Understanding CMMI Measurement Capabilities & Impact on Performance: Results from the 2007 SEI State of the Measurement Practice Survey

Dennis R. Goldenson
Software Engineering Institute

CMMI Technology Conference
14 November 2007
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 NOV 2007</td>
<td></td>
<td>00-00-2007 to 00-00-2007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding CMMI Measurement Capabilities & Impact on Performance: Results from the 2007 SEI State of the Measurement Practice Survey</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnegie Mellon University, Software Engineering Institute (SEI), Pittsburgh, PA, 15213</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>7th Annual CMMI Technology Conference & User Group, 12-15 Nov 2007, Denver, CO.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT</td>
</tr>
<tr>
<td>Same as Report (SAR)</td>
</tr>
<tr>
<td>18. NUMBER OF PAGES</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Today’s Talk

Purpose & scope of the survey

Results

• The respondents & their organizations
• Measurement resources & infrastructure
• Value added by measurement
• Software measures used
• Data quality & integrity
• Organizational perspectives on software measurement

Summary, lessons learned & next steps
Understanding the State of Measurement Practice

Careful & well executed use of measurement & analysis

• Is a well accepted tenet in many fields of endeavor
• Including of course CMMI

Basic aims

• To inform management & technical decisions based on empirical evidence
• & to judge the results of those decisions once made

But, how well, and how frequently, are measurement practices put into effect in our own field?
Surveys & Benchmarking

Benchmarking: The current state

- Some professional & consulting organizations maintain repositories they use for establishing benchmarks & facilitating benchmarking activities
- However, their measures & measurement definitions differ in many ways
- In that sense, one cannot speak confidently about “industry standards”
- Which is why the SEI has launched the Performance Benchmarking Consortium {as described at last year’s CMMI Technology Conference}

The state of the practice surveys

- Aim to provide data that's not yet widely available
 - Updates of trends in typical use of measurement in software & systems engineering
 - To help projects & organizations judge their progress relative to others
- But there also will be a continuing need to track qualitative as well as quantitative descriptions about the quality & frequency of use of measurement in our field
New this year

- Screening question to identify respondents whose organizations develop software but rarely if ever do measurement
- Questions about
 - Resources & infrastructure devoted to measurement
 - Practices to ensure data quality & integrity
 - Value added by doing measurement
 - The kinds of measures used by the responding organizations

Among other things, these questions allow us to make some useful comparisons by CMMI maturity level
1st survey described at last year's CMMI technology Conference

Similar results this year

- Moderately strong relationships exist when comparing the replies of respondents based on:
 - Management versus staff roles
 - Industry \textit{versus} government organizations
 - The United States \textit{versus} other countries
 - Organization size

But that’s a topic for another time
CMMI Measurement Capabilities & Performance Outcomes

Today’s focus

- Provide evidence about the circumstances under which measurement capabilities and performance outcomes are likely to vary
- As a consequence of achieving higher levels of CMMI maturity

Most differences are consistent with expectations based on CMMI

- Which provides confidence in the validity of the model structure & content

However, the results also highlight areas where sometimes considerable room for improvement remains

- Even at maturity levels 4 and 5
- For example
 - A rather strong overall relationship exists between maturity level & use of measures about quality attributes
 - Little attention to quality attributes at the lower maturity levels
 - Yet, almost half of maturity level 4 & 5 respondents’ organizations track quality attributes only occasionally at best
The Sample

Random sample of SEI customers

- 944 valid email invitations to participate

Data collected 20 February through 10 April 2007

- Two reminders

Response rate

- 41% completed all or part of the questionnaire
- N = 384
- Individual questions answered by 75-97% of respondents
 - ~29 – 39% of the sample invitees
Today’s Talk

Purpose & scope of the survey

Results

• The respondents & their organizations
• Measurement resources & infrastructure
• Value added by measurement
• Software measures used
• Data quality & integrity
• Organizational perspectives on software measurement

Summary, lessons learned & next steps
Role in the Organization

- Executive: 42%
- Program manager: 10%
- Project manager: 13%
- Engineer: 12%
- Programmer: 4%
- Analyst: 9%
- Other: 10%

N = 366
Who are the others?

