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ABSTRACT

Final Report: Network Data: Statistical Theory and New Models

Report Title

During this period of review, Bin Yu worked on many thrusts of high-dimensional statistical theory and methodologies. Her research 
covered a wide range of topics in statistics including analysis and methods for spectral clustering for sparse and structured networks 
[2,7,8,21], sparse modeling (e.g. Lasso) [4,10,11,17,18,19], statistical guarantees for the EM algorithm [3], statistical analysis of algorithm 
leveraging for solving big data problems [5], causal network modeling [15,20], stability as a general concept/framework for reproducible 
statistical discovery [9,13], and high-dimensional inference [12]. Yu also collaborated with other research groups and Labs to conduct 
interdisciplinary research in areas including systems biology, neuroscience, remote sensing, document summarization, and social networks. 
For example, she has been collaborating with Dr. Frise et al. on constructing gene-gene interaction networks [1], with the Gallant Lab on 
understanding visual pathway of primates by using sparse coding [14], and with environmental scientists at JPL and Emory University to 
retrieval from NASA MISR remote sensing images aerosol index AOD for air pollution monitoring and management [6,16].
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Scientific progress and accomplishments

Under the ARO grant support (W911NF-11-1-0114), Bin Yu and her collaborators have conducted several
research projects ranging from high dimensional statistical machine learning to methodology development
motivated by interdisciplinary research in areas including systems biology, neuroscience, remote sensing,
document summarization, and social networks.

1 Sparse and structured networks

The major goals of this project are to develop and implement algorithms based on high dimensional statis-
tics theory, especially network theory, with the ultimate goal of extracting useful information from high
dimensional data that arise from various fields of science and engineering.

Science and engineering abounds with different types of networks. Examples include social networks such
as FaceBook and Twitter, networks of genes and proteins in molecular biology, network models for economic
and market dynamics, neural networks in brain imaging, networks of disease transmission in epidemiology,
and information networks in law enforcement. In the real-world, the structure of the underlying network is not
known, but instead one observes samples of the network behavior (e.g., packet counts in a computer network;
instances of infection at given time instances of an epidemic; emails or text messages sent among a group of
people). Since the network data are complex, noisy and/or high-dimensional, it is challenging to infer the
network structure. Developing methods for solving this network inference problem will have a broad range
of applications. Examples include inferring brain connectivity and disease etiology in neuroimaging studies,
detecting terrorist cells in social networks, monitoring intrusions in computer networks, and understanding
the basis of gene-protein interactions in systems biology.

Spectral clustering is one of the popular techniques to identify communities (or clusters) in large network.
The stochastic blockmodel is a social network model with well-defined communities; each node is a member
of one community. In paper [21], we provide rigorous statistical analysis to the study of community detection
by assessing how well spectral clustering can estimate the clusters in the Stochastic Blockmodel. Our results
are the first clustering results that allow the number of clusters in the model to grow with the number of
nodes, hence the name high-dimensional. In paper [8], we study the impact of regularization on spectral
clustering and attempt to quantify the obtained improvement. We study in paper [7] the performance of
spectral clustering in recovering the latent labels of i.i.d. samples from a finite mixture of nonparametric
distributions. We provide a novel and useful characterization of the principal eigenspace of the population-
level normalized Laplacian operator and establish a certain geometric property of nonparametric mixtures:
embedded samples from different components are approximately orthogonal with high probability.

Aymmetric and undirected relationships are common assumptions in the clustering literature. However,
the vast majority of relationships are asymmetric or directed. For example, in the gene regulatory network,
one gene drives the transcription of the other gene. In the power grid network, electricity flows from one
node to the other. In a communication network, one node initiate the conversation. In other examples, it
might be more easy to observe the relationship without direction, but the direction remains of fundamental
importance. For example, in a social network, a business searching for “trend leaders” wants to know the
direction of influence in relationships. It is an interesting and important question to identify the clustering
asymmetries in directed graphs. In paper [2], we propose a novel spectral co-clustering algorithm called
DI-SIM for asymmetry discovery and directional clustering. A new Stochastic co-Block model is introduced
to show favorable properties of DI-SIM. To accommodate sparse graphs and highly heterogeneous degrees
within clusters, DI-SIM uses the regularized graph Laplacian and projection procedure. We apply a node-
wise asymmetry score and DI-SIM to analyze the clustering asymmetries in the networks of Enron emails,
political blogs, and the chemical connectome. In each example, a subset of nodes have clustering asymmetries;
these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful
information (e.g. communication bottlenecks) about directed networks, but are missed if the analysis ignores
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edge direction.

