. Robot Developers ...22

a. Mobile Factory Robot ...23
b. Search and Rescue Robot ...23
c. Military Urban Robot ..24
d. Military Robotic Pack Mule ..24

2. Navy Fleet ...25

 viii

E. REQUIREMENTS ANALYSIS ...25
F. SCOPE ..26
G. OPERATIONAL CONCEPT ...27
H. FUNCTIONAL ANALYSIS ...27
I. ALTERNATIVES ..30

IV. SIMULATION MODEL OF MULTI-ROBOT LOCALIZATION33
A. BACKGROUND ..33
B. APPROACH ...34

1. Simulation ...36
2. Individual Robot Odometry ..37
3. Data-Sharing Robot Localization ...38
4. Kalman Filter Model ...40

C. ASSUMPTIONS ...42
D. SOFTWARE USED ...43

V. RESEARCH SCENARIO AND RESULTS ..45
A. PERFORMANCE METRICS ..45
B. APPROACH AND ASSUMPTIONS ...45
C. AUTONOMOUS GROUND ROBOT SCENARIO46

1. Scenario ...46
2. Simulation Setting ..47
3. Results ...50

VI. CONCLUSIONS AND RECOMMENDATIONS ...63
A. CONCLUSIONS ..63
B. RECOMMENDATIONS ...64

APPENDIX. SIMULATION SOURCE CODE ...65
A. BOTSIM.PY ...65
B. BOTS.PY...68
C. KF.PY ..78
D. SIMMANAGER.PY...79
E. DEFINES.PY ..81
F. AUTOMATE.PY ..82

LIST OF REFERENCES ..85

INITIAL DISTRIBUTION LIST ...87

 ix

LIST OF FIGURES

Figure 1. Applications in Distributed Intelligence, Robotics and Automation5

Figure 2. Web of Science Data Showing Number of Publications Related to
Distributed Intelligence from 1990 to 2014 ...6

Figure 3. Discrete Kalman Filter Cycle...11

Figure 4. Concept of Operations ...27

Figure 5. Functional Hierarchy for the Function Localization30

Figure 6. Simulation of Six Robots ...35

Figure 7. Simulation of Twelve Robots ..35

Figure 8. Flow Diagram of Simulation ...36

Figure 9. Measurement Error Illustration ..39

Figure 10. Measurement Point Cloud Centroid Illustration ..40

Figure 11. The Pioneer P3-DX ..47

Figure 12. Hokuyo UTM-30LX Scanning Laser Rangefinder....................................47

Figure 13. Root-Mean-Square Error for Simulation Running Input Parameter
Configuration 2 (Single Run Simulation) ..54

Figure 14. Root-Mean-Square Error for Simulation Running Input Parameter
Configuration 1 (1000 Runs Simulation) ...56

Figure 15. Root-Mean-Square Error for Simulation Running Input Parameter
Configuration 2 (1000 Runs Simulation) ...57

Figure 16. Root-Mean-Square Error for Simulation Running Input Parameter
Configuration 3 (1000 Runs Simulation) ..58

Figure 17. Root-Mean-Square Error for Simulation Running Input Parameter
Configuration 4 (1000 Runs Simulation) ...59

Figure 18. Root-Mean-Square Error for Simulation Running Input Parameter
Configuration 5 (1000 Runs Simulation) ...60

Figure 19. Root-Mean-Square Error for Simulation Running Input Parameter
Configuration 6 (1000 Runs Simulation) ...61

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Physical Boundaries ...18

Table 2. Functional Boundaries ...19

Table 3. Behavioral Boundaries ...20

Table 4. Limitations of Robot Localization ...20

Table 5. Constraints of Robot Localization ...22

Table 6. Robot Operations Functional Decomposition and the Corresponding
Description (Focus is on Localization) ..28

Table 7. Types of Robot Localization ..31

Table 8. Summary of Configurations of Input Parameter to the Various
Simulations Run ...48

Table 9. Root-Mean-Square Error of Data-Sharing Robot Localization and
Individual Robot Odometry After 100 Seconds for a Six-Robot
Simulation Averaged Among 1000 Simulation Runs51

Table 10. Root-Mean-Square Error of Data-Sharing Robot Localization and
Individual Robot Odometry After 100 Seconds for a Twelve-Robot
Simulation Averaged Among 1000 Simulation Runs51

Table 11. Ratio of Root-Mean-Square Error of Data-Sharing Robot Localization
Over Root-Mean-Square Error of Individual Robot Odometry52

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

This thesis uses a systems engineering approach to identify the critical factors

necessary for the robot localization technique to satisfy the needs of an autonomous

unmanned system in an urban operation. This is done by analyzing the problem definition

of robot localization in detail. With the boundaries of the problem identified and the

stakeholders analyzed, a set of requirements for the system is defined. By performing

functional analysis, the vital functions of robot localization can be determined. To this end,

the concept of operation of a data-sharing robot localization was designed.

The data-sharing robot localization technique designed involves a robot measuring

the position of its peers and sharing out the information. The centroid of the measured

position data are fed into a Kalman filter as the measurement inputs. The Kalman filter

combines the measurement data with a predicted state from a kinematics model.

A simulation developed in Python is then used to compare the performance of the

proposed data-sharing robot localization with the individual robot odometry. The

simulation results of the technique show promising improvements in robot localization

when the odometry errors are significantly larger than the measurement errors.

From experiments done using the simulation, it was seen that by increasing the

number of robots in the group, the performance of the data-sharing robot localization

improved. The improvement to robot localization by data sharing is greater when the

odometry errors are bigger. However, it is noted that the measurements done by the

observing robots are erroneous as well. Hence, when odometry errors are small, data

sharing will actually make the performance of the robot localization worse.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank Professor Oleg Yakimenko for sharing his valuable advice

and expertise during the course of this journey. He has always been approachable and

supportive of the ideas that I have.

I would also like to thank Professor Roberto Cristi for his advice, especially in the

area of designing and implementing Kalman filters.

Finally, I would like to express my gratitude to my family who is with me in

Monterey for their support during the course of my studies at Naval Postgraduate School.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

Imagine walking around a room with your eyes closed. There are obstacles like

tables and chairs in the room. You will probably find it rather difficult to find your way

even if you know exactly what route you need to take. It is only because we have eyes to

tell us where we are in every movement that we are able to easily navigate in the world.

Our eyes are constantly correcting the errors we make in our movement. The inaccuracies

of our movement become more apparent when we try to walk in a straight line with our

eyes closed.

When moving around the world, a robot face the same problem. It needs sensors in

the same way a human needs eyes to detect the inaccuracies in its movements. If a robot

move around without feedback, it will get lost because of imperfections in the mechanisms

enabling its movement as well as the changes that take place in a dynamic environment.

B. MOBILE ROBOTS

The key motivation driving the research into a mobile robot is its potential to

replace the need for humans in the following three types of jobs:

• dirty

• dangerous

• dull

Jobs such as firefighting, search and rescue missions, toxic waste cleanup, nuclear

power plant decommissioning, security, and surveillance and reconnaissance tasks all

contain possible risks of human casualties. Some of these jobs involving long hours are

simply boring. In all of these jobs, there is a desire to reduce the direct involvement of

humans. This can be done by replacing humans with robots.

With increased urbanization occurring across the globe, it can be expected that the

urban operating environment is going to be the most important environment that authorities

should pay attention to. In such an environment, when a disaster occurs, whether natural

 2

or man-made, there will be a need for immediate search and rescue efforts. Such operations

are often dangerous, labor-intensive and information-scarce. This is exactly the type of

operation for which an autonomous robot is best suited.

C. AUTONOMOUS ROBOT

The autonomy of a robot depends on the extent to which the robot needs prior

knowledge of its environment in order to complete its tasks. Autonomy can be classified

into three classes: non-autonomous, semi-autonomous, and fully autonomous (Negenborn

2003).

(1) Non-autonomous

A non-autonomous robot is completely controlled by humans remotely. The only

intelligence possessed by the robot is the ability to interpret the commands sent by the

operator control unit.

(2) Semi-autonomous

A semi-autonomous robot can either be controlled by humans or navigate by itself.

This is useful in situations where human commands are delayed. The form of control can

be either actual steering or in the form of a map given to the robot by the human controller.

(3) Fully autonomous

A fully autonomous robot is capable of fully steering itself. There is no requirement

for human interaction in order for the robot to complete its tasks. The robot is capable of

intelligent movement and action without any guidance externally to control it.

The need for autonomy is largely dependent on the situation. For example, in a

factory setting, a robot manipulator should be non-autonomous, as the operator would not

want the robot to perform its own action. A predictable action is preferred, and it would be

less expensive and more reliable.

However, when the robot is performing tasks in which the operator has limited or

no information of the exact set of actions to take, a semi-autonomous or fully autonomous

robot should be used.

 3

D. ROBOT NAVIGATION

Robot navigation is the task of an autonomous robot moving from one point to

another. The ability to navigate is important for any mobile entity. Avoiding dangerous

situations like unsafe conditions or collisions is important; however, if a robot’s goal is to

get to a specific spot, it would still have to find that place. Therefore, this problem can

generally be crafted with three questions:

• Where am I? For a robot to make any decisions to move, it first has to
determine where it is in its own frame of reference. This is usually called
robot localization (Negenborn 2003).

• Where am I going? For a robot to complete any task, it has to know where
to go to. This is the goal of the robot, and it is usually called goal
recognition (Negenborn 2003).

• How do I get there? When a robot knows where it needs to go to and it
knows its own position, the robot needs to find a way to get to its goal.
This task is usually called path planning (Negenborn 2003).

E. ROBOT LOCALIZATION

This thesis focuses on the first question in robot navigation, which is the robot

localization problem. Some authors consider the robot localization problem to be the most

fundamental problem in providing a robot with truly autonomous capabilities (Cox 1990).

The problem of localization is that of learning the spatial model of the robot’s surrounding

environment.

In order to sense its surroundings, the robot has to possess sensors to perceive the

world. Sensors that are commonly used include sonar, laser, infrared range finders,

cameras, radar, tactile sensors, compasses, and the Global Positioning System (GPS).

Robot localization can be loosely grouped into two categories, external robot

localization and internal robot localization. In external robot localization, there is a need

for additional supporting infrastructure such as external sensors or external localization

reference. External sensors can include cameras or infrared sensors, and external

localization reference can include radio beacons, LED emitters, ceiling projection, or GPS.

External robot localization techniques have the advantage of providing “ground truth;”

hence, the perceived position of the robot does not drift over time. However, the

 4

disadvantage of external robot localization is that existing infrastructure has to be in place

in order for it to work. For the case of GPS, it would not work indoors, and in times of war,

adversaries can jam the signal and create a GPS denied area.

Internal robot localization techniques such as simultaneous localization and

mapping (SLAM)-based approaches are fundamental for an autonomous robot (Krajnik et

al. 2013). They allow a robot to be truly mobile; however, the tradeoff is that these

techniques are usually computationally intensive and the localization data are susceptible

to drift. As such, the movement of the robot is often slow.

F. DISTRIBUTED INTELLIGENCE

Distributed intelligence has the objective to create systems that can collaborate in

a way that they have the same level of performance and efficiency as human teams. These

systems can be people, robots, computers, software agents, sensors or animals (Parker

2008). Such systems can be very helpful in addressing the many challenges we face today

in urban search and rescue, computer security, military operations, logistics, and many

other activities. This is a topic of interest to this thesis since many applications of

distributed intelligence can be leveraged in the areas of robotics and automation, as

depicted in Figure 1.

 5

Figure 1. Applications in Distributed Intelligence, Robotics and Automation

Robotics Distributed
Intelligence

Automation

Biomedical

Military

Search & rescue

Factory
automation

Sensors networks

Data mining

Radar systems

Swarm
Systems

Stereo vision
quality control

Collaborative
Systems

Distributed
intelligence in

automation
(Ivanka, Alois &
Bernard 2008)

When considering the various problems to be solved by robots, one approach is to

design a single robot capable of handling all the tasks necessary to solve any problem the

robot may encounter. However, this robot would have to be designed to have all the

capabilities needed in order to complete the task on its own. Very often, for small-scale

jobs, this is sufficient and feasible.

However, when we look at the real world, many solutions to these problems involve

teams of humans. Instead of having one human performing all the tasks alone, multiple

humans, each with specialized skills complementing each other, work to create the

solution. Hence, there is a motivation to think in terms of distributed systems.

As such, distributed intelligence refers to a group of entities working as a system to

solve problems, reason, and plan (Parker 2008). In this case, an entity is defined as any

type of intelligent system or process. In these systems, different entities usually specialize

in different tasks or in certain aspects of a task.

 6

It can be seen from a search in the Web of Science that topics related to distributed

intelligence have actively been researched in the last couple of years. As such, it can be

expected that there will be many applications of distributed intelligence, specifically in

robotics, being developed.

Figure 2. Web of Science Data Showing Number of Publications Related to
Distributed Intelligence from 1990 to 2014

G. PROBLEM FORMULATION AND ORGANIZATION OF THE THESIS

As discussed earlier, robot localization is one of the most fundamental problems

with an autonomous robot. In addition, the development of multi-robot systems is expected

to increase greatly across many applications. For these reasons, I would like to use this

thesis to help improve the area of robot localization.

0

100

200

300

400

500

600

700

800

900

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

Pu

bl
ic

at
io

ns

Year

1990-2014 Web of Science Topic Search
Topics: distributed intelligence OR distributed robot OR

multirobot

 7

This thesis explores the idea of multiple robots assisting each other in performing

robot localization with the hope of improving individual and overall accuracy as well as

reducing the computational load of each individual robot.

