

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

VISION-BASED 3D MOTION ESTIMATION FOR ON-
ORBIT PROXIMITY SATELLITE TRACKING AND

NAVIGATION

by

Alessio A. Grompone

June 2015

Thesis Advisor: Roberto Cristi
Co-Advisor: Marcello Romano

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2015

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
VISION-BASED 3D MOTION ESTIMATION FOR ON-ORBIT PROXIMITY
SATELLITE TRACKING AND NAVIGATION

5. FUNDING NUMBERS

6. AUTHOR(S) Alessio A. Grompone
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The main challenge addressed in this work is to develop and validate an algorithm able to track and estimate the relative position
and motion of on-orbit, un-modeled targets by using only passive vision. The algorithm developed is based on well-known image
processing techniques. To achieve this goal, a number of different approaches were analyzed and compared to assess their
performance for a satisfactory design. The code also has a modular general structure in order to be more flexible to changes during
the implementation until best performance is reached.

Artificially rendered high quality, animated videos of satellites in space and real footage provided by NASA have been used
as a benchmark for the calibration and test of the main algorithm modules. The final purpose of this work is the validation of the
algorithm through a hardware-in-the-loop ground experiment campaign. The development of the Floating Spacecraft Simulation
Test-bed used in this work for the validation of the algorithm on real-time acquisition images was also documented in this thesis.
The test-bed provides space-like illumination, stereovision and simulated weightlessness frictionless conditions.

Insight on the validity of this approach, describing the performance demonstrated by the experiments, the limits of the
algorithm and the main advantages and challenges related to possible future implementations in space applications, were provided
by this research.

14. SUBJECT TERMS
Spacecraft detection, computer vision, autonomous navigation, image processing, vision-based
algorithm, non-modeled non-cooperative target

15. NUMBER OF
PAGES

185
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

VISION-BASED 3D MOTION ESTIMATION FOR ON-ORBIT PROXIMITY
SATELLITE TRACKING AND NAVIGATION

Alessio A. Grompone
Civilian, Department of Defense

M.S., University of Rome ‘La Sapienza,’ 2010

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE
(ELECTRICAL ENGINEERING)

from the

NAVAL POSTGRADUATE SCHOOL

June 2015

Author: Alessio A. Grompone

Approved by: Roberto Cristi
Thesis Advisor

Marcello Romano
Co-Advisor

Clark Robertson
Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The main challenge addressed in this work is to develop and validate an algorithm able to

track and estimate the relative position and motion of on-orbit, un-modeled targets by

using only passive vision. The algorithm developed is based on well-known image

processing techniques. To achieve this goal, a number of different approaches were

analyzed and compared to assess their performance for a satisfactory design. The code

also has a modular general structure in order to be more flexible to changes during the

implementation until best performance is reached.

Artificially rendered high quality, animated videos of satellites in space and real

footage provided by NASA have been used as a benchmark for the calibration and test of

the main algorithm modules. The final purpose of this work is the validation of the

algorithm through a hardware-in-the-loop ground experiment campaign. The

development of the Floating Spacecraft Simulation Test-bed used in this work for the

validation of the algorithm on real-time acquisition images was also documented in this

thesis. The test-bed provides space-like illumination, stereovision and simulated

weightlessness frictionless conditions.

Insight on the validity of this approach, describing the performance demonstrated

by the experiments, the limits of the algorithm and the main advantages and challenges

related to possible future implementations in space applications, were provided by this

research.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. SPACE APPLICATIONS FOR UNMANNED AUTONOMOUS

SPACECRAFT ...1
B. FOCUS OF THIS RESEARCH ..2
C. VISION BASED TRACKING AND POSE ESTIMATION IN SPACE2
D. THESIS OUTLINE ..4

II. BACKGROUND ..7
A. ON-ORBIT RELATIVE NAVIGATION SYSTEMS7
B. LASER-BASED RADARS AND SENSORS ...7
C. VISION-BASED SPACE SENSORS ...9
D. ARTIFICIAL VISION DETECTION AND TRACKING METHODS ...10

1. Region-of-Interest Selection Methods ..11
2. Features Extraction ...11
3. Motion-Based Detection Methods ..13

E. KALMAN FILTER APPLICATIONS TO VISION ALGORITHMS14

III. SELECTED IMAGE PROCESSING TECHNIQUES ..15
A. REGION-OF-INTEREST DETERMINATION ...15

1. Background Segmentation ..15
2. Static Background Subtraction ..17
3. Optical Flow ...18

B. FEATURE DETECTION METHODS ..19
1. Harris Corner Detection..19
2. Gaussian Blob Detection ...20
3. Adaptive Non-maximal Suppression (ANMS)21
4. Speeded-Up Robust Features (SURF) ..22
5. Histogram of Oriented Gradients (HOG)..23

C. FEATURE TRACKING: THE KANADE LUCAS TOMASI
METHOD ...24

D. BASIC POSE ESTIMATION TECHNIQUE ...25
E. STEREO AND GEOMETRY RANGE ESTIMATION26

IV. ARTIFICIAL VISION ALGORITHM ...29
A. ALGORITHM STRUCTURE AND LOGIC ..29

1. Main Logic ..30
2. Initialization..32
3. Target Tracking ...33
4. Estimation ...34

B. ALGORITHM’S LIBRARIES ...36
1. Initializer ...36
2. MAIN_AViATOR ..37
3. FUN_BACKGROUNDSUB ..37
4. FUN_DETECTION ...40

 viii

5. FUN_SURF ...40
6. FUN_BLOB ..41
7. FUN_KLT ...42
8. FUN_EPIPOLAR ...42

a. Linear Eight-Point Algorithm ..42
b. Continuous Eight-Point Algorithm ..43
c. Linear Four-Point Algorithm ...45
d. Continuous Four-Point Algorithm ...47

9. FUN_STEREO_RANGE ...49
10. FUN_GEOMETRIC_RANGE..51

C. ON-ORBIT TIMELAPSE AND COMPUTER RENDERED VIDEOS ...52
1. Computer-Rendered 3D Videos..52
2. NASA On-orbit Videos ..55

V. HARDWARE-IN-THE-LOOP EXPERIMENTS ...57
A. THE FLOATING SPACECRAFT SIMULATOR TEST-BED57

1. High Precision Flat Floor ..57
2. UDP Network ...58
3. Telemetry Computer ...60
4. Floating Units ...61

a. Propulsion System ...63
b. Electronics ...64
c. On-board Sensors ..68

5. FSS Software ..70
a. Main Model ...71
b. Sensor Package ...73
c. State Estimator ..73
d. Guidance Block ...73
e. Actuator Package ..73
f. Variable Collect and Send ..74
g. Target Package ..74

B. EXPERIMENTS AND RESULTS ...74
1. Test Videos ..74

a. Detection and Tracking Calibration.......................................75
b. Epipolar Transformation Test ..79
c. Stereovision Algorithm Test..86

2. NASA Videos ..88
3. Live Target ...103

VI. CONCLUSIONS ..113
A. FUTURE WORK ...114

APPENDIX ...115
A. ARTIFICIAL VISION ALGORITHM ...115

1. Initializer (initializer.m) ..115
2. Main script (MAIN_AViATOR.m) ..118
3. Background Subtraction (FUN_BACKGROUNDSUB.m)124

 ix

4. HARRIS Detection (FUN_DETECTION.m).................................126
5. BLOB Selection (FUN_BLOB.m) ...128
6. KLT Tracking (FUN_KLT.m) ...131
7. Epipolar Transformation (FUN_EPIPOLAR.m)133
8. Continuous Eight-Points Algorithm (epipolar1.m)135
9. Continuous Four-Points Algorithm (epipolar3.m)138
10. Stereovision Range Estimation (FUN_STEREO_RANGE.m)140
11. Optical Flow Estimation (FUN_OPTFLOW.m)143
12. Computed ROI Limits Validation (FUN_ROILIMITER.m)143
13. Image Indexing Transformation (indextolinear.m)145

B. MATLAB RIGID CLOUD..145

LIST OF REFERENCES ..151

INITIAL DISTRIBUTION LIST ...159

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Original (on the left) and processed image (on the right) of Orbital Express
using edge detection, after [44]. ...16

Figure 2. Edge detected Orbital Express image processed using the dilation and fill
hole (on the left) and erosion (on the right), after [44].17

Figure 3. Selection (in blue) of background regions on an ISS time-lapse frame,
after [52]...18

Figure 4. Corner feature in a window of pixels, from [53]. ..20
Figure 5. Region of interest derived by a BLOB Gaussian filter on a frame of

Orbital Express time-lapse, after [44]. ...21
Figure 6. Examples of box filter approximation (two images on the right) on

Gaussian second-order derivatives (two images on the left), from [48].22
Figure 7. SURF features detected using an Orbital Express image, after [44].23
Figure 8. Example of a histogram of gradients classified feature, after [44].24
Figure 9. Example of geometric estimation features for the distance tracking in

closer-than-stereo-vision range, after [44]. ..27
Figure 10. Representation of the four stages of the benchmark scenario from Orbital

Express time-lapse data, after [44]...30
Figure 11. Logic schematic of the vision-based algorithm. ..31
Figure 12. Example of static background subtraction, Harris detection and ROI

selection on a time-inverted ISS Cygnus time-lapse, after [52].33
Figure 13. ISS-Cygnus tracking and update using Harris features detection and KLT,

after [52]...35
Figure 14. ISS-Cygnus tracking and update using Harris features detection and KLT

at a close range, after [52]. ...35
Figure 15. Logic schematic of the main script MAIN_AViATOR.m39
Figure 16. Example of estimation of the physical distance between two features using

range, focal length and projected pixel distance. ...51
Figure 17. Computer rendered video of an on-orbit rendezvous maneuver for the

debugging and first calibration of the vision algorithm.53
Figure 18. Frames from the two simulated cameras of the computer rendered

stereovision video. ...54
Figure 19. Examples of rotating objects in computer rendered videos for the

debugging and calibration of the epipolar algorithm.55
Figure 20. Granite table of the FSS test-bed at the Naval Postgraduate School.58
Figure 21. ARRI temperature lamp used in the FSS testbed to simulate changes in

illumination conditions. ...59
Figure 22. Example of the space-like illumination simulated on the FSS testbed.59
Figure 23. FSS network communication schematic. ...60
Figure 24. Desktop screenshot of the telemetry software and the SSH terminals.61
Figure 25. View of the VICON cameras above the granite flat floor of the FSS.62
Figure 26. One of the VICON cameras connected to the ceiling of the Spacecraft

Robotics Laboratory...62

 xii

Figure 27. Screenshot of the VICON software tracker. It is possible to recognize (as
green squares) the position of the cameras installed along the walls of the
laboratory. ..63

Figure 28. Picture of a fourth generation FSS floating unit. ...64
Figure 29. Main components of the FSS units on the four side views.65
Figure 30. Representation of the hovering and propulsion system. The air flow is

represented with yellow arrows. ..66
Figure 31. Schematic of all the components of the compressed-air hovering and

propulsion system of the FSS floating unit. ...67
Figure 32. Schematic of the FSS unit electronic system. ..68
Figure 33. Point Grey Bumblebee stereovision camera, from [64]...................................69
Figure 34. Fiber-optic gyroscope DSP-3000 from KVH [65]...69
Figure 35. Hokuyo laser scanner, from [66]. ..70
Figure 36. Leap Motion, from [67]. ..70
Figure 37. Main Simulink model before the compilation into an executable. Each

Atomic Block is identified with a different color. ...72
Figure 38. Sequence of frames from the detection and tracking test on video 1.

Harris corner features are represented in green, KLT tracked features in
red and the ROI is the yellow square. ..77

Figure 39. Sequence of frames from the detection and tracking of video 2. Harris
corner features are represented in green, KLT tracked features in red and
the ROI is the yellow square. ...78

Figure 40. Sequence of frames from the detection and tracking of video 3. Harris
corner features are represented in green, KLT tracked features in red and
the ROI is the yellow square. ...79

Figure 41. The four test cases to verify the epipolar transformation algorithm.80
Figure 42. Three frames representing the rotation and translation of a group of

computer rendered objects created to test the epipolar transformation
reducing planarity and increasing parallax of the features.82

Figure 43. Time-history of linear and angular velocity for the test case 1 where the
target is only translating along the y-axis. ...83

Figure 44. Time-history of linear and angular velocity for the test case 2 where the
target is only translating along the x-axis. ...83

Figure 45. Time-history of linear and angular velocity for the test case 3 where the
target is only translating along the z-axis. ..84

Figure 46. Time-history of linear and angular velocity for the test case 4 where the
target is only rotating along the y-axis. ..84

Figure 47. Time-history of linear and angular velocity for the test case 5 where the
target is only rotating along the x-axis. ..85

Figure 48. Time-history of linear and angular velocity for the test case 6 where the
target is only rotating along the z-axis. ..85

Figure 49. Birds-eye view and stereovision distance estimation results from the test
on the computer rendered video. ..87

Figure 50. Frame taken from video 1 while the algorithm is tracking the features
marked in red. ..96

 xiii

Figure 51. Another frame from video 1. Because of the change in illumination the
algorithm tracks only edge features. ..96

Figure 52. Also during docking the algorithm tracks only features of the Soyuz on the
last frames form video 1. ...97

Figure 53. Tracking of the features of the Shuttle with the Earth as background on a
frame from video 2...97

Figure 54. The algorithm tracks only a few features when the camera faces towards
the thermal shields of the Space Shuttle. ...98

Figure 55. View of cluttered features on the progress and obstructions on the edges of
the image from video 3. ...98

Figure 56. The algorithm is able to automatically detect the Progress also in this
challenging frame where the Earth features spin almost at the same speed
as the target and have the same luminosity intensity.99

Figure 57. Changes in illumination causes the algorithm to lose most of the features
tracked, but it automatically recovers. ...99

Figure 58. The algorithm fully recovers from illumination changes and provides
strong features and a correct ROI of the target. ...100

Figure 59. When two spacecraft with identical features are close, the algorithm
expands the ROI to include and track both. This causes also other
unwanted features to be captured. ..100

Figure 60. Detection of a moving target over the static features of the ISS on the
initial frames of video 5. ..101

Figure 61. The ROI expands over clouds with high defined edges, confused for target
features and tracked. ..101

Figure 62. The static background removal method is able to mask the obstructed
areas and non-target features. ..102

Figure 63. The algorithm is able to track the features of the target behind the docking
interface..102

Figure 64. The target docking interface of video 6 tracked by the algorithm.103
Figure 65. View of the live desktop + live-target experiment setup and the main

components of the test-bed at the Spacecraft Robotics Laboratory of NPS. .104
Figure 66. Bird’s-eye view of the trajectories of the FSS unit in four experiments.105
Figure 67. Sequence of frames acquired during one of the experiments on the FSS

test-bed. The tracked features are marked in red and the detected features
in green...106

Figure 68. Measured and estimated time-history comparison of the distance between
camera and target in experiment 1. ..107

Figure 69. Zoomed view of the distance-error time history in the first 16 seconds of
experiment 1...107

Figure 70. Measured and estimated time-history comparison of the distance between
camera and target in experiment 2. ..108

Figure 71. Zoomed view of the distance-error time history in the first 16 seconds of
experiment 2...108

Figure 72. Measured and estimated time history comparison of the distance between
camera and target in experiment 3. ..109

 xiv

Figure 73. Zoomed view of the distance-error time history in the first 16 seconds of
experiment 3...109

Figure 74. Measured and estimated time history comparison of the distance between
camera and target in experiment 4. ..110

Figure 75. Zoomed view of the distance-error time history in the first 16 seconds of
experiment 4...110

 xv

LIST OF TABLES

Table 1 List of algorithm initialization options. ...38
Table 2. The four possible solutions for the linear four-point algorithm47
Table 3. The four possible solutions for the continuous four-point algorithm49
Table 4. List of the main guidance logic implemented on the FSS.73
Table 5. Detection and tracking calibration values. ...76
Table 6. Description of results for the Epipolar analysis on the six cases.86
Table 7. Video 1 properties and calibration values. ...89
Table 8. Video 2 properties and calibration values. ...90
Table 9. Video 3 properties and calibration values. ...91
Table 10. Video 4 properties and calibration values. ...92
Table 11. Video 5 properties and calibration values. ...93
Table 12. Video 6 properties and calibration values. ...94
Table 13. Description of the performances of the algorithm applied to the NASA

videos ...95
Table 14. Detection and tracking calibration values. ...111

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF ACRONYMS AND ABBREVIATIONS

2D two-dimensional
3D three-dimensional
ANMS adaptive non-maximal suppression
APF artificial potential function
AR&D automated rendezvous and docking
ATV automated transfer vehicle
AVGS advanced video guidance sensor
AViATOR artificial vision algorithm for tracking on-orbit relative motion
BOW bag of words
CAD computer aided design
CBCS centerline berthing camera system
DoG difference od Gaussian
DPM deformable parts model
EKF extended Kalman filter
EPOS European proximity operations simulator
ESA European space agency
ETS-VII engineering test satellite number seven
FSS floating spacecraft simulator
GN&C guidance, navigation and control
GPS global positioning system
HOG histogram of oriented gradients
ID inverse dynamics
IDVD inverse dynamics in virtual domain
IEKF multiple-iterated Kalman filter
ISS international space station
JAXA Japan aerospace exploration agency
JEM Japanese experiment module
KLT Kanade Lucas Tomasi
LCDE laser communication demonstration equipment
LCS laser camera system

 xviii

LED light-emitting diode
LIDAR light detection and ranging system
LoG Lapalacian of Gaussian
LQR linear quadratic regulator
MAE mechanical and aerospace engineering
MAP maximum a posteriori
MPVC multiple purpose crew vehicle
NASA National Aeronautics and Space Administration
NASDA national space development agency of Japan
NPS Naval Postgraduate School
OPS operations
PID proportional integral derivative
POI point of interest
ROI region of interest
RPM r-bar pitch maneuver
RSO resident space object
RTAI real-time application interface
RVDM radar videometer
RVR rendezvous laser radar
SIFT scale-invariant feature transform
SM service module
SRL spacecraft robotics laboratory
SSH secure shell
STS space transportation system
SURF speeded-up robust features
SVD singular value decomposition
TriDAR triangulation and LIDAR automated rendezvous and docking
UDP user datagram protocol
UKF unscented Kalman filter
VERTIGO virtual estimation for relative tracking and inspection of generic

objects
VIBANASS vision based navigation system
XSS-11 experimental satellite system number eleven

 xix

EXECUTIVE SUMMARY

The main goal of this thesis is the development of an algorithm able to estimate relative

position, attitude and motion using only monocular camera images in the far range,

stereovision in the medium range and monocular images for the docking. On-orbit

proximity maneuvering using autonomous spacecraft is today one of the major topics of

interest within the space community. The potential capability of rescuing, repairing or

recharging orbiting spacecraft, harvesting for orbiting components or removing space

debris using unmanned robotic vehicles has proven commercial, military and scientific

interest despite the complexity of such operations.

 One of the main challenges of autonomous on-orbit proximity maneuvering is the

relative navigation. A promising solution for relative navigation is the use of mono or

stereovision for the detection and tracking of a target and for the estimation of relative

position and attitude. Camera systems can have small form factors, are usually relatively

inexpensive and do not require too much power. Another advantage of vision systems is

that image processing can be used to define features without a priori information on the

target. This characteristic extends the applicability to unknown or damaged targets whose

features and shape are not a priori known.

The main challenges related to vision based systems are the following:

• image processing can be computationally demanding,
• vision systems are affected by changes in the illumination conditions,
• cluttered background and repeated patterns can cause false positive

matching and detection,
• range information for unknown targets is available only within the

stereovision interval of applicability, and
• the tracking can be affected by frame rate and resolution.

The main objective of this research was to investigate the use of vision-based

systems for space applications through the development and test of an artificial vision

algorithm.

 xx

The algorithm was designed by using well-known image processing and

estimation techniques and implemented in a modular fashion to provide a “machine

learning” like capability to adapt to the scenario.

The overall algorithm logic can be summarized by the following four main tasks:

1. Region-of-interest determination: Background subtraction processes the
acquired images by masking the background and the obstructing features.
The process uses several techniques, such as static background subtraction
and optical flow.

2. Feature detection: The algorithm uses Harris corner detection to detect and
classify the features of the target.

3. Feature tracking: The detected features are tracked by the Kanade Lucas
Tomasi (KLT) algorithm. Tracking provides the information necessary for
the optical flow used in the estimation phase.

4. Position/Motion Estimation: The algorithm estimates linear and angular
velocities through the epipolar constraint, while range is estimated using
the image offset of two cameras in stereovision. The attitude is estimated
defining a reference frame fixed with the main tracked features and
integrating the estimated rigid body rotations in time.

The algorithm was tested by using computer rendered animations that simulate

the space environment, features and illuminations. The finalized algorithm was calibrated

on real on-orbit footage provided by NASA, showing rendezvous and docking maneuvers

of Soyuz, Space Shuttle and Progress missions in the proximity of the International Space

Station.

A fourth generation of the floating spacecraft simulator test-bed (FSS) was also

developed. The test-bed was used for the hardware-in-the-loop validation of the

algorithm. The experiments were designed to verify the performance of the stereovision

system with real-time acquisition, planar orbital-like dynamics and space-like

illumination conditions, providing detection, tracking and relative position and attitude

estimation (usually called pose estimation).

From the results of the experimental testing, it was possible to show the reliability

of the algorithm in detecting and tracking the features on the hovering FSS test-bed unit

and the capability to estimate the distance within the stereovision range with an average

 xxi

error of 2.5 cm. The tests also proved that the image acquisition rate can be reduced to

about 3.0 frames per second (fps) thanks to the typical low relative speed of on-orbit

maneuvers.

The epipolar transformation algorithm did not provide the full estimation of the

pose due to unsolved bugs, but some partial results (limited to linear and angular

velocities along certain axes) do show that the method is promising, and correction of the

algorithm may provide the capabilities wanted.

It was shown in this research that a vision-based algorithm can be used in real-

time to detect and track on-orbit spacecraft for a wide range of illumination conditions

and background scenarios with a low frame-rate.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 xxiii

ACKNOWLEDGMENTS

Thanks to Professor Roberto Cristi, for his outstanding academic and moral support.

Thanks to Professor Romano and his SRL team for this great experience.

Special thanks to my soon-to-be wife, Suzi, for supporting my efforts in the good and in
the tough times.

Thanks to all the friends who shared this Monterey experience with me.

Also special thanks to my parents on the other side of the world and those people who
helped me become who I am today.

 xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. SPACE APPLICATIONS FOR UNMANNED AUTONOMOUS
SPACECRAFT

The advantages of on-orbit proximity operations have been widely discussed in

several works [1–5] and have inspired a large number of studies on proximity maneuvers,

space robotics, range sensors, teleoperation [6], [7] and more. Many studies highlight the

commercial interests that could derive from on-orbit proximity operations extending the

lifetime of satellites through refueling, upgrade, maintenance or harvesting parts from

decommissioned orbiting spacecraft. Furthermore, system reconfiguration, rescue,

removal of resident space objects [5] or safety inspection are other extremely important

topics [1]. Despite the complexity of this type of mission, the progress in space robotics

has made unmanned missions the most attractive option for on-orbit services [4], [6]. For

example, the fact that on-board human operators are not involved drastically reduces

costs, risks and mission complexity. In addition, robotic systems can be kept inactive in

space or work with no interruption, resulting in extending a mission’s lifetime. The only

unmanned orbiting proximity operations that have been performed were demonstration

missions, but missions like ETS-VII, Orbital Express and XSS-11 have successfully

demonstrated the level of maturity of several technologies for rendezvous, docking and

proximity operations on resident space objects (RSO) [8], [9].

In the past few years an increasing number of studies [5], [10–13] have proposed

autonomous unmanned spacecraft provided only with on-board monocular or

stereovision cameras as a possible answer for an effective, low cost, low power and low

weight solution for on-orbit proximity operations. The interest in vision-based systems is

also motivated by the need to develop systems which are able to track passive, un-

modeled, non-cooperative spacecraft. Indeed, targets with active sensors, beacons,

markers or known features represent only a small number of the space objects that require

on-orbit proximity operations technology as stated in [13], [14]. Many on-orbit proximity

operations missions may require tracking and estimation of the relative attitude of

decommissioned satellites with unknown dynamics, structure, shape and mass properties.

 2

Another important example of potential application for tracking and state

estimation of non-cooperative targets is the avoidance or active deorbiting of space debris

such as damaged satellites, broken components, abandoned launcher stages or other

potentially hazardous objects orbiting the earth. So far, avoidance of resident space

objects has been performed through ground-based detection and control, but the

importance of having on-board autonomous detection systems has been discussed in [15]

and [16]. Effective on-board autonomous detection systems will reduce risks and costs

associated with RSO detection, increase the range of the RSO sizes detectable and

eventually be usable in outer space missions.

B. FOCUS OF THIS RESEARCH

As mentioned before, a number of approaches in the literature investigate the use

of Vision-Based systems for on-orbit tracking and relative position and attitude

estimation (also called pose-estimation). Only a few studies exist on the use of vision

sensors on a completely unmodeled and non-cooperative target.

The main challenges of on-orbit camera sensing related to fundamental issues

such as illumination and reflections, optical deformation, frame rate, stereovision’s

limited range, noise and cluttered background are investigated in this work. In particular,

the challenge of detecting and tracking an unknown, non-cooperative target is focused on

in this thesis. No a priori information is considered available other than the target being

man made (with straight lines, regular patterns and evident corners).

The development of a real-time, vision-based algorithm and the new generation of

the floating spacecraft simulator (FSS) test-bed installed in the Spacecraft Robotics

Laboratory (SRL) at the Naval Postgraduate School (NPS) is used to provide

experimental data and demonstrate the feasibility of the various approaches described in

this work.

C. VISION BASED TRACKING AND POSE ESTIMATION IN SPACE

Model uncertainty on a non-cooperative target is considered in [13]. The use of

multiple-iterated Kalman filters (IEKFs) combined with a Bayesian maximum a

 3

posteriori (MAP) estimator that estimates the inertia tensor is proposed in this study. A

numerical simulated comparison between the robust multiple-IKEF scheme and a plain

IEKF (aware of the true target inertia) are provided, demonstrating significant robustness

improvements using the first approach.

An IKEF is used also in [17] and [18] combined with optical-flow and disparity

techniques to estimate the three-dimensional (3D) structure of the target. The

attractiveness of this method is that it does not require a known model of the target since

it uses point-wise kinematic models. The pose of the 3D structure is then estimated using

a dual quaternion method [19]. The robustness and validity of this method have also been

validated through hardware experiments on simulation mockups. The same image-

processing technique was used in the closed loop vision-based control algorithm for the

Vision based Navigation System (VIBANASS) experiments on the European Proximity

Operations Simulator (EPOS) [20]. These experiments demonstrated the robustness of

the guidance, navigation and control (GN&C) algorithm with variable illumination

conditions and luminosity ranges using image processing to hold a position, to

autonomously navigate the docking maneuver or to aid a delayed teleoperation. Several

useful observations came out of this work: a) calibration is needed to transform camera

measurements to world coordinates; b) time delay affects mostly distance measurements;

c) experiments with autonomous systems equipped with vision show improved

performance compared to systems with delayed teleoperation.