2 Systems biology

Yu has advanced the project with Dr. Frise et al on systems biology. Gene-gene interaction is at the
heart of understanding regulatory pathways of organ formation and developmental disorders. Spatial gene
co-occurrence information has been shown to be extremely useful in suggesting possible gene-gene interac-
tion. The abundance of spatial gene expression data in recent years opens up an exciting new venue for
reconstructing gene regulatory networks. However, due to the complexity of spatial gene expression and
the noisy nature of the data acquiring process, extracting meaningful information from these data remains
a challenge. In paper [1], we propose StaNMF method that combines a fast and scalable implementation
of Non-negative Matrix Factorization (NMF) with a new stability-based criterion. StaNMF learns from a
spatial gene expression data a set of data-driven basis, called Principal Patterns (PPs). As an example,
using the spatial gene expression images of early stage embryonic Drosophila melanogaster, we demonstrate
that the 21 learned PPs correspond to 21 localized pre-organ regions. The PPs provide a concise yet biolog-
ically interpretable representation, comparable to the well-established Drosophila fate map and serving as
an alternative to human annotations. Based on the PPs, we construct spatially local correlation networks
for all patterned transcription factors during early Drosophila development. With a two-tailed 2.5% cut-off,
the constructed networks are consistent with 10 out of 12 links in the well-studied gap-gene network with
six major gap genes. The very promising performance of PPs with the Drosophila data suggests StaNMF as
a standard decomposition approach to examine complex and noisy gene expression data.

Our local network analysis recommends five uncharacterized genes as possible new candidates for the gap
gene networks. Dr. Frises group and his collaborators have been working on CRISPR experiment to knock
out each of the five candidate genes as experimental verification. So far, we learned that one of the genes
are not viable, i.e. the fruit fly dies after the knock-out of the gene. Further examination of the ftz stained
embryos indicates that the lack of the gene might lead to an elongated head and a wider gap between the
first and the second segmentation stripes. Together with three students of mine, we are currently performing
cell counting analysis in an effort to provide numerical evidence of our visual inspection conclusion.

Given the success of our approach for spatial gene expression analysis for early stage fruit fly embryos,
we are in a process to extend it to model later stage gene expression. Due to the formation of internal organs
of the embryo, registering the embryo unto a standard template for cross-individual comparison can be
challenging. We build an organ classification and registration model that modifies state of the art computer
vision algorithms to produce mid-level image features well suited to bio-imaging tasks. By combining our
classification model with non-negative matrix factorization, we produce parts-based representations of spatial
gene expression in various organ systems. Our PPs of gene expression are interpretable, low dimensional
representations of the data that serve as a late stage analogue to the Drosophila fate map.