= 8% of all those responding

Quality: 26%
Process: 20%
Process + Quality: 24%
Consultant: 15%
Management: 9%
Other Others: 6%

N = 155
And who are the other others?

<table>
<thead>
<tr>
<th>Role</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process + Measurement</td>
<td>3</td>
</tr>
<tr>
<td>Measurement Specialist</td>
<td>1</td>
</tr>
<tr>
<td>Process + Quality + Measurement + Training</td>
<td>1</td>
</tr>
<tr>
<td>Quality + Process + Measurement</td>
<td>1</td>
</tr>
<tr>
<td>Training</td>
<td>6</td>
</tr>
<tr>
<td>Architect</td>
<td>4</td>
</tr>
<tr>
<td>Security</td>
<td>2</td>
</tr>
<tr>
<td>Testing</td>
<td>2</td>
</tr>
<tr>
<td>N = 31</td>
<td></td>
</tr>
</tbody>
</table>

One each:
- Administrative support
- Coach
- Consultant + researcher
- Engineering Manager + Process
- Process + Project engineer
- Program / team lead
- Program manager + Quality + Process
- Project manager + Quality
- Project manager + Engineer
- Not specified
Sector

- Commercial shrink-wrap: 7%
- Custom software development: 37%
- In-house or proprietary: 4%
- Defense contractor: 16%
- Defense or military organization: 5%
- Other government contractor: 11%
- Other government agency: 3%
- Consultancy: 11%
- Other: 13%

N = 366
FTE Staff

N = 364

Percent

50 or fewer 51-100 101-200 201-500 501-2000 More than 2000
Maturity level

N = 365
Differences by Maturity Level: Use of Measurement in the Organization

<table>
<thead>
<tr>
<th>Maturity Level</th>
<th>N</th>
<th>Use of Measurement</th>
<th>Gamma</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML1 & DK</td>
<td>151</td>
<td>8%</td>
<td>.73</td>
<td>< .0001</td>
</tr>
<tr>
<td>ML2</td>
<td>84</td>
<td>2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML3</td>
<td>59</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML4 & 5</td>
<td>71</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Don't know: 19%
Rare or never: 70%
Occasional: 22%
Routine: 75%

Gamma = .73
Interpreting the results:
The Respondents’ Measurement Roles

<table>
<thead>
<tr>
<th>Measurement Level (ML)</th>
<th>User</th>
<th>Provider</th>
<th>Both</th>
<th>Neither</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML1 & DK</td>
<td>13%</td>
<td>8%</td>
<td>50%</td>
<td>12%</td>
<td>11%</td>
</tr>
<tr>
<td>ML2</td>
<td>23%</td>
<td>17%</td>
<td>38%</td>
<td>17%</td>
<td>11%</td>
</tr>
<tr>
<td>ML3</td>
<td>17%</td>
<td>17%</td>
<td>51%</td>
<td>7%</td>
<td>9%</td>
</tr>
<tr>
<td>ML4 & 5</td>
<td>14%</td>
<td>9%</td>
<td>61%</td>
<td>12%</td>
<td>11%</td>
</tr>
</tbody>
</table>

N = 151
N = 84
N = 59
N = 70
p = .04
Today’s Talk

Purpose & scope of the survey

Results

- The respondents & their organizations
- **Measurement resources & infrastructure**
- Value added by measurement
- Software measures used
- Data quality & integrity
- Organizational perspectives on software measurement

Summary, lessons learned & next steps
How Measurement Work is Staffed

ML1&DK
N = 78

p < .006

3%, 1%, 2% & 3% respectively

Other
Don’t know
Organization
wide group
Project
level
A few key
experts

ML2
N = 60

ML3
N = 58

ML4&5
N = 60

41%
33%
20%
7%
13%
20%
28%
30%
50%
19%
34%
28%
34%
12%
13%
9%

Earmarked Budgets for Measurement

N = 76
ML1&DK
72%
21%
7%

N = 68
ML2
18%
65%

N = 50
ML3
22%
56%

N = 61
ML4&5
28%
34%
38%

p < .0001

Don’t know
No
Yes
Availability of Qualified Measurement Staff

ML1&DK N = 76
ML2 N = 65
ML3 N = 50
ML4&5 N = 61

Gamma = .44 p < .0001
Similar Results

For:

- Automated measurement support for data collection, data management, data analysis & reporting
- Use of commercial measurement packages & tools
- Existence of common, integrated organizational measurement repositories
- Availability of measurement related training

Proportions sometimes vary across the distributions.

