
© 2005 by Carnegie Mellon University

© 2006 Carnegie Mellon University

Let’s Teach
Architecting
High Quality Software

Linda Northrop

CSEET 2006

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Let’s Teach Architecting High Quality Software

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University ,Software Engineering Institute
(SEI),Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
19th Conference on Software Engineering Education and Training (CSEET 2006), April 19-21, Turtle Bay,
HI.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

73

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Let’s Teach Architecting High Quality Software Page 2

© 2006 Carnegie Mellon University

MY GEOGRAPHY LESSON

Pittsburgh, PA
USA

Australia

Hawaii

Let’s Teach Architecting High Quality Software Page 3

© 2006 Carnegie Mellon University

Software

Let’s Teach Architecting High Quality Software Page 4

© 2006 Carnegie Mellon University

SOFTWARE PERVADES OUR WORLD

Software is an integral part of our everyday lives.

Software has become the bottom line for many organizations who
never envisioned themselves in the software business.

Let’s Teach Architecting High Quality Software Page 5

© 2006 Carnegie Mellon University

WHERE BEHAVIOR COUNTS MOST

much is required of software.

Let’s Teach Architecting High Quality Software Page 6

© 2006 Carnegie Mellon University

Quality

Let’s Teach Architecting High Quality Software Page 7

© 2006 Carnegie Mellon University

QUALITY

Quality software is software that is fit for its intended purpose.

Let’s Teach Architecting High Quality Software Page 8

© 2006 Carnegie Mellon University

High Quality

Let’s Teach Architecting High Quality Software Page 9

© 2006 Carnegie Mellon University

HIGH QUALITY

High quality software meets business goals and user needs.

It has the right features and the right attributes.

Let’s Teach Architecting High Quality Software Page 10

© 2006 Carnegie Mellon University

UNIVERSAL BUSINESS GOALS

INCREASED MARKET SHARE

QUICK (OR RIGHT) TIME TO MARKET

EFFECTIVE USE OF LIMITED RESOURCES

PRODUCT ALIGNMENT

LOW-COST PRODUCTION

LOW-COST MAINTENANCE

MARKET AGILITY

MIND SHARE

 COMPETITIVE
 ADVANTAGE

Let’s Teach Architecting High Quality Software Page 11

© 2006 Carnegie Mellon University

THE ULTIMATE UNIVERSAL GOAL

$
SUBSTANTIAL

QUICK

SUSTAINABLE

PROFIT

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 12

USER NEEDS

• Required capability

• Low learning threshold

• Ease of use

• Predictable behavior

• Dependable service

• Timely response

• Timely throughput

• Protection from unintended intruders and viruses

• ……

Software product goals should address user needs.

Let’s Teach Architecting High Quality Software Page 13

© 2006 Carnegie Mellon University

THE RIGHT FEATURES

SOFTWARE NEEDS TO HAVE THE RIGHT FUNCTIONALITY:

The software does what I want it to do and not (a lot) more.

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 14

THE RIGHT QUALITY ATTRIBUTES

Quality attributes include
• Performance
• Availability
• Usability
• Modifiability
• Security
• Etc.

Quality attribute requirements stem from business and product goals.

Key quality attributes need to be characterized in a system-specific way.

Scenarios are a powerful way to characterize quality attributes and represent
stakeholder views.

Let’s Teach Architecting High Quality Software Page 15

© 2006 Carnegie Mellon University

PARTS OF A QUALITY
ATTRIBUTE SCENARIO

Response

RESPONSE
MEASURE

ENVIRONMENT

Stimulus

SOURCE

Artifact:

Process, Storage,
Processor,

Communication

Let’s Teach Architecting High Quality Software Page 16

© 2006 Carnegie Mellon University

SOFTWARE SYSTEM DEVELOPMENT

Functional
Software
Requirements

If function were all
that mattered, any
monolithic software
would do, ..but
other things
matter…

• Modifiability
• Interoperability
• Availability
• Security
• Predictability
• Portability

The important quality attributes and their characterizations are key.