This thesis is organized as follows. First, the Kalman Filters is discussed in order

to give the reader an idea how measurements and predictions of states can be merged. Next

a system engineering approach to analyzing robot localization is done to identify the critical

factors. With the analysis done, a concept of operation and robot localization technique is

developed. Next the thesis elaborates on the simulation model developed to examine the

performance of the robot localization technique developed. Thereafter, the research

scenario used to perform the experiment in the simulation is explained and the results of

the experiments are analyzed. Lastly the conclusions and the recommendations of the thesis

is discussed.

H. BENEFITS OF STUDY

This study explores methods of improving localization data. Specifically, it helps

provide more accurate data, reduces drift in localization data, and reduces the need for

more computationally intensive methodology in localization. In addition, the study allows

parameters that impact the performance of robot localization to be identified. It will also

enable the examination of the relationship of the parameters to the performance.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. KALMAN FILTERS

A. BACKGROUND

Generally speaking, the Kalman filter (Welch and Bishop 2006) is a recursive linear

estimator that repeatedly generates an estimate for the state of a noisy linear dynamics

system by minimizing the mean of the squared error.

The state of a system in this case would be a vector x consisting of a number of

variables that describe some properties of interest in a system. For example, the vector x

could consist of the position and velocity of a robot.

In the above case, the states are noisy and not easily observable. Hence, it makes

the job of estimating the state a difficult task. In order to estimate the state, the Kalman

filter requires a measurement of the system. The measurement has to be linearly related to

the state. It is expected that the measurements are affected by errors. The Kalman filter

estimator is statistically optimal with reference to any quadratic function of error in

estimation if the errors are white noise (Mohinder and Andrews 2014).

With data of the initial conditions, the Kalman filter estimates the state by using all

available information of the system and the dynamics of its sensors as well as a

probabilistic description of the noise during measurements (Fang et al. 2008).

It has been said that in the history of statistical estimation theory, the Kalman filter

is one of the most important discoveries (Mohinder and Andrews 2014). It has enabled

mankind to do many things that could not have been done without it.

B. APPLICATIONS

The Kalman filter has been used in many different applications. One of the key

application for the Kalman filter is the control of complex and dynamic systems such as

the following (Mohinder and Andrews 2014).

• aircraft

• ships

 10

• spacecraft

• manufacturing processes

In a dynamic system, one has to understand what the system is doing in order to

control it. In a complex dynamic system, it is not always possible or even desirable to

measure every variable that is to be controlled. Hence, in order to estimate the inadequate

information from the noisy and indirect measurements, the Kalman filter can be used

(Mohinder and Andrews 2014).

The Kalman filter has also been used in applications where people are trying to

predict the future state of dynamic systems that are not within their control. Such dynamic

systems could be commodity prices that are traded, celestial bodies’ trajectories or the way

the rivers flow in the case of a flood.

C. CONCEPTS

The Kalman filter is a state estimator that works by a combination of prediction and

correction. To elaborate, the Kalman filter generates a conditional probability of the current

state by first making predictions based on the dynamics of the system as well as the

previous state. The prediction is later corrected using the measurements made by the

system.

As depicted in Figure 3 the current state estimate is projected ahead in time by the

time update, and this projected estimate is then adjusted by an actual measurement that

occurs at that time in the measurement update.

 11

Figure 3. Discrete Kalman Filter Cycle

From Greg and Gary 2006

1. State Estimator

The Kalman filter’s main purpose is to attempt to estimate the actual state of a

system, for example, the position of a mobile robot. More precisely, it estimates the state

and provides an approximation of how inaccurate the estimate of the state is from the actual

state. The estimation of the state is difficult because the state may change over time and it

can be subject to noise.

2. Conditional Probability

Conditional probability is the robot’s internal knowledge about its own state. As

the state cannot be measured directly, the Kalman filter estimates the conditional

probability of being in a state kx given all the available measurements 1,....., kz z and

controls 1,...., ku u . The probability of being in state kx given the measurements 1,....., kz z

is called the estimate. We denote the estimate over the state of a variable kx by ()kest x , as

shown in Equation 1.

 () ()1 1,...., , ,....,k k k kest x p x z z u u= (1)

The estimate can be divided into the prior estimate and the posterior estimate, where

the posterior estimate is incorporated after the measurement kz . The Kalman filter

 12

calculates a prior estimate before incorporating kz , just after incorporating the control ku .

The prior estimate is denoted as shown in Equation 2.

 () ()1 1 1,...., , ,....,k k k kest x p x z z u u−= (2)

The prior estimate is the conditional probability of being at state kx given all the

measurements z up to and including step 1k − . The posterior estimate is the conditional

probability of being at state kx given all the measurements z up to and including step k .

Hence, in order to calculate the estimate, there is a need to formulate the functions for the

system model ()1k kp x x − and the measurement model ()k kp z x .

3. Prediction-Correction

In this section, the prediction and correction of the state by the Kalman filter is

discussed.

(1) Prediction

The Kalman filter calculates the estimate by first computing the prior estimate

before calculating the posterior estimate. The calculation of the prior estimate ()kest x can

be considered the prediction of the state of the system after a time step. The prior estimate

tries to estimate the most likely state of the system after one time step without looking at

the latest measurement information. This is done using the model of the system ()1k kp x x −

and the posterior estimate of what the state was in the last time step, ()1kest x − .

(2) Correction

Prediction of the system state is bound to have errors due to noise in the system. As

such, the prediction of the state of the system is likely to be different from the actual state.

Hence, the calculation of the posterior estimate, ()kest x , can be treated as the correction to

the state estimate that resulted from the prediction. After the Kalman filter calculates the

prior estimate, the new measurement data provides an indirect and noisy information of the

actual state of the system. The new measurement can then be used to correct the predicted

 13

state. This is done by using the model of the measurement ()k kp z x . The model of the

measurement describes how likely given a state kx that the measurement results in the

values kz . Given the measurement data and the measurement model, the Kalman filter

corrects the prior estimate in the state of the system.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

III. SYSTEM ENGINEERING OF ROBOT LOCALIZATION

This chapter uses a system engineering approach to examine the robot localization

problem. First the problem of robot localization is defined. Next the boundaries of robot

localization is determined. The limitations and constraints imposed on it is identified. The

stakeholders of robot localization is then analyzed. This allows the requirements to be

determined. The scope of the thesis is then defined before the operational concept is

discussed. Functional analysis is then done on robot localization. Lastly the alternatives are

considered and compared.

A. PROBLEM DEFINITION OF ROBOT LOCALIZATION

Essentially, the problem of robot localization is answering the question “Where am

I?” from the robot’s perspective.

What this means is that the robot has to determine its relative position in an

environment. This usually means determining its x and y coordinates as well as heading in

a global coordinate system.

Localization is an important problem to solve as it is one of the key components in

a successful autonomous robot. Without the robot properly determining its localization

relative to its environment, it would be nearly impossible to decide what to do next.

Localization may seem to ask a simple problem, but solving it is almost never easy.

In particular with a robot, localization is highly dependent on the characteristics of the

robot. Techniques that work well for the robot in a certain environment may fail in another

environment.

1. Problem

The localization problem can be categorized into three subgroups, which are

defined by the information that is available to the robot initially and at run-time. The three

subgroups are the position tracking problem, global localization problem, and kidnapped

robot problem (Zhang et al. 2009).

 16

In position tracking, it is assumed that the initial pose of the robot is known.

Determining the position of a robot with reference to a known map of the surroundings is

then achieved by factoring in the robot’s motion to the robot’s current state (Thrun,

Burgard, and Fox 2005). On the other hand, global localization is a problem in which a

robot has to determine its position after being randomly placed in an environment (Thrun,

Burgard, and Fox 2005). Hence, the robot does not have information on its initial pose. It

can be seen that the global localization problem contains the position tracking problem and

is therefore a more difficult problem to solve (Thrun, Burgard, and Fox 2005).

Finally, another form of the global localization problem is the kidnapped robot

problem. This is an even more difficult problem to solve. In this case, the robot may be

translocated into another random position without the robot knowing. Under such a

circumstance, the robot thinks that it knows where it is currently located, but the reality is

that it does not. This makes it more difficult to solve than the global localization problem.

While the robot might not be kidnapped in a real operation, its localization algorithm might

fail. The ability to recover from failure can be measured by testing the localization

algorithm on the kidnapped robot problem.

2. Uncertainty

As discussed in the previous section, robot localization can fail. A robot’s

localization failure can be attributed to a key element of robotics: uncertainty. Uncertainty

arises from five possible factors (Thrun, Burgard, and Fox 2005), which are the dynamic

environment, robot’s sensors, robot’s actuators, models of the surroundings, and algorithm

computation.

The environment can create uncertainty as the physical world can be highly

unpredictable, especially in a place where it is not purposefully planned out. While some

environments can be structured in a way to reduce uncertainty, environments like homes

and roads are highly dynamic.

The uncertainty from the robot’s sensors is due to limitations in the sensor’s

perception. Firstly, the performance of sensors is bound by physical laws. For example, the

range and resolution of the sensors are subjected to these laws, and sensors like cameras

 17

cannot see through walls. Secondly, sensors are also subjected to noise, which perturbs the

measurements in unpredictable ways.

A robot’s actuation produces uncertainty due to the use of motors, which are

unpredictable to a certain extent. The lack of predictability can be contributed to wear and

tear and control noise. This noise is even more significant in a low-cost robot whose motors

are less precise.

A robot generate models to make sense of the surroundings. However, these models

are an abstraction of the real world and are therefore inaccurate. This is because they are

only a partial model of the underlying physical process of the robot and the environment.

A robot by its nature is a real-time system. This limits the number of computations

that can be carried out per time unit. Hence, many algorithms for various functions are an

approximation in order to achieve a timely response, which is a tradeoff for accuracy.

B. BOUNDARIES

In order to help scope the problem studied in this thesis, the boundaries of the

problem have to be examined. There are many considerations when performing robot

localization in an indoor and cluttered environment. It is only through studying the

boundaries of such an environment that engineers can understand the complexity of the

task.

There are, in essence, three basic classifications of boundaries. They are physical,

functional, and behavioral boundaries. These boundaries lead to limitations and

constraints, as well as boundary conditions of a system. Identifying and grouping the

boundaries can help engineers better understand the problem and add more dimension to

the perspective.

1. Physical

The physical boundary is determined by the limits of matter of one object. In robot

localization, the physical boundaries can include parts of the robot or objects in its

environment. Examples of physical boundaries can be seen in Table 1.

 18

Table 1. Physical Boundaries

Physical boundary Description
Fixed obstacles in an
environment

Fixed obstacles prevent movement to certain areas. They can
also block sensors’ line of sight. These can be walls or objects
like tables or boulders in an operational environment.

Dynamic obstacles in
an environment

Dynamic debris are similar to fixed obstacles; however, their
position or state can change during the course of the robot’s
operation. These can be objects that are moved around or doors
that can be opened or closed.

Computers used in a
robot

The computation demands of the robot determine the size and
weight of the computer the robot uses. This can impact the
power requirements, which, in turn, affect battery size and
weight.

Robot’s actuator The actuator is the mechanism that affects the robot’s
movement. This leads to how the robot moves and the errors
that the robot can make in movements.

Ground the robot
traverses

The type of ground the robot is traversing determines what kind
of mobility methods are used. This leads to types of errors
made in movement.

Robots operating in
the area

Other robots operating in the same area can behave like
dynamic obstacles. They have the properties of an obstacle and
are dynamic in that they can move around.

People operating in
the area

People who are in the operating area can interfere with robot
localization by acting like dynamic obstacles.

Buildings in an
environment

Buildings are like fixed obstacles; however, the robot can
operate inside or beside buildings. They have the properties of
fixed obstacles. Buildings can impact things like the GPS
signal, rendering it ineffective. Wireless communications can
be negatively impacted by buildings by causing destructive
interference.

2. Functional

The functional boundary is determined by two objects and their interfaces. A

functional boundary is formed at the interface of objects. Through examining the functional

boundary, the interactions between objects can be observed, as seen in Table 2.

 19

Table 2. Functional Boundaries

Functional boundary Description
Mobility of a robot The robot can move using wheels, tracks, legs, or flight. This

results in different types of interactions with the environment
and, hence, different kinds of errors. If it is a ground robot, the
traction with the ground is a factor for consideration.

Robot sensing its
surrounding

The robot employs sensors to measure obstacles in its
surroundings. The types of surfaces in the surrounding can
cause different results. The robot’s ability to sense its
surroundings is necessary for it to successfully navigate its
environment.

Computation of
algorithms

The computation of algorithms to perform certain tasks is a
boundary in the sense that there are limits to the computational
power the robot can carry due to the fact that higher
computation power means bigger, heavier processors and
larger power consumption. This defines what kind of
computational task the robot can take on.

Mapping of the
environment

The function of mapping the environment is dependent on the
task requirements of the robot. However, if mapping is
necessary for the robot to perform its mission, then it sets
certain conditions on the sensors. For example, the resolution
of the sensor becomes critical to whether the data collected can
be transformed into a map.

Use of a coordinate
system

The robot’s frame of reference is important when there is
communication between multiple robots. The coordinate
system has to allow the robot to communicate pose information
with a common frame of reference in order for the robot to
uniquely orient and locate the pose in discussion.