A vision-based control algorithm to keep the camera always pointing towards the

detected unknown RSOs is introduced in [5]. The main contribution is given by the

comparison between the use of monocular and stereovision in the control algorithm.

According to [5], we find that stereovision improves the robustness and speed of the

tracking while reducing fuel consumption.

Stereovision is also considered in [11], this time for the inspection of an unknown

object. The vision-based algorithm is required to guide the spacecraft around the target at

a desired distance while pointing at it during inspection. The only information available

to the GN&C algorithm is given by the on-board Gyroscope and stereo-camera raw

images. This works was then successfully validated through hardware simulations using

 4

the Visual Estimation for Relative Tracking and Inspection of Generic Objects

(VERTIGO) ISS-Based research test-bed, making it the first on-orbit demonstration of an

autonomous, vision-based, non-cooperative inspection.

A feasibility study for autonomous rendezvous with an unknown space object

using a monocular camera is presented in [12]. The method proposed implements two

different extended Kalman filters (EKF) for the far-range relative orbit estimation and

close-range relative position and attitude estimation. Simulation results provide a

measure of the estimated errors during the maneuver, proving the convergence of the

estimation of the full state with the applicability constraint of orbital maneuvers only.

The method proposed in [21] for the pose estimation of a non-cooperative

Satellite defines a target body-fixed frame through the identification of features on the

surface and using two of the most common attitude estimation algorithms, TRIAD and

QUEST, for the relative attitude measurements. The translational parameters and the

center of mass are estimated through a Kalman filter. The unscented Kalman filter (UKF)

and the EKF are then compared for the estimation of the moment-of-inertia ratios. All

these steps have been validated through numerical simulations proving the feasibility of

the method. In particular the UKF has shown to converge faster than the EKF in the

moment-of inertia estimation phase, achieving similar accuracy in the long term.

D. THESIS OUTLINE

The core of this research is the design and implementation of a vision algorithm

using approaches available in the literature. Several image processing techniques are

analyzed in order to provide a well-informed, efficient foundation in the development

phase.

In the first part of the thesis, a short survey of the systems and methods used in

the literature is provided as support for the choices adopted during the algorithm

implementation. The most common image processing techniques of interest for this

research and some results provided by analogous and interesting studies found in

literature are briefly introduced.

 5

The logic behind the image processing techniques used in this work, and why

these methods have been chosen, is discussed in Chapter III.

In Chapter IV, the artificial vision algorithm for tracking on-orbit relative motion

(AViATOR) is presented. Here the algorithm logic and modules are discussed,

introducing also the preliminary results obtained through virtual image rendering and real

videos provided by NASA.

In Chapter IV and V the implementation of the hardware-in-the-loop validation

experiments on the floating spacecraft simulator are described and explained, and

experimental data and plots are provided.

Observations derived from both the analysis of the experimental results and the

experience acquired during the development process of the algorithm and the test-bed are

given in the conclusions.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. BACKGROUND

A. ON-ORBIT RELATIVE NAVIGATION SYSTEMS

The list of applications of Artificial-Vision is practically endless. Automated

computer image processing has been extensively used in many types of unmanned

systems and in a variety of environments (on-water, under-water, on-ground, air and

space). It is used for surveillance, safety systems, inspection, vision-aided navigation and

more. In particular, recent advancements in computer technology and image processing

techniques have contributed to the increased reliability of real-time, artificial-vision

systems for detection and objects identification, human face and pose tracking, traffic

flow analysis, environment mapping, human senses enhancement or replacement,

surgical support and robotic manipulator servicing, GPS-denial localization, autonomous

mobile robots chase, capture and formation control [22], [23].

While relative navigation based on GPS or radio transponders is the most widely

validated approach being applied on many manned and unmanned rendezvous and

docking missions between cooperative spacecraft [24], [25], most of the potential non-

cooperative targets are not provided with on-board active sensors and require an accurate

estimation of the state, the shape and the mass and inertia characteristics of the target.

B. LASER-BASED RADARS AND SENSORS

The most studied, developed and tested space sensors for on-orbit relative

navigation and target tracking are laser based active radars and range sensors that use the

collimated beam reflection to estimate the distance from the surface of the object [1],

[26].

Several radar solutions, radar imaging processing techniques and constellation of

scanning satellites have been proposed and tested for on-orbit RSO detection and

cataloging [27], [28]. Of particular interest are the studies on laser radars and laser range

sensors.

 8

It is worth mentioning the Laser Communications Demonstration Equipment

(LCDE) implemented on the Japanese Experiment Module (JEM) of the ISS [29]. This

laser communication device has been used to demonstrate the ability of being converted

into a range sensor for RSOs. The basic idea was to point the LCDE towards a debris

surface (tracked previously using only sunlight reflection) and read the reflected return of

the laser with the receiver of the LCDE.

Laser radar sensors have also been widely tested for docking and proximity

maneuvers in space. An example of laser radar is the Rendezvous Laser Radar (RVR),

the primary sensor of the demonstration mission ETS-VII. Based on near-infrared laser

diodes, the RVR measures the distance between transmitter and reflector within 660

meters and with a line-of-sight angle of four degrees. With no moving components, the

RVR was shown to be reliable, easy to test on the ground and cost effective [30].

Light Detection and Ranging systems (LIDAR) have been used for many years in

space to support relative navigation during rendezvous of the Space Shuttle with ISS,

MIR and HST [31]. Furthermore, many LIDAR based experiments have shown high

performance and robustness in target detection, characterization, relative state estimation,

rendezvous and docking. An example is the Videometer (RVDM) used on the ESA

Automated Transfer Vehicle (ATV) for the last 250 meters of autonomous docking [32].

These qualities make the LIDAR technology the most appealing technology for

many future large spacecraft missions like the Orion Multiple-Purpose Crew Vehicle

(MPVC), which will be provided with a LIDAR sensor as primary relative navigation

system [26, 33, 34].

A drawback of LIDAR systems is that their performance is affected by the

reflectiveness of the target, and most of the applications require retro-reflectors or

specific features placed on the surface in a specific configuration known to the navigation

algorithm. It is through the tracking of these markers that most LIDAR systems derive

the information relative to the target pose. A few exceptions, like the STS experiment

system “TriDAR” [35], have demonstrated the use of LIDAR technology without retro-

 9

reflective markers by using 3D models of the target shape to retrieve pose information

through virtual and real images comparisons [10], [33], [36].

C. VISION-BASED SPACE SENSORS

Compared to the systems mentioned above, cameras are passive devices,

requiring less power than Laser-Based radars and having a smaller form factor [12], [37].

Camera systems are usually more compact and less complex and, therefore, less

expensive, mechanically simple, reliable and easier to test [5], [13]. Visual Imaging

capabilities can easily be integrated with human-in-the-loop teleoperations in partially

automated control systems to overcome delay and connection loss [38].

On the other hand, implementing camera systems as navigation sensors presents

some challenges such as the dependency on ambient illumination and the configuration

limits for range estimation through stereovision [10]. Nevertheless, camera systems have

been widely used in space, mostly integrated with lasers or range sensors for spacecraft

inspection, teleoperation activities and to aid navigation [38]. Vision-based is the solution

adopted by the Orbital Express demonstration mission in 2007 for the Automated

Rendezvous and Docking (AR&D), called the Advanced Video Guidance Sensor

(AVGS). The AVGS fires two sets of laser beams onto retro-reflective markers

positioned on the target and captures the images of the laser projection on visible and

infrared cameras [9, 39]. Similar to LIDAR systems, retro-reflective patterns have been

used by the software of these demonstration systems to reconstruct the relative pose.

An example of a vision-based system that does not require retro-reflective

markers is the Canadian Laser Camera System (LCS) used in the STS programs to detect

possible damages on the Space Shuttle. The LCS combines the cameras’ photographic

information with projected laser patterns on the surface to reconstruct the 3D image of

the target [40].

A category of vision-based pose estimation methods uses models to either detect

and match known two-dimensional (2D) and 3D features or to render 3D images

(provided, for example, by computer aided design (CAD) data) and compare them with

the real acquired views of the target. The use of 3D models or features is less affected by

 10

change in illumination, shadows, optical deformations and view occlusion and is,

therefore, more robust than 2D features [10].

A more challenging approach is assuming no a priori knowledge about the target

mass, shape and structure and assuming that no retro-reflective markers or known

features are present on the surface. Only a few studies have proposed an approach where

the target is completely unknown [11], [12], [17] or has uncertain properties [13].

For the pose estimation without markers or models, the main challenge is given

by the difficulty in retrieving range information. It is possible to retrieve the distance

when two or more cameras are available and the target is in the stereovision range of the

chaser [10] or when the images are collected from different known positions. This second

option is likely to be the case when the chaser and target travel at different speeds on

different orbits.

Another challenge is to reliably acquire and track enough features to be able to

provide a cloud of points for the pose estimator. Expected difficulties acquiring features

can be due to reflective or featureless surfaces of space vehicles, large changes in

illumination and high contrasting shadows, presence of repetitive patterns on the target

and rich and shifting background objects (e.g., Earth) [10].

Finally, an important limit to be considered is the computational load required by

the image processing algorithms. Usually, the computational power of space systems is

limited, but a real-time tracking and pose estimation is needed in order to reliably use the

system as a navigation sensor.

D. ARTIFICIAL VISION DETECTION AND TRACKING METHODS

Given the wide interest and artificial-vision’s many fields of application, many

studies have approached image processing in different ways using different techniques. In

The goals of the techniques we investigate are the following: a) select a region-of-interest

within which the target is fully contained; b) detect and track a target using natural

features; c) acquire information through the relative motion between camera, target and

other objects/background.

 11

The survey on “Object Detection Techniques” in [41] is an extremely useful tool

for identifying a useful classification for vision-based methods; therefore, a similar

classification is used here.

1. Region-of-Interest Selection Methods

The first phase of image processing usually requires the selection of an area of the

image where the algorithm has a high confidence of detecting the target. A valid

definition of a region-of-interest (ROI) is one where false positive detections and the

computational load of the algorithm are reduced, giving a first estimate of the 2D

localization of the object in the camera plane. Several methods can be used, but combined

techniques often give the best results. Besides search methods that require a priori

information, the most common techniques to define a ROI are based on static background

subtraction and edge detection.

Static background subtraction is usually implemented when the background is

fixed with respect to the camera and only moving objects must be detected. Edge

detection can be used to estimate the distribution of features along the image and discard

areas where no edges are detected.

In references [42] and [43], it is stated that methods based on basic segmentation

(Bottom-Up Approaches) are known to run faster and use less computer resources as

compared to methods that require known features.

Bottom up approaches can also be integrated with Gaussian distribution or

Fourier transform filters (BLOB) in order to refine and improve the quality of the ROI as

described in the following sections.

2. Features Extraction

One of the main constraints is usually given by the amount of available a priori

information about the target. According to [41] vision-based models can be grouped in

three major classes: “Holistic Generative Models,” “Holistic Discriminative Models,”

and “Multi-part Representation.” The first class includes all those methods that need a

priori 2D and 3D shape information or surface texture information. As discussed in the

 12

introduction, these methods cannot be used in the hypothesis for an unknown, unmodeled

target. The “Multi-part representation” uses classification processes, hybrid techniques

and decomposition methods that are at the moment beyond the scope of this work but

could lead to interesting future research.

The Holistic Discriminative Models use feature extraction techniques to analyze

small regions and then machine-learning techniques to classify the location without the

need of a priori models. According to [41] discriminative approaches are easier to

implement and usually require less computation than other approaches. Only this last

class of methods can be used in case of non-modeled targets.

Features extraction methods can vary based on how the algorithm recognizes and

classifies the differences of neighbor pixels in the image. Statistical distribution methods,

pattern recognition and local shape filters are the most common techniques. Most

commonly used are the Haar-like features and the Histogram of oriented gradients (HOG)

[44].

Some advanced feature extraction methods combine a detector algorithm to find

the features that match a numerical constraint and a descriptor to classify the feature and

some other useful information (orientation, intensity, etc.).

Very useful performance evaluations and comparisons between three Features

extraction methods, or detectors, called “Bag of words” (BOW), HOG and “Deformable

parts Model” (DPM) are given in [45]. These methods have been compared using several

kinds of descriptors for ship detection. The performance of image processing techniques

are usually strictly bounded to the parameters of the specific application; however, some

considerations made in [45] were found useful as a starting point for the determination of

the most suitable detector and descriptor for the research topic of this thesis.

In [45], the comparison of several methods lead to the conclusion that a Hybrid

method has a slightly better average performance in terms of small false-positive

detection and low computational speed with respect to the BOW, the DPM and the HOG

method, but the HOG detector is easy to implement, the fastest computationally and

provides very good results as compared to the other techniques.

 13

Selection of the right combination of detector and descriptor is usually based on

the type of features the algorithm must detect, on the kind of deformations expected or

changes in size and orientation, or simply on the computational cost constraints of the

system [46].

From comparisons between the large variety of keypoint detection and description

algorithms, one of the best performing is called the Scale-invariant feature transform

(SIFT). Like other detection algorithms, SIFT uses detection windows to estimate

gradients, orientation and other local characteristics to define points-of-interest (POI).

Scaling these detection windows can be done using the Laplacian of Gaussian (LoG) as a

blob detector. SIFT approximates the LoG using a faster difference of Gaussians (DoG)

approach. Once DoG are defined, local extrema are computed to find keypoints [47].

Similarly to the SIFT, the speeded-up robust feature (SURF) approximates LoG to

define the scaled windows and uses a box filter, which are extremely fast to compute with

integral images [48]. According to [48] SURF is much faster than the SIFT while

comparable in terms of robustness and repeatability under different viewing conditions.

The SURF method is discussed in detail in Section 3.

3. Motion-Based Detection Methods

Static background subtraction, already mentioned as a ROI selection technique, is

fast and easy to implement but can be affected by change in background luminosity or

movement of the camera. Other motion-based detection methods worthy of mention are

“optical flow” and “frame differencing” [49].

With the optical flow, the speed of a feature is tracked on the 2D image plane,

which corresponds to the projection of the 3D velocity vector of the target. The direction

and speed information derived by this technique can be used to group or filter the

features.

Frame differencing compares two or more sequential frames in order to detect the

change in location of a pixel or a feature. If the object moves slowly enough with respect

to the frame-rate, it is possible to assume that in two different frames the similar images

 14

close in location belong to the same translated object. This method becomes more robust,

but slower, when more frames are used.

E. KALMAN FILTER APPLICATIONS TO VISION ALGORITHMS

Most of the vision-based algorithms are implemented with a Kalman filter [50]

either for correcting the tracking errors, increasing the robustness and integrate measures

form different sensors, or to reconstruct the 3D information and estimate the state and

inertia properties of a target. According to the application and the approach taken,

Kalman filters have been implemented in several ways. In the cases when the

fundamental assumptions do not hold (as in non-linear/or non-Gaussian cases), the most

common approaches are the extended Kalman filter (EKF) and the unscented Kalman

filter (UKF).

Nowadays the EKF is considered a standard method for the estimation of a non-

linear system’s parameters and state through a maximum likelihood approximation. The

UKF has been designed to reduce the approximation errors of the EKF; extending the

concept of unscented transformation [51] and several implementations also show better

performance [47].

How to develop an algorithm that detects and tracks an object but also estimates

the state of the target is investigated in this thesis. From the survey provided in [50], these

two classes of applications are usually implemented with an EKF.

 15

III. SELECTED IMAGE PROCESSING TECHNIQUES

The main goal of this thesis is the development of an algorithm to estimate

relative pose, position and motion using only monocular camera images in the far range,

stereovision in the medium range and then monocular for docking. Each of these phases

require the use of image processing techniques to retrieve valid data and a Kalman filter

to reduce the error and estimate the full state of the target.

The image processing itself can be divided into several subsets of operations,

those which are necessary during the entire tracking and those required only for specific

phases of the maneuver (detection, docking etc.). On-orbit time-lapse data from the

Orbital Express mission [44] and taken from the International Space Station (ISS) [52]

were used in this part of the work to demonstrate results of the implementation of the

image processing methods described.

A. REGION-OF-INTEREST DETERMINATION

Preprocessing the image prior to target detection is extremely important. The

creation of a ROI or the subtraction of the background reduces the probability of false-

positive detections and reduces the computational load of the algorithm. Considering that

the position of the camera on the chaser is known, it is usually possible in space

applications to predict the background features. Background objects that can be

recognized and filtered out of the image are, for instance, the Earth, manipulators,

antennas and other objects mounted on the chaser or any other object with known state,

features or relative velocity. The following methods were implemented and tested during

the development phase of this thesis work.

1. Background Segmentation

Segmentation requires some knowledge of the target shape, illumination gradients

or patterns in order to be able to recognize the target from the background (e.g., color,

geometry, luminosity). The segmentation process tested in this work was mainly

structured in three phases: edge detection, dilation, fill holes and erosion.

 16

The edge detection recognizes the boundaries of objects in the image by detecting

discontinuities in brightness [46]. The result of edge detection on an image taken from

the Orbital Express mission [44] is shown in Figure 1.

Figure 1. Original (on the left) and processed image (on the right) of Orbital

Express using edge detection, after [44].

Dilation and “fill hole” processes are the equivalent of making a convolution in

the binary domain. The process expands the detected edges and fills the smaller regions

enclosed by the edges in order to obtain a more uniform and unified shape. Erosion, on

the contrary, subtracts all the edges and small specks that are far from the main figure,

providing a cleaner final result. Dilation, fill hole and erosion were applied in this order

on the image previously obtained using edge detection (shown in Figure 1). Final results

are shown in Figure 2 where it is possible to see that, due to errors in the segmentation of

the background features, the shape of the satellite is not accurate and blends with portions

of the background.

This method proved to be difficult to calibrate, inefficient and computationally

intensive, therefore, it was not used in the final implementation of the algorithm.

 17

Figure 2. Edge detected Orbital Express image processed using the dilation

and fill hole (on the left) and erosion (on the right), after [44].

2. Static Background Subtraction

This method filters the background by subtracting from the image all the pixels

that do not change in sequential frames. Many spacecraft cameras have a fixed angle with

respect to the Earth, allowing high resolution cameras, located on artificial satellites, to

recognize features on Earth regardless of the fact that the Earth cannot be considered a

fixed background. For low resolution cameras, this technique can still be used to classify

regions of the image in such a way that different detection techniques can be used.

For test purposes this technique was implemented to impose the condition of only

detecting features approaching from the dark regions of the images, such as objects

coming from outer space, on higher orbits, or appearing above the Earth horizon.

Although this constraint limits the use of the algorithm, when applicable it yields a much

faster and more reliable detection than other, more sophisticated techniques; therefore,

this method was implemented as an initialization option for the algorithm. As an

example, it was tested on a time-lapse from an ISS camera pointing constantly towards

the Earth’s horizon. An example of original image is on the left in Figure 3, while the

processed image on the right. The processed image shows, in blue monochromatic scale,

all the regions that have been discarded as background because of null or minimum

relative motion. This technique was shown to be extremely useful when the camera has

 18

an almost constant relative motion with respect to background objects, while the relative

motion of the target is more relevant. In the algorithm this technique was implemented as

an option that could be activated or not according to the scenario of the simulation.

Figure 3. Selection (in blue) of background regions on

an ISS time-lapse frame, after [52].

3. Optical Flow

With the method of the optical flow, the projected velocity of the pixels on the

image 2D plane is calculated. Entire regions can be classified based on these

measurements and removed from the image if considered belonging to known

background objects. This method was shown to be computationally demanding but

extremely useful for the initialization of the algorithm or after a ROI has been selected.

The optical flow was used in this research mainly for the tracking phase of the algorithm,

after the detection and description of the features. During tracking, the orientation of the

velocity vector of the valid features provides a first estimate of the relative motion of the

target. The use of the optical flow in the detection phase or in background subtraction is

more challenging because it requires knowledge of the relative motion of the objects that

need to be excluded from the detection analysis.

 19

B. FEATURE DETECTION METHODS

After the determination of a ROI has been achieved, it is necessary to detect and

define the points-of-interest (POIs) in order to obtain measurements regarding a target’s

orientation or position based on optical images. This operation can be the most

challenging phase of image processing even when preprocessing techniques of

background subtraction and ROI selection are implemented perfectly [41].

POIs must exhibit two important properties:

• the detection of the POIs must be robust (i.e., detectable for different

illumination and resolution, from different viewpoints and with noise or

deformations);

• the description has to be distinctive, which means the algorithm must be

able to recognize one POI from another.

In this section, detection and description techniques used in the development of the

algorithm are described and explained.

1. Harris Corner Detection

In image-processing the implementation of a reliable feature detection method is

essential for a correct identification and tracking of physical points. As mentioned before

the hypothesis of artificial satellites simplifies the problem of detecting the target because

of the straight lines and regular patterns on the surface. One common method to select

features is to identify cells (small regions of pixels) where the illumination gradient

changes in two directions, as can be seen in Figure 4.

Defining xI and yI as the image intensity gradients along the x- and y-axes, we

base a numerical algorithm to select gradient changes on the invertibility of the matrix

[53]

2

2() x x y

x y y

I I I
G x

I I I
 

=  
  

∑ ∑
∑ ∑

. (1)

 20

Figure 4. Corner feature in a window of pixels, from [53].

A more advanced version of this algorithm is the well-known Harris corner

detection method. The matrix in Equation (1) is used to determine a threshold C that

defines whether a window of pixels can be considered a corner feature using

 2() det() ()C G G k trace G= + × , (2)

where k is an arbitrary small scalar.

Given the hypothesis of artificially regular shapes, the Harris corner detector has

been shown to perform extremely well and is, therefore, used in almost all the phases of

the detection, tracking and estimation algorithm for the thesis work.

2. Gaussian Blob Detection

Detected corners can be used to estimate the position and size of the target and

build an initial region-of-interest. In order to build a robust and reliable region-of-interest,

a Gaussian distribution of the detected feature was implemented and filtered. This

method measures the Gaussian distribution of the detected features and highlights only

the regions on the images corresponding to Gaussian peaks above a certain arbitrary

threshold. A well calibrated filter provides a highlighted blob-like region where a higher

density of corners has been detected, giving a first rough estimate of the position and size

of the target [46].

 21

In Figure 5, it is possible to see the region-of-interest derived by the computation

of a Gaussian filter for an on-orbit time-lapse of Orbital Express. The ROI is represented

in blue, the features in green and the blob-like object in white.

Figure 5. Region of interest derived by a BLOB Gaussian filter on a frame of

Orbital Express time-lapse, after [44].

This method was shown to perform extremely well with Harris corner detection

and adaptive non-maximal suppression (ANMS).

3. Adaptive Non-maximal Suppression (ANMS)

The above mentioned adaptive non-maximal suppression is a technique that

measures the relative distance between detected features with the scope of discarding

some POIs when they are too close together. This method reduces the density of features

in certain regions, where the large number of detections can actually decrease the

performance of the algorithm. Too many close features do not give much valid

information compared to the computational load that they can cause. Furthermore,

Gaussian distribution filters, such as the one mentioned above, were shown in this work

to be negatively affected by this problem, making the ROI focus on a very complex

feature instead of the entire target spacecraft [54].

 22

4. Speeded-Up Robust Features (SURF)

Corner detection is computationally efficient but does not consider local

illumination intensity normalization, scale factors and orientation. As mentioned in the

previous chapter, in order to classify features a more robust method is to use a

combination of detectors and descriptors.

The SURF detector is based on the fast-hessian detection method [48] which

requires the computation of the determinant of the hessian matrix

 () () ()
() ()

, ,
,

, ,
xx xy

xy yy

L L
H x

L L
χ σ χ σ

σ
χ σ χ σ

 
=  
 

 (3)

to define location and scale, where the elements xxL , yyL xyL , and yxL are the convolution

elements of the Gaussian, respectively, along the x -axis, the y -axis and on both the x-

axis and the y-axis, all functions of the point coordinates (,)x yχ = and of the scale σ .

In the SURF algorithm the second-order Gaussian derivatives are approximated

with box filters in order to make the algorithm faster to compute using integral image of

different sizes. The box filter approximation is shown in Figure 6.

Figure 6. Examples of box filter approximation (two images on the right) on

Gaussian second-order derivatives (two images on the left), from [48].

The advantage of this method is given by the fact that, in order to detect features at

different scales, the Gaussian derivatives must be computed only once while the image is

iteratively filtered with sequentially bigger masks.

The SURF descriptor identifies circular regions around the POI and computes

Haar-wavelet responses. The responses are weighted with a Gaussian window and used

to define the dominant orientation. The orientation is then used to define a square region

 23

where Haar-wavelets are computed and weighted in a locally oriented reference frame.

These oriented wavelets are used to retrieve a four-dimensional vector that describes the

distribution of the intensities changes that characterize the feature. An example of SURF

features detection is shown in Figure 7.

Figure 7. SURF features detected using an Orbital Express image, after [44].

5. Histogram of Oriented Gradients (HOG)

The histogram of oriented gradients (HOG) descriptor has been shown to

outperform other feature detection methods in other applications [45], [55] given its

simplicity and robustness. The HOG descriptor maps the image in small, equal-size-cell

grids and normalizes the illumination with respect to local regions, describing the

features through the distribution of local intensity gradients or edges.

This method is simple, fast and robust but performs better in combination with

detectors such as SIFT or SURF [55]. An example of HOG feature and HOG

classification are represented in Figure 8.

 24

Figure 8. Example of a histogram of gradients classified feature, after [44].

C. FEATURE TRACKING: THE KANADE LUCAS TOMASI METHOD

The detection methods described above have been shown to be some of the most

efficient algorithms for feature detection, being robust, repetitive and relatively fast.

Nevertheless, the use of these methods on every camera frame is prohibitive when high

sampling rates and low computational power are involved. A solution is to implement the

KLT (Kanade, Lucas, Tomasi) tracking method [56], [57]. The KLT tracks frame-by-

frame only the features that have been detected during the initialization of the algorithm.

With this approach the code is not required to use detection computation on all frames

but instead estimates the new location of old features by analyzing changes in windows

of pixels.

The KLT method detects only planar translations of the tracked features,

measured through the definition of a displacement vector d . A matching threshold is used

to either discard or accept the new location to overcome small errors due to noise and

changes in attitude, distance and illumination conditions. The displacement vector is the

vector that minimizes

 () () 2
I x d J x wdxε = − −  ∫ , (4)

 25

where ()I x d− and ()J x are the functions representative of the same feature on two

sequential frames and ()w x is a weighting function.

More details on how this solution is approximated are provided in [57]. The limit

of this method is given by the loss of the features due to obstruction or complex and

unknown change of patterns due to the motion of the relative view. To overcome this

limit, a periodic detection-feature initialization might be necessary, with a period function

of resolution, frame rate and relative velocity.