has these qualities

analysis, design, development

Quality
Attribute Drivers

Software
Architecture

Software

Let’s Teach Architecting High Quality Software Page 17

© 2006 Carnegie Mellon University

BUSINESS AND PRODUCT GOALS

SOFTWARE
STRATEGIES

SOFTWARE STRATEGIES ARE NEEDED

process
quality

PROCESS
IMPROVEMENT

IMPROVED
ARCHITECTURE

PRACTICES

product
quality

Let’s Teach Architecting High Quality Software Page 18

© 2006 Carnegie Mellon University

Architecture

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 19

WHAT WE NEED IN SOFTWARE

Well-designed software architecture that
• lays out the basic elements of construction
• is known to satisfy important quality goals

Well-defined parts – components that
• have specified roles and interfaces
• have known properties
• behave predictably in a given assembly

Well-defined production plan that prescribes
• the order and method of assembly
• individual and team goals

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 20

WHAT WE NEED IN SOFTWARE

Well-designed software architecture that
• lays out the basic elements of construction
• is known to satisfy important quality goals

Well-defined parts – components that
• have specified roles and interfaces
• have known properties
• behave predictably in a given assembly

Well-defined production plan that prescribes
• the order and method of assembly
• individual and team goals

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 21

FOCUS: SOFTWARE ARCHITECTURE

From our experience

The quality and longevity of a software-intensive system is largely determined by
its architecture.

Many large system and software failures point to

• inadequate software architecture education and practices

• the lack of any real software architecture evaluation early in the life cycle

Risk mitigation early in the life cycle is key.

• Mid-course correction is possible before great investment.

• Risks don’t become problems that have to be addressed during integration
and test.

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 22

WITHOUT SOFTWARE
ARCHITECTURE FOCUS
Poorly designed software architectures result in

• greatly inflated integration and test costs

• inability to sustain systems in a timely and affordable way

• lack of system robustness

• in the worst case, product or project cancellation

• in all cases, failure to best support the user

Let’s Teach Architecting High Quality Software Page 23

© 2006 Carnegie Mellon University

Represents earliest
design decisions

First design artifact
addressing

Key to systematic reuse

The right architecture paves the way for system success.
The wrong architecture usually spells some form of disaster.

WHY IS SOFTWARE ARCHITECTURE
IMPORTANT?

• hardest to change
• most critical to get right
• communication vehicle

among stakeholders

• performance
• modifiability
• reliability
• security

• transferable, reusable
abstraction

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 24

Informally, software architecture is the blueprint describing system
composition.

A software architecture is often depicted using an ad hoc box-and-line
drawing of the system that is intended to solve the problems articulated
by the specification.

• Boxes show elements or “parts” of the system.

• Lines show relationships among the parts.

WHAT IS A SOFTWARE ARCHITECTURE?

Let’s Teach Architecting High Quality Software Page 25

© 2006 Carnegie Mellon University

Control
process

(CP)

Noise
model

(MODN)

Reverb
model

(MODR)

Prop loss
model

(MODP)

A SOFTWARE ARCHITECTURE (?)

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 26

DEFINITION: SOFTWARE ARCHITECTURE

“The software architecture of a program or computing system is
the structure or structures of the system, which comprise the
software elements, the externally visible properties of those
elements, and the relationships among them.”1

1 Bass, L.; Clements; P. & Kazman, R. Software Architecture in Practice, Second Edition. Boston, MA: Addison-Wesley, 2003.

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 27

IMPLICATIONS OF OUR DEFINITION

• Software architecture is an abstraction of a system.

• Software architecture defines the properties of elements.

• Systems can and do have many structures.

• Every software-intensive system has an architecture.

• Just having an architecture is different from having an architecture
that is known to everyone.

• If you don’t develop an architecture, you will get one anyway –
and you might not like what you get!

Let’s Teach Architecting High Quality Software Page 28

© 2006 Carnegie Mellon University

A human body comprises
multiple structures.

a static view of one
human structure

a dynamic view of
that structure

One body has many structures, and those structures have many views.
So it is with software…

STRUCTURES AND VIEWS – 1

Let’s Teach Architecting High Quality Software Page 29

© 2006 Carnegie Mellon University

STRUCTURES AND VIEWS – 2

These views are needed by the cardiologist…

…but will they work
for the orthopedist?

I do bones,
not hearts.

Different stakeholders are interested in different structures.
Views must represent the structures in which the stakeholders are interested.