Modelling the
physical world

Whenever the robot senses its surroundings using sensors, it
has to model these surroundings based on the numerical data
derived from the sensors. How accurately and precisely the
robot can model the surroundings from the data affects the
tasks the robot can do. For example, for the robot to simply
avoid collision with a wall, it may not need a high fidelity
model of the surroundings, but if it needs to plan a route
through an area with debris scattered around, a higher fidelity
model may be required.

3. Behavioral

Behavioral boundaries exist due to the existence and interaction between the

physical and functional boundaries. Behavioral boundaries can be changed when the

physical or functional boundaries are changed. These are outlined in Table 3.

 20

Table 3. Behavioral Boundaries

Behavioral boundary Description
Choice of robotics
applications

Dependent on the accuracy of the robot localization, the choice
of applications suitable for the robot can change. Robotics
developers may only be restricted to certain application for a
robot when the accuracy of robot localization is low.

Indecisive robot
movement

If the robot localization data is inconsistent, the robot
movement can appear to be indecisive. The robot’s action is
dependent on the data is has. The desired action of the robot
can change rapidly if the data it obtains changes rapidly.

Missing or incorrect
sensor data

If during the course of operation, the sensors are hit by some
failure resulting in delayed data or incorrect data, the robot
localizes itself using this data. The result is that the robot may
think it knows where it is, but in fact, it is somewhere else. The
robot acts on where it thinks it is at and, hence, behaves in a
manner that is not expected.

C. LIMITATIONS AND CONSTRAINTS

This section discusses the limitations and constraints that are imposed on robot

localization.

1. Limitations

Robot localization is plagued with several limitations that affect how successful a

robot is in determining its location. Table 4 includes a discussion of the identified

limitations.

Table 4. Limitations of Robot Localization

Limitations Description
Uncertainty in
environment

The environment is expected to be dynamic. Changes can
occur to the environment after the robot has sensed and mapped
the area. This dynamism of the environment poses a big
challenge, as it burdens the sensor measurements with another
inconsistency that has to be explained. For example, if the
robot faces an open door that was previously modelled as
closed, the robot has to decide if the environment has changed
or if it is not where it is supposed to be. Frequently in robotics,
the world is assumed to be unchanging, with the robot itself the
only thing that varies over time (Thrun 2002).

 21

Uncertainty in
sensors

Sensors measure an approximation of what actually is. This
approximation is bound to include errors. The range and
resolution of the measure is also subject to the laws of physics.
The data that the sensors provide are discrete numbers; hence,
there will be truncation of the actual measurements that took
place. The robot can only sense what it can sense. In a complex
environment, there are frequently parts of the surroundings that
are occluded from the robot’s sensors, thereby reducing the
information the robot has to work with.

Uncertainty in a
robot

The actuators that move the robot are also unpredictable to a
certain extent. This is due to control signal noise and wear and
tear. For a low-cost robot, this can be expected to be even more
prevalent. Therefore, it is not possible to track a robot’s
position by only keeping track of the movement commands that
have been issued to it.

Uncertainty in
models

Localization computation is based on certain models of the
sensors and robot. The models are an abstraction of the real
world, and it is only possible to partially model the underlying
physics of the robot and its environment.

Uncertainty in
computation

For a robot to be functional, it has to be a real-time system.
This limits the amount of time the robot has to process all the
information that it consolidates from its sensors. In order to
limit the time of processing the information, it has to limit the
amount of computation that can be carried out. As such, there
is generally a sacrifice of accuracy in order to achieve a timely
response.

Statistically
dependent errors

If measurement errors are statistically independent, the effects
of errors can be negated simply by taking a lot of
measurements. However, in robot localization, the errors in
estimating location are statistically dependent. This is due to
the fact that errors that are made in the past compounds with
the errors made now. Hence the errors accumulates over time.

High dimensionality
of problem

In a two-dimensional representation of the environment, a
robot requires thousands of numbers. When it comes to a three-
dimensional representation of the environment, there are easily
millions of numbers the robot has to track. Statistically
speaking, every one of the numbers adds a dimension to the
fundamental problem.

2. Constraints

In robot localization, due to the type of robotics application, there are design

constraints on the robot hardware as well as the software. These constraints on the robot in

 22

turn impose constraints on the robot localization, be it algorithm complexity or supporting

hardware like sensors. These are examined further in Table 5.

Table 5. Constraints of Robot Localization

Constraints Description
Algorithm
complexity

Robot localization can occur in many forms, some more
computationally intensive than others. However, in many
robotics applications, onboard processors are limited by space,
weight, and power constraints; hence, localization algorithm
complexity is a constraint in terms of computational load.

Lack of external
supporting
infrastructure

For a robot to be truly mobile and not be confined to a fixed site,
the subsystem affecting the robot’s ability to perform
localization has to be onboard the robot. This imposes the
constraint that the localization technique cannot use any
external sensors or infrastructure.

Lack of GPS support In many robotics applications, the area of operations is
frequently indoors or under a canopy. As such, the signal from
the GPS is unable to reach the robot. In cases where the area of
operations is an urban environment, even if the robot is not
indoors, the presence of many tall buildings will also deflect the
GPS signal. When it comes to military applications, in wartime
situations, the GPS signal can also be jammed. Hence, by
placing the constraint of not using GPS in the robot localization,
it creates a more robust system that is not constrained to outdoor
operations.

D. STAKEHOLDER ANALYSIS

Stakeholders are any party that have a right, claim, or share in a system. The

characteristics of the system affects the party’s needs and expectations. In this section, we

identify the stakeholders in robot localization and describe their needs.

1. Robot Developers

The first stakeholders in robot localization are robot developers. This group is

responsible for developing a variety of robot types, including mobile factory robots, search

and rescue robots, military urban robots, and military robotic pack mules.

 23

a. Mobile Factory Robot

For robot developers developing a mobile robot for use inside a factory, the

challenge to robot localization is that the robot is operating indoors. As such, the robot does

not have access to a GPS signal that can help it determine its position. While it is possible

to place markers around the factory that the robot can use to locate itself, there is a limit as

to how pervasive the markers are allowed to be. There will likely be a need for a robot to

track its own positions between markers. External sensing is an option to track robot

positions. However, such a sensor infrastructure can be very expensive, and it may not be

scalable.

In a factory setting, it can be expected that there will be multiple robots working

within line of sight of one another. This provides a setting where robot collaboration is

possible. Even if the robots’ exact position with respect to the factory is not known,

knowing their position with respect to other robots can still be very useful. This allows the

robots to prevent collisions with one another. It also allows for the robots to move in

formation.

For the robot to be truly free to roam within the required area of operations, some

form of robot localization technique where external sensors are absent has to be developed.

b. Search and Rescue Robot

For developers of a search and rescue robot, one of the environments that has to be

considered is an urban indoor environment. In the case of natural disasters or war, the likely

places that the robot is expected to be deployed are highly populated urban environments.

In such an event, buildings may have collapsed or been damaged, and there will be a need

to search for survivors in such areas. It would be highly risky to send a human being into

such an environment; hence, deploying a robot would be desirable.

Again, once the robot navigate into the building, it will lose access to GPS signals.

The robot would have to rely on itself to perform localization. It would be a highly dynamic

environment with no prior maps in existence. It is not possible to have any existing sensing

infrastructure to help the robot localize. In order for the robot to operate, a robot

localization technique would have to be developed.

 24

In a search an rescue environment, there are many tight spaces and the robot face

the likelihood of being damaged or destroyed; therefore, it is desirable to deploy many

cheap and small robots instead of a single large, expensive robot. In order for the multiple

cheap robots to perform complex tasks, collaboration between the robots is necessary and

desirable.

Similar to the factory robot, even if the search and rescue robot are unable to figure

out its exact pose with respect to the surrounding environment, knowing its relative

position with reference to other robots is useful. This allows the robots to effectively spread

out, covering more areas as well as preventing collisions from taking place.

c. Military Urban Robot

In urban military operations, a robot can be very useful. The urban environment is

an important operating arena for the military, yet it can be very dangerous for soldiers. In

urban combat, a robot can be deployed to perform surveillance inside buildings where it

would be dangerous for a soldier to enter. In such a scenario, the robot is entering an

unknown operating area, and there is no access to a GPS signal.

Yet, in order to ensure that the robot’s coverage of the operating area is sufficient,

there is a need to estimate the position of the robot so it is not congested with other robots

in any particular spot. In addition, when there is a threat detected, there is a need to identify

the last known position in order for the operator to react to the situation.

d. Military Robotic Pack Mule

In military operations, a robotic pack mule can be very useful in helping soldiers

carry more equipment without weighing down the soldiers. The robotic pack mule is

designed to operate in different types of terrain and environments. One of the environments

can be under a forest canopy where there is no line of sight to GPS signals. Yet for the

robotic pack mules to move in formation, there is a need for the robots to estimate their

position with respect to other robotic pack mules in the vicinity.

 25

2. Navy Fleet

In a Navy fleet, there is access to GPS in peacetime. However, during war, it can

be expected that the fleet would have to operate under a GPS-denied zone. The ships may

still be equipped with highly sensitive gyroscopes to try to track the ship’s position.

However, without a fixed marker, any small errors in the gyroscope would add to prior

errors, and eventually the errors would be too big to be ignored.

Navy fleets usually operate with multiple ships. In a GPS-denied environment, it

would be beneficial in terms of both navigation and weapons targeting if the ships were

able to utilize one another’s data to further reduce errors in localization.

E. REQUIREMENTS ANALYSIS

From the various stakeholders and their needs that were defined in the previous

section, it can be seen that while the types of operations and the goals are different, there

are similarities in the limitations and conditions. By studying their needs using a robot

localization technique, a set of requirements can be formulated. In addition, it is clear that

robotics is one of the key areas that can benefit extensively from localization.

For an individual robot, localization can be achieved by many means. Without

external help with localization, the robot can attempt to keep track of its pose by measuring

wheel rotation, using inertial navigation systems (INS), measuring the optical flow of the

ground, etc. However, in all these methods, there is no means of zeroing out any drift or

errors compounded over time, no matter how small the errors. However, in the case of

multiple robots collaborating on a task, knowing their position in reference to other robots

is still useful.

By not having external infrastructure to help with the task of localization, each

robot has to take up the computation load. The processing power of a mobile robot is

always a limitation due to weight and power constraints. As such, localization techniques

that do not require heavy computation is desirable.

From the perspective of the various stakeholders discussed previously, the

requirements for the robot localization technique include:

 26

• Provide robot localization data with fewer errors than individual robot
odometry would produce.

• Provide relative position with reference to other robots.

• Provide timely localization data.

• Minimize computation requirements for generating results.

F. SCOPE

Scope defines the degree to which the project’s goal or purpose covers the

boundary. It is measured by tasks that will satisfy the stakeholders of the project. The scope

of the outcome of the project is defined by its physical, functional, and behavioral

boundaries.

This effort provides focus and ensures that any solutions developed will enhance

the capabilities of the system.

(1) Within Scope

The scope of this thesis is to identify how, in the case of multiple robots,

localization can be improved. Key parameters are to be identified that affect the

performance of the localization. In this case, the sensors that facilitate localization are

expected to provide imperfect measurements; hence, the sensors’ performance is factored

in the analysis.

(2) Outside Scope

This thesis does not include the development of the robot and implementation of

the sensors that facilitate the localization. It is assumed that the robot is able to provide the

input parameters to facilitate the localization algorithm. This thesis also does not include

any mission that the robot might undertake. That is, there will not be any development of

algorithms specific to the accomplishment of any particular task other than localization. As

such, the robot is not expected to have any navigational algorithm. This means that the

robot do not do course correction on its path.

 27

G. OPERATIONAL CONCEPT

Ultimately, the robot localization technique developed would have to operate under

the assumption that there are no external sensors, be it that the robot is operating indoors

or in a GPS-denied area. The concept of operations for performing robot localization in a

multiple robot collaborative manner is illustrated in Figure 4, each robot has an erroneous

perceived pose of itself. Each robot makes a measurement of a relative position of all robots

within the line of sight and then shares measurement data with them. Each robot, armed

with measurement data of its position, then computes its most likely position using a

Kalman filtering technique.

Figure 4. Concept of Operations

Communicate data

Communicate data

Communicate data

Communicate data

Note: Multiple robots collaborating to measure one another’s position

With this set-up, there is no central control with regard to robot localization. As the

robot measure and communicate with all other robots within its line of sight, this system is

scalable. As the number of robots increases, it can be expected that the number of

measurements taking place will increase and the accuracy of the localization is likely to

improve.

H. FUNCTIONAL ANALYSIS

A system’s functions can be partitioned to provide more detail by performing a

functional analysis. By delineating the functions, they can then be mapped into objects that

 28

can be built and integrated into the system. The output is a functional architecture, which

is a hierarchical model of the functions performed by the system or its components.

Here, the functional analysis is done to derive a functional decomposition of the

robot operation. The top-level functions that constitute robot operations are defined along

with the function of localization in order to give a view of where localization lies in a

robot’s operation. However, further functional decomposition is only done for localization,

which is the focus of this thesis. The functional decomposition, and descriptions are listed

in Table 6. The functional hierarchy of the function of localization is also depicted in Figure

5 to give a graphical view of the relationship between the functions.