But there are consistent differences by maturity level.
Today’s Talk

Purpose & scope of the survey

Results

- The respondents & their organizations
- Measurement resources & infrastructure
- Value added by measurement
- Software measures used
- Data quality & integrity
- Organizational perspectives on software measurement

Summary, lessons learned & next steps
Effects of Measurement on the Organizations

Better Project Performance

- ML1&DK: 26% always or frequently, 50% half time or on occasion, 24% rare, never, worse, DK or NA
- ML2: 12% always or frequently, 40% half time or on occasion, 49% rare, never, worse, DK or NA
- ML3: 20% always or frequently, 40% half time or on occasion, 35% rare, never, worse, DK or NA
- ML4&5: 27% always or frequently, 70% half time or on occasion, 7% rare, never, worse, DK or NA

Gamma = .41, p < .0001

Better Product Quality

- ML1&DK: 26% always or frequently, 49% half time or on occasion, 26% rare, never, worse, DK or NA
- ML2: 13% always or frequently, 38% half time or on occasion, 34% rare, never, worse, DK or NA
- ML3: 22% always or frequently, 44% half time or on occasion, 48% rare, never, worse, DK or NA
- ML4&5: 7% always or frequently, 63% half time or on occasion, 7% rare, never, worse, DK or NA

Gamma = .34, p < .0002
Better Tactical Decisions

- **ML1&DK**: N = 74, Gamma = .35, p = .0001
- **ML2**: N = 59, 27% (Rare, never, worse, DK or NA), 20% (Half time or on occasion), 57% (Always or frequently)
- **ML3**: N = 50, 26% (Rare, never, worse, DK or NA), 36% (Half time or on occasion), 38% (Always or frequently)
- **ML4&5**: N = 56, 9% (Rare, never, worse, DK or NA), 38% (Half time or on occasion), 54% (Always or frequently)

Better Strategic Decisions

- **ML1&DK**: N = 74, Gamma = .31, p = .0008
- **ML2**: N = 59, 38% (Rare, never, worse, DK or NA), 41% (Half time or on occasion), 46% (Always or frequently)
- **ML3**: N = 49, 39% (Rare, never, worse, DK or NA), 39% (Half time or on occasion), 35% (Always or frequently)
- **ML4&5**: N = 55, 35% (Rare, never, worse, DK or NA), 39% (Half time or on occasion), 49% (Always or frequently)
Today’s Talk

Purpose & scope of the survey

Results

• The respondents & their organizations
• Measurement resources & infrastructure
• Value added by measurement
• **Software measures used**
• Data quality & integrity
• Organizational perspectives on software measurement

Summary, lessons learned & next steps
Project & Organizational Measurement Results Reported

Cost Performance

- **Rarely, never, DK, or NA**
 - ML1&DK: 23%
 - ML2: 24%
 - ML3: 27%
 - ML4&5: 25%
- **Occasionally**
 - ML1&DK: 33%
 - ML2: 38%
 - ML3: 38%
 - ML4&5: 53%
- **Frequently**
 - ML1&DK: 23%
 - ML2: 38%
 - ML3: 38%
 - ML4&5: 15%
- **Regularly**
 - ML1&DK: 21%
 - ML2: 11%
 - ML3: 10%
 - ML4&5: 11%

Gamma = .25, p < .03

Schedule Performance

- **Rarely, never, DK, or NA**
 - ML1&DK: 14%
 - ML2: 19%
 - ML3: 34%
 - ML4&5: 48%
- **Occasionally**
 - ML1&DK: 7%
 - ML2: 11%
 - ML3: 16%
 - ML4&5: 16%
- **Frequently**
 - ML1&DK: 11%
 - ML2: 34%
 - ML3: 73%
 - ML4&5: 61%
- **Regularly**
 - ML1&DK: 33%
 - ML2: 48%
 - ML3: 19%
 - ML4&5: 16%