D. BASIC POSE ESTIMATION TECHNIQUE

Given a number of reliable features belonging to the same rigid body, the state of

the detected points is constrained by the common dynamics of the entire body. A method

to extract the state of the entire body through its features is described in [53] and called

“the linear eight-point algorithm.” This method is based on the epipolar constraint

according to which, given two different image planes, one being the reference and the

second defined by a translation vector T and rotation matrix R , two projections images

of the same point 1x and 2x are related by

 �
2 1 0Tx TRx = , (5)

where �T is defined as

 �
2 2Tx T x= × . (6)

and �E TR= is called the essential matrix.

Several epipolar-based methods to retrieve the relative position of two cameras

with respect to the same target are proposed in [53]. In this work this approach is inverted

without changing the main outline of the algorithm, and the epipolar measurements are

used to retrieve the motion or attitude of a moving target with respect to a fixed camera.

The “linear eight point algorithm” is ill-conditioned when the rate of change

between two frames is low, which is the case of high quality videos and must be properly

modified. When this is the case, the tracked points provide only a small parallax

displacement, and the motion can be considered almost continuous. If, in addition, the

 26

features in the 3D space are aligned on a plane, an extra constraint must be considered in

the computation. These problems are dealt with in [53] where four different algorithms

are proposed, depending on the motion (discrete or continuous) and whether the features

in 3D are planar or not.

Details on these algorithms and a step-by-step description of the implementation

are provided in Chapter IV.

E. STEREO AND GEOMETRY RANGE ESTIMATION

The range measurements can be retrieved only after the target enters in the

stereovision range, which is function of the relative position of the two cameras. Once

features are detected on both images, matching algorithms are necessary to recognize the

same POI in different 2D frame coordinates. A method used to retrieve range information

from these stereo coordinates was proposed in [53], estimating a depth gain 1λ from

 1 2 12 1 2 12 0x R x x Tλ × + × = (7)

where 12R and 12T are, respectively, the rotation matrix and the translation between the

two cameras, while 1x and 2x are the POI coordinates in the 2D frames.

Several matching techniques can be used. SURF integrated matching algorithms

that are useful as starting points for this technique are provided in MATLAB [46].

Another method investigated is based on the condition that, knowing rotation matrix 12R

between the two stereo-cameras, valid matching points must satisfy

 ()2 12 1 0Tx R x× = . (8)

As stated before, the full 3D target location can be estimated by stereovision

provided the distance between target and cameras are within certain limits. If it is too far,

the algorithm is ill-conditioned and unreliable, and if it is too close, the two images do

not match. While there is no other method to estimate the distance of a feature in the far

range, in this work an idea to extend the range estimation in the close range is proposed.

 27

For the monocular camera close range estimation, the proposed approach is to

collect range and size information on specific geometries and features while the target is

within stereovision range. This information is then used to compute the range from single

projections. Examples of some possible geometries that can be tracked in close proximity

range are provided in Figure 9.

Figure 9. Example of geometric estimation features for the distance tracking in

closer-than-stereo-vision range, after [44].

 28

THIS PAGE INTENTIONALLY LEFT BLANK

 29

IV. ARTIFICIAL VISION ALGORITHM

The main goal of this thesis is the development of an algorithm to estimate

relative position and motion of a satellite for on-orbit navigation and proximity

operations through real-time image processing. In order to accomplish this task, the

algorithm must be able to recognize when to activate and perform all the subsets of

operations mentioned in the previous chapter. In this chapter, the implementation of these

operations and the logic structure of the main algorithm are presented, followed by a

description of the videos used for the first test, debugging and calibration phase.

A. ALGORITHM STRUCTURE AND LOGIC

The algorithm has been developed in a modular structure, as a collection of

MATLAB scripts. This solution keeps the specific image processing tasks separate from

the main logic that activates and combines them together and makes the entire algorithm

adaptable to different applications and scenarios.

An on-orbit proximity operations scenario was created as a benchmark maneuver

for the development of the main logic and for the test of the image processing operations.

The scenario considers an operation of detection, rendezvous and docking with an on-

orbit non-cooperative target. The maneuver has been divided into four main stages:

• Far-range detection and tracking is when the chaser and the target are too
far apart to recognize specific features. In this case the algorithm detects
the presence of the target and separates it from the background.

• Monocular middle-range motion estimation is when features of the target
are recognizable and monocular estimation of the angular and linear
velocities can be computed.

• Stereo-range is when the target is within the stereovision range, and the
algorithm can provide range measurements.

• Monocular close-range is when the target is too close for stereovision
computation, and previously detected geometries are used to estimate the
range during the docking phase.

An example of the four stages is shown in Figure 10.

 30

Figure 10. Representation of the four stages of the benchmark scenario from Orbital

Express time-lapse data, after [44].

The algorithm must be able to recognize the stage of the maneuver and adapt

accordingly, activating and modifying the appropriate sub-functions. A description of

how the algorithm performs this task is provided below, followed by the description of

the structure logic of the other functions.

1. Main Logic

The Main Logic is defined through three modes of operation: initialization,

tracking and estimation. Within these modes, the main logic triggers different sub-

functions according to the stage of the maneuver. A general schematic of the logic is

provided in Figure 11.

 31

Figure 11. Logic schematic of the vision-based algorithm.

The initialization phase includes the preprocessing of the image and the first ROI

selection. The preprocessing options must be calibrated based on known initial-view

conditions (like Earth horizon position and on-board camera occlusions), while the ROI

is automatically generated when an object is detected.

The tracking phase utilizes the first ROI generated to run the Harris corner

features detection only within the defined limits. The target is tracked through the

features detected as a point mass, updating the ROI until a sufficient number of high

quality features is collected. When the features are recognizable, the KLT tracking

activates on every frame, while the detection algorithm is disabled. The detection is re-

enabled only periodically to search for new features. The ROI is a function of the KLT

features and updates on every frame.

The estimation phase activates with the KLT output. Projected feature

translations on the 2D image plane are computed with optical flow measurements.

Relative pose and relative velocity of the target are estimated through epipolar and

geometric transformations. The stereovision range estimation is activated either by a

 32

threshold dimension of the ROI or a periodic stereo-frame comparison. When range

measurements are available through stereovision, the algorithm computes the geometrical

dimensions of the features. In the final phase, when stereovision is no longer available,

this information is transferred to a geometric range estimator. The outputs change

according to the stage of the maneuver:

• Pointing information is available from the first detection of the point mass
object.

• Relative pose and velocity information are available only when the KLT is
active and tracking of features is possible.

• Range information is collected from the beginning of the stereovision
range until docking.

2. Initialization

In this work the initialization phase proved to be extremely important for the

performance of the subsequent tasks, but the quality of the initialization is a function of

the initial condition information provided to the camera. Several initialization options

were implemented for the different videos and experiments performed.

If it is known that the background does not change in time and that the target is

not visible during initialization, a first fast option is to mask all the gradients of

illumination that appear in the initial images acquired. This method hides the regions

where images are detected in the first frames and instructs the algorithm to search for a

target only in the empty regions of the image. This method is fast and valid only if the

target is expected to appear above the Earth horizon and is not visible from the beginning

of the acquisition. Furthermore, the view angle with the horizon must be almost constant.

A second option is to improve the static background by removing the mask over

the background features once the target is detected and/or a ROI is created. In this way, if

the tracked features cross over the masked regions after the initialization phase, the

algorithm is still able to follow the tracked features within the ROI.

Another possibility is to use the optical flow in order to mask all of the features

that have a projected velocity not compatible with the expected velocity of the target on

 33

the first frames acquired. This masking technique hides the features that may otherwise

be confused with the target, including Earth’s surface or other spacecraft. The limit of

this option is that relative speed information is not always available, but it is an efficient

method to discard Earth features.

An example of the implementation of the initialization is provided in Figure 12.

The algorithm has been tested on a time-inverted video from an ISS time-lapse that

shows the Cygnus spacecraft approaching the ISS, while the earth and the ISS robotic

arm are background features. The Cygnus appears only after a few frames from the

initialization. Static background subtraction was used to exclude arm and Earth features

from the detection. Harris corner detection was used to detect the point mass target (the

detected feature is indicated in green) and the ROI is initialized (indicated with the

yellow box). The red arrow indicates magnified areas from the same frame.

Figure 12. Example of static background subtraction, Harris detection and ROI

selection on a time-inverted ISS Cygnus time-lapse, after [52].

3. Target Tracking

Target tracking can be divided in two phases. In the first phase, when the target is

too far away to recognize specific features, detected points of interest are simply treated

as point masses. Harris features are used to update the ROI location using the same

method implemented for the first detection during initialization.

The algorithm activates the KLT tracking of distinct features when the target is

closer. KLT provides the position of each valid feature in sequential frames, making it

 34

possible to track them and use optical flow analysis to estimate the 2D image projected

velocity. The points detected are also used to update position and dimensions of the ROI.

A periodic loop is implemented that activates the Harris detection in order to

search for new features in the updated ROI and to reinitialize the KLT tracking.

Deactivating the Harris detection within the periods reduces the computational

complexity of the algorithm. The period must be calibrated based on the quality of the

acquisition and was found to be mostly a function of frame rate and resolution.

Images from the ISS-Cygnus video that describe this phase are provided in Figure

13 and Figure 14. The KLT tracked points are indicated in red, while the updated Harris

points are indicated in green. The ROI is indicated with the yellow box. The red arrow

indicates the magnified view of the ROI.

4. Estimation

The KLT tracking provides the 2D image coordinates of a set of valid features for

each frame. This information is used in the estimation phase to measure the projected

velocity of each feature through optical flow analysis. This measure is then used for the

Epipolar transformation algorithm to estimate the angular and linear velocity of the rigid

body detected. Details on the algorithm used can be found in [53].

Relative attitude information can be defined using the geometric transformation

algorithm, which defines a coordinate frame fixed to the rigid body and estimates the

transformation between the body and the camera frame [46].

 35

Figure 13. ISS-Cygnus tracking and update using Harris features detection

and KLT, after [52].

Figure 14. ISS-Cygnus tracking and update using Harris features detection and KLT

at a close range, after [52].

While these tasks are performed, the stereo images are compared in order to

detect when the target enters the stereovision range. The stereovision sub-function

 36

activates when a large-enough threshold distance between the same features on two

images is detected.

The stereovision uses SURF to describe and match points between the left and

right images. The displacement is then used for the range estimation. The range is not

only used as an output of the algorithm but is also necessary to estimate the geometrical

dimensions of shapes and strong features on the target. This information is then classified

and reused in reverse to estimate the range when the stereovision capabilities are no

longer available. Indeed, when the target is too close to the chaser, some features might

be outside the field-of-view of a camera or one camera might be occluded by the docking

body.

B. ALGORITHM’S LIBRARIES

The algorithm discussed in this section is a collection of MATLAB scripts

developed to implement the capabilities described above. MATLAB was chosen as the

initial development and test coding language for several reasons:

• The MATLAB image processing toolbox is provided with most of the
algorithms analyzed in this work;

• MATLAB code can be integrated with C code and Simulink models for
hardware-in-the-loop implementations;

• MATLAB/Simulink code can be compiled as a C real-time executable
with the open-source RTAI Linux OS.

Future work is required to implement this algorithm as a single Simulink block,

making the algorithm easily implementable in RTAI GN&C Simulink models. The

MATLAB scripts described here are all collected in Section A of the Appendix of this

thesis.

1. Initializer

The “initializer.m” file is a script used only at the beginning of the algorithm to

upload all the initial conditions, calibration gains and motions that define how the

algorithm performs the image processing and the estimation.

 37

This script begins with a list of options that define the performance of Harris,

SURF, ROI and stereovision. The main options are provided in Table 1. All the other

values defined in the initializer are only necessary to pre-allocate initial variables.

A second part of the script defines and loads the input camera or the input video.

Most of the values in the initializer are defined as global variables in order to use them in

all the other subscripts of the algorithm.

2. MAIN_AViATOR

The main script called “MAIN_AViATOR.m” has the function of connecting, activating

and deactivating all of the functions of the algorithm. The main file keeps track of the

number of frames computed and triggers the periodic functions. The schematic of the

main algorithm is provided in Figure 15 where it is possible to see the periodic loops, the

optional tasks and the functions. The main script also has the task of detecting when the

target enters or leaves the stereovision range or when the target is no longer tracked.

3. FUN_BACKGROUNDSUB

Two methods for the subtraction of the background are implemented in the

function called FUN_BACKGROUNDSUB.

The static background subtraction is used to detect the gradients of illumination

due to features in the first frame and mask these features on subsequent frames until the

approaching target is detected. This function is activated only when it is known that the

initial frames do not contain the target and most of the background is static or slow

relative to the camera. This function is extremely powerful because it drastically reduces

initial detection error and computational load.

 38

Table 1 List of algorithm initialization options.

Name Function
CreateVideo set to 0 or 1 to activate the creation of a video output
CreateImage set to 0 or 1 to activate the creation of a frames output
Refreshperiod number of frames between detection updates during the tracking
HFOV camera horizontal field of view
fl focal length of the camera measured in meters
Dstereo horizontal distance between two cameras
pix square pixel dimensions in micrometers
BackgroundSub set to 0 or 1 to activate the static background subtraction
Detect set to 0 or 1 to hold the detection until tracking is possible
Hstrongest number of strongest Harris points that the algorithm will classify
Hquality threshold quantity. Harris detector discards corners with a quality

below this value
SurfSwitch set to 0 or 1 to activate SURF as detector/descriptor
Sstrongest threshold quantity. SURF detector discards features with a quality

below this value
ANMSSwitch: set to 0 or 1 to activate ANMS in the detection
ANMSdistance defines the radius in pixels of the ANMS
Blength length added to the Blob Gaussian distribution
Bsigma standard deviation of the Blob Gaussian distribution
Bnumber number of strongest Blobs that the algorithm will classify
Bmode defines the method of selection of the Blob (numbered from 1 to 3)
BroiDim pixel sides dimensions of the ROI created around the first Blob
KLTroi set to 1 discards all the tracked points too far from the ROI
KLTvalue maximum distance to discards KLT points too far from the center of

the ROI
KLTroiDim number of pixel to make the KLT ROI bigger than the farthest KLT

point.
Distance stereovision threshold activation distance
Stereovision set to 0 or 1 to activate Stereovision
Stereoperiod number of frames between activation of the detection during the

stereovision

 39

Figure 15. Logic schematic of the main script MAIN_AViATOR.m .

Loop

Input Frame converted to a gray image

ROI selection using Gaussian Blob

Geometric
Transformation

Stereovision Check

 40

The background segmentation uses a combination of MATLAB built-in

commands. The edges are detected with “edge” command and dilated using “imdilate.”

The interior gaps are filled with “imfill,” and the final blob image is adjusted with

“imclearborder.” This method is extremely sensitive to the illumination conditions and to

the sensitivity parameters chosen, requires more computation than static background

subtraction and is less reliable.

For some videos tested in this work, an optical flow background subtraction was

needed, where the features were selected based on the speed. When the methods

mentioned above could not be used or were not necessary, the detection was implemented

for the entire image or only in manually selected ROIs.

4. FUN_DETECTION

Harris corner detection is activated through the function called

“FUN_DETECTION.” The function uses the built-in MATLAB command

“detectHarrisFeatures” for detection, selects the strongest points and activates the ANMS

sub-function to reduce the number of point in overcrowded locations. The code reorders

the detected points based on the quality metric computed by the detection and eliminates

all points within a circle of arbitrary radius centered on the strongest points.

The coordinates are then used for the Blob ROI selection during the initialization

and for the KLT periodic update.

5. FUN_SURF

The SURF code is identical to the Harris corner detection code but activates the

MATLAB built-in function “detectSURFFeatures” using the HOG description through

the “extractfeatures” command. The performance of this function was compared with the

performance of the Harris corner detection to analyze the difference.

Tests in this work showed that SURF is more precise and provides more

information about the features, making it a stronger descriptor for matching features in

different frames (or cameras), but is computationally more demanding. During the

detection phase the high quality information of the SURF is not necessary, but a low

 41

computational load is essential; therefore, SURF was used only in the stereovision phase,

where robust features-matching is essential, while the Harris corner detection code is

preferred for the initial detection and periodic updates of the KLT tracker.

6. FUN_BLOB

The Gaussian blob filter is activated by the Harris function only during

initialization in order to create blob-like figures and select the one that is the most likely

target. The blobs are created through a Gaussian analysis of the distribution of features

provided by the detection. The density determines the peaks and valleys of the 3D

Gaussian over the 2D image plane. A threshold filters the lower regions of the Gaussian

curve and forms the blob regions as white areas over a black image.

The best selection of the blobs depends on what kind of information the user has

on the target (dimensions, trajectory, etc.), but several tests have shown that if good

background segmentation is implemented, simply choosing the bigger blob is sufficient.

In case the blob represents only a part of the target or it is bigger than the target, new

detection automatically updates the region-of-interest and eventually adapts to the

features tracked.

The blob function creates a zero matrix with the dimensions of the frame and

updates the value within a range from the detected points according to the Gaussian

distribution. If K is the metric vector of each point provided by Harris feature detection,

σ the standard deviation of the Gaussian window, and n a function of the arbitrary

range defined in the initializer as “Blength,” it is possible to calculate for each element of

the matrix a value iM defined as

 () ()2 2 2 22 21 1
2 2

T
n n

iM K e eσ σ

σ π σ π
− −   =       

 . (9)

The blob selection instead uses the “bwconncomp” MATLAB command to detect

connected regions and provide information like size and position. The classification of

the blobs is then used to choose the larger one and to build a proportional ROI around it.

 42

In this function a security “if statement” is also created to keep the ROI within the

limits of the image in order to avoid errors with the detectors and the tracker.

7. FUN_KLT

The KLT tracker is based on the MATLAB built-in “step” command. The “step”

command with the option “tracker” provides KLT points and a validity vector that

indicates when a feature is no longer tracked. The KLT requires an initial set of features

to begin tracking. The initial set of features is provided by the Harris detection during

initialization and during the periodic updates. The mean value of the coordinates of the

valid KLT points and the maximum distance from this value are used to build a new ROI

for each frame. The ROI translates, expands or reduces its size according to the location

of the features tracked. This method increases the robustness of the tracking and reduces

the computational load and the error during periodic detection.

8. FUN_EPIPOLAR

The Epipolar transformation uses the tracked features of the KLT to estimate

relative attitude and relative motion between the rigid body and the camera. The

algorithm was developed from basic principles following the four methods provided in

[53] and is reported in the following subsections. All results are demonstrated in [53].

a. Linear Eight-Point Algorithm

The basic estimation method is the “linear-eight point algorithm” where, given the

2D points coordinates in the image reference frame at two different times, we define the

matrix X as

 1 2[, ...]n TX a a a= (10)

where each column ia is the Kronecker product 1 2
i ix x⊗ defined as

 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2[, , , , , , , ,]Ta x x x y x z y x y y y z z x z y z z= . (11)

The stacked essential matrix SE is computed as the ninth column of xV , obtained by

minimizing SXE based on the singular-value decomposition (SVD) of X :

 43

 T
X X XX U V= Σ . (12)

The solution matrix SE must then be projected in the essential space. This is obtained by

computing the SVD of the unstacked SE and obtaining

 1 2 3{ , , } TE Udiag Vσ σ σ= . (13)

The values of U and V are necessary for the estimation of the rotation matrix R and the

translation vector T as

2

T T
ZR UR Vπ = ± 
 

 (14)

and

 �
2

T
ZT UR Uπ = ± Σ 
 

, (15)

where

0 1 0
1 0 0

2
0 0 1

T
ZR π

± 
   ± = ±       

 . (16)

This method provides a unique solution only if the following conditions are satisfied:

• The number of points tracked is equal to or larger than eight.
• The points are not aligned or on the same plane.
• The rotation and translation provide sufficient parallax.
• The parallax values must be larger than the noise.
• A positive depth constraint is used.

This algorithm was modified in [53] to overcome some of these limitations for the

continuous and planar cases.

b. Continuous Eight-Point Algorithm

If the motion is slow compared to the frame rate, the algorithm does not have

sufficient parallax distance between features to estimate the essential matrix with the

method described in Subsection a and must be modified as follows.

 44

Indicating with the symbol ()α× the skew-symmetric matrix of a generic vector α , we

define the skew-symmetric matrix of the linear velocity v as

3 2

3 1

2 1

0
() 0

0

v v
B v v v

v v

− 
 = × = − 
 − 

 (17)

and the product of skew-symmetric matrices of the angular velocities ω and of the linear

velocities v as

 ()()A vω= × × . (18)

We can express the “continuous Epipolar constraint” for a ix position vector and iu

velocity vector of each i feature as

 () 0T T
i i i iu B t x x Ax+ = . (19)

Based on this constraint, the ia necessary to build the X matrix in (10) is a function of

ix and iu :

 2 2 2
3 2 1 3 2 1[, , , , 2 , 2 , , 2 ,]Ta u y u z u z u x u x u y x xy xz y yz z= − − − . (20)

In the MATLAB function the values of the points’ velocity are obtained through the

optical flow, measuring the distance traveled of each feature on the 2D projection of two

subsequent frames. The ratio between distance and frame rate provides the projected

velocity in pixels per second. The SVD of X provides the SE stacked vector. The

vector SE is used to form a vector 0v with the first three elements and a matrix s with the

remaining six. The SVD of s provides sV , 1λ , 2λ and 3λ for

 { }1 2 3, , T
s ss V diag Vλ λ λ= , (21)

and computing ()1 1 2 32 3σ λ λ λ= + − , ()2 1 2 32 3σ λ λ λ= + + and ()3 3 2 12 3σ λ λ λ= + − ,

we define

 1 3λ σ σ= − (22)

and

 45

 2arccos sθ λ
− =  
 

. (23)

The values λ and θ are necessary to compute ()2 2
Y

T
sV V R θ π= − − and ()YU VR θ= −

with ()YR α being a rotation matrix along the y -axis of angle α .

Four possible 3D velocities can be computed from

 �
1 1,

2 2
T T

z zUR U v VR Vπ πω    = ± Σ = ± Σ   
   

 (24)

and

 �
1 1,

2 2
T T

z zVR V v UR Uπ πω    = ± Σ = ± Σ   
   

. (25)

The method to obtain a unique solution is to choose the pair of angular and linear velocity

vectors such that the product 0
T

iv v is the maximum of the i possible values as

 { }*
0 0maxT T

i iv v v v= . (26)

This method overcomes the problem of the small parallax displacement with the

hypothesis of continuous motion but still requires at least eight non-planar features.

c. Linear Four-Point Algorithm

The four-point algorithm overcomes the limitation of the eight-point algorithm by

introducing the planar constraint

 
2 1 0x Hx = (27)

where H is the planar homography matrix defined as

 1 TH R TN
d

= + , (28)

with the variable N being the unit normal vector of the target plane with respect to the

camera frame, d the distance from the optical center of the camera, and R and

T rotation and translation, respectively, as defined in the previous subsections.

 46

The homography matrix can be approximated by building the matrix
1 2[, ...]n TX a a a= with ia defined as the Kronecker product 1 2

i ix x⊗ and computing the

SVD of X . The nine output elements are used to form a 3 × 3 matrix LH . The SVD of

LH provides the 2σ that is used to normalize LH and obtain the homography matrix

H as

2

LHH
σ

= . (29)

The homography matrix is used to define several vectors and matrices necessary for the

computation of the solution equations. The vectors 1v , 2v and 3v are the column vectors of

the matrix V computed through the SVD of TH H as

 T TH H V V= Σ . (30)

The vectors 1u and 2u are defined as

2 2
3 1 1 3

1 2 2
1 3

1 1v v
u

σ σ

σ σ

− + −
=

−
 (31)

and

2 2
3 1 1 3

2 2 2
1 3

1 1v v
u

σ σ

σ σ

− − −
=

−
. (32)

Based on these vectors, we define four matrices as

 �
1 2 1 2 1[, ,]U v u v u= , (33)

 �
2 2 2 2 2[, ,]U v u v u= , (34)

 �
1 2 1 2 1[, ,]W Hv Hu Hv Hu= , (35)

and

 �
2 2 2 2 2[, ,]W Hv Hu Hv Hu= . (36)

 47

The equations listed in Table 2 can be computed to retrieve the four solutions for R ,

T and N . The solutions can be reduced to two identifying the one which is consistent

with the positive depth constraint

 3 0TN e > (37)

where 3 [0,0,1]Te = .

The implementation of planar methods was found extremely useful due to the

quasi-planarity of the features detected in most of the scenarios analyzed in the

experiments of this work.

Table 2. The four possible solutions for the linear four-point algorithm

 R N T

Solution 1
1 1 1

TR WU=

�
1 2 1N v u= ()1

1 1
T H R N
d
= −

Solution 2
2 2 2

TR W U=

�
2 2 2N v u= ()2

2 2
T H R N
d
= −

Solution 3
3 1R R=

3 1N N= − 3 1T T

d d
= −

Solution 4
4 2R R=

4 2N N= − 4 2T T

d d
= −

d. Continuous Four-Point Algorithm

For small parallax distances and high frame rate, the hypothesis of continuous

motion was also applied to the planar algorithm. The matrix X is computed in the same

way as for the linear case, while another matrix B is defined as

 1 2, ,...
TT T nTB b b b =   (38)

 48

where b xu= , with x being skew-symmetric of the coordinate vector and u the optical

flow velocity vector. The stacked not-normalized homography matrix LsH is computed

using

 p
LsH X B= (39)

where pX is the pseudo-inverse of the matrix X . The homography matrix is computed

using

 2
1
2LH H Iγ= − (40)

where { }1 2 3, , ,γ γ γ are the eigenvalues of the matrix T
L LH H+ . The matrix TH H+ has

eigenvalues iλ and eigenvectors iu . If all eigenvalues are zero, the linear velocity v is a

zero vector and the skew-symmetric matrix of the angular velocity � Hω = .

The solution is computed by first defining α 1v , 2v , �1N and � 2N as

 ()1 3
1
2

α λ λ= − , (41)

 ()1 1 1 3 3
1 2 2
2

v u uλ λ= + − , (42)

 ()2 1 1 3 3
1 2 2
2

v u uλ λ= − − , (43)

 � ()1 1 1 3 3
1 2 2
2

N u uλ λ= − − , (44)

and

 � ()2 1 1 3 3
1 2 2
2

N u uλ λ= + − . (45)

The equations for the four solutions of the continuous epipolar matrix are provided in

Table 3.

 49

Table 3. The four possible solutions for the continuous four-point algorithm

1v N

1ω

Solution 1 1
1

v v
d

α= 
�11N N α= � �1 1 1

T
H v Nω = − 

Solution 2 2
2

v v
d

α= 
� 22N N α= � �2 2 2

T
H v Nω = − 

Solution 3 3 1v v
d d
= − 3 1N N= − � �

3 1ω ω=

Solution 4 4 2v v
d d
= − 4 2N N= − � �

4 2ω ω=

9. FUN_STEREO_RANGE

The estimation of the distance between target and chaser starts when the target is

in stereovision range. Periodically, the algorithm measures the distance in pixels between

the features detected on the frames collected on the left and the right cameras. When the

distance is above a certain threshold, reliable estimation of the range is computed through

stereovision.