Table 6. Robot Operations Functional Decomposition and the Corresponding
Description (Focus is on Localization)

S/N Function Description

1.0 Robot operations The top-level function of a robot system

1.1 Sensor measurement To trigger sensors and take the readings

1.2 Goal tracking To take stock of where the robot is with respect to
the goal of the robot

1.3 Communication To send and receive data between the robot and
external entities

1.4 Actuation To set in motion a part of the robot or the robot
itself

1.5 Navigation To get the robot from one point to another

1.5.1 Goal recognition To identify where the robot should go to

1.5.2 Path planning To find a way to get the robot to the desired point

1.5.3 Localization To determine the most likely pose of self

1.5.3.1 Pose tracking To take note of past pose and changes in pose

1.5.3.1.1 Speed tracking To take note of past speed and changes in speed

 29

1.5.3.1.2 Direction tracking To take note of past direction and changes in
direction

1.5.3.1.3 System state tracking To identify system state from tracked parameters
and take note of past state as well as changes in
state

1.5.3.2 System state
prediction

To compute the most likely state of the system
based on the previous perceived state and the
modelled changes of state

1.5.3.2.1 Kinematics modelling To model the changes of the system state based on
known information and a kinematics model

1.5.3.2.2 Prediction computing To compute the predicted stated using the models
generated

1.5.3.3 System state
measurement

To compute the most likely state of the system
based on measurements of system variables

1.5.3.3.1 System variable
measurement

To determine a location based on measurements
communicated to the robot by other observer
robots.

1.5.3.3.2 Kinematics modeling To model the system variables based on
measurements and a kinematics model

1.5.3.4 System state
estimation

To compute the most likely state of the system
based on a combination of the predicted as well as
measured system state

1.5.3.4.1 Prediction and
measurement fusion

To merge the probability distribution function of
the predicted and measured state to determine a
state where the probability of the state is higher
than either the predicted state or the measured state

1.5.3.4.2 System state
correction

To correct the predicted current state to the state
determined by the fusion

1.5.3.4.3 System state updating To set the current state to the corrected system
state

 30

Figure 5. Functional Hierarchy for the Function Localization

Localization

Pose Tracking System State
Prediction

System State
Measurement

System State
Estimation

Speed Tracking

Direction
Tracking

System State
Tracking

Kinematics
Modelling

Prediction
Computing

System Variable
Measurement

Kinematics
Modelling

Prediction and
Measurement

Fusion

System State
Correction

System State
Updating

I. ALTERNATIVES

There are many techniques to robot localization. Table 7 shows a few techniques

that are used in many robotics applications. Each has its advantages and disadvantages.

 31

Table 7. Types of Robot Localization

No. Technique Description Advantages Disadvantages
1. Simultaneous

Localization and
Mapping
(SLAM)

This is the process
of computing the
current position of
an entity within a
map that is being
constructed and
updated at the
same time. There
are many
algorithms
designed to
perform this task.

The operation is
not restricted to
known areas, and it
generates a map of
the unknown
surroundings.

It requires a great
deal of
computational
power to both map
and localize at the
same time; hence,
powerful
processors and
large amount of
memory are
needed, which
leads to high
power supply
requirements.

2. Global
Positioning
System (GPS)

This is a space-
based navigation
system. There are
multiple GPS
satellites in orbit
and as long as 4
satellites are in the
line of sight, the
system is able to
provide location
information.

Location data do
not drift as errors
in measurements
do not compound
on past
measurement
errors.

This would not
work indoors,
under forest
canopy, or in
places with many
high-rise
buildings.

3. Dead reckoning This is the process
of computing the
current position by
using a previously
determined
position while
factoring in
estimated
movement over
time.

It is not restricted
to operation only
in known areas.

Errors in
measurement
compound; hence,
location data drift
over time.

 32

4. Marker-based
localization

This involves
placement of
beacons or
markers in specific
positions in the
area of operation
where the robot
can identify and
get a fix on its
current position.

It does not require
complex
algorithms.
Errors in
localization do not
compound and
zero out whenever
another marker
provides new data.

It requires existing
infrastructure;
hence, the system
cannot be operated
in any unknown
area.

5. External camera
motion capture

This involves an
infrastructure of
cameras placed
around an
operating area that
can capture
motion. A
processor
processes all of the
captured motion
and generates the
location and
trajectory data
based on the
entities in the area.

It provides very
accurate position
and even trajectory
data.

It is expensive to
set up and requires
existing
infrastructure;
hence, the system
cannot be operated
in any unknown
area.

 33

IV. SIMULATION MODEL OF MULTI-ROBOT LOCALIZATION

This chapter discusses about the simulation model developed to examine the

performance of data-sharing robot localization.

A. BACKGROUND

For a multiple robots collaborative localization technique, there are many

connections and much cohesion and coupling between the robots. As the number of robots

increases, the complexity of the system increases dramatically. As such, it becomes quite

impossible for developers to analyze the performance of the localization technique.

However, in the development of collaborative robotics systems, there is a need to

determine the required performance of individual robot in order for the collaborative robots

team to produce the desired behaviors, in this case, the robot localization performance. For

example, the choice of sensors affects the accuracy of the measurements, and the choice of

mobility system affects the precision of the movement. The performance of these modules

eventually affect how effective the collaborative robot localization is.

In the development of a multiple robots system, the cost and size of the robot are

key factors to be considered in the effectiveness of the system. Hence, it is pertinent for

developers to consider the tradeoff between the accuracy of data and the cost, weight, and

power requirements. Using the best sensors can produce very accurate measurements that

allow for accurate robot localization, but doing so would also make the robot expensive

and physically large. It would render a multiple robots system designed in this manner

unfeasible, especially when the anticipated operating environment is a tight urban space.

As such, there is a need for developers to analyze the performance of the robot

localization by simulation before the development of the individual robot. Here a

simulation is developed to model the behavior of the robot performing a collaborative robot

localization technique. The simulation can take in different input parameters to represent

different sensors or robots. The root-mean-square errors of the localization can be

computed to determine the performance of the collaborative technique as compared to the

performance when the robot individually handle its localization.

 34

B. APPROACH

A simulation software was developed that models the movement of the robot by

modelling the errors generated while moving. The individual robot odometry and data-

sharing robot localization are simulated and the results of both can be compared. A Kalman

filter model is developed here using kinematics equations and run in the simulation. The

components of the simulation are discussed in detail in subsequent sections.

Figure 6 shows a snapshot of the actual computer graphics during the simulation

with six robots. Figure 7 shows an example of simulation with twelve robots. In each

simulation, the three key parameters are tracked. They are the actual position the robot has

travelled, which is represented by the gray line, the perceived position from individual

robot odometry, which is represented by the white line, and the perceived position from

data-sharing robot localization, which is represented by the cyan line.

 35

Figure 6. Simulation of Six Robots

Figure 7. Simulation of Twelve Robots

 36

1. Simulation

For each time step, the simulation tracks and updates each simulated robot and

generates each of the robot’s localization technique’s results. The two types of localization

techniques are explored. The first technique is a simple individual robot odometry. The

second technique involves each robot measuring one another’s position and sharing these

data. This allows generating a better estimate of robot’s position. These techniques are

outlined in Figure 8.

Figure 8. Flow Diagram of Simulation

Start

All bots take
measurements of each

other

All bots share data and
calculate centroid of

point cloud

All bots take measured
position data and

update Kalman filter

All bots “physically”
move. Dead reckoning

occurs here

Draw on screen

Increment time unit

During each simulation update, every robot updates its position based on its speed

and direction.

The changes in the direction and position obey the Equations 3 through 7.

 37

 1n n
d T
dt φ
φφ φ ε−= + × + (3)

 1n n
d T
dt θ
θθ θ ε−= + × + (4)

 () ()1 cos cosn n n n xx x v Tφ θ ε−= + × × × + (5)

 () ()1 sin cosn n n n yy y v Tφ θ ε−= + × × × + (6)
 ()1 sinn n n zz z v Tθ ε−= + × × + (7)

Where, φ is the yaw angle of the robot; θ is the pitch angle of the robot; x is the

x coordinate of the robot; y is the y coordinate of the robot; z is the z coordinate of the

robot; v is the speed of the robot; T the time interval between time steps; and ε is a

Gaussian distributed noise.

It should be noted that Gaussian distributed errors are introduced to the movement

of the robot as a way to represent slippage of the wheel with the ground, noise in the steer,

skidding in the case of a ground robot, and wind in the case of an air robot.

The errors in movement are modelled as zero mean Gaussian distributed noise with

a variance of 2 2k Dσ = , where D is the distance travelled in meters and k is a constant

representing the standard deviation of the error for every 1 meter travelled. A proper

selection of k based on the specification of the robot is necessary for an accurate simulation.

As the error variance is factored by the distance travelled in the period of

consideration, the speed of the robot as well as the time step of the simulation affect the

amount of errors that are introduced to the movement. The faster the robot is moving, the

greater the distance travelled in each time step. Similarly, the larger the time step between

each calculation, the greater the distance travelled.

2. Individual Robot Odometry

Odometry is a form of navigational dead reckoning. It uses various kinds of sensors

to estimate change in position over time. The current position can be calculated using a

previously determined position and advancing it by the estimated position change. It is

used by a wheeled or legged robot to estimate its relative position compared to the original

location. Odometry is sensitive to errors due to it being subjected to cumulative errors.

 38

Specific to this thesis, each robot tries to keep track of its pose individually. From

Equations 8 through 12, it is noted that the robot perceive a perfect movement based on

intended commands. However, the robot is unable to track the errors that occur in the actual

movement.

The perceived pose is tracked by each robot using Equations 8 through 12

 ' '
1n n

d T
dt
φφ φ −= + × (8)

 ' '
1n n

d T
dt
θθ θ −= + × (9)

 () ()' ' ' '
1 cos cosn n n nx x v Tφ θ−= + × × × (10)

 () ()' ' ' '
1 sin cosn n n ny y v Tφ θ−= + × × × (11)

 ()' ' '
1 sinn n nz z v Tθ−= + × × (12)

Where, 'φ is the perceived yaw angle of the robot; 'θ is the perceived pitch angle

of the robot; 'x is the perceived x coordinate of the robot; 'y is the perceived y coordinate

of the robot; 'z is the perceived z coordinate of the robot; v is the speed of the robot; and

T is the time interval between time steps.

As can be seen, the perceived pose tracking equation does not include the errors

that occur in the movement. Hence, as the current perceived pose is built on the previous

perceived pose, it can be expected that the unaccounted errors in movement would grow

over time as the robot continues to move.

3. Data-Sharing Robot Localization

In the data sharing technique, each robot takes a measurement of all robots that are

in its line of sight to estimate its position and share data. Each robot collects all the

measurements of itself, which forms a point cloud.

Errors are introduced in the measurement of distance as well as bearing. This is to

simulate errors in range measurement as well as the minimum angle resolution of the

sensor. The errors increase as the distance between the robots increases, as the errors in

bearing measurement resulting from the minimum angle resolution of the sensor result in

 39

a larger shift in perceived position. As can be seen in Figure 9 the small error in bearing

measurement results in an error in the perceived position of the measured robot that grows

as the distance between the two robots increases.

It must be noted that this error is compounded by the measurer’s own erroneously

perceived position.

Figure 9. Measurement Error Illustration

Actual position
of observer bot

Actual position
of measured bot

Observer bot’s
perceived position

Error in distance
Error in bearing

Measured bot’s
perceived position

As mentioned, the measurements from multiple robots on one robot result in a point

cloud where each robot gives a slightly different perceived position of the robot. From the

point cloud, a centroid is computed to be used as the measurement. This can be seen in

Figure 10.

 40

Figure 10. Measurement Point Cloud Centroid Illustration

The estimated position from the data-sharing techniques are then fed as

measurements for the Kalman filter model as described in the next section.

4. Kalman Filter Model

The Kalman filter model is based on the kinematic equations as shown in Equations

13 through 21.

2

1 1 2k k k k
Tx x x T x− −= + +  (13)

 1k k kx Tx x−= +   (14)

 1k k
k

x
T

xx −−
=
 

 (15)

Where T is the time delta between each time step; kx is the x axis position at time

step k (k = 1,2,3….); kx is the velocity along the x axis direction; and kx is the acceleration

along the x axis direction. Similarly,

 41

2

1 1 2k k k k
Ty y y T y− −= + +  (16)

 1k k ky Ty y−= +   (17)

 1k k
k

y
T

yy −−
=
 

 (18)

Where ky is the y axis position at time step k; ky is the velocity along the y axis

direction; and ky is the acceleration along the y axis direction.

For robots operating in three dimensions,

2

1 1 2k k k k
Tz z z T z− −= + +  (19)

 1k k kz z Tz−= +  (20)

 1k k
k

z
T

zz −−
=
 

 (21)

Where kz is the z axis position at time step k; kz is the velocity along the z axis

direction; and kz is the acceleration along the z axis direction.

This model uses kinematic equations in all three axes in the three-dimensional

world. This allows the simulation to include scenarios that models a flying robot or robots

operating at different heights. If the scenario to be simulated is for ground robots all

operating on the same plane, then the z axis can be ignored and set to 0.

With kinematic equations for all three axes, the state equation of the proposed

model is shown in Equation 22.