We have put large effort into automatization of our techniques for the benefits of system biology commu-
nity. To facilitate automatic imaging, we contribute to designing a method that detects the most in-focus
image as the microscope adjusts its focal plane. To scale up and speed up the computation for larger spatial
gene expression data sets, we are working with Professor Andy Yao’s group at Tsinghua University to cre-
ate a general computation framework for biological data processing. Our system, called LSEMS, or Large
Scale Experiment Management System, combines Gitlab for easy version control, MongoDB for storage of
highly biological unstructured data and SPARK for distributed computing. The LSEMS framework allows
biologists to submit a task on their personal laptops, triggering the remote machine to execute the task and
distribute it to a large computer cluster. The results will be sent back to the user-end once the computation
is completed. The initial testing reports that the system is much more efficient than the old one which uses
a single machine. We are now building intuitive and easy-to-use GUI (graphical-user interface) to make the
system more accessible to general biologists.
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Figure 1: Learning principal patterns (PP) by staNMF from spatial gene expression patterns. (A) Expression
patterns of two genes, nub and salm, in Drosophila embryos. (B) For a given number K, NMF factorizes
the nonnegative data matrix X, the columns of which are gene expression images, into the product of two
nonnegative matrices: dictionary D, which contains the K PP, and coefficient matrix A, which contains the
nonnegative coefficients of the images. (C) StaNMF identified K = 21 to be the optimal number of PP for
15 ≤ K ≤ 30. (D) The Drosophila fate map (center), surrounded by the 21 PP learned by staNMF. The PP
are arrayed according to the corresponding regions of the fate map.
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Figure 2: Modeling and validation of the Drosophila gap gene network with spatially local correlation
networks (SLCN). (A) The SLCN for six gap genes. For each of the six gap-PP, shown is the sub-network
of the SLCN that contains the six gap-genes. Links are numbered from 1 to 14. (B) The gap gene network
diagram depicting repressive interactions of six genes. Links are numbered from 1 to 11 and multiple
occurrence of the same gene are subscripted by numbers (e.g. hb1 and hb2). The directions of the interactions
are not indicated. (C) Expression patterns of the six gap genes and their linearly ordered PP representation.
For each gene, the regions depicted in blue are the gap-PP with sPP coefficient greater or equal to 0:1. The
∗ symbol indicates a region of gene expression with no match in (B).

3 Neuroscience

In computational neuroscience, it is important to estimate well the proportion of signal variance in the total
variance of neural activity measurements. Paper [14] proposes a novel method to estimate the explainable
variance in functional MRI (fMRI) brain activity measurements when there are strong correlations in the
noise. Our shuffle estimator is nonparametric, unbiased, and built upon the random effect model reflecting
the randomization in the fMRI data collection process. Motivated by collaborative research in neuroscience,
papers [20, 15] answer questions under the Pearl causal inference framework, which is an alternative to the
Neyman-Rubin framework. In particular, [20] proves analytical results to raise a red-flag on the commonly
assumed faithfulness assumption. [15] proposes efficient MCMC algorithms to search through Markov equiv-
alence classes of a causal graph. It was the first such algorithm that works fast enough for hundreds of nodes,
admittedly under a sparsity condition.

Yu continues her collaborative work with the Gallant Lab on understanding visual pathway of primates
by using sparse coding, invariant features and deep convolutional neural networks to build more accurate
models of motion perception in the visual cortex. Our prior work has shown that image representations based
the principles of sparse coding and nonlinear spatial pooling are empirically successful in explaining neural
response in area V4 of the macaque visual cortex. Such models are able to discriminate between categories
of image regions (such as foreground vs. background, texture vs. contour), while also generalizing across
random realizations of object categories, due to their invariance to local deformation. These techniques
have been adapted to modeling higher order visual areas such as area MT on two experimental datasets
provided by the Gallant lab, in which the stimulus consisted of a series of short movie clips. This includes
electrophysiological data from macaque area MT, as well as full visual cortex fMRI recordings of human
subjects.
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Deep convolutional neural networks are biologically inspired neural network based learning techniques.
Recently, they have been the state-of-the-art methods for large-scale image recognition tasks in computer
vision. We deploy the deep convolutional neural network features as early invariant features for modeling
area V4. When combined with sparse linear modeling, we show that our deep convolutional feature based
model outperforms the previous sparse coding based methods. Further more, our model not only has better
prediction performance, but also leads to better interpretation, which could provide neuro-scientists clues
about the receptive fields and orientation tuning preferences of individual neurons. We have also started
to adapt deep convolutional neural networks techniques to model data collected from fMRI experiments.
The main difficulty of modeling human neuronal activity via fMRI experiments is that extracting different
meaningful features from video data that are general enough to model the dynamics different parts of the
visual cortex area, ranging from the early sensory area such as LGN, V1 and V2, to higher order areas
such as MT and IT. Our approach is to use a two stream deep convolutional neural networks, combining the
spatial invariant features with temporal optical flow features. Our preliminary results show that the temporal
optical flow features are not very good features when used alone for prediction, but when combined with
spatial features, these temporal features largely improves prediction when compared to previous hard-crafted
Gabor features based models.

