
Sponsored by the U.S. Department of Defense
© 2006 by Carnegie Mellon University

1

Pittsburgh, PA 15213-3890

Future Trends of Software
Technology and Applications:

Software Architecture

Paul Clements
Software Engineering Institute

Carnegie Mellon University

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Future Trends of Software Technology and Applications: Software
Architecture

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University ,Software Engineering Institute
(SEI),Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

© 2005 by Carnegie Mellon University 2

Applied R&D laboratory situated as a college-level unit at
Carnegie Mellon University, Pittsburgh, PA, USA

Established in 1984

Technical staff of 335

Offices in Pittsburgh, Pennsylvania,
Arlington, Virginia, and
Frankfurt, Germany

Purpose: Help others make
measured improvements in their
software engineering practices

Software Engineering Institute

© 2005 by Carnegie Mellon University 3

The ascendance of software architecture

The software architecture of a program or software system
is the structure or structures of the system, which

comprise elements, the externally visible properties of
those elements, and the relationships among them.

--- Software Architecture in Practice, 2nd ed., 2003

Software architecture as a field of study has enjoyed a
steady ascendance since the 1980s (although its
foundational principles go back much farther: e.g., Parnas
on Information Hiding ,1972).
• Dedicated conferences: WICSA
• About 20-30 CFPs mentioning it are “active” at any

particular time
• Journal of Systems and Software (Elsevier) section

© 2005 by Carnegie Mellon University 4

The ascendance of software architecture

In practice, software architecture is has been embraced
organizationally.
• Well defined practitioner roles and career paths
• Well defined architecture-based development methods
• Codification of duties, skills, and knowledge

A recent search revealed
• 29 university courses with on-line descriptions *
• 22 industrial courses
• 7 certificate/certification programs
• 75 books

* http://www.sei.cmu.edu/architecture/educators.html

© 2005 by Carnegie Mellon University 5

The ascendance of software architecture

Architecture is seen as essential for the construction of
large, complex software systems
• It is the primary carrier of a system’s quality attributes
• It structures the development project as well as the

software being developed
• It is a capital investment that can be reused, powering

(for example) software product lines
• It is an essential communication vehicle among the

system’s stakeholders

© 2005 by Carnegie Mellon University 6

Architecture’s role to date

In order to predict its future, it helps to understand architecture’s
role up to this point.
• When programs became too large and complex to understand

(or to engineer) by working only with source code,
architecture became indispensable to exert intellectual control
over the software.

• It helped us think in terms of problem-domain abstractions
unsupported by programming languages of the day.

• Architecture provided large scale conceptual “chunks” of
functionality wired together as a solution, chunks that
addressed particular parts of the problem.

• Generally useful or commonly recurring chunks led to pre-
packaging and pre-wiring of those chunks, which in turn led to
languages in which those chunks became primitives.

© 2005 by Carnegie Mellon University 7

Examples of “chunks”

Architectures and architectural thinking, driven by
principles of modular design, gave rise to
• Clients and servers
• Middleware
• Services
• Whole-enterprise IT solutions

Over time, the “chunks” have become simultaneously
more specialized, more general, and more complex.
• 1960s chunk: SQRT subroutine
• Intermediate chunk: database, transaction processing
• 2000s chunk: shopping cart, on-line auction, B2B

solutions.

© 2005 by Carnegie Mellon University 8

Here’s an idea

Programs are very complex and they require programmers
to think too much in terms of the underlying computational
platform, and not the problem space.

Let’s give programmers a way to express themselves in
the language of the problem space.

Let’s introduce software to automatically translate from
platform-independent expressions into platform-dependent
solutions.

Wouldn’t that be great?

We could call this concept…

© 2005 by Carnegie Mellon University 9

FORTRAN.

“FORTRAN was designed for
mathematicians and scientists, and
remains the preeminent programming
language in these areas today. It
allows people to work with their
computers without having to
understand how the machines actually
work, and without having to learn the
machine’s assembly language.”

-- The History of Computing Project
http://www.thocp.net/biographies/backus_john.htm

John Backus

© 2005 by Carnegie Mellon University 10

FORTRAN

FORTRAN was not thought of by its creators as a
programming language.

It was designed to be the input to a translator.

People initially threw out their FORTRAN code and pored
over the assembly language generated from it.

On the day people stopped looking at the assembly
language and started treating the FORTRAN code itself as
the artifact of value, FORTRAN became a programming
language.

© 2005 by Carnegie Mellon University 11

So what?

Axioms:

1. There is nothing inherently different between a
specification language and a programming language.

2. There is no stark dividing line between problem space
and solution space. Rather, it is a continuum.

© 2005 by Carnegie Mellon University 12

So what?

Model-driven architecture is remarkable (to me) in that its
descriptions seem to have very little to do with
architecture.

I prefer the term “model driven development.”

The fundamental concept is in the translation from models
to solutions.

So if this important new paradigm can sidestep
architecture, can software architecture be all that
important?

© 2005 by Carnegie Mellon University 13

So what?

In some IT communities, software architecture seems to
be de-emphasized today.

The “chunks” are so large and sophisticated, and go
together in pre-wired ways. Creating the software
architecture is not a complex task.

Some IT firms say their architectural decisions consist of
choosing between two competing vendors’ solutions.
Once they do that, everything else follows.

Can software architecture be all that important?

© 2005 by Carnegie Mellon University 14

Software architecture’s role in
software engineering

The history of software engineering can be viewed as a
steadily increasing spiral of language expressiveness, into
problem spaces and away from platform details.

When a new way to express problems arrives on the
scene, programs are initially very simple – their structure
is very simple.

But we always learn to express more and more complex
solutions using the languages we have.

© 2005 by Carnegie Mellon University 15

Final word

As the solutions written using these new mega-programming
languages become more and more complex, architecture will be
there to help “solution architects” (the current term for those who
program in these super-languages) to
• impose order on the chaos
• make sure quality attributes are achieved
• to structure the solution being given to the underlying

computing systems.

We will see continued movement towards supporting larger,
more complex, and more varied problem-space abstractions,
backed up by more sophisticated translation or compiler
technology that will allow today’s “specification languages” or
“modeling languages” to continue to be tomorrow’s programming
languages.

© 2005 by Carnegie Mellon University 16

Specific predictions

Architecture-based practices (e.g., formal evaluations,
standardized documentation) will continue to be codified.

Tooling to support architecture design and development
will improve greatly.

We’ll see true “round trip engineering” in which the current
gulf between architectural design and downstream design
and implementation languages and representation is
bridged.

© 2005 by Carnegie Mellon University 17

Questions―Now or Later
Paul Clements
Product Line Systems Program

Email: clements@sei.cmu.edu

U.S. Mail:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890

World Wide Web:
http://www.sei.cmu.edu/
architecture

SEI Fax: 412-268-5758