2

1

1 2

1

1

1 2

1

0 0
21 0 0 0 0

0 00 1 0 0 0 0
0 0 1 0 0 0 0

20 0 0 1 0 0 0 0
0 0 0 0 1

0 00 0 0 0 0 1
2

0 0

k k

k k
k

k k
k

k k

k k

k k

T

x xT
Tx x

xTy yT
y

y y
T

z zT
T

z z

T

−

−

−

−

−

−

 
 
     
     
     
     

= +      
     
     
     

         
 
  

 





 



 

kz

 
 
 
  

 (22)

 42

With the model defined in this state equation, the measurement is incorporated into

the Kalman filter using Equation 23.

k k

k k

k k

k k

k k

k k

x x

x x

y y

y y

z z

z z

Z m

Z m

Z m
H

Z m

Z m

Z m

   
   
   
   
   =   
   
   
   
      

 

 

 

 (23)

Where , ,
k k kx y zm m m are the observation data of the robot position; , ,

k k kx y zm m m
  

are

the observation data of the robot speed in the respective directions; , ,
k k kx y zZ Z Z are the

measurement data of the robot position; , ,
k k kx y zZ Z Z
  

are the measurement data of the robot

speed in the respective directions; and H is the observation matrix. The observation matrix

H translates the observation vector into the measurement vector.

In the case of the simulation, as the observations of the robot’s state are the actual

measurement of the robot’s state, there is no translation required; hence, H is just the

identity matrix as shown in Equation 24.

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

H

 
 
 
 

=  
 
 
 
  (24)

C. ASSUMPTIONS

Any simulation is an approximation of the actual physics of the real world due to

the complexity. Hence, some assumptions have to be made to simplify the complexity. In

addition, the focus of this thesis is on robot localization; therefore, the implementation of

the supporting systems are not looked at in detail. This also leads to another set of

assumptions. The following are the assumptions when performing the simulation:

 43

• The robots have perfect communication with each other. There is no loss of
or lag in communication.

• The robots all have synchronized time steps. This assumption can be
mitigated in the real world by having the robots synchronize their clocks.

• There will be errors in individual robot odometry, which can be contributed
by sources like errors in sensors, wheel deviation, and slippage. In the
simulation, all errors are summed up and are assumed to be zero mean white
noise.

• The algorithm and sensors are assumed to be developed because the focus
of this thesis is on robot localization, and the development of the algorithm
and sensors used by the robots for measuring each other’s position is by no
means an easy feat and could be an entire research project in itself.

• The line of sight of the sensors used for robot position measurement is
assumed to be limited by range, but other robots will not obscure the line of
sight.

Some of these assumptions are based on complexity that is difficult to address by

computation, while others are due to time constraints of developing the simulation. As

such, some of the assumptions can be addressed in future work in the simulation software.

D. SOFTWARE USED

The time-based simulation was created using the Python scripting language. It was

used to model the robot and the coupling between the robots. Python was used because it

is a general purpose high-level programming language, so it offers ease of development

while allowing the programmer freedom to develop in any way.

Python’s design philosophy emphasizes code readability as well as allowing the

programmer to write fewer lines of code than other languages like C++. This helps future

programmers who wish to further the development to quickly ease into the code.

Within the Python scripting language, the PyGame library is used to develop the

graphical aspects of the simulation. The PyGame library is based on the Simple

DirectMedia Layer development library.

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

V. RESEARCH SCENARIO AND RESULTS

This chapter discusses about the performance metrics used to assess the data-

sharing robot localization technique. The approach to the experiment is examined and a

scenario is developed to test the technique. Finally, the results of the experiment are

analyzed.

With the simulation software developed, this thesis proceeds to use the software as

a tool to analyze various scenarios where multiple robots are deployed. The performance

data of how well the robot track its position can be collected and compared. As the

simulation software is developed to replicate the 3-dimensional space, it can be used

simulate an air-based robot. By setting all metrics in the z direction to 0, the simulation

software can also be used to simulate a ground-based robot. Here, the thesis conducted an

experiment based on only ground-based robots.

A. PERFORMANCE METRICS

One of the key performance metrics is the root-mean-square errors of the perceived

position as compared to the actual position. The metric can be used to compare the

performance between a collaborative data-sharing robot localization with one where the

robots all operate individually.

B. APPROACH AND ASSUMPTIONS

The simulation is based on a set of kinematic equations with noise introduced to

the output at each time step. The input parameters and the amount of noise introduced are

based on the scenarios considered. This is done by determining the specification of the

robot and sensors in the scenarios and using the specifications and performance data as

parameters in the simulation.

In each of these scenarios, multiple robots in collaboration are central to the robot

localization. In each case, the robots are assumed to be mobile and able to communicate

with each other. It is also assumed that the robots are able to take measurements of each

other’s pose. As previously mentioned in the scope of the thesis, the implementation of the

 46

robot is not considered in the thesis, and it is assumed that the robot can perform the tasks

within the simulated specifications. For example, if the robot is using laser scanning

rangefinders, it will be able to measure other robot’s position with 1% error and up to a

range of 30 meters.

Multiple Monte Carlo simulations are carried out for the scenarios to examine the

performance based on different conditions. The root-mean-square error of the localization

results against the actual position is tracked throughout the simulation. The errors in the

positions at the end of each simulation are tracked. The root-mean-square errors are

tabulated in Table 9 and Table 10. The following are some general parameters of the

simulation:

Number of simulation runs = 1000

Time delta per time step in simulation = 0.1 seconds

Number of time steps per simulation run = 1000

C. AUTONOMOUS GROUND ROBOT SCENARIO

1. Scenario

In this scenario, several ground robots are placed in an indoor environment of 50

meters by 40 meters in size. The robots in this scenario are patrolling the area in a circular

manner. Each attempts to track its own position. The robots simulated here are the Pioneer

P3-DX, as seen in Figure 11. This model has a maximum speed of up to 1.2 meters per

second. The Pioneer P3-DX is chosen for this scenario because it is a popular research

mobile robot. As shown in Figure 12, the robots are retrofitted with the scanning laser

rangefinder used to measure the relative positions of other robots.

 47

Figure 11. The Pioneer P3-DX

Figure 12. Hokuyo UTM-30LX Scanning Laser Rangefinder

Two variations of the simulation scenarios involved different number of robots.

Specifically, the two simulations involved six and twelve robots respectively. This was

done to examine the effect of the number of collaborating robots on the accuracy of the

robot localization.

2. Simulation Setting

The simulation allows for various input parameters to be tuned. In this experiment,

3 key parameters are looked at: the number of robots, the sensor performance, and the

individual robot odometry performance. This is to identify where and how data sharing can

help in robot localization.

The justification for the various parameter values used in the experiment

configurations is discussed here. For the sensor, the scanning laser rangefinder, the

measurement performance is as follows:

Range: 30 meters

 48

Angular resolution: 0.25 degrees

Accuracy: +/- 30 millimeters

For the individual robot odometry, the performance of the robot is explored with a

variation of odometry error parameters. The errors are modelled as zero mean Gaussian

distributed noise with variance modelled as 2 2k Dσ = where D is the distance travelled

in the time step and k is a constant. The constant k represents the standard deviation of the

error for every meter travelled. For this scenario, the following values of k where chosen.

k = 0.1, 0.01, and 0.5

The number of robots and the speed of each robot are also set as a parameter in the

simulation. For this scenario, the effect of the number of robots is explored in the

simulation. The following are the configurations:

Number of robots = 6 and 12

The simulation is conducted in various configurations. The configurations are

summarized in Table 8.

Table 8. Summary of Configurations of Input Parameter to the Various
Simulations Run

Input parameter
configuration

Sensor
performance

Odometry
performance, k

Number
of robots

Robot speed

1 +/- 0.03m acc
30m range

0.01 6 Bot1 = 0.6m/s
Bot2 = 0.6m/s
Bot3 = 0.6m/s
Bot4 = 0.6m/s
Bot5 = 1.2m/s
Bot6 = 1.2m/s

2 +/- 0.03m acc
30m range

0.1 6 Bot1 = 0.6m/s
Bot2 = 0.6m/s
Bot3 = 0.6m/s
Bot4 = 0.6m/s
Bot5 = 1.2m/s
Bot6 = 1.2m/s

49

3 +/- 0.03m
acc
30m range

0.5 6 Bot1 = 0.6m/s
Bot2 = 0.6m/s
Bot3 = 0.6m/s
Bot4 = 0.6m/s
Bot5 = 1.2m/s
Bot6 = 1.2m/s

4 +/- 0.03m acc
30m range

0.01 12 Bot1 = 0.6m/s
Bot2 = 0.6m/s
Bot3 = 0.6m/s
Bot4 = 0.6m/s
Bot5 = 1.2m/s
Bot6 = 1.2m/s
Bot7 = 0.6m/s
Bot8 = 0.6m/s
Bot9 = 0.6m/s
Bot10 = 0.6m/s
Bot11 = 1.2m/s
Bot12 = 1.2m/s

5 +/- 0.03m acc
30m range

0.1 12 Bot1 = 0.6m/s
Bot2 = 0.6m/s
Bot3 = 0.6m/s
Bot4 = 0.6m/s
Bot5 = 1.2m/s
Bot6 = 1.2m/s
Bot7 = 0.6m/s
Bot8 = 0.6m/s
Bot9 = 0.6m/s
Bot10 = 0.6m/s
Bot11 = 1.2m/s
Bot12 = 1.2m/s

 50

6 +/- 0.03m acc
30m range

0.5 12 Bot1 = 0.6m/s
Bot2 = 0.6m/s
Bot3 = 0.6m/s
Bot4 = 0.6m/s
Bot5 = 1.2m/s
Bot6 = 1.2m/s
Bot7 = 0.6m/s
Bot8 = 0.6m/s
Bot9 = 0.6m/s
Bot10 = 0.6m/s
Bot11 = 1.2m/s
Bot12 = 1.2m/s

These configurations are designed to explore the effects of the different

performances of odometry and how data-sharing can improve robot localization. The

configurations also explore how the number of robots can impact the performance of the

data-sharing robot localization. Lastly, the thesis examines how data sharing can counteract

the effect of erroneous robot localization from higher robot speed.

3. Results

The six different configurations described in the previous section are used to run

the simulation, and the root-mean-square errors of the positions are collected for the data-

sharing robot localization as well as the individual robot odometry.

Table 9 shows the results for running the simulation with six robots. Table 10 shows

the results for running the simulation with twelve robots. This table only shows the data

for the first six robots in comparison with the six robot simulation configuration.

 51

Table 9. Root-Mean-Square Error of Data-Sharing Robot Localization and
Individual Robot Odometry After 100 Seconds for a Six-Robot Simulation

Averaged Among 1000 Simulation Runs

 k = 0.01 k = 0.1 k = 0.5
Data
sharing

Odometry Data
sharing

Odometry Data
sharing

Odometry

Robot 1,
v = 0.6m/s

0.245 m 0.0612 m 0.378 m 0.612 m 1.492 m 3.076 m

Robot 2,
v = 0.6m/s

0.245 m 0.0607 m 0.379 m 0.618 m 1.493 m 3.087 m

Robot 3,
v = 0.6m/s

0.245 m 0.0612 m 0.379 m 0.614 m 1.492 m 3.126 m

Robot 4,
v = 0.6m/s

0.246 m 0.0608 m 0.379 m 0.610 m 1.494 m 3.070 m

Robot 5,
v = 1.2m/s

0.246 m 0.0857 m 0.381 m 0.876 m 1.501 m 4.355 m

Robot 6,
v = 1.2m/s

0.245 m 0.0898 m 0.379 m 0.864 m 1.498 m 4.291 m

Table 10. Root-Mean-Square Error of Data-Sharing Robot Localization and
Individual Robot Odometry After 100 Seconds for a Twelve-Robot

Simulation Averaged Among 1000 Simulation Runs

 k = 0.01 k = 0.1 k = 0.5
Data
sharing

Odometry Data
sharing

Odometry Data
sharing

Odometry

Robot 1,
v = 0.6m/s

0.105 m 0.0611 m 0.236 m 0.624 m 1.059 m 3.103 m

Robot 2,
v = 0.6m/s

0.105 m 0.0623 m 0.236 m 0.624 m 1.059 m 3.128 m

Robot 3,
v = 0.6m/s

0.105 m 0.0607 m 0.236 m 0.624 m 1.059 m 3.185 m

Robot 4,
v = 0.6m/s

0.106 m 0.0609 m 0.237 m 0.624 m 1.059 m 3.068 m

Robot 5,
v = 1.2m/s

0.106 m 0.0871 m 0.239 m 0.882 m 1.070 m 4.321 m

Robot 6,
v = 1.2m/s

0.105 m 0.0879 m 0.238 m 0.869 m 1.069 m 4.422 m

 52

As seen in Table 9 and Table 10, the improvement to robot localization by data

sharing is not a constant across the different configurations of simulation. Table 11 shows

the ratio of the data-sharing robot localization root-mean-square error against individual

robot odometry root-mean-square error. This shows how data sharing affects the overall

localization.

Table 11. Ratio of Root-Mean-Square Error of Data-Sharing Robot
Localization Over Root-Mean-Square Error of Individual Robot Odometry

 Error reduction of data-sharing robot localization over individual

robot odometry

 k = 0.01 k = 0.1 k = 0.5

 six robots

simulation

twelve

robots

simulation

six robots

simulation

twelve

robots

simulation

six robots

simulation

twelve

robots

simulation

Robot 1,
v = 0.6m/s 4.000 1.723 0.619 0.378 0.485 0.341

Robot 2,
v = 0.6m/s 4.041 1.692 0.613 0.379 0.484 0.339

Robot 3,
v = 0.6m/s 3.999 1.738 0.617 0.379 0.477 0.332

Robot 4,
v = 0.6m/s 4.041 1.743 0.623 0.379 0.487 0.345

Robot 5,
v = 1.2m/s 2.867 1.217 0.435 0.270 0.345 0.247

Robot 6,
v = 1.2m/s 2.727 1.200 0.439 0.274 0.349 0.241

Note: The data of the above table is derived by dividing the root-mean-square error of the
data-sharing robot localization by the root-mean-square error of the individual robot

odometry.