The points are detected on the left and the right frames with the MATLAB built-

in “detectSURFFeatures” within the ROI built from the KLT tracking function. The

features are then extracted with the built-in “extractFeatures” and matched with the

“matchFeatures” command. A description of how these built-in MATLAB commands

work can be found in the MATLAB documentation [46].

The i coordinates are multiplied by the dimension of the camera pixel (the “pix”

value in the initializer) to convert the coordinate into meters. The new coordinate values

are defined as ()lX i and ()lY i for the left frame and ()rX i and ()rY i for the right frame.

The focal length f is added as the third element of the vector defined by

 () [(), (),]l l lx i X i Y i f= (46)

and

 () [(), (),]r r rx i X i Y i f= . (47)

 50

The skew-symmetric matrix of ()lx i is indicated with � ()lx i . If the camera is not rotating

with respect to the chaser reference system, the rotation matrix between the frames is an

identity matrix (lrR I=). For horizontal stereovision, the translation vector lrT has only

the horizontal element different from zero and represents the distance between the optical

centers of the cameras.

With these definitions it is possible to estimate the values of the depth scale λ

applying a least-squares operation that optimizes

  
2 2 1() () () 0lrx i T x i R x il + = . (48)

The range Z is estimated multiplying the mean of the n values of λ by the focal length

as

1

()
n

i

fZ i
n

λ
=

= ∑ . (49)

The distance between strongest features is then measured knowing the distance Z and

the dimensions of the pixels as in Figure 16.

The range distance measures the segment indicated in Figure 16 as BG. The

segment EG is the focal length which is provided with the camera specifications or can

be estimated with camera calibration. The segment DF can be retrieved from the image

measuring the difference in pixel coordinates and multiplying by the pixel width of the

sensor. It is possible to build similar triangles and measure the physical distance AC

between feature A and B with simple proportions:

 DE BGAB
EG
⋅

= (50)

and

 EF BGBC
EG
⋅

= (51)

The AC segment measures are stored in a memory array and used to retrieve the range

when the stereovision estimation is not available.

 51

Figure 16. Example of estimation of the physical distance between two features using

range, focal length and projected pixel distance.

10. FUN_GEOMETRIC_RANGE

The geometric range function uses the classified distances between strong features

measured with the stereovision function and tracked with KLT or matching SURF. When

the target is very close to the camera, changes in distance between these features is the

only source of information for the estimation of the range. Supposedly, in this proximity

phase the relative angular velocities are low, and the chaser is slowly approaching the

target for docking. The dominant variable is the linear velocity along the axis orthogonal

to the 2D image, and the changes in projected distance between features are considered

mostly due to variations in range. As mentioned before, the estimation of the range is

obtained from the inverted operation implemented in the stereovision function to estimate

the distance between features.

 52

C. ON-ORBIT TIMELAPSE AND COMPUTER RENDERED VIDEOS

In the development of the algorithm, the use of recorded or computer rendered

videos was essential for the debugging and calibration of the code and for a first

understanding of the constraints, limits and performance of the techniques implemented.

In the first phase of the development, computer rendered 3D videos were created

in order to test and debug the algorithm. Computer rendered videos allow full control of

all the parameters that affect the detection, tracking and estimation of a target. Ideal

conditions with no background, wanted rotations and known features can be simulated as

well as more complex scenarios where tumbling objects, moving background and

reflections are introduced.

In the calibration phase the use of real, on-orbit footage is essential for testing the

algorithm with real illumination conditions, real target features and real on-orbit

background. To accomplish this task, NASA Johnson Space Center provided a collection

of videos of on-orbit rendezvous and docking maneuvers with footage of the Space

Shuttle, the ISS and Soyuz.

1. Computer-Rendered 3D Videos

The first debugging phase required a simple video, with no noise, high resolution

and high frame rate in order to debug the detection and tracking algorithms.

The open source software Blender 2.72 [58] was used for the creation of the

computer rendered videos described. The Blender 2.72 software includes all the tools

necessary to create a 3D object, add texture and material characteristic to the surface and

then record animated videos with adjustable background and illumination conditions.

The first video created was a simulated rendezvous and docking between two on-

orbit spacecraft. Lighting conditions, reflections and background were added to make the

video more realistic and to make the detection and the tracking more challenging for the

algorithm. Some example frames are provided in Figure 17. This video was used for the

debugging and first calibration of the Harris corner detection, the ROI selection, SURF

description and the KLT tracking algorithms.

 53

Figure 17. Computer rendered video of an on-orbit rendezvous maneuver for the

debugging and first calibration of the vision algorithm.

A second video was implemented using the same model and maneuver simulated

in the first one. The only addition to the second video was the simulation of a

stereovision camera, obtained recording rendered videos from two virtual locations with a

known offset. The stereovision offset is seen in the two frames (left and right cameras)

shown in Figure 18.

Videos with only rotations or translation along known axes and easy to track

features were created in order to debug the epipolar transformation algorithm. Several

rendered videos were used to decouple linear and angular velocities in order to be able to

detect errors in the code and test the estimation performance. Examples of videos used

for this task are shown in Figure 19, where the rotation and translation of the objects

rendered was changed accordingly to the measurement investigated.

 54

Figure 18. Frames from the two simulated cameras of the computer rendered

stereovision video.

Another method was used to decouple the tracking error from the pose estimation

error. A MATLAB script was developed to create a rigid rotating cloud of points. The

script has as inputs the initial and final state vectors of the rigid body frame and generates

arrays of geometrically organized or random points. The objects generated are then

rigidly translated and/or rotated according to the initial and final condition. The output

array of coordinates of the points before and after the rotation was used as error-free

input to measure the quality of the estimation for linear and angular velocities. The

algorithm is provided in Section B of the Appendix.

 55

Figure 19. Examples of rotating objects in computer rendered videos for the

debugging and calibration of the epipolar algorithm.

2. NASA On-orbit Videos

The “moving image repository” team at NASA Jonson space center provided a

collection of nine video recordings from orbiting spacecraft’s during rendezvous, docking

and relocation maneuvers. The videos have different illumination conditions, background

and target features, matching the required generality necessary to calibrate and test the

algorithm over several challenging conditions.

The videos were not provided with relative attitude, relative velocity between

camera and target or stereovision information, and in most of the videos the acquisition

parameters are not constant since the camera is adjusted in magnification, focus, aperture

and orientation. For these reasons these videos were mostly used in this work to test the

detection and tracking function of the algorithm.

 56

The high resolution and frame rate of these videos simplifies the detection and

tracking tasks but increases considerably the computational load and the memory

required to process the data; therefore, the videos implemented in this research were

degraded in terms of frame rate. In this work the reliable detection and tracking

performance of the algorithm over the degraded videos showed that the relative velocities

in space are in general slow with respect to the frame rate of the cameras, and lower

acquisition rates can be used to reduce computational load and power consumption.

Description, calibration parameters and observation of the test implemented on these

videos are provided in Chapter V.

 57

V. HARDWARE-IN-THE-LOOP EXPERIMENTS

The Hardware-in-the-loop experiments were conducted in the Spacecraft Robotics

Laboratory at the Naval Postgraduate School in Monterey, CA on the Floating Spacecraft

Simulator Test-bed (FFS). This thesis represents the latest of a series of research efforts

dedicated to the investigation and development of autonomous spacecraft GN&C

algorithms for rendezvous, docking, formation flying, collision avoidance, on-orbit

assembly and robotic manipulation [59], [60]. In particular, previous efforts on an early

version of the floating simulator was reported in [61] using single-camera vision and

inertia measurement units for autonomous cooperative rendezvous and docking

experimentation.

The current experiments are held on the fourth generation FSS test-bed, the

product of several iterations and upgrades implemented over the years. A detailed

description of the test-bed and of the experimental setup is provided in the following

subsections.

A. THE FLOATING SPACECRAFT SIMULATOR TEST-BED

The FSS test-bed is a two-dimensional, three-degrees of freedom experimental

facility for the dynamic simulation of on-orbit maneuvers. The test-bed is mainly

composed of a high precision flat surface and a set of compressed-air based hovering

units. The dynamics of the FSS on the flat surface reproduces closely, in 2D, the

weightlessness and frictionless conditions of the relative orbital flight

1. High Precision Flat Floor

The high-precision flat surface, shown in Figure 20, is a 4 m × 4 m granite table

with a AAA surface precision grade, a planar accuracy of 0.0005± inch (51.27 10−± ⋅

mm) and a horizontal leveling precision of 0.01 deg.

 58

Figure 20. Granite table of the FSS test-bed at the Naval Postgraduate School.

The granite table is located in a clean/low-reflective room and provided with an

ARRI LED temperature lamp to simulate several illumination conditions. An image of

the temperature lamp and an example of the illumination effect are provided in Figure 21

and Figure 22.

2. UDP Network

An ad-hoc internal wireless network is used for the stream of information between

the VICON camera system, a Telemetry computer and the FSS units. More information

on the development and implementation of this network can be found in [62].

The computers and the FSS units are provided with D-Link routers to connect

with the wireless network. The executables that run on the FSS units and the Simulink

models on the telemetry computer interface with the routers through customized

Simulink UDP blocks (user datagram protocol), as described in [62], to compress, stream

and receive telemetry information. A schematic of the network communication is

provided in Figure 23. Wireless communication is indicated with black dash lines. Red

 59

arrows indicate the infrared reflection on the passive markers of the VICON, and yellow

arrows indicate wired connections.

Figure 21. ARRI temperature lamp used in the FSS testbed to simulate changes

in illumination conditions.

Figure 22. Example of the space-like illumination simulated on the FSS testbed.

 60

Figure 23. FSS network communication schematic.

3. Telemetry Computer

The telemetry computer is used to compile the algorithms, upload and start the

executables, collect telemetry data and visualize results. The RTAI Linux OS is

implemented in order to develop algorithms compatible with the real-time libraries

installed on the FSS units. A screenshot from the telemetry computer is shown in Figure

24, where it is possible to see two terminals for the SSH (secure shell) wireless link

communication with the floating units and a Simulink telemetry model for the collection

of the data. The computer is also used to compile the Simulink models in RTAI

executables.

 61

Figure 24. Desktop screenshot of the telemetry software and the SSH terminals.

Ten VICON cameras are installed along the walls of the laboratory to collect and

stream high quality, 3D position and attitude information. The VICON system is used to

simulate reliable star tracker data or to provide ground truth data in a fixed reference

frame. The VICON server is able to provide the position and the attitude of a rigid body

with a resolution between 0.001 and 0.01 millimeters. The refresh rate is limited only by

the streaming rate of the UDP network, while the resolution depends on the distance and

number of passive markers on the tracked body. The VICON cameras can be recognized

as red light above the granite table in Figure 25. A closer view of one of the VICON

camera is provided in Figure 26. A screenshot of the VICON Tracker software is shown

in Figure 27.

4. Floating Units

The FSS test-bed also includes a set of floating units, each provided with a

compressed air tank and three flat air-bearings on the bottom. The air-bearings are non-

contact interfaces that ensure uniform pressure distribution of the film of compressed air

on its surface. The release of compressed air through the bearings generates a small and

constant hovering effect that creates a gap of about five microns between the granite flat

surface and the pads, drastically reducing the friction. A picture of one of the new

generation floating units is provided in Figure 28.

 62

Figure 25. View of the VICON cameras above the granite flat floor of the FSS.

Figure 26. One of the VICON cameras connected to the ceiling of the Spacecraft
Robotics Laboratory.

 63

Figure 27. Screenshot of the VICON software tracker. It is possible to recognize (as
green squares) the position of the cameras installed along the walls of the laboratory.

The most important components of the floating unit system are highlighted in

Figure 29. The external structure was printed using the Fortus 400mc 3D rapid-

prototyping printer of the NPS Space Systems Academic Group, while the internal

structure is made of aluminum and carbon fiber. The units were built to simulate fully

autonomous, small spacecraft and are provided with on-board propulsion, electronics,

computer and sensors.

a. Propulsion System

The propulsion of the FSS units is provided by eight supersonic thrusters mounted

an each side of the four corners of the external structure. The thrusters release

compressed air through custom-made supersonic nozzles mounted on solenoid valves.

The air is provided by the same tank that feeds the floating system, while the valves are

directly controlled by the PC104 relay board. The compressed air hovering and

propulsion system are better described through Figure 30 and the detailed component

schematic of Figure 31. Each thruster can produce up to 0.159 N. The combined

 64

activation of the thrusters provides the actuation for the attitude and position control of

the unit [63].

Figure 28. Picture of a fourth generation FSS floating unit.

b. Electronics

A schematic of the electronics mounted on the fourth generation FSS unit is

provided in Figure 32.

The power is provided by an Ocean Server Board DC-DC converter. The power

board uses two Lithium batteries and provides energy to all the on-board electronics.

 65

Figure 29. Main components of the FSS units on the four side views.

A stack of PC104 boards is the core of the FSS unit. The main computer is a

PC104 ADLS15 PC, Intel® Atom® processor, 1.6 GHz with 2 GB of DDR2-DRAM and

a 4 GB On-Board SSD. The computer runs a RTAI Linux compiled version of Ubuntu.

This device is used to command and run the executables during the experiments and is

connected to all the main actuators and sensors. The PC104 stack includes a serial-port

board with nine RS232/485 ports used to connect the on-board PC with several devices

such as the fiber-optic gyroscope, the power board and the docking electro-magnets. The

solenoid valves of the thrusters and of the air bearings are controlled by the PC through a

20SPST PC104 relay-board.

The stereovision is powered and streams the images through a WDL Systems

Fire-wire PC104+ board connected to the PC. The Fire-wire board has two channels and

a transfer rate of 400 Mbit/sec.

 66

Figure 30. Representation of the hovering and propulsion system. The air flow is
represented with yellow arrows.

 67

Figure 31. Schematic of all the components of the compressed-air hovering and
propulsion system of the FSS floating unit.

Other electronic components are the DLINK wireless routers for the Wi-Fi

network connection and the pressure transducers, mounted downstream with respect to

the propulsion and floating systems’ regulators, to calibrate and control the output

pressure. The fourth generation FSS units are also provided with an electronic on-board

scale that displays the weight of the high pressure tank, providing an estimate of the

consumption of compressed air. An Android tablet mounted on the side of the FSS units

is used as secondary wireless control device, used mainly to stream videos and connect

with the Go-Pro Cameras. Future use of the tablet includes use as a portable control unit

for the Ubuntu terminal and as an additional camera for the docking phase.

 68

Figure 32. Schematic of the FSS unit electronic system.

c. On-board Sensors

The units are provided with a PointGrey BumbleBee XB3 BBX3 stereovision

camera used to retrieve the input images for the vision algorithm. The camera

specifications are provided below [64]:

• Color Version: Mono
• Focal Length/FOV: 3.8 mm, 66-deg HFOV
• Resolution: 1.3 Megapixels
• Imaging Sensor: Sony ICX445, 1/3″, 3.75 µm
• Imaging Sensor Out: 1280×960 at 16 FPS
• Digital Interface: 2×9-pin IEEE-1394b for camera control and video

data transmit
• Transfer Rates: 400 Mbps

An image of the camera is provided in Figure 33.

 69

Figure 33. Point Grey Bumblebee stereovision camera, from [64].

The units are also provided with a DSP-3000 fiber optic gyroscope from KVH.

The fiber optic gyroscope provides angular rate information with a bias of 20 degrees per

hour and a linearity of 500 ppm (parts per million) [65].

An image of the fiber-optic gyroscope is provided in Figure 34.

Figure 34. Fiber-optic gyroscope DSP-3000 from KVH [65].

Future experiments will include proximity data from the Hokuyo Laser Scanner

[66] (shown in Figure 35) and the Leap-motion Infrared Scanner [67] (shown in Figure

36) to improve target range estimation during docking and proximity operations. The

integration of these two sensors is still in development stage.

 70

Figure 35. Hokuyo laser scanner, from [66].

Figure 36. Leap Motion, from [67].

5. FSS Software

The GN&C algorithms that control the FSS units are mostly developed and

compiled in MATLAB/Simulink. A repository of RTAI Linux compatible Simulink

blocks for the actuation, UDP streaming and sensors interface were developed at the

Spacecraft Robotics Laboratory [62] and used in all the FSS test-bed experiments and

upgrades. The latest version of the general Simulink model used on the FSS to compile

the real-time executables are described in this section.

Each Simulink model has at least five main blocks, representing the basic tasks of

the executable (Input Sensors, State Estimator, Guidance, Actuator and Telemetry). The

blocks are collected into Atomic blocks that isolate the sampling time of each task and

provide multithreading capabilities to the executable. With the implementation of Atomic

Blocks, the model provides the processor with defined rates and tasks priorities that are

used to reallocate computational load. Multithreading solutions were investigated to

 71

overcome the problem of high computational demanding tasks, like optimal guidance and

image processing.

a. Main Model

In the standard algorithm developed, the main model connects together a total of

six atomic blocks. The model represents the logic connections between Sensing,

Kinematics, Estimation and Guidance. All the data is transmitted between the blocks

through buses, which allows indexed data on only one line, making the model faster,

better organized and easier to read.

An important part of this work includes the research on Atomic blocks

implementation. The research was based on a literature review and on hardware

experiments to prove the feasibility and the performance of the algorithm with

multithreading capabilities.

In order to make the model able to run in multithreading, each block must comply

with the following requirements:

• The blocks have to be contained in an Atomic block.
• The Atomic blocks must be function-call generated blocks.
• The function-call generator must specify the sampling rate of the block;

larger sample times automatically means lower priority.
• All the inputs of the Atomic blocks must pass through a rate transition

block.
• No triggers, clocks, Go-To, From or other Simulink sources can be used in

the Atomic blocks.

A screenshot of the full model is provided in Figure 37.

72

Fi
gu

re
 3

7.

M
ai

n
Si

m
ul

in
k

m
od

el
 b

ef
or

e
th

e
co

m
pi

la
tio

n
in

to
 a

n
ex

ec
ut

ab
le

. E
ac

h
A

to
m

ic
 B

lo
ck

 is
 id

en
tif

ie
d

w
ith

 a
 d

iff
er

en
t c

ol
or

.

Function-Call
Generator

Impulses

function()

SENSOR PACKAGE

Memory

STATE ESTIMATOR

function()

Target Package
Generator5

Function-Call
Generator4 function()

Function-Call
Generator3

ACl\JATOR PACKAGE

and Send UDP1

Collect and

 73

b. Sensor Package

The sensor package can work in either real mode or simulated mode. The real

mode runs two S-function blocks to receive data from the fiber-optic gyroscope and from

the VICON camera system. The simulated mode simulates attitude and position data and

noise. The simulated data is necessary for the implementation and debugging phase of the

guidance algorithm. The data is collected in a bus connection that provides machine time,

VICON time and position of the FSS units.

c. State Estimator

The state estimator uses the measurement information and the impulse values

from the actuator package to compute the state vector. The computation uses a discrete

Kalman filter to compute a state vector robust to sensor measurements losses and errors.

d. Guidance Block

In the guidance block, the information from the state estimator and from the target

package are used to compute the forces and torques required in order to accomplish the

tasks of the algorithm. A description of specific guidance logic is beyond the scope of

this work. Some of the most significant guidance and control logic tested and

implemented on the FSS are listed in Table 4.

Table 4. List of the main guidance logic implemented on the FSS.

Guidance Algorithms
Linear quadratic regulator (LQR)

Inverse dynamics (ID)
Inverse dynamics in virtual domain (IDVD)

Proportional-integral-derivative (PID)
Artificial potential function (APF)

e. Actuator Package

The input of the actuator package is the time-history of the forces and torques

requested by the guidance block. These values pass through a Schmitt trigger and a pulse-

width modulator block to convert the force commanded by the continuous guidance

 74

algorithm into discrete aperture time intervals. The length of the time intervals is a

function of the minimum actuator aperture time and the thrust of the propulsion system.

The block is also provided with an S-function to communicate with the PC104 relay

board. The S-function is used to activate the solenoid valves of the thrusters and of the air

pads.

f. Variable Collect and Send

This atomic block saves all the data that is exchanged between the atomic blocks

that pass through the buses. The data is also streamed in real time to the telemetry

computer and to the other floating units. The UDP connection is obtained through a

custom S-function compatible with the RTAI compiler.

g. Target Package

The target package uses a receiver S-function to retrieve the state vector of other

FSS units. The state vector is used by the guidance block to compute rendezvous,

docking and collision avoidance maneuvers.

B. EXPERIMENTS AND RESULTS

Several experiments have been conducted in order to test and calibrate the algorithm.

In this section the experiments are classified into three groups:

5. Test Videos: Test and calibration of the algorithm performed on sample
videos.

6. NASA Videos: Calibration of the algorithm on the high quality on-orbit
videos provided by NASA

7. Live Target: The inputs of the algorithm are live images of a physical
moving object.

All these experiments are described in the following subsections.

1. Test Videos

In the first phase of experiments, a series of tests were performed running the

algorithm on a desktop computer and using test videos as inputs. This experimental setup

 75

was necessary to calibrate the algorithm before using live-stream images. The use of

computer rendered and recorded videos allowed comparison of the algorithm setup for

the same sequence of frames. The test videos experiments were classified according to

the group of functions tested.

a. Detection and Tracking Calibration

The first group included a test of the initialization detection and tracking. The

algorithm must be able to remove the background, detect the target, initialize a ROI and

track the features to update the ROI location and dimensions. Three videos were used to

test these functions:

1. A computer rendered spacecraft maneuver with Earth spinning in the

background and with artificially simulated trajectories and reflections.

2. Inverted time-lapse of one of the Orbital Express maneuvers.

3. Inverted time-lapse of Cygnus maneuvers in proximity of the ISS.

Specifications of the videos and main initialization setup used to obtain the best

performance are provided in Table 5.

Sequences of frames from the abovementioned experiments are provided in

Figure 38, Figure 39 and Figure 40, where the green dots indicate Harris features, the red

dots indicate KLT tracked features and the yellow box indicates the limits of the ROI.

The main calibration differences are the reduction of the KLT ROI dimensions in

video 2, the activation of the background subtraction in video 3, and the different values

for the Harry quality threshold in all three experiments.

In video 2 the dimensions of the ROI generated from the KLT and the KLT

minimum discarding distance were reduced. This modification was necessary to reduce

the probability of detecting background features more like the target than in the other

videos.

 76

Table 5. Detection and tracking calibration values.

 Video 1 Video 2 Video 3
Video Name Computer-Rendered

Satellite Maneuver
Orbital Express
Docking

Cygnus approach to
ISS

Frame Rate 24 fps 10fps 29 fps
Resolution 960×540 318×316 480×480
Number of frames 300 140 179
Compression avi avi avi
Background
Subtraction

Not Active Not Active Static Background
Subtraction

Detector Harris Corners Harris Corners Harris Corners
Harrys stronger
features

100 100 100

Harrys corner
quality

0.05 0.48 0.07

ANMS Not Active Not Active Not Active
Blob length 100 pixels 100 pixels 100 pixels
Blob sigma 6 6 6
Blob-ROI base
dimension

20 pixels 20 pixels 20 pixels

Tracker KLT KLT KLT
KLT discard
distance

20 pixels 15 20 pixels

KLT-ROI base
dimension

50 pixels 40 50 pixels

In video 3 the low or null relative motion with the background objects allows

automatic removal of most of the background features in the initialization phase, such as

the Earth, the ISS Robotic Arm and some visible ISS body features.

From Table 5, we note notice that in video 1, the computer rendered video, the

algorithm recognizes corners with a low Harris corner quality threshold, while the real

videos require higher quality threshold to recognize the artificial features from the

background. In order to demonstrate a correlation between the Harris threshold required

and the quality of the image, an additional test was necessary.

 77

Figure 38. Sequence of frames from the detection and tracking test on video 1.

Harris corner features are represented in green, KLT tracked features
in red and the ROI is the yellow square.

 78

Figure 39. Sequence of frames from the detection and tracking of video 2.

Harris corner features are represented in green, KLT tracked features in
red and the ROI is the yellow square.

Video 1 was degraded to the same resolution and frame rate of Video 2, keeping

all other parameters unchanged. The results showed that the reduction in frame rate and

resolution do negatively affect the detection as expected, requiring a higher Harris

threshold to filter non-artificial features.

 79

Figure 40. Sequence of frames from the detection and tracking of video 3.

Harris corner features are represented in green, KLT tracked features in
red and the ROI is the yellow square.

b. Epipolar Transformation Test

The epipolar algorithm was first tested and corrected with the MATLAB

computed array of coordinates generated with the code provided in Section B of the

Appendix. The code generates a cloud of points rigidly translating and/or rotating

 80

according to the user inputs. The output simulates the array of coordinates generated with

a tracker.

A second phase of the test was based on computer rendered videos of a generic

3D satellite used to simulate simple linear motion and rotations along one axis per time.

During the tests, this simulated satellite was detected and tracked by the algorithm and

the array of coordinates of tracked points sent to the epipolar function. The motion of the

six cases tested is indicated with an arrow in Figure 41.

Figure 41. The four test cases to verify the epipolar transformation algorithm.

The first algorithm tested was the linear eight-point algorithm, described in

Section IV. This algorithm was unable to provide a unique solution on the computer

rendered video. When the features are quasi-planar on the z -axis (axis orthogonal to the

 81

camera plane), the rank of the matrix X is smaller than eight, and the estimation remains

undetermined.

The rendered video has a high frame rate compared to the motion. This feature

improves the performance of the tracking algorithm but reduces the displacement

between matched-features. The linear epipolar algorithms are negatively affected by this,

as mentioned in Section IV.

A rendered video was created to test the linear algorithms with the rotation and

translation of a group of shapes designed to enhance parallax and features difference in

depth. Some frames are provided in Figure 42.

It is safe to assume quasi-planarity and continuous motion for most of the features

analyzed in this work. Indeed, most of the features on artificial satellite lay on

coordinates with depth dimensions small with respect to the other parameters involved,

like the trajectory length and the distance between the camera and the target.

Furthermore, most of the space proximity maneuvers are performed at low relative

velocities to reduce risks of collision, fuel consumption and other possible docking

problems. For these reasons most of the testing and development was focused on the use

of the continuous planar four-point algorithm.

The four-points algorithm provides two possible velocity solutions for each time

interval. Future work should be dedicated to implementing a Kalman filter that

autonomously selects the most valid solution and corrects estimation errors. The time-

history of the two solutions computed by the epipolar function for each case are provided

in Figure 43, Figure 44, Figure 45, Figure 46, Figure 47 and Figure 48. From these

figures, it is possible to see that only cases 1, 2 and 6 provide the expected results, while

the curves obtained from the other cases clearly do not represent the dynamics simulated.

The algorithm is able to detect and correctly estimate linear velocities on the axes

of the 2D image plane, x and y, and the angular velocity along the perpendicular, z. The

angular velocities estimated in the x and y-directions seem to be coupled with each other,

while the values of the linear velocity in the z-direction are scaled down and almost

completely covered by error noise. A sufficient number of valid features are tracked, and

 82

the optical flow measurements are correct. Nevertheless more work is required to detect

the error in the algorithm that causes these effects.