So it is with software…

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 30

You should know
• structure – an actual set of architectural elements as they exist in software or

hardware

• view – a representation of a coherent set of architectural elements, as written
by and read by system stakeholders.

• A view consists of a representation of a set of elements and the relations
among them.

You should provide
• views that help evaluators and stakeholders understand the software

architecture.

STRUCTURES AND VIEWS – 3

Let’s Teach Architecting High Quality Software Page 31

© 2006 Carnegie Mellon University

THIS IS WHAT HAPPENS

without careful architectural design.
And so it is with software.

FOR
SALE

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 32

1 Zachman, John A., "A Framework for Information Systems Architecture." IBM Systems Journal, 26, 3 (1987): 276-292.

OTHER ARCHITECTURES - 1

Enterprise architectures are a means for describing business
structures and processes that connect business structures.1

• focus on business processes, dataflow, systems (including software
packages), and their interconnection

• do not address the details of software design

• DoDAF, FEAF, and TEAF are generally regarded as enterprise
architectures.

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 33

OTHER ARCHITECTURES - 2

A system architecture is a means for describing the elements and interactions of
a complete system including its hardware elements and its software elements.

System architecture is concerned with the elements of the system and their
contribution toward the goal of the system, but not with their substructure.

1 Rechtin, E. Systems Architecting: Creating and Building Complex Systems. Englewood Cliffs, NJ : Prentice-Hall, 1991.
2 International Council On Systems Engineering (INCOSE), Systems Architecture Working Group, 1996.

System Architecture: “The fundamental and unifying system
structure defined in terms of system elements, interfaces, processes,
constraints, and behaviors.”1

Systems Engineering is a design and management discipline useful
in designing and building large, complex, and interdisciplinary
systems.2

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 34

WHERE DOES SOFTWARE
ARCHITECTURE FIT?
Enterprise architecture and system architecture provide an environment
in which software lives.

• Both provide requirements and constraints to which software
architecture must adhere.

• Elements of both are likely to contain software architecture.

• Neither are a substitute for or obviate a software architecture.

In large, complex, software-intensive systems both software and
system architectures are critical for ensuring that the system is fit for
the intended purpose.

Let’s Teach Architecting High Quality Software Page 35

© 2006 Carnegie Mellon University

Architecting

Let’s Teach Architecting High Quality Software Page 36

© 2006 Carnegie Mellon University

REQUIREMENTS IN
VARIOUS FORMS

AVAILABLE
KNOWLEDGE

DESIGNER

ARCHITECTURE

SYSTEM

REQUIREMENTS BEGET DESIGN

HOST VISION
SYSTEM

CAMERA

PIONEER
CONTROLLER

SENSORS

MOTORS

serial serial

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 37

FACTORS INFLUENCING ARCHITECTURES

Where do architectures come from?

System requirements, constraints, business and product goals certainly,
but that’s not all.

Architectures are influenced by

• stakeholders of a system

• technical and organizational factors

• architect’s background

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 38

INFLUENCE OF SYSTEM
STAKEHOLDERS – 1
Stakeholders have an interest in the construction of a software system.

Stakeholders might include

• customers

• users

• developers

• project managers

• marketers

• maintainers

Stakeholders have different concerns that they wish to guarantee and/or optimize.

Let’s Teach Architecting High Quality Software Page 39

© 2006 Carnegie Mellon University

INFLUENCE OF SYSTEM
STAKEHOLDERS – 2

Let’s Teach Architecting High Quality Software Page 40

© 2006 Carnegie Mellon University

ARCHITECT’S INFLUENCES

STAKEHOLDERS

DEVELOPMENT
ORGANIZATION

TECHNICAL
ENVIRONMENT

ARCHITECT’S
EXPERIENCE

SUMMARY:
INFLUENCES ON THE ARCHITECTURE

ARCHITECT(S)

ARCHITECTURE

SYSTEM

REQUIREMENTS

Let’s Teach Architecting High Quality Software Page 41

© 2006 Carnegie Mellon University

FACTORS INFLUENCED BY
ARCHITECTURES
• Structure of the development organization

• Goals of the development organization

• Customer requirements

• Architect’s experience

• Technical environment

• The architecture itself

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 42

A CYCLE OF INFLUENCES

Relationships among business goals, product requirements, architects’
experience, architectures and fielded systems form a cycle with feedback
loops.