 53

Several observations can be made from the simulations conducted. They are as

follows:

• Higher robot speed results in more errors in individual robot odometry due
to the greater distance travelled in the time frame of the simulation.

• However, data sharing results in similar levels of error in robot
localization regardless of the robot’s speed.

• Data-sharing robot localization performance is worse than individual robot
odometry when k = 0.01. Hence, if odometry errors are very small,
measurement errors can cause more errors to localization via data sharing,
and data-sharing robot localization should not be applied.

• However, when k = 0.01, the performance of data-sharing robot
localization is better when there are twelve robots compared to when there
are six. Therefore, having more robots sharing data leads to a decrease in
measurement errors.

• Looking at robot 1, when k = 0.1, the ratio of errors is at 0.619. When k =
0.5, the ratio of errors is at 0.485. It can thus be observed that the benefits
of data sharing become more significant as the odometry errors increase.

Previously, this thesis looked at the root-mean-square errors of the data-sharing

robot localization at the end of the simulation. Next, this thesis looks at the performance of

the data-sharing robot localization throughout the simulation. 0shows a single run of the

simulation using input parameter configuration 2.

 54

Figure 13. Root-Mean-Square Error for Simulation Running Input Parameter
Configuration 2 (Single Run Simulation)

 55

As can be observed from 0due to the sharing of the position data among the robots,

the data-sharing robot localization achieved similar root-mean-square error between all the

robots, whereas the individual robot odometry shows different root-mean-square errors.

While the root-mean-square errors fluctuate over the course of the simulation, it is noted

that the errors generally grow over time for both data-sharing robot localization and

individual robot odometry. However, data-sharing robot localization results in less errors

overall.

Figures 14 through 19 show the root-mean-square errors of the simulation averaged

over 1000 runs running the six different input parameter configurations. From the averaged

data, it can be seen that all the errors are monotonically increasing. Even the data-sharing

robot localization has an unbounded growth in root-mean-square errors. This is due to the

lack of “ground truth,” which results in a drift of position data. Hence, over time, if the

robot has no landmarks or any other means to zero out its errors during the operation, the

errors in the localization data get too big to be ignored.

It is to be noted that aside from configurations 1 and 4 where the individual robot

odometry errors are very small, the growth of error for data-sharing robot localization is

significantly smaller than the individual robot odometry. The reduction in errors is more

significant in the robots that are travelling at a higher speed. By travelling at a higher speed,

the robots covered a greater distance within the time frame of the simulation, and therefore

accumulate more errors.

 56

Figure 14. Root-Mean-Square Error for Simulation Running Input Parameter
Configuration 1 (1000 Runs Simulation)

 57

Figure 15. Root-Mean-Square Error for Simulation Running Input Parameter
Configuration 2 (1000 Runs Simulation)

 58

Figure 16. Root-Mean-Square Error for Simulation Running Input Parameter
Configuration 3 (1000 Runs Simulation)

 59

Figure 17. Root-Mean-Square Error for Simulation Running Input Parameter
Configuration 4 (1000 Runs Simulation)

 60

Figure 18. Root-Mean-Square Error for Simulation Running Input Parameter
Configuration 5 (1000 Runs Simulation)

 61

Figure 19. Root-Mean-Square Error for Simulation Running Input Parameter
Configuration 6 (1000 Runs Simulation)

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

In many cities, the danger of disaster to the population is real. Once disaster strikes,

there are the issues of manpower constraint and hazardous areas of operation. Under such

circumstances, the use of autonomous unmanned systems for search and rescue operations

can free up valuable manpower and remove the need to send humans into dangerous areas.

However, in order for autonomous unmanned systems to operate meaningfully, the systems

have to be able to perform robot localization reliably. That is to say, the autonomous

unmanned systems need to know their pose at all times and in a variety of environments

they may encounter in a disaster area. This thesis introduces a data-sharing robot

localization technique that significantly reduces errors in individual robot odometry when

there is no external infrastructure to help provide “ground truth.”

Before proposing a feasible robot localization technique, systems engineering

techniques are used to analyze the problem statement as well as the stakeholders. This helps

to further define the needs and requirements of robot localization. The boundaries of the

problem are discussed, which helps to examine the limitations and constraints of robot

localization. These discussions highlight the important considerations when designing a

valid concept of operation. It is through the concept of operation that the data-sharing robot

localization is proposed.

To solve the problem of robot localization, each robot measures its peers’ position

and shares out the information. Each robot, armed with a point cloud of measurements of

itself, computes a centroid to the points and feeds it to a Kalman filter. The Kalman filter

tracks the state of the robot through a combination of predictions via kinematic equations

and the measurements from the other robots.

The technique is tested in a simulation developed using Python scripting language.

The performance of the data-sharing robot localization is compared with the performance

of individual robot odometry, which is simulated in the simulation. From the simulation, it

is observed that data-sharing robot localization should not be used when individual robot

 64

odometry errors are negligible, as the measurements themselves introduce errors.

However, when the individual robot odometry errors are significant, data sharing can help

to improve the performance. In fact, slower robots with fewer odometry errors can

compensate for the odometry errors made by robots moving at a high speed.

B. RECOMMENDATIONS

The work of the thesis is a starting point in the exploration into collaborative

robotics. In this thesis, the simulation makes several assumptions in view of the time

constraint of the thesis work. However, further work can be done to address some of these

assumptions, thereby producing a more accurate picture of the performance. The following

are the recommendations for future work:

• Model the communication losses and delays between the robots.

• Model the line of sight of the robot when it is doing measurements of its
peers.

• Include obstacles into the simulation to better reflect the reality of the urban
environment.

• Model a wider range of sensors in the simulation to provide a view of what
is necessary for effective robot localization by data sharing.

These recommendations are with respect to the assumptions of the simulation. With

regard to the robot localization technique, further work can also be done to improve the

capabilities. For example, the data-sharing capabilities of the robot can be expanded to

include obstacle-sensing information for each robot. This can be built on to produce

collaborative simultaneous localization and mapping (SLAM).

.

 65

APPENDIX. SIMULATION SOURCE CODE

The simulation is developed in Python scripting language. The simulation is split

into six files, botsim.py, bots.py, kf.py, simmanager.py, defines.py, and automation.py.

A. BOTSIM.PY

The botsim.py file contains the code to the main simulation code.

#!/usr/bin/python
import pygame
from pygame.locals import *
import os
import sys
from bots import BOTS
from defines import *
from simmanager import SimManager
import pickle

def runSim(num):
 x = 0
 y = 0
 os.environ[‘SDL_VIDEO_WINDOW_POS’] = “%d,%d” % (x,y)
 sim = SimManager()
 allSprites = pygame.sprite.RenderUpdates()
 clock = pygame.time.Clock()

 bot1 = BOTS((38,22,0),(0,0),(10,0), BOTSPEED, allSprites,’bot1’, sim.screenSurface)
 allSprites.add(bot1)
 bot2 = BOTS((30,10,0),(180,0),(-10,0),BOTSPEED, allSprites,’bot2’,
sim.screenSurface)
 allSprites.add(bot2)
 bot3 = BOTS((45,20,0),(45,0),(-8,0),BOTSPEED, allSprites,’bot3’, sim.screenSurface)
 allSprites.add(bot3)
 bot4 = BOTS((60,35,0),(135,0),(15,0),BOTSPEED, allSprites,’bot4’,
sim.screenSurface)
 allSprites.add(bot4)
 bot5 = BOTS((20,30,0),(90,0),(20,0), 1.2, allSprites,’bot5’, sim.screenSurface)
 allSprites.add(bot5)
 bot6 = BOTS((35,40,0),(0,0),(-8,0), 1.2, allSprites,’bot6’, sim.screenSurface)
 allSprites.add(bot6)

 “““bot7 = BOTS((38,10,0),(0,0),(10,0), BOTSPEED, allSprites,’bot7’,
sim.screenSurface)

 66

 allSprites.add(bot7)
 bot8 = BOTS((30,22,0),(0,0),(10,0), BOTSPEED, allSprites,’bot8’, sim.screenSurface)
 allSprites.add(bot8)
 bot9 = BOTS((45,22,0),(0,0),(10,0), BOTSPEED, allSprites,’bot9’, sim.screenSurface)
 allSprites.add(bot9)
 bot10 = BOTS((60,10,0),(0,0),(10,0), BOTSPEED, allSprites,’bot10’,
sim.screenSurface)
 allSprites.add(bot10)
 bot11 = BOTS((20,35,0),(0,0),(-10,0), 1.2, allSprites,’bot11’, sim.screenSurface)
 allSprites.add(bot11)
 bot12 = BOTS((38,35,0),(0,0),(-10,0), 1.2, allSprites,’bot12’, sim.screenSurface)
 allSprites.add(bot12)”““

 if BEACONAVAIL:
 p = BOTS((10,10,0),(0,0),(0,0), 0, allSprites,’beacon’, sim.screenSurface)
 allSprites.add(p)

 displayBot = bot1
 displayBot.mark = 1

 while 1:
 #clock.tick(100)
 if bot1.datacount > NUMRUNS and NUMRUNS > 0:
 pygame.image.save(sim.windowScreen,.”/dat/run”+str(num)+.”png”)
 if PICKLINGMSE:
 file = open(.”/dat/data”+str(num)+.”pk,”“wb”)
 pickleDic = {}
 for sprite in allSprites:
 if sprite.ID != “beacon”:
 mse = {}
 mse[“ODOMSE”] = sprite.msepdlist
 mse[“SHAREMSE”] = sprite.mseppdlist
 mse[“ODOPOS”] = [sprite.px,sprite.py,sprite.pz]
 mse[“SHAREPOS”] = [sprite.mx,sprite.my,sprite.mz]
 mse[“ACTUALPOS”] = [sprite.x,sprite.y,sprite.z]
 pickleDic[sprite.ID] = mse
 pickle.dump(pickleDic, file)
 file.close()
 break
 else:
 if RENDERING:
 allSprites.clear(sim.botSurface, sim.screenSurface)

 67

 for sprite in allSprites:
 sprite.updateBotMeas()
 for sprite in allSprites:
 sprite.updatePercep()
 if RUNKF:
 for sprite in allSprites:
 sprite.updateKalman()
 allSprites.update()

 if RENDERING:
 sim.renderText(len(allSprites), displayBot)
 sim.render(allSprites)

 for event in pygame.event.get():
 if event.type == QUIT:
 sys.exit()
 elif event.type == KEYDOWN:
 if event.key == K_q:
 pygame.image.save(sim.windowScreen,.”/dat/run.png”)

 if PICKLINGMSE:
 file = open(.”/dat/data.pk,”“wb”)
 pickleDic = {}
 for sprite in allSprites:
 if sprite.ID != “beacon”:
 mse = {}
 mse[“ODOMSE”] = sprite.msepdlist
 mse[“SHAREMSE”] = sprite.mseppdlist
 mse[“ODOPOS”] = [sprite.px,sprite.py,sprite.pz]
 mse[“SHAREPOS”] = [sprite.mx,sprite.my,sprite.mz]
 mse[“ACTUALPOS”] = [sprite.x,sprite.y,sprite.z]
 pickleDic[sprite.ID] = mse
 pickle.dump(pickleDic, file)
 file.close()

 sys.exit()
 elif event.key == K_1:
 displayBot.mark = 0
 displayBot = bot1
 displayBot.mark = 1
 elif event.key == K_2:
 displayBot.mark = 0
 displayBot = bot2
 displayBot.mark = 1

 68

 elif event.key == K_3:
 displayBot.mark = 0
 displayBot = bot3
 displayBot.mark = 1
 elif event.key == K_4:
 displayBot.mark = 0
 displayBot = bot4
 displayBot.mark = 1
 elif event.key == K_5:
 displayBot.mark = 0
 displayBot = bot5
 displayBot.mark = 1
 elif event.key == K_6:
 displayBot.mark = 0
 displayBot = bot6
 displayBot.mark = 1

if __name__ == ‘__main__’:
 runSim(999)

B. BOTS.PY

The bots.py file contains the class that defines the robot behaviors.

import pygame
from defines import *
import numpy as np
from kf import KalmanFilter
import random

class BOTS(pygame.sprite.Sprite):
 def __init__(self,center,direction,steer,speed,spriteGrp,ID, screenSurface):
 pygame.sprite.Sprite.__init__(self)
 self.screenSurface = screenSurface
 self.image = pygame.Surface((30,30))
 self.image.fill((30,30,30,0))
 self.direction = direction[0]
 self.pdirection = direction[0]
 self.pitch = direction[1]
 self.ppitch = direction[1]
 self.r = 15
 self.image = self.image.convert_alpha()
 self.rect = self.image.get_rect()
 self.rect.center = (center[0],center[1])
 self.mark = 0

 69

 self.x = center[0]
 self.y = center[1]
 self.z = center[2]
 self.px = self.x
 self.py = self.y
 self.pz = self.z
 self.ppx = self.x
 self.ppy = self.y
 self.ppz = self.z
 self.pmx = self.x
 self.pmy = self.y
 self.pmz = self.z
 self.mx = self.x
 self.my = self.y
 self.mz = self.z
 self.kfx = self.x
 self.kfy = self.y
 self.kfz = self.z
 self.spriteGrp = spriteGrp
 self.ID = ID
 self.botList = {}
 self.steer = steer[0]
 self.pitchsteer = steer[1]
 self.v = speed
 self.msepx = 0
 self.msepy = 0
 self.msepz = 0
 self.mseppx = 0
 self.mseppy = 0
 self.mseppz = 0
 self.msepd = 0
 self.mseppd = 0
 self.msepdlist = []
 self.mseppdlist = []
 self.datacount = 0
 self.drawBot()
 t = TIMEDELTAPERSTEP
 A = np.matrix([\
 [1,t,0,0,0,0],\
 [0,1,0,0,0,0],\
 [0,0,1,t,0,0],\
 [0,0,0,1,0,0],\
 [0,0,0,0,1,t],\
 [0,0,0,0,0,1]\
])