Figure 42. Three frames representing the rotation and translation of a group of

computer rendered objects created to test the epipolar transformation reducing planarity
and increasing parallax of the features.

 83

Figure 43. Time-history of linear and angular velocity for the test case 1 where the

target is only translating along the y-axis.

Figure 44. Time-history of linear and angular velocity for the test case 2 where

the target is only translating along the x-axis.

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

V
el

oc
ity

 (m
/s

)

Solution 1 linear velocities

 Vy
Vx
Vz

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

A
ng

ul
ar

 ra
te

 (r
ad

/s
)

Solution 1 angular velocities

 OmegaY
OmegaX
OmegaZ

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

V
el

oc
ity

 (m
/s

)

Solution 2 linear velocities

Vy
Vx
Vz

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

A
ng

ul
ar

 ra
te

 (r
ad

/s
)

Solution 2 angular velocities

OmegaY
OmegaX
OmegaZ

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

Ve
lo

ci
ty

 (m
/s

)

Solution 1 linear velocities

 Vy
Vx
Vz

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

An
gu

la
r r

at
e

(ra
d/

s)

Solution 1 angular velocities

 OmegaY
OmegaX
OmegaZ

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

Ve
lo

ci
ty

 (m
/s

)

Solution 2 linear velocities

Vy
Vx
Vz

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

An
gu

la
r r

at
e

(ra
d/

s)

Solution 2 angular velocities

OmegaY
OmegaX
OmegaZ

 84

Figure 45. Time-history of linear and angular velocity for the test case 3 where the

target is only translating along the z-axis.

Figure 46. Time-history of linear and angular velocity for the test case 4 where the

target is only rotating along the y-axis.

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

Ve
lo

ci
ty

 (m
/s

)

Solution 1 linear velocities

Vy
Vx
Vz

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

An
gu

la
r r

at
e

(ra
d/

s)

Solution 1 angular velocities

 OmegaY
OmegaX
OmegaZ

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

Ve
lo

ci
ty

 (m
/s

)

Solution 2 linear velocities

Vy
Vx
Vz

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

An
gu

la
r r

at
e

(ra
d/

s)

Solution 2 angular velocities

OmegaY
OmegaX
OmegaZ

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

V
el

oc
ity

 (m
/s

)

Solution 1 linear velocities

Vy
Vx
Vz

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

A
ng

ul
ar

 ra
te

 (r
ad

/s
)

Solution 1 angular velocities

 OmegaY
OmegaX
OmegaZ

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

V
el

oc
ity

 (m
/s

)

Solution 2 linear velocities

Vy
Vx
Vz

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

A
ng

ul
ar

 ra
te

 (r
ad

/s
)

Solution 2 angular velocities

 OmegaY
OmegaX
OmegaZ

 85

Figure 47. Time-history of linear and angular velocity for the test case 5 where

the target is only rotating along the x-axis.

Figure 48. Time-history of linear and angular velocity for the test case 6 where the

target is only rotating along the z-axis.

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

V
el

oc
ity

 (m
/s

)

Solution 1 linear velocities

 Vy
Vx
Vz

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

A
ng

ul
ar

 ra
te

 (r
ad

/s
)

Solution 1 angular velocities

 OmegaY
OmegaX
OmegaZ

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

V
el

oc
ity

 (m
/s

)

Solution 2 linear velocities

 Vy
Vx
Vz

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

A
ng

ul
ar

 ra
te

 (r
ad

/s
)

Solution 2 angular velocities

 OmegaY
OmegaX
OmegaZ

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

V
el

oc
ity

 (m
/s

)

Solution 1 linear velocities

 Vy
Vx
Vz

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

A
ng

ul
ar

 ra
te

 (r
ad

/s
)

Solution 1 angular velocities

OmegaY
OmegaX
OmegaZ

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

V
el

oc
ity

 (m
/s

)

Solution 2 linear velocities

 Vy
Vx
Vz

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time (s)

A
ng

ul
ar

 ra
te

 (r
ad

/s
)

Solution 2 angular velocities

OmegaY
OmegaX
OmegaZ

 86

Results and observations for each test are summarized in Table 6.

Table 6. Description of results for the Epipolar analysis on the six cases.

TEST
CASE

Observations Outcome

1 The algorithm is able to estimate the translation along the y-axis.
Solution 2 shows some noise, but the results are consistent with the
simulated maneuver.

Success

2 The algorithm is able to estimate the translation along the x axis.
Solution 2 shows some noise, but the results are consistent with the
simulated maneuver.

Success

3 The algorithm does not detect the translation along the z-axis. This
behavior may be caused by an error in the code.

Fail

4 The algorithm interprets the rotation along the y-axis as a couple
translation along the x and the y-axes. This behavior may be caused
by an error in the code.

Fail

5 The algorithm interprets the rotation along the x-axis as a couple
translation along the x and the y-axes. This behavior may be caused
by an error in the code.

Fail

6 The algorithm is able to estimate the translation along the y-axis.
Solution 2 shows some noise, but the results are consistent with the
simulated maneuver.

Success

c. Stereovision Algorithm Test

A first test of the stereovision algorithm was implemented using computer

rendered stereo images in order to demonstrate the method before using physical targets.

The video is identical to video 1, the computer-rendered satellite maneuver, with the

addition of another virtual camera in the blender model necessary to have 3D stereo

displacement in the images of the target. The graphs of the birds-eye view simulated

trajectory, the estimated and simulated distance and the stereovision estimation error are

provided in Figure 49.

 87

Figure 49. Birds-eye view and stereovision distance estimation results from the test

on the computer rendered video.

In the graphs of Figure 49 it is possible to see the correlation between quality in

estimation and distance. As expected, estimation errors are larger when the target is still

too far away to provide good features to track.

2000 4000 6000 8000 10000
-3000

-2000

-1000

0

1000

2000

3000

4000
Bird Eye View

X axis (meters)

Y
 a

xi
s

(m
et

er
s)

0 5 10 15
0

1000

2000

3000

4000

5000

6000

7000

8000
Distance vs Time

Time (seconds)
D

is
ta

nc
e

(m
et

er
s)

0 2 4 6 8 10 12 14
-2500

-2000

-1500

-1000

-500

0

500
Distance Error vs Time

Time (seconds)

E
rro

r (
m

et
er

s)

Target trajectory
Target initial position
Camera initial position
Camera trajectory

Real distance
Stereo estimated distance

Distance error

 88

2. NASA Videos

The NASA videos were used to calibrate and validate the detection and the

tracking settings of the algorithm. The properties of the videos provided by NASA and

the calibration values used in the algorithm are provided in Table 7, Table 8, Table 9,

Table 10, Table 11 and Table 12. The information tables are followed by detailed

descriptions of the detection and tracking performance.

In all videos the targets were successfully detected and tracked, but different

initialization settings were used. One important difference is the frame rate. In all videos

it was possible to reduce the frame rate without losing detection or tracking performance,

but some videos required higher frame rates than others because of the fast repositioning

of the camera and not due to the orbital maneuver velocity.

Another important difference is how the background subtraction is initialized. No

subtraction was necessary in videos with only Earth or open space as background. In

videos with static features or obstructed areas, the use of the static background

subtraction was successful. In video 3 and 4, manually selected ROIs were used. This

method reduces the dimensions of the image only for the first detection, excluding

regions that are known to be obstructed. Further work can be dedicated to improve this

technique creating automatic known-feature recognition extraction and matching in order

to detect and recognize which features and regions to exclude.

The results of these experiments are summarized in Table 13, while some

significant frames are shown in the images provided from Figure 50 to Figure 64.

 89

Table 7. Video 1 properties and calibration values.

Video Name Video 1 (757771)
Description ISS Expedition 24, Soyuz TMA-19 relocation from the Zvezda

Service Module (SM) and docking to the Rassvet MRM-1 Module
GMT Day 179, 2010
Frame Rate 30 fps (reduced to 0.3 fps)
Resolution 720×480 pixels
Number of frames 16000 (reduced to 160 frames)
Compression mp4
Background
Subtraction

Not Active

Detector Harris
Harrys stronger
features

100

Harrys corner
quality

0.01

Update Period every 16.6 seconds (equivalent to 500 frames on the original video
and 5 frames on the reduced video)

ANMS Not Active
Blob length 100
Blob sigma 6
Blob-ROI base
dimension

20

Tracker KLT
KLT discard
distance

20

KLT-ROI base
dimension

50

 90

Table 8. Video 2 properties and calibration values.

Video Name Video 2 (767109)
Description STS-135 R-bar Pitch Maneuver (RPM) and rendezvous OPS
GMT Day 191, 2011
Frame Rate 30 fps (reduced to 0.3 fps)
Resolution 720×480 pixels
Number of frames 18000 (reduced to 180 frames)
Compression mp4
Background
Subtraction

Not Active

Detector Harris
Harrys stronger
features

300

Harrys corner
quality

0.005

Update Period every 16.6 seconds (equivalent to 500 frames on the original video
and 5 frames on the reduced video)

ANMS Active
ANMS radius 10
Blob length 100
Blob sigma 6
Blob-ROI base
dimension

30

Tracker KLT
KLT discard
distance

40

KLT-ROI base
dimension

60

 91

Table 9. Video 3 properties and calibration values.

Video Name Video 3 (884887)
Description ISS Expedition 29, Progress 45P docks to the ISS
GMT Day 306, 2011
Frame Rate 30 fps (reduced to 0.3 fps)
Resolution 720×480 pixels
Number of frames 19500 (reduced to 195 frames)
Compression mp4
Background
Subtraction

Initial ROI manually selected

Detector Harris
Harrys stronger
features

100

Harrys corner
quality

0.01

Update Period every 16.6 seconds (equivalent to 500 frames on the original video
and 5 frames on the reduced video)

ANMS Not Active
ANMS radius n\n
Blob length 100
Blob sigma 6
Blob-ROI base
dimension

20

Tracker KLT
KLT discard
distance

20

KLT-ROI base
dimension

50

 92

Table 10. Video 4 properties and calibration values.

Video Name Video 4 (776046)
Description ISS Expedition 34, Progress 50P tracking, rendezvous, and docking

to the ISS
GMT Day 042, 2013
Frame Rate 30 fps (reduced to 1.2 fps)
Resolution 720×480 pixels
Number of frames 36861 (reduced to 1474 frames)
Compression mp4
Background
Subtraction

Initial ROI manually selected

Detector Harris
Harrys stronger
features

100

Harrys corner
quality

0.01

Update Period every 4.16 seconds (equivalent to 125 frames on the original video
and 5 frames on the reduced video)

ANMS Not Active
ANMS radius n\n
Blob length 100
Blob sigma 6
Blob-ROI base
dimension

20

Tracker KLT
KLT discard
distance

20

KLT-ROI base
dimension

50

 93

Table 11. Video 5 properties and calibration values.

Video Name Video 5 (757769)
Description ISS Expedition 24, Soyuz TMA-19 relocation from the Zvezda

Service Module (SM) and docking to the Rassvet MRM-1 Module
GMT Day 179, 2010
Frame Rate 30 fps (reduced to 3 fps)
Resolution 720×480 pixels
Number of frames 28000 (reduced to 2800 frames)
Compression mp4
Background
Subtraction

Static Background Subtraction

Detector Harris
Harrys stronger
features

100

Harrys corner
quality

0.01

Update Period every 4.16 seconds (equivalent to 50 frames on the original video
and 5 frames on the reduced video)

ANMS Not Active
ANMS radius n\n
Blob length 100
Blob sigma 6
Blob-ROI base
dimension

15

Tracker KLT
KLT discard
distance

15

KLT-ROI base
dimension

30

 94

Table 12. Video 6 properties and calibration values.

Video Name Video 6 (765734)
Description View from the CBCS CAM as STS-134 rendezvous and docks with

the ISS
GMT Day 179, 2010
Frame Rate 30 fps (reduced to 1.2 fps)
Resolution 720×480 pixels
Number of frames 36861 (reduced to 1474 frames)
Compression mp4
Background
Subtraction

Static Background Subtraction

Detector Harris
Harrys stronger
features

100

Harrys corner
quality

0.03

Update Period every 4.16 seconds (equivalent to 125 frames on the original video
and 5 frames on the reduced video)

ANMS Not Active
ANMS radius n\n
Blob length 100
Blob sigma 6
Blob-ROI base
dimension

10

Tracker KLT
KLT discard
distance

10

KLT-ROI base
dimension

20

 95

Table 13. Description of the performances of the algorithm applied to the
NASA videos

 Results description and observations
Video 1 The Algorithm is able to track reliably the Soyuz also at very low frame

rates. The target is not well illuminated and most of the features tracked
are the external edges of the Soyuz, which could be a challenge for a
pose estimator.

Video 2 The Maneuver of the Shuttle is almost constantly tracked by the
algorithm. The algorithm loses most of the feature points when the
Shuttle shows the bottom part almost feature-less.

Video 3 The Progress is constantly tracked by the algorithm, and the pose
estimation measures the translation docking maneuver along the z-axis.
An initial ROI had to be manually selected to start the detection
excluding known ISS features.

Video 4 The Progress is tracked in different illuminations and background. The
algorithm is able to recover the detection when the target is completely
out of sight or when to camera is repositioned with fast movement. A
higher frame rate was necessary because of the fast repositioning and
zooming of the camera. Close to docking two identical spacecraft are
visible and the ROI expands to include both.

Video 5 The detection automatically recognizes the target form the ISS features
through static background subtraction. The Soyuz is reliably tracked
over different backgrounds, in low luminosity conditions and with a fast
moving camera. As before higher frame rate was necessary because of
the fast repositioning and zooming of the camera. Atmospheric features
affect negatively the tracking for a short amount of time and required an
increase in Harris corner quality..

Video 6 The main challenge of this experiment is that for the entire time the
camera is obstructed by the docking interface. Changes in illumination,
aperture and focus cause the loss of the target for few frames, but the
algorithm is able to recover and reliably track the target docking
interface for almost the entire maneuver.

 96

Figure 50. Frame taken from video 1 while the algorithm is tracking the features

marked in red.

Figure 51. Another frame from video 1. Because of the change in illumination the

algorithm tracks only edge features.

 97

Figure 52. Also during docking the algorithm tracks only features of the Soyuz on the

last frames form video 1.

Figure 53. Tracking of the features of the Shuttle with the Earth as background on a

frame from video 2.

 98

Figure 54. The algorithm tracks only a few features when the camera faces towards

the thermal shields of the Space Shuttle.

Figure 55. View of cluttered features on the progress and obstructions on the edges of

the image from video 3.

 99

Figure 56. The algorithm is able to automatically detect the Progress also in this

challenging frame where the Earth features spin almost at the same speed as the target
and have the same luminosity intensity.

Figure 57. Changes in illumination causes the algorithm to lose most of the features

tracked, but it automatically recovers.

 100

Figure 58. The algorithm fully recovers from illumination changes and provides

strong features and a correct ROI of the target.

Figure 59. When two spacecraft with identical features are close, the algorithm

expands the ROI to include and track both. This causes also other unwanted features to be
captured.

 101

Figure 60. Detection of a moving target over the static features of the ISS on the

initial frames of video 5.

Figure 61. The ROI expands over clouds with high defined edges, confused for target

features and tracked.

 102

Figure 62. The static background removal method is able to mask the obstructed

areas and non-target features.

Figure 63. The algorithm is able to track the features of the target behind the docking

interface.

 103

Figure 64. The target docking interface of video 6 tracked by the algorithm.

3. Live Target

One of the main goals of this work was to implement the hardware-in-the-loop

testing capabilities on the FSS test-bed. The artificial vision navigation algorithm can be

used on the existing guidance models to substitute the attitude and position sensors. The

VICON system is then used only as ground truth, and the simulation is more challenging

and realistic.

The first phase of the hardware implementation was to test the artificial vision

algorithm on a laboratory desktop computer connected with the stereovision camera

Bumblebee. This test is required for:

• The validation of the algorithm using real-time images
• The calibration of the stereovision function on real features
• The validation of the detection and tracking functions for different

illumination conditions.

The camera was positioned on the side of the FSS flat table at the height of the

floating units. An image of the setup is provided in Figure 65, where it is possible to see

the stereovision camera in foreground and the FSS floating unit in the center on the

 104

granite floor. In the background, the LED sun simulator and the VICON monitors are

also visible.

Figure 65. View of the live desktop + live-target experiment setup and the main

components of the test-bed at the Spacecraft Robotics Laboratory of NPS.

Some MATLAB commands had to be added to the original artificial vision

algorithm in order to be able to collect the position information from the VICON via

UDP and to grab images from the stereovision camera. These updates of the algorithm

are included and commented on in the software version provided in Section A of the

Appendix.

The maneuver tested is a planar rendezvous translation towards the camera with

different spinning velocities in four experiments. The speed is kept almost constant for

the entire maneuver. The bird’s-eye views of the four maneuvers tested are shown in

Figure 66. The data of these plots were streamed from the VICON server during the

experiment and used as ground truth.

 105

Figure 66. Bird’s-eye view of the trajectories of the FSS unit in four experiments.

The test-bed was installed in a low-reflective, black walled laboratory in order to

minimize the number of detectable background features. Some examples of frames

acquired during tracking are provided in Figure 67. It is possible to see that the only

background features that have luminosity intensity comparable to the intensity of the

target features are the VICON cameras and the VICON Computer monitor. These

background features were manually masked by the algorithm during the detection phase,

excluding them from the initial ROI.

0 1 2 3 4 5
0

1

2

3

4

5
Experiment 1

X axis (meters)

Y
 a

xi
s

(m
et

er
s)

0 1 2 3 4 5
0

1

2

3

4

5
Experiment 2

X axis (meters)

Y
 a

xi
s

(m
et

er
s)

0 1 2 3 4 5
0

1

2

3

4

5
Experiment 3

X axis (meters)

Y
 a

xi
s

(m
et

er
s)

0 1 2 3 4 5
0

1

2

3

4

5
Experiment 4

X axis (meters)

Y
 a

xi
s

(m
et

er
s)

Trajectory
Camera position
Target Position

 106

Figure 67. Sequence of frames acquired during one of the experiments on the FSS

test-bed. The tracked features are marked in red and the detected features in green.

All the calibration setting used on the FSS experiment are provided in Table 14.

The calibration values are almost identical to the parameters used for most of the real and

virtual videos. The time history of the distances measured with VICON and estimated

with the stereovision and the distance error are provided for the four experiments in

Figure 68, Figure 70, Figure 72 and Figure 74.

In the results of experiment 1 and 2 it is possible to see that the estimation error

increases drastically at the end of the rendezvous, when the cameras are too close to the

target.

In experiment 3 the target reaches the camera more quickly and when the distance

is close to zero, the estimation error increases. In Figure 72 the missing values indicate

infinite or negative range values due to lack of reliable features to match, the spacecraft,

being too close to the camera.

 107

Figure 68. Measured and estimated time-history comparison of the distance between

camera and target in experiment 1.

Figure 69. Zoomed view of the distance-error time history in the first 16

seconds of experiment 1.

5 10 15 20 25
0

1

2

3

4
Distance vs Time

Time (seconds)

D
is

ta
nc

e
(m

et
er

s)

5 10 15 20 25
-2

-1

0

1
Distance Error vs Time

Time (seconds)

E
rro

r (
m

et
er

s)

Vicon distance
Stereo estimated distance

Distance error

2 4 6 8 10 12 14 16
-0.5

0

0.5
Distance Error vs Time

Time (seconds)

E
rro

r (
m

et
er

s)

Distance error

 108

Figure 70. Measured and estimated time-history comparison of the distance between

camera and target in experiment 2.

Figure 71. Zoomed view of the distance-error time history in the first 16

seconds of experiment 2.

0 5 10 15 20 25 30 35
0

1

2

3

4

5
Distance vs Time

Time (seconds)

D
is

ta
nc

e
(m

et
er

s)

0 5 10 15 20 25 30 35
-5

0

5

10
Distance Error vs Time

Time (seconds)

E
rro

r (
m

et
er

s)

Vicon distance
Stereo estimated distance

Distance error

0 2 4 6 8 10 12 14 16
-0.5

0

0.5
Distance Error vs Time

Time (seconds)

E
rro

r (
m

et
er

s)

Distance error

 109

Figure 72. Measured and estimated time history comparison of the distance

between camera and target in experiment 3.

Figure 73. Zoomed view of the distance-error time history in the first 16

seconds of experiment 3.

0 5 10 15 20 25 30 35
-2

0

2

4

6
Distance vs Time

Time (seconds)

D
is

ta
nc

e
(m

et
er

s)

0 5 10 15 20 25 30 35
-2

0

2
Distance Error vs Frame

Time (seconds)

E
rro

r (
m

et
er

s)

Vicon distance
Stereo estimated distance

Distance error

0 2 4 6 8 10 12 14 16
-0.5

0

0.5
Distance Error vs Time

Time (seconds)

E
rro

r (
m

et
er

s)

Distance error

 110

Figure 74. Measured and estimated time history comparison of the distance

between camera and target in experiment 4.

Figure 75. Zoomed view of the distance-error time history in the first 16

seconds of experiment 4.

0 5 10 15 20 25 30 35
0

2

4

6

8
Distance vs Time

Time (seconds)

D
is

ta
nc

e
(m

et
er

s)

0 5 10 15 20 25 30 35
-5

0

5

10
Distance Error vs Time

Time (seconds)

E
rro

r (
m

et
er

s)

Vicon distance
Stereo estimated distance

Distance error

0 2 4 6 8 10 12 14 16
-0.5

0

0.5
Distance Error vs Time

Time (seconds)

E
rro

r (
m

et
er

s)

Distance error

 111

Table 14. Detection and tracking calibration values.

Video Name Live Stream from the Bumblebee Camera
Description The camera acquires live real-time images of the FSS unit floating

on the granite floor. Same settings have been used for all
experiments.

GMT Day 02/25/2015
Frame Rate 5 fps
Resolution 970×720 pixels
Number of frames 60
Compression mp4
Background
Subtraction

Initial ROI manually selected

Detector Harris
Harrys stronger
features

100

Harrys corner
quality

0.05

Update Period every 1 second
ANMS Not Active
ANMS radius n\n
Blob length 100
Blob sigma 6
Blob-ROI base
dimension

10

Tracker KLT
KLT discard
distance

20

KLT-ROI base
dimension

50

Stereovision
Update Period

every 2 seconds

 112

THIS PAGE INTENTIONALLY LEFT BLANK

 113

VI. CONCLUSIONS

The tests and the experiments in this thesis were designed to provide the most

reliable estimation of the performance of the artificial vision algorithm in a generic on-

orbit application in terms of detection, tracking and pose estimation reliability, speed and

computational load.

With the videos provided by NASA, the algorithm was shown able to

autonomously detect and track real spacecraft features in challenging scenarios with

changes in illumination and background. Furthermore, these tests have shown that similar

initial parameters can work for a wide variety of on-orbit scenarios, and that acquisition

rates of 3.0 fps are sufficient for the algorithm to track the target. Another important

observation is that the video is sensitive to the method used for the background

subtraction. The implementation of one method versus another drastically improves the

performance of the initial detection.

The hardware-in-the-loop experiments for the validation of the artificial vision

algorithm demonstrated the capability of a real-time stereovision system to reliably detect

and estimate the distance of an unknown target with spacecraft-like features and

dynamics in a space-like illumination condition. The target was detected and tracked

while hovering over the FSS flat floor in a proximity maneuver. The range estimated in

real-time using the stereovision system was compared with the ground with an average

error of about 2.5 cm. This average error value was measured from the raw estimation

within the stereovision range without using Kalman filters or other methods that could

improve the range estimation.

An unresolved bug in the algorithm did not allow testing of the epipolar function

on the hardware-in-the-loop experiments. The function provided only valid linear

velocities values along the x and y-axis, and angular velocities along the z-axis. Future

work is required to detect the error in the algorithm and proceed with the epipolar pose

estimation tests and validation.

 114

That passive vision sensing might be an answer for a relatively low cost and

reliable relative navigation system for space applications was shown. The ability to

autonomously adapt to a wide range of space scenarios, provide consistent information

on the target and be implementable in a real-time system was also shown.

The FSS test-bed developed has shown to partially simulate the space proximity

maneuvering in terms of dynamics, features and illumination conditions and, therefore, is

a valid tool for future hardware-in-the-loop experiments.

A. FUTURE WORK

The algorithm presented an error in the epipolar function. Detection and

correction of this error can lead to several experiments on the FSS testbed and on the

NASA videos to validate the pose-estimation capability of the code. Also, the use of the

Geometric Transformation function provided by MATLAB can be implemented and

compared to the epipolar transformation.

The selection of the initial ROI for non-static backgrounds can be automatized

and further work is required to improve the optical flow based background subtraction.

In order to obtain further information on the computational load performance of

the algorithm on a real-time OS, it would be interesting to compile the algorithm in a

RTAI executable and implement it on-board the FSS units with limited processing

capabilities. The algorithm can also be combined in a Simulink block with the pre-

existent validated guidance models and easily implemented in future FSS experiments as

the main sensor.

The implementation of a Kalman filter is also strongly suggested since the results

have shown the presence of non-negligible noise in both the stereovision estimation of

the range and the epipolar estimation of the velocities.

 115

APPENDIX

A. ARTIFICIAL VISION ALGORITHM

All the MATLAB scripts of the AViATOR algorithm divided by modules are

provided in the appendix.