Gamma = .37, p = .0006
Project & Organizational Measurement Results Reported

Business Growth & Profitability

<table>
<thead>
<tr>
<th>Category</th>
<th>ML1 & DK N = 70</th>
<th>ML2 N = 55</th>
<th>ML3 N = 45</th>
<th>ML4 & 5 N = 51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rarely, never, DK, or NA</td>
<td>40%</td>
<td>31%</td>
<td>22%</td>
<td>29%</td>
</tr>
<tr>
<td>Occasionally</td>
<td>21%</td>
<td>20%</td>
<td>31%</td>
<td>20%</td>
</tr>
<tr>
<td>Frequently</td>
<td>16%</td>
<td>15%</td>
<td>22%</td>
<td>31%</td>
</tr>
<tr>
<td>Regularly</td>
<td>16%</td>
<td>22%</td>
<td>24%</td>
<td>33%</td>
</tr>
</tbody>
</table>

Gamma = .20 p = .2244
Product & Quality Measurement Results Reported

Requirements / Architectures

- Rarely, never, DK, or NA
- Occasionally
- Frequently
- Regularly

<table>
<thead>
<tr>
<th></th>
<th>ML1&DK N = 70</th>
<th>ML2 N = 55</th>
<th>ML3 N = 45</th>
<th>ML4&5 N = 51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma</td>
<td>.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>.0002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24%</td>
<td></td>
<td>18%</td>
<td>13%</td>
<td>10%</td>
</tr>
<tr>
<td>37%</td>
<td></td>
<td>15%</td>
<td>24%</td>
<td>27%</td>
</tr>
<tr>
<td>21%</td>
<td></td>
<td>31%</td>
<td>18%</td>
<td>55%</td>
</tr>
<tr>
<td>17%</td>
<td></td>
<td>36%</td>
<td>44%</td>
<td></td>
</tr>
<tr>
<td>N = 52</td>
<td>21%</td>
<td>31%</td>
<td>24%</td>
<td>18%</td>
</tr>
<tr>
<td>N = 18%</td>
<td>25%</td>
<td>40%</td>
<td>42%</td>
<td>25%</td>
</tr>
<tr>
<td>N = 21%</td>
<td>57%</td>
<td>40%</td>
<td>42%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Quality Attributes

<table>
<thead>
<tr>
<th></th>
<th>ML1&DK N = 70</th>
<th>ML2 N = 55</th>
<th>ML3 N = 45</th>
<th>ML4&5 N = 52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma</td>
<td>.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>< .008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16%</td>
<td></td>
<td>18%</td>
<td>18%</td>
<td>18%</td>
</tr>
<tr>
<td>18%</td>
<td></td>
<td>21%</td>
<td>24%</td>
<td>31%</td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td>11%</td>
<td>16%</td>
<td>31%</td>
</tr>
<tr>
<td>6%</td>
<td></td>
<td>16%</td>
<td>18%</td>
<td>18%</td>
</tr>
<tr>
<td>N = 6%</td>
<td>16%</td>
<td>18%</td>
<td>18%</td>
<td>31%</td>
</tr>
</tbody>
</table>
Defect Density

- **ML1&DK**
 - N = 70
 - 30% (Rarely
 - 13% (Never, DK, or NA)
 - 11% (Occasionally)
 - 34% (Frequently)
 - 20% (Regularly)
 - Gamma = .41
 - p < .0001

- **ML2**
 - N = 56
 - 31% (Rarely
 - 23% (Never, DK, or NA)
 - 16% (Occasionally)
 - 51% (Frequently)
 - 22% (Regularly)
 - Gamma = .41
 - p < .0001

- **ML3**
 - N = 45
 - 11% (Rarely
 - 22% (Never, DK, or NA)
 - 16% (Occasionally)
 - 58% (Frequently)
 - 33% (Regularly)
 - Gamma = .44
 - p < .0001