3.1 Aerosol Optical Depth (AOD) retrieval

Yu has been collaborating with environmental scientists at JPL and Emory University to retrieval from NASA
MISR remote sensing images aerosol index AOD for air pollution monitoring and management. Satellite-
retrieved Aerosol Optical Depth (AOD) can potentially provide an effective way to complement the spatial
coverage limitation of ground particulate air pollution monitoring network like AErosol RObotic NETwork
(AERONET). Although the MISRs aerosol products lead to exciting research opportunities to study particle
composition at a regional scale, its spatial resolution is too coarse for analyzing urban areas, where the air
pollution has stronger spatial variations and can severely impact public health and the environment. Using
NASA’s novel multi-angle satellite sensor MISR, [16] develops a novel AOD retrieval algorithm with 4.4 km
× 4.4 km resolution using Bayesian models and MCMC. [6] uses AERONET DRADON campaign data from
2011 in the Baltimore area to further validate our MCMC algorithm. We show that our MCMC algorithm
substantially improves over the MISR operational algorithm both in terms of coverage and root-mean-square-
error (RMSE).

4 Statistical guarantees of EM algorithm

The EM algorithm is a widely used tool in maximum-likelihood estimation in incomplete data problems.
Existing theoretical work has focused on conditions under which the iterates or likelihood values converge,
and the associated rate of convergence. Such guarantees do not distinguish whether the ultimate fixed point
is a global or local optimum of the sample likelihood, nor its relation to the global optima of the idealized
population likelihood (obtained in the limit of infinite data). In paper [3], we develop theoretical framework
for quantifying when and how quickly EM-type iterates converge to a small neighborhood of a given global
optimum of the population likelihood. For correctly specified models, such a characterization yields rigorous
guarantees on the performance of two-stage estimators in which an initial pilot estimator is refined with
iterations of the EM algorithm. Our analysis is divided into two parts: a treatment of the EM and gradient
EM algorithms at the population level, followed by results that apply to these algorithms on a finite set of
samples. We verify our conditions and give tight characterizations of the region of convergence for three
canonical problems of interest: mixture of Gaussians, mixture of regressions, and linear regression with
covariates missing completely at random.
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5 Sparse modeling

Sparse models are necessary for model interpretability and computational efficiency in prediction. For
example, expressing signals as sparse linear combinations of a dictionary basis has enjoyed great success in
applications ranging from image denoising to audio compression. For certain data types such as natural image
patches, predefined dictionaries like the wavelets are usually available. However, when a less-known data
type is encountered, a new dictionary has to be designed for effective representations. Dictionary learning,
or sparse coding, learns adaptively a dictionary from a set of training signals such that each signal has sparse
representations under this dictionary. In paper [4], we study the theoretical properties of learning a dictionary
from a set of N signals via l1-minimization. We establish a sufficient and almost necessary condition for
the reference dictionary to be locally identifiable, i.e. a local minimum of the expected l1-norm objective
function. With collaborators including students and postdocs, Yu has published five papers [10, 17, 18, 19, 11]
on other topics of sparse modeling. The results provide insights on application of sparse classification to the
problem of topic-specific summarization, when and why Lasso works under Poisson-like Heteroscedasticity,
the complexity of Lasso solution path, minimax-optimal rates for sparse additive models over Kernel classes,
and optimal data-dependent stopping rule of gradient descent for non-parametric regression.

6 Stability and inference

When data are perturbed (e.g. by subsampling), instability of results is common for big data, which are often
high-dimensional. This instability begs a connection with Robust Statistics of Tukey and Huber. To bringing
stability and hence interpretability and reproducibility to results of Lasso in high-dimension, [9] proposes an
estimation stability (ES) metric to combine with the popular cross-validation (CV) for a dominant sparse
modeling method Lasso (or `1- penalized Least Squares) that has been effective in our neuroscience work.
For an image-fMRI data set from the Gallant Lab, we in fact improve interpretability substantially without
losing prediction performance, relative to CV. [13] is an invited paper for a special issue of Bernoulli. It
advocates for an enhanced emphasis on stability as a means to work towards reproducibility and promotes
stability as a general statistical principle.

