The Survivable Network Analysis Method:
Assessing Survivability of Critical Systems

CERT/Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Sponsored by the U.S. Department of Defense
The Survivable Network Analysis Method: Assessing Survivability of Critical Systems

Carnegie Mellon University, Software Engineering Institute, Pittsburgh, PA, 15213

Approved for public release; distribution unlimited

Same as Report (SAR)
Mission Survivability
Changing Environment

- System Evolution
 - expanding network boundaries
 - additional participants with varying levels of trust
 - numerous point solutions: Public Key Infrastructure, Virtual Private Networks, Firewalls
 - blurring of Intranet and Extranet boundaries
 - new technologies -- directory services, XML

- The impact of attacks is on organizations, and hence on the applications which support the organization’s mission
Impact on Analysis

- Lack of complete information
 - physical and logical perimeters
 - participants, untrusted insiders
 - software components --- COTS Java, etc.
- Mix of central and local administrative control
- Critical components more exposed
- An attack could impact essential business services
Survivability Defined

Survivability is the ability of a system to fulfill its mission, in a timely manner, in the presence of attacks, failures, or accidents.
Key properties

- Mission Focus
 - Identification of risks and trade-offs
 - Alternative means to meet mission
- Assume imperfect defenses
The “Three Rs”

- **Resistance**
 - Capability to deter attacks

- **Recognition**
 - Capability to recognize attacks and extent of damage

- **Recovery**
 - Capability to provide essential services/assets during attack and recover full services after attack
Techniques and Methods

• Traditional Security
 – fortress model: firewalls, protection, security policy
 – insider trust
 – encryption, authentication, passwords
 – resistance and recognition with recovery secondary

• Survivability is enhanced by
 – security techniques where applicable
 – redundancy, diversity, general trust validation, etc
 – automated recovery support
Example

- E-mail
 - E-mail content tunnels through firewalls
 - Always time lag between initial discovery and upgraded virus signatures required for scans
 - Enhanced e-mail functionality
 - Attachments (Word macros)
 - Rich content such as HTML, Javascript
 - Significant impact on services other than e-mail.
The Survivable Network Analysis Method

• Focus
 – early phase of life cycle
 – applications as well as system infrastructure
 – tailorable depending on stage of development.

• Three options for SNA analysis
 – survivability architecture
 – survivability requirements
 – mission lifecycle
Architectural Focus

• Capture assumptions such as boundaries and users
• Support system evolution as requirements and technologies change
 – evolving functional requirements
 – trend to loosely coupled
 – requirements for integration across diverse systems
• Assist with product selection and integration with respect to rapidly changing security product world
General Method

- Identify essential services with normal usage.
- Generate intrusion scenarios which are use cases for intruder
- Evaluate system in terms of response to scenarios
 - Requirements: propose response to intrusions
 - Architecture: evaluate system and operational behavior
- Mission impact
 - applications as well as system components
 - stakeholders input essential
Survivability Architecture

- Make recommendations for survivability improvements
- Identify decision and tradeoff points - areas of high risk
- Identify trade-offs with other software quality attributes – safety, reliability, performance, usability
The Survivable Network Analysis Method

STEP 1
SYSTEM DEFINITION
- Mission requirements definition
- Architecture definition and elicitation

STEP 2
ESSENTIAL CAPABILITY DEFINITION
- Essential service/asset selection/scenarios
- Essential component identification

STEP 3
COMPROMISABLE CAPABILITY DEFINITION
- Intrusion selection/scenarios
- Compromisable component identification

STEP 4
SURVIVABILITY ANALYSIS
- Softspot component (essential & compromisable) identification
- Resistance, recognition, and recovery analysis
- Survivability Map development
Determining Survivability Strategies

System Requirements/Architecture → Survivable Network Analysis → Essential Services Intrusion Effects Mitigation Strategies → Improved Requirements/Architecture

SEI CERT/CC Intrusion Knowledge
Survivability Map

<table>
<thead>
<tr>
<th>Intrusion Scenario</th>
<th>Softspot Effects</th>
<th>Architecture Strategies for</th>
<th>Resistance</th>
<th>Recognition</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Scenario 1)</td>
<td>Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Recommended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Scenario n)</td>
<td>Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recommended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Roadmap for management evaluation and action
Option: Survivability Requirements

- Identify requirements for mission-critical functionality
 - minimum essential services
 - graceful degradation of services
 - restoration of full services

- Identify explicit requirements for
 - recovery
 - recognition
 - resistance
Option: Mission Lifecycle

- Factor survivability into the development and operational lifecycle

- Capture security and survivability assumptions
 - boundaries, users

- Identify survivability decision points
 - impact of changes on recovery, intrusion detection, etc.
Benefits of the SNA

- Clarified requirements
- Documented basis for system decisions
- Basis to evaluate changes in architecture
- Early problem identification
- Increased stakeholder communication
Additional Information

• SNA Case Study: The Vigilant Healthcare System
 – IEEE Software: July/August 1999
• Survivability: Protection Your Critical Systems
 – IEEE Internet Computing: Nov/December 1999
• Web site: IEEE article and other reports
 www.sei.cmu.edu/organization/programs/nss/surv-net-tech.html