- **ML4&5**
 - N = 52
 - 4% (Rarely
 - 6% (Never, DK, or NA)
 - 11% (Occasionally)
 - 33% (Frequently)
 - 22% (Regularly)
 - Gamma = .44
 - p < .0001

Defect Phase Containment

- **ML1&DK**
 - N = 70
 - 50% (Rarely
 - 29% (Occasionally)
 - 23% (Frequently)
 - 27% (Regularly)
 - Gamma = .44
 - p < .0001

- **ML2**
 - N = 56
 - 30% (Rarely
 - 27% (Occasionally)
 - 29% (Frequently)
 - 20% (Regularly)
 - Gamma = .44
 - p < .0001

- **ML3**
 - N = 45
 - 27% (Rarely
 - 27% (Occasionally)
 - 29% (Frequently)
 - 13% (Regularly)
 - Gamma = .44
 - p < .0001

- **ML4&5**
 - N = 51
 - 8% (Rarely
 - 29% (Occasionally)
 - 29% (Frequently)
 - 14% (Regularly)
 - Gamma = .44
 - p < .0001
Customer Satisfaction

<table>
<thead>
<tr>
<th>Level</th>
<th>Rarely, never, DK, or NA</th>
<th>Occasionally</th>
<th>Frequently</th>
<th>Regularly</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML1 & DK</td>
<td>23%</td>
<td>13%</td>
<td>11%</td>
<td>12%</td>
</tr>
<tr>
<td>ML2</td>
<td>24%</td>
<td>29%</td>
<td>14%</td>
<td>10%</td>
</tr>
<tr>
<td>ML3</td>
<td>36%</td>
<td>21%</td>
<td>49%</td>
<td>48%</td>
</tr>
<tr>
<td>ML4 & 5</td>
<td>17%</td>
<td>38%</td>
<td>49%</td>
<td>24%</td>
</tr>
</tbody>
</table>

N = 70
Gamma = .31
p < .005
Similar Results

For:

- Adherence to work processes
- Effort applied to task
- Estimation accuracy
- Cycle time

Proportions sometimes vary across the distributions.
But there are consistent differences by maturity level.
Today’s Talk

Purpose & scope of the survey

Results

• The respondents & their organizations
• Measurement resources & infrastructure
• Value added by measurement
• Software measures used
• **Data quality & integrity**
• Organizational perspectives on software measurement

Summary, lessons learned & next steps
Differences by Maturity Level: Practices to Ensure Data Quality

Statistical estimates of measurement error

- ML1&DK: N = 74, 61% (Gamma = .44, p < .0001)
- ML2: N = 56, 59%
- ML3: N = 47, 47%
- ML4&5: N = 51, 14%

- ML1&DK: 27% (Gamma = .44, p < .0001)
- ML2: 23%
- ML3: 30%
- ML4&5: 49%

Checks for inconsistent interpretation

- ML1&DK: N = 74, 43% (Always or frequently)
- ML2: N = 57, 25%
- ML3: N = 48, 25%
- ML4&5: N = 50, 20%

- ML1&DK: 31% (Half time or on occasion)
- ML2: 46%
- ML3: 38%
- ML4&5: 74%
Differences by Maturity Level: Practices to Ensure Data Quality

Checks for unusual distribution patterns

- ML1&DK: 39% (N = 74), 31% (N = 58), 25% (N = 48), 12% (N = 51)
- ML2: 28% (N = 33), 33% (N = 31), 36% (N = 44), 44% (N = 25)
- ML3: 32% (N = 36), 36% (N = 31), 44% (N = 86)
- ML4&5: 86% (N = 31)

- Rarely, never, or DK: 2%
- Half time or on occasion: 33%
- Always or frequently: 67%

Gamma = .46
p < .0001
Similar Results

For:

- Out of range & illegal values ... Number & distribution of missing data
- Missing data not treated as zero ... Precision & accuracy tests
- Other aspects of alignment & coordination of measurement activities
 - Understandable & consistent measurement definitions
 - Understandable & interpretable measurement results
 - Use of “standard” measurement methods
 - Measurable product & service criteria
 - Measurement used to understand product & service quality
 - Documented data collection process
 - Documented process for reporting results
 - Corrective action taken when thresholds exceeded
 - Understands purposes of the data collected/reported