Inference and constructing confidence intervals for parameter estimation play important role in resulting
interpretability findings. However, in high-dimensional setting, inference is challenging because the limiting
distribution of estimators such as Lasso is complicated and hard to compute, which remains a barrier to
widespread adoption of high-dimensional methodology in the sciences. In paper [12], we propose a valid
inference procedure based on residual bootstrap after two-stage estimator Lasso+mLS (using Lasso to select
a model and then using a modified version of Least Squares (mLS) refitting the coefficients in the selected
model) and show consistency under suitable conditions. Compared with existing methods, such as debiasing,
our method provides comparable results in terms of coverage probability and interval length, but our method
is based on standard tools, the bootstrap and the Lasso, which is simple to implement and can be easily
extended to models beyond linear regression.

7 Statistical analysis of algorithm leveraging

With rapid advances of information technology, massive datasets are collected by all fields of science, engi-
neering, social science, business, and government. Useful or meaningful information is extracted from these
data often through statistical means or model fitting, typically through regression models. These models
are useful for predicting a response variable from p predictor variables or to describe relationships between
predictor variables and a response variable. Given a set of n data units, in modern massive data sets, p
and/or n can be large, in which case conventional algorithms face computational challenges. Subsampling
of rows and/or columns of a data matrix has been employed traditionally as a heuristic to reduce the size of
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large data sets. Recently, an innovative and effective sampling scheme based on using the empirical statis-
tical leverage scores as a nonuniform importance sampling distribution has been proposed. The OLS based
on such a subsample has been shown to give a good approximation to the OLS based on full data (when
p is small and n is large), both in worst-case theory and in high-quality numerical implementation. The
statistical properties of these algorithms are as of yet unexplored and are of interest for both fundamental
and very practical reasons; and it is these properties that this project will address. One important question
to be answered for using leverage subsampling for statistical estimation is: Under what conditions on p and
n and the underlying model, the resulting leverage-OLS has good statistical properties such as a good mean-
squared-error (MSE) when compared to the full-data OLS and other estimators, either in linear regression
or non-linear regression models? Because of the noise properties in real data, it is challenging to answer this
question.

In this project, we provide the first interpretation of algorithmic leveraging paradigm from a statistical
analysis point of view. By performing a Taylor series analysis around the ordinary least-squares solution to
approximate the subsampling estimators as linear combinations of random sampling matrices, we provide in
paper [5] a simple yet effective framework to evaluate the statistical properties of algorithmic leveraging in the
context of estimating parameters in a linear regression model with a fixed number of predictors. In particular,
for several versions of leverage-based sampling, we derive results for the bias and variance, both conditional
and unconditional on the observed data. We show that from the statistical perspective of bias and variance,
neither leverage-based sampling nor uniform sampling dominates the other, which is particularly striking,
given the well-known result that, from the algorithmic perspective of worst-case analysis, leverage-based
sampling provides uniformly superior worst-case algorithmic results, when compared with uniform sampling.
Based on these theoretical results, we propose and analyze two new leveraging algorithms: one constructs
a smaller least squares problem with “shrinkage” leverage scores (SLEV), and the other solves a smaller
and unweighted (or biased) least squares problem (LEVUNW). A detailed empirical evaluation of existing
leverage-based methods as well as these two new methods is carried out on both synthetic and real data sets.
The empirical results indicate that our theory is a good predictor of practical performance of existing and
new leverage-based algorithms and that the new algorithms achieve improved performance. For example,
with the same computation reduction as in the original algorithmic leveraging approach, our proposed SLEV
typically leads to improved biases and variances both unconditionally and conditionally (on the observed
data), and our proposed LEVUNW typically yields improved unconditional biases and variances.
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