1. Initializer (initializer.m)

%% Authors
% Alessio Grompone and Roberto Cristi
% PI: Marcello Romano
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015

%AViATOR variables and options initializer

close all
clear

global videoname Video VideoR SizeIMG BSmode BSrad Hstrongest ...
 Hquality ANMSSwitch ANMSdistance Blength Bsigma Bnumber Bmode ...
 BroiDim Xroi ROI Ifirst KLTroi KLTvalue KLTroiDim fl pix Dstereo
...
 vpold omegapold Livecam vid

%GENERAL OPTIONS

%these options can be modified to select the input, all the main ...
%options and calibrate the algorithm to achieve better results

CreateVideo=0 %Enables (1) or Desables (0) Video Recording
CreateImage=0 %Enables (1) or Desables (0) Video Recording
Livecam=2 %Selects Video (0) , Webcam (1) or Bumblebee Camera (2)
LIVEframes=300;% number of frames of LIVE acquisition in frames ...
 %(frame rate depends on the camera)
Jump=1; %number of frames to jump to reduce frame rate
Refreshperiod=10*Jump %Number of frames between one SURF Analysis ...
 %and the following one
ReceiveVicon=0 %Enables (1) or Desables (0) Vicon UDP Receiver
%CAMERA OPTIONS
HFOV=66; %[degrees], Camera Horizontal Field of view
fl=0.038; %[meters], Camera focal lenght
Dstereo=0.25; %[meters], distance between stereo cameras
pix=3.75*10^-6; %[micrometers], square pixels dimension
%BACKGROUND STATIC REMOVAL OPTION
BackgroundSub=0; %Enables (1) or Desables (0) Background Subtraction
BSmode=0;%Selects Background Subtraction Mode (0=Static, 1=OpticalFlow)
BSrad=50;%radius of masking circle around unwanted features
%HARRIS OPTIONS

 116

Hstrongest=100; %number of strongest Harris points
Hquality=0.01; %quality of Harris points
%SURF OPTIONS
SurfSwitch=0; %Enables (1) or Desables (0) SURF detection
Sstrongest=50; %number of strongest SURF points
%ANMS OPTIONS
ANMSSwitch=0; %Enables (1) or Desables (0) ANMS in Detection
ANMSdistance=10;% ANMS radius in pixels
%BLOB OPTIONS
Blength=100;%length added to Blob Gaussian Distribution
Bsigma=6;%standard deviation of the Blob Gaussian Distribution
Bnumber=8;%Number of biggest blobs for ROI detection
Bmode=1; %selects how to create the ROI starting from the BLOB ...
 %(1=from biggest blob maxs)
BroiDim=20;%pixels to add to ROI dimensions (for real videos keep 20)
%EPIPOLAR TRANSFORMATION
vpold=[]; %initalizes the linear velocity vector estimation of ...
 %the epipolar
omegapold=[];%initalizes the angular velocity vector estimation of ...
 %the epipolar
%KLT TRACKING
KLTroi=1; %Enables (1) or Desables (0) discarding valid points ...
 %too far from the ROI
KLTvalue=20;%[pixels] discards distance (for real videos keep 20)
KLTroiDim=50;%[pixels] lenght to make KLT-ROI bigger ...
 %(for real videos keep 50)
%STEREO OPTIONS
Stereovision=1; %Enables (1) or Desables (0) Stereovision loop
Stereoperiod=5; %Stereovision update period

%% VARIABLES INITIALIZATION (do not modify)

%this is a list of variables that require to be initialized only once

Detect=0;%flag intializer
Nsurf=0;%Number of SURF Features Detected
MODE=0; %Detection=0 KLT=1 STEREO=2 Geometric=3 SURF Check = 4
N=0;
Nroi=[0 0];
Metric=0; %initializes Max Metric value detected
Distance=0; %[scaled value] initialization STEREO distance
STEREOACTIVE=0; %initialization falg
Record=[];%initialization Distance recording matrix
oldpointsK=[];%[pixels] array of valid [x y] points collected
 %in previous frame
v_tot1=[]; %[meters per frame] epipolar linear velocity Solution 1
omega_tot1=[];%[radians per frame] epipolar angular velocity Solution 1
v_tot2=[]; %[meters per frame] epipolar linear velocity Solution 2
omega_tot2=[];%[radians per frame] epipolar angular velocity Solution 2
T0_tot=[];
ALLpoints_totX=[];%[pixels] array of all KLT [x] points collected ...
 %in previous frame
ALLpoints_totY=[];%[pixels] array of all KLT [y] points collected ...
 %in previous frame
Dst=[];%vector to collect the STEREO distance

 117

Zero=zeros(3,1);
%Background subtraction counter
count=[1];
count2=[1];
for l=2:20
 count=[count,count+1];
 count2=[count2,count2-1];
end
counter=[count2,count];%Counter used to track the number of frames
 %without detection

%% INPUT INITIALIZATION AND VIDEO CREATION

%This part of the algorithm starts the acquisition and the recording
%functionalities. Name of camera devices and name of the video might
%be changed according to the hardware/software input.

if Livecam==0
%videoname='SatTrasX.avi';%VideoL.avi';%testing Epipolar translation
videoname='SatRotX.avi';%testing Epipolar rotation
%videoname='VideoL.avi';%testing Tracking and Stereovision)
Video = VideoReader(videoname);
Frame = read(Video, 1);%Retrieve and Convert Frame k
Ifirst = rgb2gray(Frame);
SizeIMG=size(Ifirst);
nframes = get(Video, 'NumberOfFrames');
get(Video)
singleFrame = read(Video, 1);
elseif Livecam==1
%cam = webcam('QuickCam Orbit/Sphere MP');%for the LAB COmputer
cam = webcam('Logitech QuickCam Pro 5000');%for the OFFICE COmputer
Frame = snapshot(cam);
Ifirst = rgb2gray(Frame);
SizeIMG=size(Ifirst);
nframes=LIVEframes;
else
vid = videoinput('pointgrey', 1, 'F7_RGB_1280x960_Mode3');
src = getselectedsource(vid);
vid.FramesPerTrigger = 1;
vid.ReturnedColorspace = 'rgb';
start(vid);
Frame=getdata(vid);
% IIred = Frame(:, :, 1); %camera 1
% IIgreen = Frame(:, :, 2); %camera 2
% IIblue = Frame(:, :, 3); %camera 3
Ifirst = Frame(:, :, 3);
SizeIMG=size(Ifirst);
nframes=LIVEframes;
end

if CreateVideo==1 && CreateImage==1
 writerObj = VideoWriter('Video.avi','Motion JPEG AVI');
 %writerObj = VideoWriter('Video2.avi','Uncompressed AVI');

 118

 writerObj.FrameRate=12;%24;
 open(writerObj);
end

InitialFrame=1;%24000;%3000; %Starting frame number of the video
FinalFrame=nframes; %Final frame number of the video
LOOP=InitialFrame+1; %Detection Loop

%%Stereovision

%this part initializes the acquisition of the right camera for the
%stereovision measurements. The acquisition is active only
periodically.
%the inputs are either the blender video VideoR.avi (requires to be
%used in combination with VideoL.avi), or one of the other cameras of
...
% the bumblebee stereo system.

if Stereovision==1 && Livecam<2
videonameR='VideoR.avi';
VideoR = VideoReader(videonameR);
FrameR = read(VideoR, 1); %Retrieve and Convert Frame k
elseif Stereovision==1 && Livecam==2
FrameR= Frame(:, :, 1);
else
VideoR=Video;
end

%ROI INITIALIZATION

%For some application Background Subtraction cannot be done ...
%autmatically, therfore is necessary to select an initial ROI ...
%to mask the regions with unwanted features. In the general case the
%intialized ROI is the entire image.

%ROI=[1,1,368,260];%ROI=[480,560,320,160]; Manually selected ROIs
ROI=[1,1,SizeIMG(2)-2,SizeIMG(1)-2];%Full Image Region of Interest
Xroi=zeros(2,5);%Region of Interest Box Corners Coordinates

2. Main script (MAIN_AViATOR.m)

%%%
%%%

%% AViATOR (ARTIFICIAL VISION ALGORITHM FOR TRACKING ORBITAL ROTATIONS)
%%

%Main Program

 119

%% Description

% 1) Detects moving objects coming from space (black background area)
using
% Harris detection, Gaussian Blob and a Region of Interest, discarding
% fixed objects and background noise (eg Earth).

% 2) Once Detected the ROI becomes an image, where harris is used agian
to
% initialize the KLT tracking of points

% 3) KLT points are used for updating the ROI and (for KLT>N) to define
the
% geometric transformation for relative frames Camera/Target

% 4) Every 10 steps Surf/Harris points and KLT are taken outside the
ROI
% and the ROI is expanded (or reduced) if necessary

% 5) For Every Nframes checks if the stereo would work and then the
model
% uses stereo vision matching (and epipolar) to define the distance and
% rotations of the reference systems. Also a Geometries Measure is
made.

% 6) For Distance>D2 stereovision is not used and distance is retrieved
% from geometric measurements

%%%
%%%

%% Authors
% Alessio Grompone and Roberto Cristi
% PI: Marcello Romano
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015

close all
clear
clc
initializer
global Video
if ReceiveVicon==1
 UDPTarget=udp('170.160.1.41', 9090,'LocalPort', 9091);

 UDPCamera=udp('170.160.1.41', 9092,'LocalPort', 9093);

 TargetGround=[];
 CameraGround=[];
end
%% FRAME LOOP (SIMULATES REAL TIME FRAME ACQUISITION)
for k =InitialFrame:Jump:FinalFrame

 120

 k
 %VICON ACQUISITION
if ReceiveVicon==1
 fopen(UDPTarget)
 fopen(UDPCamera)
 TargetPosition=str2num(fscanf(UDPTarget));
 CameraPosition=str2num(fscanf(UDPCamera));
 TargetGround=[TargetGround,TargetPosition];
 CameraGround=[CameraGround,CameraPosition];
 fclose(UDPTarget)
 fclose(UDPCamera)

end

 if Livecam==0 %Input is a recorder video
 frame = read(Video, k);%Retrieve and Convert Frame k
 I1 = rgb2gray(frame);
 elseif Livecam==1 %Input is a webcam
 frame=snapshot(cam);
 I1=rgb2gray(frame);
 else %Input is the Bumblebee Camera
 start(vid);
 frame=getdata(vid);
 I1 = frame(:, :, 3);
 end
 SizeIMG=size(I1);

 Periodcheck=(Refreshperiod*round(double(k)/Refreshperiod)==k);
 %Periodcheck defines the periods for KLT Update
 Stereocheck=(Stereoperiod*round(double(k)/Stereoperiod)==k);
 %Stereocheck defines the periods for STEREOVISION Update

 %% PHASE 1: PREPARATION and DETECTION
 MODE=0;

 if k<LOOP && BackgroundSub==1
 %if the Background subtraction option is active this part of
the
 %code runs the Detection on the preprocessed images on all
frames
 %until a target is detected

 framepost = read(Video, k+1);%Retrieve and Convert Frame k
 Ipost = rgb2gray(framepost);
 [I2,Detect,ROI]=FUN_BACKGROUNDSUB(I1,Ipost);
 if Detect==0
 LOOP=LOOP+1;
 MODE=1;
 else
 MODE=2;
 [points,ROIh,Xroih,blob]=FUN_DETECTION(I2,ROI,MODE);
 tracker = vision.PointTracker('MaxBidirectionalError', 1);

 121

 initialize(tracker, points.Location, frame);%Initialize KLT
Parameters IF NO SURF Points have been detected (uses Harris)
 LOOP=0;
 oldpointsH=points.Location;
 ROI=ROIh;
 Xroi=Xroih;
 end

 end
 if k==InitialFrame && BackgroundSub==0
 %if the Background subtraction option is not active the
algorithm
 %starts the detection on the entire image until a target is
found.
 %When a target is detected the values of the Detection are used
for
 %the initialization of the KLT tracking.

 MODE=5;
 Detect=1;
 [points,ROIh,Xroih,blob]=FUN_DETECTION(I1,ROI,MODE);
 tracker = vision.PointTracker('MaxBidirectionalError', 1);
 initialize(tracker, points.Location, frame);%Initialize KLT
Parameters IF NO SURF Points have been detected (uses Harris)
 ROI=ROIh;
 Xroi=Xroih;
 oldpointsH=points.Location;
 end

%% PHASE 2: KLT Tracking
if Detect==1
 %when a target is detected the KLT is initialized and run.
Memorization
 %of the points from previous frames are necessary for the optical
flow
 %measurements.

 MODE=3;
 if size(oldpointsK,1)==0
 oldpointsE=oldpointsH;
 oldpointsK=oldpointsH;
 else
 oldpointsK=points;
 oldpointsE=ALLpoints;
 end
 [Vpoints,ROIklt,Xroiklt,ALLpoints]=FUN_KLT(tracker,frame,ROI,Xroi);
 points=Vpoints;
 %MetricK
 Xroi=Xroiklt;
 ROI=ROIklt;

%CONTINUOUS EIGHT_POINT ALGORITHM
%runs the Epipolar transformation function. In order to avoid errors
during

 122

%the updates, the values during and after the update are discarded with
%copies of the previous values

[v_a,omega_a,v_b,omega_b,flag]=FUN_EPIPOLAR(ALLpoints,oldpointsE,ROI);

 %Discarding the values during and after the period update
 AfterPeriodcheck=(Refreshperiod*round(double(k)/Refreshperiod)==k-
1);
 %AfterPeriodcheck detects the frame following the Harris Update
period
 Periodcheck=(Refreshperiod*round(double(k)/Refreshperiod)==k);
 %Periodcheck detects the frame of the Harris Update period

 if numel(omega_tot1)==0 || numel(v_tot1)==0 %initialize omega and
v
 omega_tot1=[omega_tot1,Zero];
 v_tot1=[v_tot1,Zero];
 omega_tot2=[omega_tot2,Zero];
 v_tot2=[v_tot2,Zero];
 elseif AfterPeriodcheck==1 %|| Periodcheck==1
 %discard the value obtained after the harris update
 omega_tot1=[omega_tot1,omega_tot1(:,end)];
 v_tot1=[v_tot1,v_tot1(:,end)];
 omega_tot2=[omega_tot2,omega_tot2(:,end)];
 v_tot2=[v_tot2,v_tot2(:,end)];
 else
 omega_tot1=[omega_tot1,omega_a];
 v_tot1=[v_tot1,v_a];
 omega_tot2=[omega_tot2,omega_b];
 v_tot2=[v_tot2,v_b];
 end

%LOST TARGET RECOVERY AND PERIOD RESTART

%once the KLT loop is completed the Detection is restarted to update
the
%values for the following period. In case the Target is lost during the
%period or during the update, the full detection restores the ROI to
the
%entire image.

 if Periodcheck==1 || size(Vpoints,1)==0

 if size(Vpoints,1)==0 %numel(pointsh.Location)==0
 ROI=[1,1,SizeIMG(2)-2,SizeIMG(1)-2];%Region of Interest
 %Xroih=[2 2 SizeIMG(2)-2 SizeIMG(2)-2 2;2 SizeIMG(1)-2
SizeIMG(1)-2 2 2];
 MODE=5;
 Detect=1;
 [pointsh,ROIh,Xroih,blob]=FUN_DETECTION(I1,ROI,MODE);
 Metric=max(pointsh.Metric);
 ROI=ROIh;
 Xroi=Xroih;

 123

 else
 [pointsh,ROIh,Xroih,blob]=FUN_DETECTION(I1,ROI,MODE);
 Metric=max(pointsh.Metric);
 end %
 if Metric>1*10^(-8)
 MODE=4;
 tracker = vision.PointTracker('MaxBidirectionalError', 1);
 initialize(tracker, pointsh.Location, frame);%Initialize
KLT Parameters IF HARRIS PARAMETERS HAVE BEEN FOUND
 oldpointsK=points;
 points=pointsh;
 end
 end
end

%% PHASE 3: Stereovision

%this part of the code runs the stereovision function and saves a
record of
%distances and frame for each stereovision update

if Stereovision==1 && k>InitialFrame
 if Stereocheck==1
 [Distance]=FUN_STEREO(ROI,I1,k);
 Dst=[Distance;k];
 Record=[Record,Dst];
 end
end

%% PHASE 4: Geometric Estimation
% if D>Dgeom
 %Match features to recognize geometries
 %GeometricDistance estimation
% end

%% PHASE 5: Plotting and recording

%here the Algorithm creates images from the analyzed frames adding in
Red
%the KLT tracked points, in Green the Harris Updated corners and in
Yellow
%the ROI. The Images are used also for the creation of a video.

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 if CreateImage==1
 h=figure;
 imshow(I1), %title('SURF(green)/KLT(red)');
 hold on;
 title(['AVIATOR Video']);
 plot(Xroi(1,:),Xroi(2,:),'y');
 if MODE==2
 plot(oldpointsH(:,1),oldpointsH(:,2),'b+');
 elseif MODE==3

 124

 if size(Vpoints,1)>=1
 plot(ALLpoints(:,1),ALLpoints(:,2),'r+');
 end
 elseif MODE==4
 if size(points.Location,1)>=1
 plot(points.Location(:,1),points.Location(:,2),'g+');
 end
 end

 print(h,'-r120','-dbmp','1.bmp');

%in order to save frames as images uncomment this part
% Filename=['Frame',num2str(k),'.bmp'];
% print(h,'-r120','-dbmp',Filename);

 img =imread('1.bmp');
 if CreateVideo==1
 writeVideo(writerObj,img);
 end
 close all
 end
end

save('record.mat')

3. Background Subtraction (FUN_BACKGROUNDSUB.m)

function [I2,Detect,ROIout]=FUN_BACKGROUNDSUB(I1,Ipost)

%% Background Subtraction Function

%% Authors
% Alessio Grompone and Roberto Cristi
% PI: Marcello Romano
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015

%% INPUTS
%I1 = (gray scale image) current frame
%Ipost = (gray scale image) previous frame
%% OUTPUTS
%I2 = (gray scale image) preprocessed image (with masked background)
%Detect = detection status flag (0 no tqarget detected, 1 target
detected)
%ROIout = [corner x, corner y, width, legth] (4x1) (pixels)
 %Region of interest based on unwanted features

%%
global SizeIMG Ifirst BSmode BSrad Hquality ROI

if BSmode==0
%% Static Background subtraction

 125

%(mask in following frames all regions with features in first frames)

I2=I1;
Detect=0;
% identifies not black pixels
for i=1:SizeIMG(1)
 for j=1:SizeIMG(2)
 if Ifirst(i,j)> 2
 I2(i,j)=1;
 end
 end
end

if max(max(I2))>20
 Detect=1;
end

ROIout=ROI;
else

%% Optical Background subtraction (mask features that do not move)
I2=Ipost;

BSHquality=0.05;
%detects unwanted features
points1=detectHarrisFeatures(Ifirst,'MinQuality',BSHquality);
points2=detectHarrisFeatures(Ipost,'MinQuality',Hquality);
pointsLocation1=points1.Location;
pointsLocation2=points2.Location;
pointsMetric1=points1.Metric;
pointsMetric2=points2.Metric;
%discard points that are in the nighborohood of previously detected
points

%% static points location filter
SizePoints1=size(pointsLocation1,1);
SizePoints2=size(pointsLocation2,1);
Location=[];%static points
Metric=[];

Eliminated=0;
for m=1:SizePoints2
 for n=1:SizePoints1
 Eliminated_n=find(Eliminated==m);
 if isempty(Eliminated_n) %se non eliminato i
 if abs(pointsLocation1(n,1)-
pointsLocation2(m,1))+abs(pointsLocation1(n,2)-
pointsLocation2(m,2))<BSrad
 Eliminated=[Eliminated;m];
 end
 end
 end
 if isempty(Eliminated_n)
 Location=[Location;pointsLocation2(m,1),pointsLocation2(m,2)];

 126

 Metric=[Metric;pointsMetric2(m,:)];
 end
 Eliminated=0;
end
SpointsB=struct('Location',Location,'Metric',Metric);

if numel(SpointsB.Location)==0
 ROIout=ROI;
 Detect=0;
else
 [blob,ROIh,Xroih]=FUN_BLOB(SpointsB);
 [Xroiout,ROIout] =
FUN_ROILIMITER(ROIh(1),ROIh(2),ROIh(3),ROIh(4));
 MODE=2;
 [points,ROIh,Xroih,blob]=FUN_DETECTION(I2,ROIout,MODE);
 if numel(points.Location)==0
 Detect=0;
 else
 Detect=1;
 end
end
end
end

4. HARRIS Detection (FUN_DETECTION.m)

function [points,ROIh,Xroih,blob]=FUN_DETECTION(I1,ROI,MODE)

global Hstrongest Hquality ANMSSwitch ANMSdistance
%% Authors
% Alessio Grompone and Roberto Cristi
% PI: Marcello Romano
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015

%Module for Harris Features Detection

if MODE==1 || (ROI(3)<1 && ROI(4)<1)
points=detectHarrisFeatures(I1,'MinQuality',Hquality);
else
points=detectHarrisFeatures(I1,'MinQuality',Hquality,'ROI', ROI);
end
if MODE==2 %%%was MODE<=2
points=points.selectStrongest(1);
else
points=points.selectStrongest(Hstrongest);
end

pointsLocation=points.Location;
pointsMetric=points.Metric;

 127

if ANMSSwitch==1
[points]= anms_fun(pointsMetric, pointsLocation(:,1),
pointsLocation(:,2), ANMSdistance);
pointsH=points;
end

if MODE<=5
[blob,ROIh,Xroih]=FUN_BLOB(points); %blobs coordinates - points,
gaussian parameters, image size
else
blob=[];
ROIh=ROI;
end

%[Xroih,ROIh] = FUN_ROILIMITER(ROIh(1),ROIh(2),ROIh(3),ROIh(4));
end

function [points]= anms_fun(x, x_i, x_j, D)
%% ANMS FUNCTION
%reduces the number of Harris detected features in cluttered areas
%Author: Roberto Cristi, modified by Alessio Grompone

% [y, y_i, y_j]= anms(x_strength, x_i, x_j, D)

% x, y input and output vectors of "strength"

% x_i, x_j, y_i, y_j , input and ouput vectors of 2D coordinates (i,j)
for
% associated to each point

% D min distance between points we keep. There is at most one point of
% strength in any square which is 2D x 2D

A=[x,x_i,x_j]; % create a matrix of [metric, x position, y position]

%sort the matrix A in function of the metric (strongest first)
[Z, K]=sort(A(:,1), 'descend');
Z=A(K,:);

z_x=Z(:,2); z_y=Z(:,3);
z_metric=Z(:,1);
Nsizei=size(K);
Eliminated=0;
zx=[];
zx_i=[];
zx_j=[];
for i=1:Nsizei(1)
 Eliminated_i=find(Eliminated==i);
 if isempty(Eliminated_i) %se non eliminato i
 for j=1:Nsizei(1)
 Eliminated_j=find(Eliminated==j);
 if isempty(Eliminated_j) %se non eliminato j

 128

 if abs(z_x(j)-z_x(i))+abs((z_y(j))-z_y(i))>D ...
 || abs(z_x(j)-z_x(i))+abs((z_y(j))-z_y(i))==0
 Eliminated=[Eliminated];
 else
 Eliminated=[Eliminated;j];
 end
 end
 end
 end
end
for i=1:Nsizei(1)
 Eliminated_i=find(Eliminated==i);
 if isempty(Eliminated_i) %se non eliminato i
 zx=[zx;z_metric(i)];
 zx_i=[zx_i;z_x(i)];
 zx_j=[zx_j;z_y(i)];
 end
end
Location=[zx_i, zx_j];
elements=size(zx);
elem=elements(1);
points = cornerPoints(Location,'Metric',zx);
end

5. BLOB Selection (FUN_BLOB.m)

function [blob,ROIh,Xroih]=FUN_BLOB(points)
%% BLOB FUNCTION

%% Authors
% Alessio Grompone and Roberto Cristi
% PI: Marcello Romano
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015

%% INPUTS
%points = (pixel) [x y] (1,2) Pixel coordinates of the points detected

%% OUTPUTS
%blob = Matrix of points (Image size) with white blobs
%ROIh = (pixels) (4x1) Region of interest[corner x, corner y,
width,length]
%Xroih = (pizels) [x,y](5x2) Region of Interest Box 4 Corners
Coordinates

%%
global Blength Bsigma SizeIMG Xroi
Xrois=Xroi;
SIZE_IMG=[SizeIMG(2),SizeIMG(1)];
L=Blength;
sigma=Bsigma;

 129

M=zeros(SIZE_IMG+(2*L+1));
% Gaussian Blobs Creation and Filtering
for n0=1:length(points)
n=-L:L;
h1=(1/(sqrt(2*pi)*sigma))*exp(-(n.^2)/(2*sigma^2));
hgauss=h1'*h1;
IJ=round(points.Location(n0,:));
K=points.Metric(n0,:);
%save('blob.mat')
M(IJ(1):IJ(1)+2*L, IJ(2):IJ(2)+2*L)=M(IJ(1):IJ(1)+2*L,
IJ(2):IJ(2)+2*L)...
 +K*hgauss;
end
M=M(L+1:SIZE_IMG(1)+L, L+1:SIZE_IMG(2)+L);
M=sign(M-0.5*max(max(M)));

%Convert to binary (0 and 1 only)
for i=1:SIZE_IMG(1)
 for j=1:SIZE_IMG(2)
 if M(i,j)==-1
 M(i,j)=0;
 end
 end
end

blob=M; %Matrix image of blobs

[ROIh,Xroih]=roiblob_fun(blob,Xrois);% build ROI from blobs+HARRIS

end

%%ROI from BLOB FLUNCTION
function [ROI,Xroi]=roiblob_fun(blob,Xrois)
global Bnumber Bmode SizeIMG BroiDim

Xroi=Xrois;
SIZE_IMG=SizeIMG;
%%
%Detects and selects Blob and transforms the index in coordinates
%detect connected areas (blobs)
CC = bwconncomp(blob',Bnumber);

index=[]; %index vector of the blobs that we want to include
Xcoll=[];
Ycoll=[];
if CC.NumObjects>0
if Bmode==1 %First frame chose the biggest Blob and Build the ROI
D=0;
for i=1:(CC.NumObjects)
%Choose only the biggest perimeter component
A=size(CC.PixelIdxList{1,i});
if D<A(1)
D=A(1); %Number of pixels in connected

 130

index=i; %Index of the collection
end
end
%linear pixel index to XY converter
pase=10;
[X,Y]=indextolinear(CC,D,index,pase);
%Average Center for Region of Interest ROI
Xmean=floor(mean(X));
Ymean=floor(mean(Y));
width=floor(max(X)-min(X))+ BroiDim ;
height=floor(max(Y)-min(Y))+ BroiDim ;

if width<1
 width=1;
end
if height<1
 height=1;
end

Xroi(:,1)=[Xmean-(width/2);Ymean-(height/2)];
Xroi(:,2)=[Xmean-(width/2);Ymean+(height/2)];
Xroi(:,3)=[Xmean+(width/2);Ymean+(height/2)];
Xroi(:,4)=[Xmean+(width/2);Ymean-(height/2)];
Xroi(:,5)=[Xmean-(width/2);Ymean-(height/2)];

Xcoll=X;
Ycoll=Y;
else
for i=1:(CC.NumObjects)
A=size(CC.PixelIdxList{1,i});
pase=10;
[X,Y]=indextolinear(CC,A,i,pase);
Xmean=floor(mean(X));
Ymean=floor(mean(Y));

%Choose only the blobs within the old ROI
if Xmean>Xroi(1,1) && Xmean<Xroi(1,3) && Ymean>Xroi(2,1) &&
Ymean<Xroi(2,2)
Xcoll=[Xcoll,X];
Ycoll=[Ycoll,Y];
end
end

%Average Center for Region of Interest ROI
Xmean=floor(mean(Xcoll));
Ymean=floor(mean(Ycoll));
width=floor(max(Xcoll)-min(Xcoll))+ BroiDim ;
height=floor(max(Ycoll)-min(Ycoll))+ BroiDim ;

if width<1
 width=1;
end
if height<1
 height=1;

 131

end
%save('blob.mat')
Xroi(:,1)=[Xmean-(width/2);Ymean-(height/2)];
Xroi(:,2)=[Xmean-(width/2);Ymean+(height/2)];
Xroi(:,3)=[Xmean+(width/2);Ymean+(height/2)];
Xroi(:,4)=[Xmean+(width/2);Ymean-(height/2)];
Xroi(:,5)=[Xmean-(width/2);Ymean-(height/2)];
end

Xroi(1,5)=Xroi(1,1);
Xroi(2,5)=Xroi(2,1);

width=Xroi(1,3)-Xroi(1,1);
height=Xroi(2,3)-Xroi(2,1);