• Influences to and from architectures form a cycle.

• An organization can manage this cycle to its advantage.

Let’s Teach Architecting High Quality Software Page 43

© 2006 Carnegie Mellon University

ARCHITECTURE BUSINESS CYCLE (ABC)

ARCHITECT’S INFLUENCES

STAKEHOLDERS

DEVELOPMENT
ORGANIZATION

TECHNICAL
ENVIRONMENT

ARCHITECT’S
EXPERIENCE

REQUIREMENTS

ARCHITECTURE

ARCHITECT(S)

SYSTEM

Let’s Teach Architecting High Quality Software Page 44

© 2006 Carnegie Mellon University

SOFTWARE ARCHITECTURE AXIOMS

1. Software architecture is the bridge between business and product goals
and a software-intensive system.

2. Quality attribute requirements drive software architecture design.

3. Software architecture drives software development through the life cycle.

Let’s Teach Architecting High Quality Software Page 45

© 2006 Carnegie Mellon University

System
Specification

System Quality
Attributes *

Software
Architecture

drive

drives

* Performance
Security

 Interoperability
 Reliability
 Availability

etc. System Capabilities
and

Software Quality

S
Y
S
T
E
M

determines level of quality

SYSTEM QUALITIES AND
SOFTWARE ARCHITECTURE

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 46

SOFTWARE ARCHITECTURE
COROLLARIES
1. Software architecture is the bridge between business and product goals

and a software-intensive system.

2. Quality attribute requirements drive the design of the software
architecture.

• Quality attribute requirements stem from business and mission goals.

• Key quality attributes need to be characterized in a system-specific way.

• Scenarios are a powerful way to characterize quality attributes and
represent stakeholder views.

3. Software architecture drives software development throughout the life
cycle.

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 47

SOFTWARE ARCHITECTURE
COROLLARIES
1. Software architecture is the bridge between business and product

goals and a software-intensive system.

2. Quality attribute requirements drive the software architecture design.

3. Software architecture drives software development throughout
the life cycle.
• Software architecture must be central to development activities.
• These activities must have an explicit focus on quality attributes.
• These activities must directly involve stakeholders.
• The architecture must be descriptive and prescriptive.

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 48

ARCHITECTURE-CENTRIC
DEVELOPMENT ACTIVITIES
Architecture-centric activities include the following:

• creating the business case for the system

• understanding the requirements
• creating and/or selecting the architecture

• documenting and communicating the architecture

• analyzing or evaluating the architecture

• setting up the appropriate tests and measures against the
architecture

• implementing the system based on the architecture

• ensuring that the implementation conforms to the architecture

Let’s Teach Architecting High Quality Software Page 49

© 2006 Carnegie Mellon University

Requirements

Domain Understanding

Architecture

CommissionMake Buy Mine

drive

feeds

specifies components and
services

Components and Services

ARCHITECTURE IN THE LIFE CYCLE

Let’s Teach Architecting High Quality Software Page 50

© 2006 Carnegie Mellon University

drive

Requirements

Domain Understanding

feeds

Architecture

specifies components and services

CommissionMake Buy Mine

Defining Business Case and Product Context

Architecture Definition and Documentation
Architecture Evaluation

Make/Buy/Mine/Commission Analysis

Component/Service
Development

 OTS and Open Source
Utilization

Mining
Existing
Assets

Developing an
Acquisition

Strategy

Requirements Engineering

Software System Integration Testing

Components and Services

ARCHITECTURE IN THE LIFE CYCLE

Let’s Teach Architecting High Quality Software Page 51

© 2006 Carnegie Mellon UniversitySoftware System Integration Testing

existing
talent

market availability legacy base

organizational
policy

CommissionMake Buy Mine

Requirements

Domain Understanding

Architecture Architecture Definition and Documentation
Architecture Evaluation

Make/Buy/Mine/Commission Analysis

Component/Service
Development

OTS and Open Source
Utilization

Mining
Existing
Assets

Developing an
Acquisition

Strategy

Requirements Engineering

drive

feeds

specifies components and services

Components and Services

ARCHITECTURE IN THE LIFE CYCLE
Defining Business Case and Product Context

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 52

STAKEHOLDER INVOLVEMENT

The organizational goals and the system properties required by the business are
rarely understood, let alone fully articulated.