Proportions sometimes vary across the distributions.
But there are consistent differences by maturity level.
Today’s Talk

Purpose & scope of the survey

Results

• The respondents & their organizations
• Measurement resources & infrastructure
• Value added by measurement
• Software measures used
• Data quality & integrity
• Organizational perspectives on software measurement

Summary, lessons learned & next steps
Organizational Perspectives

Not Relevant for Decision Making

- ML1&DK: 23%, N = 102, Gamma = .27, p = .0002
- ML2: 28%, N = 61, 10%
- ML3: 21%, N = 41, 22%
- ML4&5: 55%, N = 53, 59%

Onerous or Burdensome

- ML1&DK: 4%, N = 110, 9%
- ML2: 14%, N = 67, 31%
- ML3: 24%, N = 45, 31%
- ML4&5: 11%, N = 52, 19%

Hardly at All

- ML1&DK: 30%, N = 102, 2%
- ML2: 22%, N = 61, 2%
- ML3: 23%, N = 41, 8%
- ML4&5: 23%, N = 53, 6%

Limited

- ML1&DK: 6%, N = 102, 5%
- ML2: 31%, N = 61, 25%
- ML3: 33%, N = 41, 34%
- ML4&5: 37%, N = 53, 44%

Some

- ML1&DK: 55%, N = 102, 34%
- ML2: 28%, N = 61, 35%
- ML3: 29%, N = 41, 34%
- ML4&5: 22%, N = 53, 55%

Largely

- ML1&DK: 20%, N = 102, 9%
- ML2: 29%, N = 61, 9%
- ML3: 5%, N = 41, 4%
- ML4&5: 8%, N = 53, 3%
Similar Results

For:

• Stated negatively
 – Inappropriate collection & use of data
 – Resistance to “extra” work
• Stated positively
 – Understandable & interpretable results
 – Data collected are regularly analyzed
 – Measurement an integral part of the business
 – Objective results highly valued

Once again:

• Proportions sometimes vary across the distributions.
• But there are consistent differences by maturity level.

Yet resistance to measurement still exists in our field.

• Even in high maturity organizations
Today’s Talk

Purpose & scope of the survey

Results

• The respondents & their organizations
• Measurement resources & infrastructure
• Value added by measurement
• Software measures used
• Data quality & integrity
• Organizational perspectives on software measurement

Summary, lessons learned & next steps
Summary of Results

Characteristic differences associated with CMMI Maturity level achieved

- Measurement capability & performance outcomes
- Common stair step pattern up the maturity levels
- Some quite substantial

Still, some of the results imply room for improvement

- Sometimes substantial room

Even in higher maturity organizations

- Although the expectations for quality & “goodness” may well be higher there too
- Jim Herbsleb & I saw a similar pattern years ago
 - For process champions versus practitioners & managers
The Future

Relatively little data yet exist for meaningful comparisons among software & systems engineering projects & organizations

- Hence tendency to cover too much at once in a single sample survey

Considering variants on matrix sampling strategies for 2008 survey

- Answer only a subset of questions ... to avoid over-burdening the respondents

“State of the practice” can refer to very different target populations

- The SEI customer base ... the broader software & systems engineering community ... or those organizations that more routinely use measurement?
- Of course, the answer depends on the purposes of the survey
Next Steps

Our plans

• We will track change over time & go into further depth about focused topics from the perspective of current measurement practitioners

Considering parallel samples for 2008

• A short set of questions for tracking the diffusion of measurement through the broader software & systems engineering community

• Possible focus on issues faced with respect to the adoption & use of high maturity measurement practices

Also fielding a survey on Program Office acquisition capabilities (early 2008)

Of course, there is no shortage of additional topics for the future

• In the SEI series or in those that we hope to see done by others
Thank You for Your Attention!

Dennis R. Goldenson
dg@sei.cmu.edu

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
USA