ROI=[Xroi(1,1),Xroi(2,1),width,height];
else
%Use entire IMage as Region of interest in case of loss
ROI=[2,2,SizeIMG(2)-2,SizeIMG(1)-2];
Xroi=[2 2 SizeIMG(2)-2 SizeIMG(2)-2 2;
 2 SizeIMG(1)-2 SizeIMG(1)-2 2 2];
end
end

6. KLT Tracking (FUN_KLT.m)

function [Vpoints,ROIo,Xroio,ALLpoints]=FUN_KLT(tracker,frame,ROI,Xroi)

%% KLT tracker function

%% Authors
% Alessio Grompone and Roberto Cristi
% PI: Marcello Romano
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015

%% INPUTS
%tracker = initialization structure
%frame = current frame image (gray image)
%ROI= (pixels) (4x1) Region of interest [corner x, corner y,
width,length]
%% OUTPUTS
%Vpoints = (nx2) array of valid tracked points
%ROIo =(pixels) (4x1) Region of interest [corner x, corner y,
width,length]
%Xroio =(pizels) [x,y](5x2) Region of Interest Box 4 Corners
Coordinates
%ALLpoints = (mx2) Valid and lost points in matching order

%%
global SizeIMG KLTroi KLTvalue KLTroiDim

 132

VpointsROI=[];
VpointsOUT=[];
KLTmagnitudesROI=[];
KLTdirectionsROI=[];
Nvpoints2=[0,0];
MODE=1;

SIZE_IMG=SizeIMG;
%provides al KLT tracked points and validity vector
[KLTpoints, validity] = step(tracker, frame); %
Vpoints=KLTpoints(validity,:); %filter only valid points
ALLpoints=KLTpoints;

for i=1:size(ALLpoints,1)
 if validity(i)==0
 ALLpoints(i,:)= [0,0];
 end
end

%Remove "Valid" Points that are too far from ROI
N=size(Vpoints,1);
if N>0 && KLTroi==1
 for i=1:N %If inside the input ROI
 if Vpoints(i,1)>=Xroi(1,1)-KLTvalue &&
Vpoints(i,1)<=Xroi(1,3)+...
 KLTvalue && Vpoints(i,2)>=Xroi(2,1)-KLTvalue && ...
 Vpoints(i,2)<=Xroi(2,2)+KLTvalue
 VpointsROI=[VpointsROI;Vpoints(i,:)];
 end
 end
end

Vpoints=VpointsROI;

%% KLT ROI UPDATE

%uses the mean KLT valid points to expand, shrink or translate the ROI

if size(Vpoints,1)>=1
 %Calculate mean of valid KLT points to shift the old ROI
 KLTmeanX=mean(Vpoints(:,1));
 KLTmeanY=mean(Vpoints(:,2));
 %Estimate the dimensions of the new ROI
 KLTwidth=(max(Vpoints(:,1))-min(Vpoints(:,1)))+KLTroiDim; %For
ROI(3)
 KLTlenght=(max(Vpoints(:,2))-min(Vpoints(:,2)))+KLTroiDim;%For
ROI(4)
 ROI1=KLTmeanX-(KLTwidth/2);
 ROI2=KLTmeanY-(KLTlenght/2);
 [Xroiout,ROIout] = FUN_ROILIMITER(ROI1,ROI2,KLTwidth,KLTlenght);
 Xroio=Xroiout;
 ROIo=ROIout;
else
 Vpoints=[];

 133

 Xroio=Xroi;
 ROIo=ROI;

end

7. Epipolar Transformation (FUN_EPIPOLAR.m)

function
[v_a,omega_a,v_b,omega_b,flag]=FUN_EPIPOLAR(Vpoints,VpointsOld,ROI)
%% Authors
% Alessio Grompone and Roberto Cristi
% PI: Marcello Romano
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015

% From the "Continuous eight-point algorithm"
% Ref "An Invitation to 3D Vision" Page 151, Algorithm 5.3

%% INPUTS
%Vpoints = (pixels) (nx2) Tracked Ponts coordinates [x, y] in the
current frame
%VpointsOld = (pixels) (nx2) Tracked Ponts coordinates [x, y] from
previous frame
%ROI= (pixels) (4x1) Region of interest [corner x, corner y,
width,length]

%% OUTPUTS
%v_a = [vx, vy, vz] (meters/frame) (3x1) Estimated Body Linear
Velocities
 %for the Solution1
%omega_a = [wx,wy,wz] (radians/frame)(3x1) Estimated Body Angular
Velocities
 %for the Solution1
%v_b = [vx, vy, vz] (meters/frame) (3x1)Estimated Body Linear
Velocities
 %for the Solution2
%omega_b = [wx,wy,wz] (radians/frame) (3x1) Estimated Body Angular
Velocities
 %for the Solution2
%flag = (1) debugging flag (1 if are using the epipolar function)

%%
global fl vpold omegapold

focallenght=fl;
n=size(Vpoints,1);
X_2Dcamera1=[];
X_2Dcamera2=[];
%reinitializes just in case KLT doesn't have the same number of matched

 134

%points(like when it updates HARRIS).
vs=zeros(3,3,4);
omegas=zeros(3,3,4);
v_a=zeros(3,1);
omega_a=zeros(3,1);
v_b=zeros(3,1);
omega_b=zeros(3,1);
flag=0;%checks if this function is running or not

%% Check if we are in the same KLT loop form the size of the Valid
Points
if n>0 && size(Vpoints,1)==size(VpointsOld,1) &&
((max(abs(Vpoints(:,1)-VpointsOld(:,1)))>0)||(max(abs(Vpoints(:,2)-
VpointsOld(:,2)))>0))
 flag=1;
 %Makes the vector of points xj in the coordinates of page 141
 for i=1:n
 if Vpoints(i,1)==0 || VpointsOld(i,1)==0 || Vpoints(i,2)==0 ||
VpointsOld(i,2)==0
 %discard points that are zero (not valid KLT points)
 n=n-1;%counter to reduce total number of points
 else
 %sets the coordinates frame in the center of the ROI
 x1=[VpointsOld(i,2)-(ROI(2)+(ROI(4)/2));-
VpointsOld(i,1)+(ROI(1)+(ROI(3)/2));focallenght];
 x2=[Vpoints(i,2)-(ROI(2)+(ROI(4)/2));-
Vpoints(i,1)+(ROI(1)+(ROI(3)/2));focallenght];
 %collects the coordinates in a (nx2) array
 X_2Dcamera1=[X_2Dcamera1,x1];%Points on 2D plane Camera 1
(x z f)
 X_2Dcamera2=[X_2Dcamera2,x2];%Points on 2D plane Camera 2
(x z f)
 end
 end

 %% Optical flow function (measures the velocities projected on the
image)

 [u]=FUN_OPTFLOW(X_2Dcamera1,X_2Dcamera2);

 %% Estimate essential vector
 [vp1,omegap1,vp2,omegap2]=epipolar3(X_2Dcamera1,u,n);
 %use epipolar1 for the Eight-Point linear Algorithm
 %use epipolar2 for the Eight-Point continuous Algorithm
 %use epipolar3 for the Four-Point continuous Algorithm

 %% Collectes the two solutions in two arrays
 %This parts regroups the solutions based on the proximity with the
 %previous value
 if numel(vpold)==0 %need to initialize vpold with the first
solution
 vpold=vp1;
 omegapold=omegap1;
 end

 135

 Dv1=mean(abs(vp1-vpold)+abs(omegap1-omegapold));
 Dv2=mean(abs(vp2-vpold)+abs(omegap2-omegapold));
 if Dv1<=Dv2
 v_a=vp1;
 omega_a=omegap1;
 v_b=vp2;
 omega_b=omegap2;
 else
 v_a=vp2;
 omega_a=omegap2;
 v_b=vp1;
 omega_b=omegap1;
 end
 vpold=(vpold+v_a)/2;
 omegapold=(omegapold+omega_a)/2;
end
end

8. Continuous Eight-Points Algorithm (epipolar1.m)

function [vp1,omegap1,vp2,omegap2]=epipolar1(X_2Dcamera1,u,n)

% Continuous eight-point algorithm
% Ref "An Invitation to 3D Vision" Page 151, Algorithm 5.3
%% Authors
% Alessio Grompone and Roberto Cristi
% PI: Marcello Romano
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015

%%INPUTS
%X_2Dcamera1 = [x,y] (pixels) (nx2) Coordinates of tracked valid points
%u = [Vx,Vy] (pixel/frame) (nx2) velocities from optical flow
%n = number of valid points

%OUTPUTS
%vp1 = [vx, vy, vz] (meters/frame) (3x1) Estimated Body Linear
Velocities
 %for the Solution1
%omegap1 = [wx,wy,wz] (radians/frame) (3x1) Estimated Body Angular
Velocities
 %for the Solution1
%vp2 = [vx, vy, vz] (meters/frame) (3x1) Estimated Body Linear
Velocities
 %for the Solution2
%omegap2 = [wx,wy,wz] (radians/frame) (3x1) Estimated Body Angular
Velocities
 %for the Solution2
%flag = debugging flag (1 if are using the epipolar function)

global fl SizeIMG

 136

vp1=zeros(3,1);
omegap1=zeros(3,1);
vp2=zeros(3,1);
omegap2=zeros(3,1);
%% Estimate essential vector
for i=1:n
 x=X_2Dcamera1(1,i);
 y=X_2Dcamera1(2,i);
 z=X_2Dcamera1(3,i);
 a(:,i)=[u(3,i)*y-u(2,i)*z,u(1,i)*z-u(3,i)*x,u(2,i)*x-
u(1,i)*y,x^2,...
 2*x*y,2*x*z,y^2,2*y*z,z^2]';
 X(:,i)=[a(:,i)];
end
X=X';
if rank(X)>=8
 %For not noisy measurements we want to minimize X*Es=0
 [Ux,Sx,Vx]=svd(X);
 Es1=Vx(:,9);
 %For noisy measurements we want to minimize ||X*Es||^2=0
 [Vxn,Dxn]=eig(X'*X,'vector');
 Dxmin=min(Dxn);
 for i=1:size(Dxn,1)
 if Dxn(i)==Dxmin
 Es=Vxn(:,i); %Stacked Epipolar Matrix
 end
 end
 %
 % Es3=lsqlin(X,zeros(n,1));
 % %
 % Es2=null(X);

 vo=[Es(1);Es(2);Es(3)];
 %Es=Es/norm(vo);
 vo=[Es(1);Es(2);Es(3)];
 s_e=[Es(4) Es(5) Es(6) Es(7) Es(8) Es(9)];
 s=[s_e(1) s_e(2) s_e(3);s_e(2) s_e(4) s_e(5);s_e(3) s_e(5) s_e(6)];
 %Multiply Es with a scalar such that the vector vo becomes unit
norm

 %% Recover the symmetric epipolar component
 %s might not be symmetric due to noise, therfore we project it in
the space
 %of symmetric epipolar components

 [V1,D]=eig(s,'vector');
 [lamb,index]=sort(D,'descend');
 Vvect=V1(:,index);

 sigma=[(2*lamb(1)+lamb(2)-
lamb(3))/3;(lamb(1)+2*lamb(2)+lamb(3))/3;...
 (2*lamb(3)+lamb(2)-lamb(1))/3];
 s=Vvect*diag(sigma)*Vvect';%Symmetrized s

 137

 %% Recover the velocity from the symmetric epipolar component
 lambda1=sigma(1)-sigma(3);
 theta=acos((-sigma(2)/lambda1));
 theta2=(theta/2)-(pi/2);

 Ry1=[cos(theta) 0 sin(theta);
 0 1 0 ;
 -sin(theta) 0 cos(theta)];%@(theta)
 Ry2=[cos(theta2) 0 sin(theta2);
 0 1 0 ;
 -sin(theta2) 0 cos(theta2)];%@(theta/2)-(pi/2)
 Rz1=[cos(pi/2) -sin(pi/2) 0;
 sin(pi/2) cos(pi/2) 0;
 0 0 1];%@(+pi/2)
 Rz2=[cos(-pi/2) -sin(-pi/2) 0;
 sin(-pi/2) cos(-pi/2) 0;
 0 0 1];%@(-pi/2)

 V=Vvect*Ry2';%As the book
 U=-V*Ry1;

 Siglam=diag([lambda1,lambda1,0]);
 Sig1=diag([1,1,0]);

 omegas(:,:,1)=U*Rz1*Siglam*U'; vs(:,:,1)=V*Rz1*Sig1*V';
 omegas(:,:,2)=U*Rz2*Siglam*U'; vs(:,:,2)=V*Rz2*Sig1*V';
 omegas(:,:,3)=V*Rz1*Siglam*V'; vs(:,:,3)=U*Rz1*Sig1*U';
 omegas(:,:,4)=V*Rz2*Siglam*V'; vs(:,:,4)=U*Rz2*Sig1*U';

 %% Recover the velocity from continuous essential matrix
 vtempold=0;
 vsolutions=[];
 for g=1:4
 vsolutions=[vsolutions,[vs(3,2,g);vs(1,3,g);vs(2,1,g)]];
 vtemp=[vs(3,2,g);vs(1,3,g);vs(2,1,g)]'*vo;
 if vtemp>vtempold
 v=[vs(3,2,g);vs(1,3,g);vs(2,1,g)];
 omega=[omegas(3,2,g);omegas(1,3,g);omegas(2,1,g)];
 vtempold=vtemp;
 end
 end
vp1=v;
omegap1=omega;
vp2=[vs(3,2,2);vs(1,3,2);vs(2,1,2)];
omegap2=[omegas(3,2,2);omegas(1,3,2);omegas(2,1,2)];

end
%save('epipolar1.mat')
end

 138

9. Continuous Four-Points Algorithm (epipolar3.m)

function [vp1,omegap1,vp2,omegap2]=epipolar3(X_2Dcamera1,u,n)

%% Estimate Epipolar from 4 planar or more values

%% Authors
% Alessio Grompone and Roberto Cristi
% PI: Marcello Romano
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015

%%INPUTS
%X_2Dcamera1 = [x,y] (pixels) (nx2) Coordinates of tracked valid points
%u = [Vx,Vy] (pixel/frame) (nx2) velocities from optical flow
%n = number of valid points

%OUTPUTS
%vp1 = [vx, vy, vz] (meters/frame) (3x1) Estimated Body Linear
Velocities
 %for the Solution1
%omegap1 = [wx,wy,wz] (radians/frame) (3x1) Estimated Body Angular
Velocities
 %for the Solution1
%vp2 = [vx, vy, vz] (meters/frame) (3x1) Estimated Body Linear
Velocities
 %for the Solution2
%omegap2 = [wx,wy,wz] (radians/frame) (3x1) Estimated Body Angular
Velocities
 %for the Solution2
%flag = debugging flag (1 if are using the epipolar function)

 X=[];
 B=[];
%% Compute first approximation of the continuous homography matrix
 for i=1:n
 % skewsymmetric matrix build
 x=X_2Dcamera1(1,i);
 y=X_2Dcamera1(2,i);
 z=X_2Dcamera1(3,i);
 skew=[0 -z y;z 0 -x;-y x 0];
 % X matrix build
 a(:,:)=kron(X_2Dcamera1(:,i),skew); %kronecher
 X=[X,a(:,:)];
 % B matrix build
 b=skew*u(:,i);
 B=[B,b'];
 end
 X=X';
 B=B';

 Hls=pinv(X)*B;%Stacked homography matrix not in essential space

 if numel(Hls)==0
 %initialize the homography matrix not in essential space

 139

 Hl=zeros(3,3);
 else
 %unstack the homography matrix not in essential space

Hl=[Hls(1),Hls(2),Hls(3);Hls(4),Hls(5),Hls(6);Hls(7),Hls(8),Hls(9)]';
 end
 %% Normalization of the continuous homography matrix
 [Vl,Dl]=eig(Hl'+Hl);%measure eigenvalues and eigenvectors
 H=Hl-0.5*Dl(2,2)*eye(3);%Homography Matrix

 %% Decomposition of the continuous homography matrix
 [V,D]=eig(H'+H);
 Di=[D(1,1);D(2,2);D(3,3)];
 % reorder Eigenvalues and vectors from max to min eigenvalue
 [lamb,index]=sort(Di,'descend');
 V=V(:,index);

 alpha=0.5*(lamb(1)-lamb(3));

 v1h=0.5*(sqrt(2*lamb(1))*V(:,1)+sqrt(-2*lamb(3))*V(:,3));
 N1h=0.5*(sqrt(2*lamb(1))*V(:,1)-sqrt(-2*lamb(3))*V(:,3));
 v2h=N1h;
 N2h=v1h;

 e3=[0,0,1]'; %optical axis
 Ncheck=zeros(3,1); %initialize Depth constraint check

 %%Compute Solution 1
 Vd1=sqrt(alpha)*v1h;%Linear Velocity
 N1=(1/sqrt(alpha))*N1h;
 omega1=0.5*((H-v1h*N1h')-(H-v1h*N1h')');%Angular Velocity
Skewsimmetric
 Ncheck(1)=N1'*e3;%Depth constraint check
 %%Compute Solution 2
 Vd2=sqrt(alpha)*v2h;%Linear Velocity
 N2=(1/sqrt(alpha))*N2h;
 omega2=0.5*((H-v2h*N2h')-(H-v2h*N2h')');%Angular Velocity
Skewsimmetric
 Ncheck(2)=N2'*e3;%Depth constraint check
 %%Compute Solution 3
 Vd3=-Vd1;%Linear Velocity
 N3=-N1;
 omega3=omega1;%Angular Velocity Skewsimmetric
 %%Compute Solution 4
 Vd4=-Vd2;%Linear Velocity
 N4=-N2;
 omega4=omega2;%Angular Velocity Skewsimmetric

 %Select Solutions

 if D(1)==0 && D(2)==0 && D(3)==0
 %if all eigenvalues are zero only one solution exist
 Vsol1=zeros(3,1);
 Nsol1=zeros(3,1);

 140

 Osol1=H;
 Vsol2=zeros(3,1);
 Nsol2=zeros(3,1);
 Osol2=H;
 %elseif Vd1==zeros(3,1) || Vd2==zeros(3,1) %|| cross(Vd1,N1)==0
|| e3'*v==0 %There is a unique solutions
 elseif Vd1(1)==0 && Vd1(2)==0 && Vd1(3)==0 %|| cross(Vd1,N1)==0 ||
e3'*v==0 %There is a unique solutions
 %if all linear velocities are zero only one solution exist
 Vsol1=zeros(3,1);
 Nsol1=N1; %?
 Osol1=H;
 Vsol2=Vsol1;
 Nsol2=Nsol1;
 Osol2=Osol2;
 else
 %if 4 solutions exist select only the 2 valid solution N'e3>0
 if Ncheck(1)>0
 Vsol1=Vd1;
 Nsol1=N1;
 Osol1=omega1;
 else
 Vsol1=Vd3;
 Nsol1=N3;
 Osol1=omega3;
 end
 if Ncheck(2)>0
 Vsol2=Vd2;
 Nsol2=N2;
 Osol2=omega2;
 else
 Vsol2=Vd4;
 Nsol2=N4;
 Osol2=omega4;
 end
 end

 vp1=Vsol1;
 omegap1=[Osol1(3,2);Osol1(1,3);Osol1(2,1)];
 vp2=Vsol2;
 omegap2=[Osol2(3,2);Osol2(1,3);Osol2(2,1)];

 % save('epipolar3.mat')
end

10. Stereovision Range Estimation (FUN_STEREO_RANGE.m)

function [Distance]=FUN_STEREO(ROI,I1,k)
%% Features and Stereo

 141

%Subfunction of the AViATOR algorithm, for the detection and matching
of
%features on stereo images and estimation of the distance from a
tracked
%target.

%% Authors
% Alessio Grompone and Roberto Cristi
% PI: Marcello Romano
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015

%% INPUT
%ROI = [corner x, corner y, width, legth] (4x1) (pixels) Region of
interest
%I1 = (gray scale image) current frame
%k = (scalar) current frame number
%% OUTPUT
%Distance = (scalar) scaled Distance
%%
global fl pix Dstereo Livecam vid experiment %VideoR
%Cameras Relative Properties
 MODER=6;
 if Livecam==0 %Input is a recorder video
 %frameR = read(VideoR, k);%Retrieve and Convert Frame k
 %ks=30-k+1;
 ks=k;

folderR=(['C:\Users\Grompone\Desktop\AViATOR\TEST5_LIVEepipolarEstere\'
,experiment,'\FrameR',num2str(ks),'.bmp']);
 frameR = imread(folderR); %read(Video, 1);%Retrieve and Convert
Frame k
 I1R = rgb2gray(frameR);
 elseif Livecam==2 %Input is a webcam
 start(vid);
 frameR=getdata(vid);
 I1R = frameR(:, :, 1);
 end

 I1L=I1;
 % Find SURF matched points for STEREO COMPARISON
 points1 = detectSURFFeatures(I1L,'ROI',ROI);
 points2 = detectSURFFeatures(I1R,'ROI',ROI);
 [f1, vpts1] = extractFeatures(I1L, points1);
 [f2, vpts2] = extractFeatures(I1R, points2);
 indexPairs = matchFeatures(f1, f2, 'Prenormalized', true) ;
 matchedPoints1 = vpts1(indexPairs(:, 1));
 matchedPoints2 = vpts2(indexPairs(:, 2));
 PointsL=matchedPoints1.Location;
 PointsR=matchedPoints2.Location;

 %Cameras Relative Properties
 pointsL=PointsL;
 pointsR=PointsR;
 %fl=0.0038;%Cameras Focal lenght (m)

 142

 %we asssume camera 1 in the Inertia Reference frame
 %we assume only camera rotations along the Z axis

 Xc1=[0;0;0;0;0;0];%Camera position and attitude 1 (X Y Z theta
phi psi) Inertia Frame
 Xc2=[Dstereo;0;0;0;0;0];%Camera position and attitude 2 (X Y Z
theta phi psi) Inertia Frame

 %rotation between camera position 1 and Inertia frame
 Rc=[1 0 0;0 cos(Xc1(4)) sin(Xc1(4)); 0 -sin(Xc1(4))
cos(Xc1(4))]*[cos(Xc1(5)) 0 sin(Xc1(5));0 1 0;sin(Xc1(5)) 0
cos(Xc1(5))]* [cos(Xc1(6)) -sin(Xc1(6)) 0;sin(Xc1(6)) cos(Xc1(6)) 0; 0
0 1];
 %translation between camera position 1 and Inertia frame
 Tc=[0,0,0,1];

 %rotation between camera position 1 and 2
 R21=[1 0 0;0 cos(Xc2(4)-Xc1(4)) sin(Xc2(4)-Xc1(4)); 0 -
sin(Xc2(4)-Xc1(4)) cos(Xc2(4)-Xc1(4))]*[cos(Xc2(5)-Xc1(5)) 0
sin(Xc2(5)-Xc1(5));0 1 0;sin(Xc2(5)-Xc1(5)) 0 cos(Xc2(5)-Xc1(5))]*
[cos(Xc2(6)-Xc1(6)) -sin(Xc2(6)-Xc1(6)) 0;sin(Xc2(6)-Xc1(6))
cos(Xc2(6)-Xc1(6)) 0; 0 0 1];
 R12=R21';
 %translation between camera position 1 and 2
 T12=[Xc1(1)-Xc2(1);
 Xc1(2)-Xc2(2);
 Xc1(3)-Xc2(3)];
 Nsp= size(pointsR,1);
 LL=[];
 C=0;
 d=0;
 if Nsp>0
 for i=1:Nsp
 i=1;
 % %in meters
 x1=pointsL(i,:)*pix;
 x2=pointsR(i,:)*pix;

 x1=[x1(1);x1(2);fl]; %Point on object (on 2D plane
Camera 1) (x y f)
 x2=[x2(1);x2(2);fl]; %Point on object (on 2D plane
Camera 2) (x y f)

 x2cross=[0 -x2(3) x2(2);x2(3) 0 -x2(1); -x2(2) x2(1)
0];
 %l1*(x2cross*T21)+(x2cross*R21*x1)=0;
 C=double(x2cross*R21*x1);
 d=double(x2cross*T12); %or T21 ?