Customer quality attribute requirements are seldom documented, which results in

• goals not being achieved

• inevitable conflict between different stakeholders

Architects must identify and actively engage stakeholders
in order to

• understand real constraints of the system

• manage the stakeholders’ expectations

• negotiate the system’s priorities

• make tradeoffs

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 53

WHAT MAKES A GOOD ARCHITECTURE?

There is no such thing as an inherently good or bad architecture.
Architectures are more or less fit for some stated purpose.

The “goodness” of an architecture can be determined with respect to
business and product goals

• Assume that two systems are functionally identical. One system can
only be “better” if its architecture promotes qualities that are required
to meet business goals and/or product goals.

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 54

IMPEDIMENTS TO ACHIEVING
ARCHITECTURAL SUCCESS
Lack of
• adequate architectural talent and/or experience
• time spent on architectural design and analysis
• architecture-centric acquisition practices

Failure to
• identify the key quality attributes, characterize them, and design for them
• properly document and communicate the architecture
• evaluate the architecture in a qualitative way
• understand that standards are not a substitute for a software architecture
• ensure that the architecture directs the implementation
• evolve the architecture and maintain documentation that is current
• understand that a software architecture does not come free with

COTS or services

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 55

CHALLENGES FOR THE ARCHITECT

• What are the driving quality attributes for your system?

• What precisely do these quality attributes such as modifiability,
security, performance, and reliability mean?

• How do you architect to ensure the system will have its desired
qualities?

• How do you document a software architecture?

• How do you know if software architecture for a system is suitable
without having to build the system first?

• Can you recover an architecture from an existing system?

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 56

SOME SEI TECHNIQUES AND METHODS

• creating the business case for the system
• understanding the requirements

– Quality Attribute Workshop (QAW)
• creating and/or selecting the architecture

– Attribute-Driven Design (ADD) and ArchE
• documenting and communicating the architecture

– Views and Beyond Approach
• analyzing or evaluating the architecture

– Architecture Tradeoff Analysis Method (ATAM)
– Cost Benefit Analysis Method (CBAM)

• implementing the system based on the architecture
• ensuring that the implementation conforms to the architecture

– ARMIN (and DiscoTect)

Let’s Teach Architecting High Quality Software Page 57

© 2006 Carnegie Mellon University

• are explicitly focused on quality
attributes

• directly link to business and
mission goals

• explicitly involve system
stakeholders

• are grounded in state-of-the-art
quality attribute models and
reasoning frameworks

• are documented for practitioner
consumption

• are applicable to real-world
challenges and systems

SEI METHODS AND QUALITY ATTRIBUTES

QAW
ADD
ArchE
Views and Beyond
ATAM
CBAM
ARMIN
(DiscoTect)

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 58

TRENDS IN SOFTWARE
ARCHITECTURE - 1
Organizations big and small are recognizing the importance of software
architecture. For example,
• Microsoft

• Regional Architecture Forums
• Architect’s Council
• Architect Certification

• Raytheon
• Architecture Center of Excellence
• mandatory architecture classes and methods

• IBM
• Grady Booch writing the online Architect’s Handbook

• Automotive domain
• Siemens, Bosch, and Delphi all have architecture initiatives

• US Army
• Army Software Architecture Initiative

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 59

TRENDS IN SOFTWARE
ARCHITECTURE - 2
Books, courses, certificate programs, conferences, workshops on
software architecture abound.

New technologies (MDA, SOA, aspects) change the incidentals but the
fundamentals of software architecture and quality attributes are enduring.