 70

 H = np.eye(6)
 T = TIMEDELTAPERSTEP**2 / 2.0
 B = np.matrix([\
 [T,0,0],\
 [t,0,0],\
 [0,T,0],\
 [0,t,0],\
 [0,0,T],\
 [0,0,t]\
])
 Q = np.eye(6)*KFPROCESSERR
 R = np.eye(6)*KFMEASUREERR
 Vx = self.v * np.cos(np.deg2rad(self.direction)) * np.cos(np.deg2rad(self.pitch))
 Vy = self.v * np.sin(np.deg2rad(self.direction)) * np.cos(np.deg2rad(self.pitch))
 Vz = self.v * np.sin(np.deg2rad(self.pitch))
 xhat = np.matrix([\
 [self.x],\
 [Vx],\
 [self.y],\
 [Vy],\
 [self.z],\
 [Vz]\
])
 P = np.eye(6)
 self.filter = KalmanFilter(A,B,H,xhat,P,Q,R)

 def getbotList(self):
 return self.botList
 def getID(self):
 return self.ID
 def getx(self):
 return self.x
 def gety(self):
 return self.y
 def getz(self):
 return self.z
 def getpos(self):
 return np.matrix([self.x, self.y, self.z])
 def getpx(self):
 return self.px
 def getpy(self):
 return self.py
 def getpz(self):
 return self.pz

 71

 def getppos(self):
 return np.matrix([self.px, self.py, self.pz])
 def getpppos(self):
 return np.matrix([self.ppx, self.ppy, self.ppz])
 def getdir(self):
 return self.direction
 def getpitch(self):
 return self.pitch
 def getpdir(self):
 return self.pdirection

 def drawBot(self):
 # Determine points of triangle representing bot.
 frontPt = [15+int(self.r*np.cos(np.deg2rad(self.direction))),\
 15+int(self.r*np.sin(np.deg2rad(self.direction)))]
 leftPt = [15+int(self.r*np.cos(np.deg2rad(self.direction+150))),\
 15+int(self.r*np.sin(np.deg2rad(self.direction+150)))]
 rightPt = [15+int(self.r*np.cos(np.deg2rad(self.direction-150))),\
 15+int(self.r*np.sin(np.deg2rad(self.direction-150)))]
 self.image.fill((30,30,30,0))
 if self.mark:
 pygame.draw.polygon(self.image,COLORRED,[frontPt,leftPt,rightPt],0)
 else:
 pygame.draw.polygon(self.image,COLORBLUE,[frontPt,leftPt,rightPt],0)

 def updateActualPos(self):
 # delta xy of actual position
 varianceX = ODOERR**2 * np.abs(self.v * \
 np.cos(np.deg2rad(self.direction)) * \
 np.cos(np.deg2rad(self.pitch)) * \
 TIMEDELTAPERSTEP)
 varianceY = ODOERR**2 * np.abs(self.v * \
 np.sin(np.deg2rad(self.direction)) * \
 np.cos(np.deg2rad(self.pitch)) * \
 TIMEDELTAPERSTEP)
 varianceZ = ODOERR**2 * np.abs(self.v * \
 np.sin(np.deg2rad(self.pitch)) * \
 TIMEDELTAPERSTEP)

 dx = self.v * \
 np.cos(np.deg2rad(self.direction)) * \
 np.cos(np.deg2rad(self.pitch)) * \
 TIMEDELTAPERSTEP + \
 random.gauss(0,np.sqrt(varianceX))

 72

 dy = self.v * \
 np.sin(np.deg2rad(self.direction)) * \
 np.cos(np.deg2rad(self.pitch)) * \
 TIMEDELTAPERSTEP + \
 random.gauss(0,np.sqrt(varianceY))

 dz = self.v * \
 np.sin(np.deg2rad(self.pitch)) * \
 TIMEDELTAPERSTEP + \
 random.gauss(0,np.sqrt(varianceZ))

 # update new actual position
 self.x += dx
 self.y += dy
 self.z += dz

 def updatePerceivedPos(self):
 # delta xy of erroneous dead reckoning
 pdx = self.v * \
 np.cos(np.deg2rad(self.pdirection)) * \
 np.cos(np.deg2rad(self.ppitch)) * \
 TIMEDELTAPERSTEP
 pdy = self.v * \
 np.sin(np.deg2rad(self.pdirection)) * \
 np.cos(np.deg2rad(self.ppitch)) * \
 TIMEDELTAPERSTEP
 pdz = self.v * \
 np.sin(np.deg2rad(self.ppitch)) * \
 TIMEDELTAPERSTEP
 # update new perceived position
 self.px += pdx
 self.py += pdy
 self.pz += pdz
 # update data shared and kalman filtered perceived position with new perceived delta
 self.ppx = self.ppx + pdx
 self.ppy = self.ppy + pdy
 self.ppz = self.ppz + pdz

 def updateDirections(self):
 # update new actual direction

 self.pdirection += self.steer * TIMEDELTAPERSTEP
 self.ppitch += self.pitchsteer * TIMEDELTAPERSTEP

 varianceDir = ODODIRERR**2 * np.abs(self.steer * TIMEDELTAPERSTEP)

 73

 variancePitch = ODOPITCHERR**2 * np.abs(self.pitchsteer *
TIMEDELTAPERSTEP)

 # update new perceived erroneous direction
 self.direction = self.pdirection + \
 random.gauss(0,np.sqrt(varianceDir))

 self.pitch = self.ppitch + \
 random.gauss(0,np.sqrt(variancePitch))

 def renderPos(self):
 # update new position of Bot pixel position (pixels are integer only)
 # calculated x and y position are float for more precision
 dx = self.x - self.rect.centerx / PIXELSTOMETER
 dy = self.y - self.rect.centery / PIXELSTOMETER
 self.rect.move_ip(int(dx * PIXELSTOMETER), int(dy * PIXELSTOMETER))

 def renderActualPos(self):
 # Dot a pixel of actual path
 self.screenSurface.set_at((int(self.x * PIXELSTOMETER), int(self.y *
PIXELSTOMETER)),(100,100,100,255))

 def renderOdometryPos(self):
 # Dot a pixel of dead reckoning only perceived position
 self.screenSurface.set_at((int(self.px * PIXELSTOMETER), int(self.py *
PIXELSTOMETER)),(255,255,255,255))
 def renderDataSharePos(self):
 # Dot a pixel of data shared and Kalman filtered perceived position
 self.screenSurface.set_at((int(self.mx * PIXELSTOMETER), int(self.my *
PIXELSTOMETER)),(0,255,255,255))

 def renderCloud(self):
 if RENDERCLOUD and self.mark:
 for sprite in self.spriteGrp:
 if sprite != self:
 if sprite.getbotList().has_key(self.ID):
 x = sprite.getbotList()[self.ID][0]
 y = sprite.getbotList()[self.ID][1]
 self.screenSurface.set_at((int(x * PIXELSTOMETER), int(y *
PIXELSTOMETER)),COLORORANGE)

 def update(self):
 self.drawBot()
 self.updateDirections()

 74

 self.updateActualPos()
 self.updatePerceivedPos()
 self.renderPos()
 self.renderActualPos()
 self.renderOdometryPos()
 self.renderDataSharePos()
 self.renderCloud()
 self.measMSE()

 def measMSE(self):
 self.msepx = (self.msepx * self.datacount +\
 (self.x - self.px)**2)/(self.datacount + 1)
 self.msepy = (self.msepy * self.datacount +\
 (self.y - self.py)**2)/(self.datacount + 1)
 self.msepz = (self.msepz * self.datacount +\
 (self.z - self.pz)**2)/(self.datacount + 1)
 self.msepd = (self.msepd * self.datacount +\
 np.linalg.norm(np.matrix([\
 self.x - self.px, \
 self.y - self.py, \
 self.z - self.pz]))**2) / \
 (self.datacount + 1)

 self.mseppx = (self.mseppx * self.datacount +\
 (self.x - self.mx)**2)/(self.datacount + 1)
 self.mseppy = (self.mseppy * self.datacount +\
 (self.y - self.my)**2)/(self.datacount + 1)
 self.mseppz = (self.mseppz * self.datacount +\
 (self.z - self.mz)**2)/(self.datacount + 1)
 self.mseppd = (self.mseppd * self.datacount +\
 np.linalg.norm(np.matrix([self.x - self.ppx, \
 self.y - self.ppy, \
 self.z - self.ppz]))**2) / \
 (self.datacount + 1)

 self.datacount += 1
 if PICKLINGMSE:
 self.msepdlist.append(self.msepd)
 self.mseppdlist.append(self.mseppd)

 def updateBotMeas(self):
 “““calculate all the position estimated from data sharing”““
 self.botList = {}
 for sprite in self.spriteGrp:
 if sprite != self:

 75

 # get vector between 2 bots
 diffmat = sprite.getpos() - self.getpos()

 # get actual distance between 2 bots
 dist = np.linalg.norm(diffmat)
 if dist < MEASUREMENTLIMIT:

 # get actual bearing between 2 bots
 bearing = np.rad2deg(np.arctan2(diffmat[0,1],diffmat[0,0]))
 elevation = np.rad2deg(np.arcsin(diffmat[0,2] / np.linalg.norm(diffmat)))

 # add Gaussian error to bearing between 2 bots
 if VARMEASUREERR:
 accuracyFound = 0
 accuIter = iter(BEARINGERR)
 while not accuracyFound:
 spec = accuIter.next()
 if dist < spec[0]:
 bearingAccu = spec[1]
 elevationAccu = spec[2]
 accuracyFound = 1
 bearing += random.uniform(-bearingAccu,bearingAccu)
 elevation += random.uniform(-elevationAccu,elevationAccu)
 else:
 bearing += random.uniform(-FIXBEARINGERR,FIXBEARINGERR)
 elevation += random.uniform(-
FIXELEVATIONERR,FIXELEVATIONERR)

 # add Gaussian error to distance between 2 bots
 if VARMEASUREERR:
 accuracyFound = 0
 accuIter = iter(DISTERR)
 while not accuracyFound:
 spec = accuIter.next()
 if dist < spec[0]:
 accu = spec[1]
 accuracyFound = 1
 dist += random.uniform(-accu,accu)
 else:
 dist += random.uniform(-FIXDISTERR,FIXDISTERR)

 # calculate estimated position of observed bot based on
 # data shared and kalman filtered perceived position of observer
 # using erroneous distance measurement and erroneous bearing measurement

 76

 x = self.ppx + dist*np.cos(np.deg2rad(bearing))
 y = self.ppy + dist*np.sin(np.deg2rad(bearing))
 z = self.ppz + dist*np.sin(np.deg2rad(elevation))

 # observer maintain a list of estimated positions of observed bots
 self.botList[sprite.getID()] = [x, y, z, dist]

 def updatePercep(self):
 “““calculate better estimate of self position by obtaining
 list of position estimate of self from all the other observer
 bots the centroid of the point cloud is calculated and used
 as new estimate of self position”““
 if self.v == 0:
 pass
 else:
 sumx = 0
 sumy = 0
 sumz = 0
 count = 0
 maxDist = 0
 for sprite in self.spriteGrp:
 if sprite != self:
 if sprite.getbotList().has_key(self.ID):
 if sprite.getbotList()[self.ID][3] > maxDist:
 maxDist = sprite.getbotList()[self.ID][3]
 for sprite in self.spriteGrp:
 if sprite != self:
 # if observer bot has an estimate of self in
 # it’s estimate list add point to point cloud
 if sprite.getbotList().has_key(self.ID):
 x = sprite.getbotList()[self.ID][0]
 y = sprite.getbotList()[self.ID][1]
 z = sprite.getbotList()[self.ID][2]
 dist = sprite.getbotList()[self.ID][3]
 if WEIGHTEDCENTROID:
 sumx += x * (maxDist / dist**WEIGHTINTENSITY)
 sumy += y * (maxDist / dist**WEIGHTINTENSITY)
 sumz += z * (maxDist / dist**WEIGHTINTENSITY)
 count += 1.0 * (maxDist / dist**WEIGHTINTENSITY)
 else:
 sumx += x
 sumy += y
 sumz += z
 count += 1.0

 77

 # store previous measured position
 self.pmx = self.mx
 self.pmy = self.my
 self.pmz = self.mz

 if count > 0:
 self.mx = sumx / count * 1.0
 self.my = sumy / count * 1.0
 self.mz = sumz / count * 1.0
 else:
 self.mx = self.ppx
 self.my = self.ppy
 self.mz = self.ppz

 def updateKalman(self):
 if self.v > 0:
 radD = np.deg2rad(self.pdirection)
 radSteer = np.deg2rad(self.steer * TIMEDELTAPERSTEP)
 radPitch = np.deg2rad(self.ppitch)
 radPitchSteer = np.deg2rad(self.pitchsteer * TIMEDELTAPERSTEP)
 currVectx = self.v * \
 np.cos(radD + radSteer) * \
 np.cos(radPitch + radPitchSteer)
 prevVectx = self.v * \
 np.cos(radD) * \
 np.cos(radPitch)
 currVecty = self.v * \
 np.sin(radD + radSteer) * \
 np.cos(radPitch + radPitchSteer)
 prevVecty = self.v * \
 np.sin(radD) * \
 np.cos(radPitch)
 currVectz = self.v * \
 np.sin(radPitch + radPitchSteer)
 prevVectz = self.v * \
 np.sin(radPitch)
 accX = (currVectx - prevVectx) / TIMEDELTAPERSTEP
 accY = (currVecty - prevVecty) / TIMEDELTAPERSTEP
 accZ = (currVectz - prevVectz) / TIMEDELTAPERSTEP
 u = np.matrix([\
 [accX],\
 [accY],\
 [accZ]\
])

