AirCERT: Building a Framework for Cross-Administrative Domain Data Sharing

Roman Danyliw <rdd@cert.org>

FloCon 2004: Complementary Architecture Panel

CERT® Network Situational Awareness Group
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

The CERT Network Situational Awareness Group is part of the Software Engineering Institute. The Software Engineering Institute is sponsored by the U.S. Department of Defense.
Title: AirCERT: Building a Framework for Cross-Administrative Domain Data Sharing

Abstract: Presented at FloCon 2004, Crystal City, VA, July 2004.
Background

• Form situational awareness for the SEI, its sponsors, and the Internet community
 – Big picture view of threats

• Constraints
 – Situational awareness can only be formed with data from many organizations – all data is governed by the constraints of its owners
 – Must provide a reasonable value-proposition for data sharing
 – Strict hierarchies in data sharing will not scale
 – Solutions must be built with open and transparent architectures
Analytical Concerns

Focus on merging and analyzing data from multiple view points

• Distinguish between targeted, localized, and Internet-wide activity
 – Widely targeted services
 – Clusters of attacks
 – Passive detection of new tools
 – Attack techniques *de-jour*
 – Attack sources

• Historical trending
 – Enable forward estimation of expected intruder activity of a site
Current Results

- Generating “Top 10” lists and volumetric measures based on
 - *Packet/Flow features*: IP addresses, ports, protocols, signature, etc.
 - *Context*: timing, vulnerability, country, net-blocks, etc.
Implementation

- http://aircert.sourceforge.net

- Gather data from existing security solutions already deployed
 - Partner with security operations in the federal civilian community and in academia

- Write “glue” to integrate, convert, analyze, and share the data across organizations

- Provide analytical results back to participants and sponsors
Synthesized Data

• Categorization
 – SIM/SEMs (e.g., ArcSight)
 – IDS (e.g., Snort)
• Discovery
 – Flow data (e.g., argus)
• Refinement
 – Network topology information
 – IT/data data sharing policies
• Context
 – Vulnerability (e.g., CERT/CC KB)
 – Artifacts (e.g., CERT/CC AC)
Collection Infrastructure

• Provides infrastructure to *automatically* extract relevant information from existing instrumentation
 – If human intervention is required, sharing is too expensive

• Wrote “normalizers” to handle the reformatting and semantic transformation of the data
 – Too many vendor to write one-off tools for each
 – Write transformation engine that understands the underlying data-store: text files, RDBMS, etc.
Sharing Infrastructure: Collection

• The key to facilitating data sharing across organizations is
 – Making it seamless – no human interaction
 – Ensuring policy compliance

• All “normalizers”, “publishers”, and the underlying storage architecture have a notion that all data has an owner
 – Dissemination respects site’s local policy
 – Sanitization of sensitive data
 – Tagging of all data with a source identifier
Sharing Infrastructure: Dissemination

• Sharing data with us, is no different than data with others

• Tailor channel for the audience
 – Web-portal for pre-digested snapshot
 – Export bulk-data in a machine-readable format (e.g., XML, RSS)
Architecture

NetSA Staff
(Manual Analysis)

Automated Analysis
- Smokey
 (data summarization)
- ACID v2.0
 (canned analysis methods)

Analysis Storage

Meta-Data Oracles
- Netblocks
 (RIR information)
- DNS
 (hostnames)

Sharing: Data Dissemination
- Web Portal
 (ACIDv2)
- Publisher

Sharing: Data Collection
- Mod_air
- Internet Infrastructure
 (RIR, DNS)

Internet

AirCERT Sensors
(DAC, CERT-friends/family,
Standards-compliant sites)

Rex/tabula

dredge
(transmission engine)

Normalization

© 2004 by Carnegie Mellon University
Big Picture Architecture

State of the Art

All too common

Data Sharing
Organization
Policy Domain
Challenges and Solutions

• Many different formats used by the SEM and IDS products
 – Support standards efforts: IDMEF, IODEF, IPFIX, PSAMP
 – Storage-specific normalization tools

• Normalizing signatures across IDS products
 – Using CVE and custom classification taxonomies

• Analyzing the correct signature set
 – Use only explicit malicious activity
 – Filtering out policy violations and poorly written signatures
 – Use the correct tool for the task
 – Deploy non-IDS sensors next to the IDS

• Data loops
 – “Checksums” in the meta-data of the data stream
Challenges and Solutions

• Need both push and pull model, while supporting varied levels of automation
 – Unified presentation engine (ACIDv2)
 – Publisher for bulk-data transfer
Ongoing Work

- Intelligent end-points that summarize instead of sending all data
- Automated ways to overlay the context provided by vulnerability and artifact information
- Continued support for standards work
- Improved attention focusing techniques for flow data-to-IDS and vice versa
- Improved approaches for integrating the analytical products into operations