Let’s Teach Architecting High Quality Software Page 60

© 2006 Carnegie Mellon University

Teach

Let’s Teach Architecting High Quality Software Page 61

© 2006 Carnegie Mellon University

SOFTWARE ENGINEERING PERSPECTIVES - 1

PROCESS PRODUCT

Let’s Teach Architecting High Quality Software Page 62

© 2006 Carnegie Mellon University

SOFTWARE ENGINEERING
PERSPECTIVES - 2

Engineers

Managers

PROCESS PRODUCT

Let’s Teach Architecting High Quality Software Page 63

© 2006 Carnegie Mellon University

SOFTWARE ENGINEERING
PERSPECTIVES - 3

Engineers

Managers

PROCESS PRODUCT

Lif
e C

yc
le

TOOLS

Let’s Teach Architecting High Quality Software Page 64

© 2006 Carnegie Mellon University

Engineers

Managers

PROCESS PRODUCT

Lif
e C

yc
le

TOOLS

BUSINESSBUSINESS

 BOTH INFLUENCES AND IS INFLUENCED BY ALL PERSPECTIVES

SOFTWARE ARCHITECTURE

ARCHITECTUREARCHITECTING

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 65

SOFTWARE ENGINEERING EDUCATION

What do we teach and how does it address this model?

The norm

Product perspective: OOA + OOD + OOP + …

Process perspective: agile methods, XP, TSP + …

These are a good starting perspective but software engineering students need
more

• Business context

• Quality attributes

• Software architecture

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 66

ARCHITECTURE PRINCIPLES TO
TAKE AWAY
Software architecture is important because it

• provides a communication vehicle among stakeholders

• is the result of the earliest design decisions

• is a transferable, reusable abstraction of a system

The degree to which a system meets its quality attribute requirements is
dependent on architectural decisions.

Every software-intensive system has a software architecture.

Just having an architecture is different from having an architecture that is known to
everyone, much less one that is fit for the system’s intended purpose.

An architecture-centric approach is critical to achieving and implementing an
appropriate architecture.

High quality software requires architecture practices.

Let’s Teach Architecting High Quality Software Page 67

© 2006 Carnegie Mellon University

THE ROLE OF EDUCATORS

Let’s Teach Architecting High Quality Software Page 68

© 2006 Carnegie Mellon University

THE WELL EDUCATED GRADUATE

© 2006 Carnegie Mellon University

Let’s Teach Architecting High Quality Software Page 69

LET’S TEACH ARCHITECTING HIGH
QUALITY SOFTWARE
It’s time that all software engineering students know the principles of
software architecture and how to use effective software architecture
practices.

Every facet of our society depends on software.

To ensure high quality software we need to teach our students to
architect high quality software.

Let’s Teach Architecting High Quality Software Page 70

© 2006 Carnegie Mellon University

Felix Bachmann, Len Bass,
Joe Batman, John Bergey,
Phil Bianco, Paul Clements,
James Ivers, Larry Jones,
Rick Kazman, Mark Klein,
Reed Little, Paulo Merson,
Robert Nord, William
O’Brien, Ipek Ozkaya, Rob
Wojcik, Bill Wood

THANKS TO THE SEI SOFTWARE
ARCHITECTURE TEAM

Let’s Teach Architecting High Quality Software Page 71

© 2006 Carnegie Mellon University

THANKS TO MY DEAR FRIEND
AND COLLEAGUE

Coach

I dedicate this keynote to Jim Tomayko. Jim was a
leading contributor to software engineering
education and a role model to all educators.

Let’s Teach Architecting High Quality Software Page 72

© 2006 Carnegie Mellon University

THANK YOU!

It has been my honor and pleasure to spend this time with you.

Linda Northrop
Director
Product Line Systems Program
Telephone: 412-268-7638
Email: lmn@sei.cmu.edu

For more information:
http://www.sei.cmu.edu/architecture/sat_init.html

Let’s Teach Architecting High Quality Software Page 73

© 2006 Carnegie Mellon University

REFERENCES

Evaluating Software Architectures: Methods and Case Studies
Clements, P.; Kazman, R.; & Klein, M. Reading, MA:
Addison- Wesley, 2002.

Software Architecture in Practice, Second Edition
Bass, L.; Clements, P.; & Kazman, R. Reading, MA:
Addison-Wesley, 2003.

Documenting Software Architectures: Views and Beyond
Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.;
Nord, R.; & Stafford, J. Reading, MA:
Addison-Wesley, 2002.

Software Product Lines: Practices and Patterns
Clements, P.; Northrop, L. Reading, MA: Addison-Wesley, 2001.