 78

 m = np.matrix([\
 [self.mx],\
 [(self.mx - self.pmx) / TIMEDELTAPERSTEP],\
 [self.my],\
 [(self.my - self.pmy) / TIMEDELTAPERSTEP],\
 [self.mz],\
 [(self.mz - self.pmz) / TIMEDELTAPERSTEP]\
])

 self.filter.Step(u,m)

 currState = self.filter.GetCurrState()
 self.kfx = currState[0,0]
 self.kfy = currState[2,0]
 self.kfz = currState[4,0]
 self.ppx = self.kfx
 self.ppy = self.kfy
 self.ppz = self.kfz
 self.mx = self.kfx
 self.my = self.kfy
 self.mz = self.kfz

C. KF.PY

The kf.py file contains the code to implement the Kalman filter.

import numpy as np

class KalmanFilter:
 def __init__(self,A, B, H, x, P, Q, R):
 self.A = A
 self.B = B
 self.H = H
 self.currState = x
 self.currProb = P
 self.Q = Q
 self.R = R
 def GetCurrState(self):
 return self.currState
 def Step(self,u,m):
 self.u = u
 predState = self.A * self.currState + self.B * self.u
 self.predState = predState
 predProb = (self.A * self.currProb) * np.transpose(self.A) + self.Q
 y = m - self.H * predState

 79

 S = self.H * predProb * np.transpose(self.H) + self.R
 K = predProb * np.transpose(self.H) * np.linalg.inv(S)
 self.currState = predState + K * y
 size = self.currProb.shape[0]
 self.currProb = (np.eye(size)- K * self.H) * predProb

D. SIMMANAGER.PY

The simmanager.py file contains the graphics handler for the simulation.

import pygame
from pygame.locals import *
from defines import *

class SimManager:

 def __init__(self):
 pygame.init()
 if RENDERING:
 self.windowScreen = pygame.display.set_mode((1600, 900), FULLSCREEN)
 pygame.display.set_caption(‘Orbits!’)
 self.screenSurface = pygame.Surface((1400,900))
 self.screenSurface = self.windowScreen.convert()
 self.screenSurface.fill((30, 30, 30))
 self.botSurface = pygame.Surface((1400,900))
 self.menuSurface = pygame.Surface((200,900))
 self.menuSurface.fill(COLORGREEN)
 self.windowScreen.blit(self.screenSurface,(200,0))
 self.windowScreen.blit(self.menuSurface, (0,0))
 pygame.display.flip()
 self.fontObj = pygame.font.Font(‘freesansbold.ttf’,18)
 else:
 self.windowScreen = pygame.display.set_mode((1, 1))
 self.screenSurface = pygame.Surface((1400,900))

 def render(self, allSprites):
 self.botSurface.blit(self.screenSurface,(0,0))
 allSprites.draw(self.botSurface)
 self.windowScreen.blit(self.botSurface,(200,0))
 self.windowScreen.blit(self.menuSurface,(0,0))

 pygame.draw.line(self.windowScreen, COLORWHITE, (300,10),
(300+10*PIXELSTOMETER,10), 5)
 pygame.display.flip()

 80

 def renderText(self, numSprites, bot):
 self.menuSurface.fill(COLORGREEN, pygame.Rect(0,0,200,380))
 textline = 20
 self.menuSurface.blit(self.fontObj.render(“Number of bots,” True, COLORBLACK),
(10,textline))
 textline += 20
 self.menuSurface.blit(self.fontObj.render(str(numSprites), True, COLORBLACK),
(15,textline))
 textline += 40
 self.menuSurface.blit(self.fontObj.render(bot.ID +” Data,” True, COLORBLACK),
(10,textline))
 textline += 30
 self.menuSurface.blit(self.fontObj.render(“Robot speed m/s:,” True,
COLORBLACK), (10,textline))
 textline += 20
 self.menuSurface.blit(self.fontObj.render(str(bot.v), True, COLORBLACK),
(15,textline))
 textline += 20
 self.menuSurface.blit(self.fontObj.render(“Robot steer deg/s,” True,
COLORBLACK), (10,textline))
 textline += 20
 self.menuSurface.blit(self.fontObj.render(str(bot.steer), True, COLORBLACK),
(15,textline))

 textline += 30
 self.menuSurface.blit(self.fontObj.render(“Odometry:,” True, COLORBLACK),
(10,textline))
 textline += 30
 # self.menuSurface.blit(self.fontObj.render(“Mean Sq Err X:,” True,
COLORBLACK), (10,textline))
 # textline += 20
 # self.menuSurface.blit(self.fontObj.render(str(bot.msepx), True, COLORBLACK),
(15,textline))
 # textline += 20
 # self.menuSurface.blit(self.fontObj.render(“Mean Sq Err Y:,” True,
COLORBLACK), (10,textline))
 # textline += 20
 # self.menuSurface.blit(self.fontObj.render(str(bot.msepy), True, COLORBLACK),
(15,textline))
 # textline += 20
 self.menuSurface.blit(self.fontObj.render(“Mean Sq Err dist:,” True,
COLORBLACK), (10,textline))
 textline += 20
 self.menuSurface.blit(self.fontObj.render(str(bot.msepd), True, COLORBLACK),
(15,textline))

 81

 textline += 40
 self.menuSurface.blit(self.fontObj.render(“Data sharing:,” True, COLORBLACK),
(10,textline))
 textline += 30
 # self.menuSurface.blit(self.fontObj.render(“Mean Sq Err X:,” True,
COLORBLACK), (10,textline))
 # textline += 20
 # self.menuSurface.blit(self.fontObj.render(str(bot.mseppx), True, COLORBLACK),
(15,textline))
 # textline += 20
 # self.menuSurface.blit(self.fontObj.render(“Mean Sq Err Y:,” True,
COLORBLACK), (10,textline))
 # textline += 20
 # self.menuSurface.blit(self.fontObj.render(str(bot.mseppy), True, COLORBLACK),
(15,textline))
 # textline += 20
 self.menuSurface.blit(self.fontObj.render(“Mean Sq Err dist:,” True,
COLORBLACK), (10,textline))
 textline += 20
 self.menuSurface.blit(self.fontObj.render(str(bot.mseppd), True, COLORBLACK),
(15,textline))

E. DEFINES.PY

The defines.py file contains the input parameters to the simulation as well as the

options for configuring the simulation.

import pygame

RENDERING = 0

FLYING = 0

BEACONAVAIL = 0
NUMRUNS = 1000

MEASUREMENTLIMIT = 30.0

BOTSPEED = 0.6
ODODIRERR = 0.1
ODOERR = 0.5
if FLYING:
 ODOPITCHERR = 0.1
else:
 ODOPITCHERR = 0.0

 82

PIXELSTOMETER = 20.0
TIMEDELTAPERSTEP = 0.1

WEIGHTEDCENTROID = 0
WEIGHTINTENSITY = 2.0

VARMEASUREERR = 1
if FLYING:
 BEARINGERR = [[10,0.25,0.25],[MEASUREMENTLIMIT,0.25,0.25]]
 FIXELEVATIONERR = 0.25
else:
 BEARINGERR = [[10,0.25,0],[MEASUREMENTLIMIT,0.25,0]]
 FIXELEVATIONERR = 0.0
DISTERR = [[10,0.01],[MEASUREMENTLIMIT,0.03]]

FIXDISTERR = 0.03
FIXBEARINGERR = 0.25

RUNKF = 1
KFPROCESSERR = 0.5
KFMEASUREERR = 1.0

RENDERCLOUD = 0

PICKLINGMSE = 1

COLORRED = pygame.Color(255,0,0)
COLORORANGE = pygame.Color(255,180,0)
COLORGREEN = pygame.Color(0,255,0)
COLORPEPPERMINT = pygame.Color(0,255,100)
COLORBLUE = pygame.Color(0,0,255)
COLORWHITE = pygame.Color(255,255,255)
COLORBLACK = pygame.Color(0,0,0)

F. AUTOMATE.PY

The automate.py file is a helper file to assist in running multiple simulation runs

automatically.

import botsim
import time

for i in range(1000):
 start = time.time()
 botsim.runSim(i)

 83

 print “Run: “+str(i)+,” Dur: “+str(time.time()-start)

 84

THIS PAGE INTENTIONALLY LEFT BLANK

 85

LIST OF REFERENCES

Greg Welch and Gary Bishop. 2006. An Introduction to the Kalman Filter. TR 95-
041.Chapel Hill: University of North Carolina at Chapel Hill.

Hui Fang, Wen-Jing Hsu, and Larry Rudolph. 2008. “Controlling Uncertainty in Personal
Positioning at Minimal Measurement Cost.” In Ubiquitous Intelligence and
Computing, 468–481. Berlin Heidelberg: Springer.

Ingemar J. Cox. 1990. “Blanche: Position Estimation for an Autonomous Robot
Vehicle.” In Autonomous Robot Vehicles, edited by Ingemar J. Cox and Gordon
T. Wilfong, 221–228. New York: Springer.

Ivanka Terzic, Alois Zoitl, Bernard Favre, and Thomas Strasser. 2008. “A Survey of
Distributed Intelligence in Automation in European Industry, Research and
Market.” In Institute of Electrical and Electronics Engineers (IEEE) International
Conference on Emerging Technologies and Factory Automation, 221–228.
Piscataway: Institute of Electrical and Electronics Engineers (IEEE).

Lei Zhang, Rene Zapata, and Pascal Lepinay. 2009. “Self-Adaptive Monte Carlo for
Single-Robot and Multi-Robot Localization.” In Institute of Electrical and
Electronics Engineers (IEEE) International Conference on Automation and
Logistics, 1927–1933. Piscataway: Institute of Electrical and Electronics
Engineers (IEEE).

Lynne E. Parker. 2008. “Distributed Intelligence: Overview of the Field and its
Application in Multi-Robot Systems.” Journal of Physical Agents 2(1): 5–14.

Mohinder S. Grewal and Angus P. Andrews. 2014. Kalman Filtering: Theory and
Practice with MATLAB. 4th ed. Hoboken: John Wiley & Sons.

Rudy Negenborn. 2003. “Robot Localization and Kalman Filters.” PhD diss., Utrecht
University.

Sebastian Thrun. Wolfram Burgard, and Dieter Fox. 2005. Probabilistic Robotics.
Cambridge: MIT Press.

Sebastian, Thrun. 2002. “Robotic Mapping: A Survey.” In Exploring Artificial
Intelligence in the New Millennium, edited by Gerhard Lakemeyer and Bernhard
Nebel, 1–35. San Francisco: Morgan Kaufmann Publishers Inc.

Tomas Krajnik, Matias Nitsche, Jan Faigl, Tom Duckett, Marta Mejail, and Libor Preucil.
2013. “External Localization System for Mobile Robotics.” In International
Conference on Advanced Robotics (ICAR), 1–6. Piscataway: IEEE.

 86

THIS PAGE INTENTIONALLY LEFT BLANK

 87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. introduction
	A. background
	B. Mobile robots
	C. Autonomous robot
	(1) Non-autonomous
	(2) Semi-autonomous
	(3) Fully autonomous

	D. Robot navigation
	E. Robot localization
	F. Distributed intelligence
	G. Problem formulation and organization of the thesis
	H. Benefits of study

	II. Kalman filters
	A. Background
	B. Applications
	C. Concepts
	1. State Estimator
	2. Conditional Probability
	3. Prediction-Correction
	(1) Prediction
	(2) Correction

	III. System engineering of robot localization
	A. Problem definition of robot localization
	1. Problem
	2. Uncertainty

	B. Boundaries
	1. Physical
	2. Functional
	3. Behavioral

	C. Limitations and constraints
	1. Limitations
	2. Constraints

	D. Stakeholder analysis
	1. Robot Developers
	a. Mobile Factory Robot
	b. Search and Rescue Robot
	c. Military Urban Robot
	d. Military Robotic Pack Mule

	2. Navy Fleet

	E. Requirements analysis
	F. Scope
	(1) Within Scope
	(2) Outside Scope

	G. Operational concept
	H. Functional analysis
	I. Alternatives

	IV. Simulation model of multi-robot localization
	A. Background
	B. Approach
	1. Simulation
	2. Individual Robot Odometry
	3. Data-Sharing Robot Localization
	4. Kalman Filter Model

	C. Assumptions
	D. Software used

	V. Research scenario and Results
	A. Performance metrics
	B. Approach and assumptions
	C. Autonomous ground robot scenario
	1. Scenario
	2. Simulation Setting
	3. Results

	VI. Conclusions and recommendations
	A. Conclusions
	B. Recommendations

	appendix. simulation source code
	A. Botsim.py
	B. bots.py
	C. kf.py
	D. simmanager.py
	E. defines.py
	F. Automate.py

	List of References
	initial distribution list