 %least squares for Lambda1 determination
 l1=lsqlin(C,d);
 LL=[LL,l1];
 end

 143

 end
 l1=mean(LL);
 %Point distance from reference camera 1
 Z=l1*fl;
 %Distance=-Z;%in
 Distance=-Z;%*(80/27.5)/100;%Calibrated Value (in m)

11. Optical Flow Estimation (FUN_OPTFLOW.m)

function [u]=FUN_OPTFLOW(X_2Dcamera1,X_2Dcamera2)

%% Optical Flow measurement

%% Authors
% Alessio Grompone and Roberto Cristi
% PI: Marcello Romano
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015

%%INPUT
% X_2Dcamera1 = [x y f] (3x1) 2D camera position of points in frame 1
% X_2Dcamera2 = [x y f] (3x1) 2D camera position of points in frame 2

%%OUTPUT
% u = [xdot ydot 0] %velocity vector (pixels/frame)

n = size(X_2Dcamera1,2);
u = zeros(3,n);

for i = 1:n
u(:,i) = [X_2Dcamera2(1,i)-X_2Dcamera1(1,i);X_2Dcamera2(2,i)-
X_2Dcamera1(2,i); 0];
end

12. Computed ROI Limits Validation (FUN_ROILIMITER.m)

function [Xroiout,ROIout] = FUN_ROILIMITER(ROI1,ROI2,ROI3,ROI4)

global SizeIMG
%ROILIMITER_FUN Summary of this function goes here
% Linits the ROI within the image
%used for the blob, the klt and for the surf functions

SIZE_IMG=SizeIMG;
%Move ROI with KLT tracked mean
 width=ROI3;
 height=ROI4;
 Xmean=ROI1+(width/2);
 Ymean=ROI2+(height/2);

 144

Xroi(:,1)=round([Xmean-(width/2);Ymean-(height/2)]);
Xroi(:,2)=round([Xmean-(width/2);Ymean+(height/2)]);
Xroi(:,3)=round([Xmean+(width/2);Ymean+(height/2)]);
Xroi(:,4)=round([Xmean+(width/2);Ymean-(height/2)]);
Xroi(:,5)=round([Xmean-(width/2);Ymean-(height/2)]);
%limit the ROI within the image
if Xroi(1,3)>SIZE_IMG(2)-1
 Xroi(1,3)=SIZE_IMG(2)-1;
 Xroi(1,4)=SIZE_IMG(2)-1;
end
if Xroi(2,2)>SIZE_IMG(1)-1
 Xroi(2,2)=SIZE_IMG(1)-1;
 Xroi(2,3)=SIZE_IMG(1)-1;
end
if Xroi(1,1)>SIZE_IMG(2)-2
 Xroi(1,1)=SIZE_IMG(2)-2;
 Xroi(1,2)=SIZE_IMG(2)-2;
end
if Xroi(2,1)>SIZE_IMG(1)-2
 Xroi(2,1)=SIZE_IMG(1)-2;
 Xroi(2,4)=SIZE_IMG(1)-2;
end
if Xroi(1,1)<=1
 Xroi(1,1)=1;
 Xroi(1,2)=1;
end
if Xroi(2,1)<=1
 Xroi(2,1)=1;
 Xroi(2,4)=1;
end
if Xroi(1,3)<=2
 Xroi(1,3)=2;
 Xroi(1,4)=2;
end
if Xroi(2,2)<=2
 Xroi(2,2)=2;
 Xroi(2,3)=2;
end
Xroi(1,5)=Xroi(1,1);
Xroi(2,5)=Xroi(2,1);

Xroiout=Xroi;

width=Xroi(1,3)-Xroi(1,1);
height=Xroi(2,3)-Xroi(2,1);

ROIout=[Xroi(1,1),Xroi(2,1),width,height];

end

 145

13. Image Indexing Transformation (indextolinear.m)

function[X,Y]=indextolinear(CC,A,i,pase)
Y=[];
X=[];
for j=1:pase:A %I am analyzing only 1/50 of the pixels involved
index1=CC.PixelIdxList{1,i}(j,1);
x=floor(index1/CC.ImageSize(1));
y=floor(index1-x*CC.ImageSize(1));
Y=[Y,y];
X=[X,x];
end

B. MATLAB RIGID CLOUD

Below is provided the code used to create a 3D rigid cloud of points rotating and

translating according to the user inputs. The points generated have been used to test the

Epipolar function during the development phase

%Grompone Alessio 07/09/2014
function
[CameraPoints1,CameraPoints2,fl,XwCamera1,XwCamera2]=PointsCreatorBox(B
oxState1,BoxState2,fl)

%%%
%Initialization
%%%

rad=-45*(pi/180);%degrees to radians
%BoxState1=[0,0,20,0,0,0];%[X,Y,Z,phi,theta,psi] Initial condition
%BoxState2=[30,0,20,0,rad,0];%[X,Y,Z,phi,theta,psi] Final condition
SizeIMG=[800,600];
%fl=1; %Camera Focal correction 0.0038;(m)

FOVx=2*atan2(SizeIMG(1)/2,fl);
FOVy=2*atan2(SizeIMG(2)/2,fl);
FOV=[FOVx,FOVy];

%intrinsic parameters
S=[SizeIMG(1) 0 SizeIMG(1)/2;
 0 SizeIMG(2) SizeIMG(2)/2;
 0 0 1];
FI=[fl 0 0;
 0 fl 0;
 0 0 1];
PI=[1 0 0 0;
 0 1 0 0;
 0 0 1 0];
Xw1=zeros(4,1);

 146

CameraPoints1=[];
CameraPoints2=[];
Xw3D=[];
X3D=[];
XwCamera1=[];
XwCamera2=[];
X_2Dcamera1=[];
X_2Dcamera2=[];

%The reference sistem has X along the camera, Z towards the camera view
and
%y towards down in the image plane

CameraState1=[0,0,0,0,0,0];%[X,Y,Z,phi,theta,psi]
CameraState2=[0,0,0,0,0,0];

CameraOnOff=1; %shows the relative 3D camera position in the plots
(remove=0)

%%%
%Projection of 20 points of an object on two cameras planes
%%%

%Body Points in the inertial frame
%the order of the box points is important for plotting purposes 1234 on
first
%plane 5678 on second plane

%Boxes
% Box1=[-3,3,3;3,3,3;3,-3,3;-3,-3,3;-3,3,-3;3,3,-3;3,-3,-3;-3,-3,-3];
% Box2=[-3,3,3;3,3,3;3,-3,3;-3,-3,3;-3,3,-3;3,3,-3;3,-3,-3;-3,-3,-
3]./2.5;
%Irregular shapes
% Box1=[-2,3,3;3,1,3;5,-3,2;-3,-3,3;-3,3,-3;4,3,-3;2,-3,-3;-1,-3,-3];
% Box2=[-3,4,3;3,3,2;3,-3,3;-3,-3,3;-3,3,-3;3,5,-3;3,-2,-3;-3,-4,-
3]./2.5;

%Three Boxes
Box1=[-2,5,3;5,5,3;5,-2,3;-2,-2,3;-2,5,-3;5,5,-3;5,-2,-3;-2,-2,-3];
Box2=[-3,3,3;3,3,3;3,-3,3;-3,-3,3;-3,3,-3;3,3,-3;3,-3,-3;-3,-3,-
3]./2.5;
Box3=[-1,4,5;5,5,2;5,-5,5;-5,-5,6;-6,6,-6;6,5,-6;6,-2,-6;-4,-4,-
4]./2.5;

%planar grid
z=10;
Box=zeros(z,3);
a = 1;
b = 1.2;
a1=-1;
b1=1;

 147

for i=1:z
 r1 = (b1-a1).*rand + a1;
 Box(i,1)=r1;
 r2 = (b1-a1).*rand + a1;
 Box(i,2)=r2;
 r = (b-a).*rand + a;
 Box(i,3)=r;
end

%Box=[Box1;Box2;Box3];
%Box=rand(300,3)*10;
%Box Attitude and Translation in frame 1
phi1_body=BoxState1(4);
theta1_body=BoxState1(5);
psi1_body=BoxState1(6);
%Body Rotation and Translation
RcBZ1=[cos(psi1_body) -sin(psi1_body) 0;sin(psi1_body) cos(psi1_body)
0; 0 0 1];
RcBY1=[cos(theta1_body) 0 sin(theta1_body); 0 1 0; -sin(theta1_body) 0
cos(theta1_body)];
RcBX1=[1 0 0; 0 cos(phi1_body) -sin(phi1_body);0 sin(phi1_body)
cos(phi1_body);];
Rbody1=RcBX1*RcBY1*RcBZ1;
Tbody1=[BoxState1(1);BoxState1(2);BoxState1(3)];
%Box Attitude and Translation in frame 2
phi2_body=BoxState2(4);
theta2_body=BoxState2(5);
psi2_body=BoxState2(6);
%Body Rotation and Translation
RcBZ2=[cos(psi2_body) -sin(psi2_body) 0;sin(psi2_body) cos(psi2_body)
0; 0 0 1];
RcBY2=[cos(theta2_body) 0 sin(theta2_body); 0 1 0; -sin(theta2_body) 0
cos(theta2_body)];
RcBX2=[1 0 0; 0 cos(phi2_body) -sin(phi2_body);0 sin(phi2_body)
cos(phi2_body);];
Rbody2=RcBX2*RcBY2*RcBZ2;
Tbody2=[BoxState2(1);BoxState2(2);BoxState2(3)];
m=size(Box,1);
for i=1:m
Box1_frame1(:,i)=Rbody1*Box(i,:)'+Tbody1;
Box1_frame2(:,i)=Rbody2*Box(i,:)'+Tbody2;
end

%% Frame 1

PointsMatrix1=Box1_frame1;
PointsMatrix2=Box1_frame2;
n=size(PointsMatrix1,2);
n=n(1);%Number of Body Points

phi1=CameraState1(4);
theta1=CameraState1(5);
psi1=CameraState1(6);

 148

phi2=CameraState2(4);
theta2=CameraState2(5);
psi2=CameraState2(6);

%Camera Rotations

RcZ1=[cos(psi1) -sin(psi1) 0;sin(psi1) cos(psi1) 0; 0 0 1];
RcY1=[cos(theta1) 0 sin(theta1); 0 1 0; -sin(theta1) 0 cos(theta1)];
RcX1=[1 0 0; 0 cos(phi1) -sin(phi1);0 sin(phi1) cos(phi1);];
R1=RcX1*RcY1*RcZ1;

RcZ2=[cos(psi2) -sin(psi2) 0;sin(psi2) cos(psi2) 0; 0 0 1];
RcY2=[cos(theta2) 0 sin(theta2); 0 1 0; -sin(theta2) 0 cos(theta2)];
RcX2=[1 0 0; 0 cos(phi2) -sin(phi2);0 sin(phi2) cos(phi2);];
R2=RcX2*RcY2*RcZ2;

T1=CameraState1(1:3)';
T2=CameraState2(1:3)';%need to correct because the rotation is around
the f

for i=1:n %n
Xw1=[PointsMatrix1(:,i);1]; %homogeneous position vector
Xw2=[PointsMatrix2(:,i);1]; %homogeneous position vector
ginv1=[R1' -R1'*T1; 0 0 0 1];
Xc1=(FI*PI*ginv1*Xw1); %Point in Camera1 Reference (X,Y,Z)
ginv2=[R2' -R2'*T2; 0 0 0 1];
Xc2=(FI*PI*ginv2*Xw2); %Point in Camera2 Reference (X,Y,Z)

%Xw3D=[Xw3D,Xw1];
XwCamera1=[XwCamera1,Xc1]; %Point 3D Position in Camera 1 frame
XwCamera2=[XwCamera2,Xc2]; %Point 3D Position in Camera 2 frame
X1=[Xc1(1);Xc1(2)]*(fl/Xc1(3));
X2=[Xc2(1);Xc2(2)]*(fl/Xc2(3));
CameraPoints1=[CameraPoints1,X1]; %2D image points Z Scaled
CameraPoints2=[CameraPoints2,X2]; %2D image points Z Scaled
end

CameraDirection1=[0,0,0;0,0,fl];
CameraDirection2=[0,0,0;0,0,fl];

%% Plotting box1

[x] = boxplots3D(Box1_frame1,CameraDirection1,0);
[x] = boxplots3D(Box1_frame2,CameraDirection2,0);

% %plot 3D points frame 1
[x] = boxplots3D(XwCamera1,CameraDirection1,1);

% %plot 3D points frame 2
[x] = boxplots3D(XwCamera2,CameraDirection2,1);

% %plot 2D Image frame 1

 149

[x] = boxplots2D(CameraPoints1,FOV,fl);

% %plot 2D Image frame 2
[x] = boxplots2D(CameraPoints2,FOV,fl);
save('box.mat')

end

 150

THIS PAGE INTENTIONALLY LEFT BLANK

 151

LIST OF REFERENCES

[1] NASA, “On-orbit satellite servicing study project report,” October 2010.
[Online]. Available: http://ssco.gsfc.nasa.gov/servicing_study.html

[2] J. Liang and O. Ma, “Angular velocity tracking for satellite rendezvous and
docking,” Acta Astronautica, vol. 69, no. 11–12, pp. 1019–1028, 2011.

[3] A. M. Long, M. G. Richards, and D. E. Hasting, “On-orbit servicing: a new value
proposition for satellite design and operation,” Journal of Spacecraft and
Rockets, vol. 44, no. 4, pp. 964–976, 2007.

[4] S. Dubowsky, “Advanced methods for the dynamic control of high performance
robotic devices and manipulators with potential for application in space”, NASA-
CR-181061, 1987.

[5] S. Segal, P. Gurfil, and K. Shahid, “In-orbit tracking of resident space objects: a
comparison of monocular and stereoscopic vision,” IEEE Transactions
Aerospace and Electronic Systems, vol. 50, no. 1, pp. 676,688, January 2014.

[6] A. Flores-Abad, O. Ma, K. Pham, and S. Ulrich, “A review of space robotics
technologies for on-orbit servicing,” Progress in Aerospace Science, vol. 68, pp.
1–26, 2014.

[7] D. Zimpfer, P. Kachmar, and S. Tuohy, “Autonomous rendezvous, capture and
in-space assembly: past, present and future,” in Proc. 1st Space Exploration
Conference: Continuing the Voyage of Discovery AIAA, Orlando, Florida, 2005.

[8] T. Kasai, M. Oda, and T. Suzuki, “Results of the ETS-7 mission - rendezvous
docking and space robotics experiments,” NASDA, ETS-VII project team,
Sengen,Tsukuba-shi, Ibaraki-ken, Japan, 1999.

[9] R. Howard, A. Heaton, R. Pinson, and C. Carrington, “Orbital Express advanced
video guidance sensor,” in Proc. IEEE Aerospace Conference, Inst. of Electrical
and Electronics Engineers, Piscataway, NJ, 2008.

[10] P. Jasiobedzki, M. Greenspan, and G. Roth, “Pose determination and tracking for
autonomous satellite capture,” in Proc. 6th International Symposium on Artificial
Intelligence and Robotics & Automation in Space, Canadian Space Agency, St-
Hubert, Quebec, Canada, 2001.

 152

[11] D. Fourie, B. E. Tweddle, S. Ulrich, and A. Saenz-Otero, “Flight results of
vision-based navigation for autonomous spacecraft inspection of unknown
objects,” Journal of Spacecraft and Rockets, vol. 51, no. 6, pp. 2016–2026, 2014.

[12] L. Song, Z. Li, and X. Ma, “Autonomous rendezvous and docking of an unknown
tumbling space target with a monocular camera,” in Proc. IEEE Chinese
Guidance, Navigation and Control Conference, Yantai, China, 2014.

[13] S. Segal, A. Carmi, and P. Gurfil, “Vision-based relative state estimation of non-
cooperative spacecraft under modeling uncertainty,” in Proc. IEEE Aerospace
Conference, 2011.

[14] J. P. Jumper, “Counterspace operations,” Rep. 2–2.1, United State Air Force,
2004.

[15] N. Li, Vision based trajectory tracking of space debris in close proximity via
integrated estimation and control, M.S thesis, University of Central Florida,
Orlando, Florida, 2011.

[16] M. P. Wilkins, A. Pfeffer, P. W. Schumacher, and M. K. Jah, “Towards an
artificial space object taxonomy,” Applied Defense Solutions, Columbia, MD,
2013.

[17] N. W. Oumer and G. Panin, “3D point tracking and pose estimation of a space
object using stereo images,” in Proc. 21st International Conference on Pattern
Recognition, Tsukuba, Japan, 2012.

[18] N. W. Oumer and G. Panin, “Tracking and pose estimation of non-cooperative
satellite for on-orbit servicing,” in Proc. International Symposium on Artificial
Intelligence, Robotics and Automation in Space, Turin, Italy, 2012.

[19] M. W. Walker and L. Shao, “Estimating 3-d location parameters using dual
number quaternions,” CVGIP: Image Understanding, vol. 54, no. 3, pp. 358–367,
1991.

[20] H. Benninghoff, F. Rems, and T. Boge, “Development and hardware-in-the-loop
test of a guidance, navigation and control system for on-orbit servicing,” Acta
Astronautica, vol. 102, pp. 67–80, 2014.

[21] F. Yu, Z. He, B. Qiao, and X. Yu, “Stereo-vision-based relative pose estimation
for the rendezvous and docking of noncooperative satellites,” Mathematical
Problems in Engineering, vol. 2014, p. 12 pages, 2014.

 153

[22] J. C. Russ, Image Processing Handbook, Boca Raton, FL: CRC Taylor & Francis
Group, 2006.

[23] J. R. Jensen and L. Kalmesh, “Introductory digital image processing: a remote
sensing perspective,” Geocarto International, vol. 2, no. 1, pp. 65–65, 1987.

[24] A. Robertson, T. Corazzini, and J. P. How, “Formation sensing and control
technologies for a separated spacecraft interferometer,” in Proceedings of the
American Control Conference, Philadelphia, PA, 1998.

[25] JAXA, “Engineering test satellite VII “KIKU-7” (ETS-VII),” Japan Aerospace
Exploration Agency, [Online]. Available: http://global.jaxa.jp. [Accessed
10/05/2014].

[26] C. J. Dennehy, “Relative navigation light detection and ranging (LIDAR) sensor
development test objective performance verification,” National Aeronautics and
Space Administration (NASA), Hampton, Virginia, 2013.

[27] X. Cao, F. Su, H. Sun and G. Xu, “Space debris observation via space-based
ISAR,” in Proc. International Conference on Microwave and Millimeter Wave
Technology, 2007.

[28] X. Fu, G. Liu and M. Gao, “Overview of orbital debris detection using
spaceborne radar,” in Proc. IEEE Conference on Industrial Electronics and
Applications, 2008.

[29] Y. Arimoto, J. Uchida and A. Semerok, “Space debris detection using laser
communications demonstration equipment,” in IEEE Aerospace Conference
Proceedings, 2000.

[30] M. Mokuno, I. Kawano and T. Suzuki, “In orbit demonstration of rendezvous
laser radar for unmanned autonomous rendezvous docking,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 40, no. 2, pp. 617–626 , 2004.

[31] J. A. Christian and S. Cryan, “A survey of LIDAR technology and its use in
spacecraft relative navigation,” in AIAA Guidance, Navigation, and Control
(GNC) Conference, 2008.

[32] D. Pinard, S. Reynaud, P. Delpy, and S. E. Strandmoe, “Accurate and
autonomous navigation for the ATV,” Aerospace Science and Technology, vol.
11, pp. 490–498, 2007.

 154

[33] K. Shahid and G. Okouneva, “Intelligent LIDAR scanning region selection for
satellite pose estimation,” Computer Vision and Image Understanding, vol. 107,
pp. 203–209, 2007.

[34] M. Nimelman, J. Tripp, G. Bailak, and J. Bolger, “Spaceborne scanning lidar
system (SSLS),” Proc. SPIE 5798, Spaceborne Sensors II, vol. 73, pp. 73–82,
2005.

[35] S. Ruel, T. Luu, and A. Berube, “Space shuttle testing of the TriDAR 3D
Rendezvous and Docking Sensor,” Journal of Field Robotics, vol. 29, no. 4, pp.
535–553, 2012.

[36] C. English, S. Zhu, C. Smith, S. Ruel, and I. Christie, “TriDAR: a hybrid sensor
for exploring the complementary nature of triangulation and LIDAR
technologies,” in Proc. 8th International Symposium Artificial Intelligence,
Robotics and Automation in Space, Munich, Germany, 2005.

[37] B. E. Tweddle, “Computer vision based navigation for spacecraft proximity
operations,” M.S. thesis, Massachusetts Institute of Technology, 2010.

[38] G. Zhang, Z. Wang, J. Du, T. Wang, and Z. Jiang, “A generalized visual aid
system for teleoperation applied to satellite servicing,” International Journal of
Advanced Robotic Systems, vol. 11, no. 28, pp. 1–7, 2013.

[39] R. T. Haward, A. F. Heaton, R. M. Pinson, C. L. Carrington, J. E. Lee, T. C.
Bryan, B. A. Robertson, S. H. Spencer, and J. E. Johnson, “The advanced video
guidance sensor: Orbital Express and the next generation,” Proc. Of Space
Technology and Applications International Forum, Albuquerque, New Mexico,
2008

[40] A. Deslauriers, C. English, C. Bennett, P. Iles, R. Taylor, and A. Montpool, “3rd
inspection for the shuttle return flight,” SPIE, Spaceborne Sensors III, vol. 6220,
p. 62200H, 2006.

[41] Y. Gao, C. Spiteri, M.-T. Pham, and S. Al-Milli, “A survey on recent object
detection techniques useful for monocular vision-based planetary terrain
classification,” Robotics and Autonomous Systems, vol. 62, pp. 151–167, 2014.

[42] A. Shaukat, C. Spiteri, Y. Gao, S. Al-Milli, and A. Bajpai, “Quasi-thematic
feature detection and tracking for future rover long-distance autonomous
navigation,” in Proc. ESA Conference on Advanced Space Technologies in
Robotics and Automation, ASTRA, Noordwijk, Netherlands, 20–13.

 155

[43] K. Duncan and S. Sarkar, “Saliency in images and video: a brief survey,” IET
Computer Vision, vol. 6, no. 6, pp. 514–523, 2012.

[44] F. Kennedy, “Orbital Express space operation architecture,” DARPA Tactical
Tecnology Office, [Online]. Available:
archive.darpa.mil/orbitalexpress/index.html. [Accessed 01/15/2015].

[45] D. M. Camp, “Evaluation of object detection algorithms for ship detection in the
visible spectrum,” M.S. thesis Naval Postgraduate School, Monterey, California,
2013.

[46] “MATLAB Documentation,” MathWorks, [Online]. Available:
http://www.mathworks.com/help/. [Accessed 01/15/2015].

[47] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[48] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features
(SURF),” Computer vision and image understanding, vol. 110, no. 3, pp. 346–
359, 2008.

[49] Y. Liu, B. Tian, S. Chen, F. Zhu, and K. Wang, “A survey of vision-based vehicle
detection and tracking techniques in ITS,” in IEEE International Conference on
Vehicular Electronics and Safety, Dongguan, China, 2013.

[50] S. Y. Chen, “Kalman filter for robot vision: a survey,” IEEE Transactions on
Industrial Electronics, vol. 59, no. 11, pp. 4409–4420, 2012.

[51] E. Wan, R. Van Der Merwe, and A. T. Nelson, “Dual estimation and the
unscented transformation,” NIPS, pp. 666–672, 1999.

[52] R. Wiseman, “ISS Cygnus time-lapse,” 2014. [Online]. Available:
https://vine.co/u/977976778226286592. [Accessed 10/05/2014].

[53] Y. Ma, S. Soatto, J. Kosecka and S. S. Sastry, An Invitation To 3-D Vision: From
Images To Geometric Models, New York, NY: Springer-Verlag, 2003.

[54] M. Brown, R. Szeliski, and S. Winder, “Multi image matching using multiscale
oriented patches,” in Proc. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, San Diego, CA, 2005.

 156

[55] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in Proc. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, San Diego, CA, USA, 2005.

[56] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision and Pattern
Recognition, CVPR1994, IEEE Computer Society Conference on , Seattle, WA,
1994.

[57] C. Tomasi and T. Kanade, “Shape and motion from image streams: a
factorization method—part 3, detection and tracking of point features, technical
report CMU-CS-91–132,” Carnegie Mellon University, Pittsburgh, PA, 1991.

[58] “Blender, 2.73a release,” Blender Foundation, 2015. [Online]. Available:
http://www.blender.org/. [Accessed 01/15/2015].

[59] R. Bevilacqua, A. P. Caprari, J. Hall, and M. Romano, “Laboratory
experimentation of multiple spacecraft autonomous assembly,” in Proc. AIAA
Guidance, Navigation and Control Conference, Chicago, Illinois, 2009.

[60] M. Ciarcià, A. Grompone and M. Romano, “A near-optical guidance for
cooperative docking maneuvers,” Acta Astronautica, vol. 102, pp. 367–377,
2014.

[61] M. Romano, D. A. Friedman, and T. J. Shay, “Laboratory experimentation of
autonomous spacecraft approach and docking to a collaborative target,” Journal
of Spacecraft and Rockets, vol. 44, no. 1, pp. 164–173, 2007.

[62] R. Bevilacqua, J. S. Hall, J. Horning, and M. Romano, “Ad-hoc wireless
networking and shared computation for autonomous multirobot systems,” Journal
of Aerospace Computing, Information, and Communication, vol. 6, pp. 328–352,
2009.

[63] C. Luigini and M. Romano, “A ballistic-pendulum test stand to characterize small
cold-gas thruster nozzles,” Acta Astronautica, vol. 64, no. 5, pp. 615–625, 2009.

[64] “PointGrey, Bumblebee XB3 1394b,” Point Grey Research, 2015. [Online].
Available: http://www.ptgrey.com. [Accessed 01/15/2015].

[65] “KVH, DSP-3000 Fiber Optic Gyro,” KVH Industries, 2015. [Online]. Available:
http://www.kvh.com. [Accessed 01/15/2015].

[66] “Hokuyo laser scanner,” Hokuyo, 2015. [Online]. Available:
https://www.hokuyo-aut.jp. [Accessed 01/15/2015].

 157

[67] “Leap Motion controller,” Leap Motion, 2015. [Online]. Available:
https://www.leapmotion.com/. [Accessed 01/15/2015].

 158

THIS PAGE INTENTIONALLY LEFT BLANK

 159

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. Space applications for unmanned autonomous spacecraft
	B. Focus of this research
	C. Vision based tracking and pose estimation in space
	D. Thesis outline

	II. BACKGROUND
	A. On-orbit relative navigation systems
	B. Laser-based radars and sensors
	C. Vision-based space sensors
	D. Artificial vision detection and tracking methods
	1. Region-of-Interest Selection Methods
	2. Features Extraction
	3. Motion-Based Detection Methods

	E. Kalman filter applications to vision algorithms

	III. SELECTED IMAGE PROCESSING TECHNIQUES
	A. Region-Of-Interest Determination
	1. Background Segmentation
	2. Static Background Subtraction
	3. Optical Flow

	B. Feature detection methods
	1. Harris Corner Detection
	2. Gaussian Blob Detection
	3. Adaptive Non-maximal Suppression (ANMS)
	4. Speeded-Up Robust Features (SURF)
	5. Histogram of Oriented Gradients (HOG)

	C. Feature tracking: the Kanade Lucas Tomasi method
	D. Basic pose estimation technique
	E. Stereo and geometry range estimation

	IV. ARTIFICIAL VISION ALGORITHM
	A. Algorithm Structure and Logic
	1. Main Logic
	2. Initialization
	3. Target Tracking
	4. Estimation

	B. Algorithm’s libraries
	1. Initializer
	2. MAIN_AViATOR
	3. FUN_BACKGROUNDSUB
	4. FUN_DETECTION
	5. FUN_SURF
	6. FUN_BLOB
	7. FUN_KLT
	8. FUN_EPIPOLAR
	a. Linear Eight-Point Algorithm
	b. Continuous Eight-Point Algorithm
	c. Linear Four-Point Algorithm
	d. Continuous Four-Point Algorithm

	9. FUN_STEREO_RANGE
	10. FUN_GEOMETRIC_RANGE

	C. On-orbit timelapse and computer rendered Videos
	1. Computer-Rendered 3D Videos
	2. NASA On-orbit Videos

	V. HARDWARE-IN-THE-LOOP EXPERIMENTS
	A. The Floating Spacecraft Simulator Test-Bed
	1. High Precision Flat Floor
	2. UDP Network
	3. Telemetry Computer
	4. Floating Units
	a. Propulsion System
	b. Electronics
	c. On-board Sensors

	5. FSS Software
	a. Main Model
	b. Sensor Package
	c. State Estimator
	d. Guidance Block
	e. Actuator Package
	f. Variable Collect and Send
	g. Target Package

	B. Experiments and Results
	1. Test Videos
	a. Detection and Tracking Calibration
	b. Epipolar Transformation Test
	c. Stereovision Algorithm Test

	2. NASA Videos
	3. Live Target

	VI. CONCLUSIONS
	A. Future Work

	appendix
	A. Artificial Vision Algorithm
	1. Initializer (initializer.m)
	2. Main script (MAIN_AViATOR.m)
	3. Background Subtraction (FUN_BACKGROUNDSUB.m)
	4. HARRIS Detection (FUN_DETECTION.m)
	5. BLOB Selection (FUN_BLOB.m)
	6. KLT Tracking (FUN_KLT.m)
	7. Epipolar Transformation (FUN_EPIPOLAR.m)
	8. Continuous Eight-Points Algorithm (epipolar1.m)
	9. Continuous Four-Points Algorithm (epipolar3.m)
	10. Stereovision Range Estimation (FUN_STEREO_RANGE.m)
	11. Optical Flow Estimation (FUN_OPTFLOW.m)
	12. Computed ROI Limits Validation (FUN_ROILIMITER.m)
	13. Image Indexing Transformation (indextolinear.m)

	B. Matlab Rigid Cloud

	List of references
	initial distribution list

