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1 IntroductionFinding polynomial roots rapidly and accurately is an important problem in various areas of signalprocessing such as spectral factorization, phase unwrapping, forming a cascade of second ordersystems etc. [1, 3, 4, 16, 18]. There exists a large number of di�erent methods for �nding allpolynomial roots either iteratively or simultaneously. Most of them yield accurate results only forsmall degrees or can treat only special polynomials, e.g., polynomial with real roots.One of the two best general purpose root �nder is the Jenkins/Traub method [7]. It works withthe polynomial itself. The required memory is proportional to O(n). The maximum degree yieldingreasonable accuracy is 60{80 (see Sec. 3).The second method is called eigenvalue method and works with the so-called companion matrixformed with the polynomial coe�cients. The polynomial roots are the eigenvalues of this companionmatrix which can be found with high accuracy by use of the EISPACK routines [17]. These arethe best known programs for solving general eigenvalue problems. The required memory andcomputation time are proportional to O(n2) and O(n3), respectively. As Toh and Trefethen pointout in [19] one can only hope to get no worse conditioned problem than the underlying root�ndingproblem by using the eigenvalue approach. This means one should solve the polynomial zero�ndingproblem and not the eigenvalue problem if the interesting parameters are the roots of a givenpolynomial.We present a method for �nding all polynomial roots of an arbitrary complex valued polynomial.It turns out to be faster and at least as accurate as the best known methods for nearly all polyno-mials we have used for testing. It basically consists of a combination of two well-known iterativemethods, i.e., Muller's and Newton's method [14]. The �rst is numerically robust and yields anestimate for the root working with the actual de
ated polynomial. In a second step this root isre�ned using the quadratically converging Newton's method for the original polynomial. We do notassume any special structure of the polynomial and take no extra precautions for multiple roots.The latter should be done by the user who can exploit additional knowledge about the roots. As anexample we give a straightforward approach for spectral factorization where the problem of doubleroots on the unit circle may occurThe paper is organized as follows. In Sec. 2 we describe Muller's and Newton's method and some3



steps to stabilize the implemented program. The e�ciency and reliability of all three methods arecompared in Sec. 3 where we use several test polynomials with known roots. We discuss how todeal with double roots on the unit circle in the case of spectral factorization in Sec. 4. There weadditionally consider the problem of multiplying the roots to get the original polynomial. Thissimple looking procedure may lead to completely perturbed polynomial coe�cients even in wellconditioned cases. The main results are summarized in Sec. 52 Description of the ProcedureWe consider a complex valued polynomialP (x) = nX�=0 p�x� = pn nY�=1(x� x�); pn 6= 0 (1)of degree n. The problem we address is to �nd all n roots x� of P (x) as accurately and fast aspossible. We work with a given and �xed computation accuracy, i.e., IEEE-P754-
oating pointstandard (accuracy � 2:2 � 10�16). The relative accuracy of the resulting roots has to be comparedto this number. For the special case of real coe�cients p� , complex roots x� must appear as complexconjugate pairs.We have chosen a combination of Muller's and Newton's method since both of them can be usedto �nd complex roots. In the following we give a pseudo code of our program:1. Check polynomial and return if erroneous input.2. If polynomial degree is 1 or 2 ! compute roots; return.3. Call monic().4. While degree of de
ated polynomial > 2.� Call muller().� Call newton().� Call poldefl().5. Compute root(s) of de
ated polynomial. 4



6. Call newton().In a �rst step the coe�cients are formally checked, e.g., possible roots at zero are determined andde
ated, leading zeros are cancelled etc. In the case of a �rst or second order polynomial thewell-known explicit formulae are used. Only for degree n > 2 we choose our iterative procedure. At�rst the routine monic() yields a polynomial with pn = 1. Then the routine muller() computesan estimate for a root of the actual, de
ated polynomial Pdefl(x) which contains all roots of P (x)but the roots found up to the actual iteration step (k).In a second step the estimate resulting from muller() is used as the initial value of Newton'smethod. It is simple and known to have at least quadratical convergence near the solution (for singleroots). We use the original polynomial to avoid errors introduced by the de
ation process. OnceNewton's method has converged the resulting root is de
ated (and possibly its complex conjugatedfor real valued polynomials). This de
ation procedure is repeated until the resulting polynomial isof degree two or one. An estimate for its root(s) can be obtained by using the well-known explicitformula and is re�ned by Newton's method.2.1 Muller's methodWe have chosen Muller's method for computing an initial estimate of the root because it has thefollowing two properties: One is a good convergence to a reasonable estimate of a root. The secondis the possibility to get complex roots even when initialized with real values in opposite to othermethods, e.g., Newton's method. The convergence speed is super linear (1.84 for single roots).General convergence for this method has not been proven.Muller's method extends the idea of the secant method which works with a linear polynomial toa quadratical polynomial. Given three previous estimates x(k�2), x(k�1), and x(k) for an unknownroot we compute a new value by determining one of the roots of a parabola ~P (x) which interpolatesP (x) in these three \old" points. This is illustrated by Fig. 1. The corresponding iteration formulaeare [14] hk = x(k) � x(k�1) (2)rk = hk=hk�1 (3)Ak = rkP (x(k))� rk(1 + rk)P (x(k�1)) + r2kP (x(k�2)) (4)5



Figure 1: Iteration step of Muller's method.Bk = (2rk + 1)P (x(k))� (1 + rk)2P (x(k�1)) + r2kP (x(k�2)) (5)Ck = (1 + rk)P (x(k)) (6)qk = �2CkBk �qB2k � 4AkCk (7)x(k+1) = x(k) + hkqk : (8)The new estimate x(k+1) is determined such that it is the one root of ~P (x) closer to x(k). Anexample is given in Fig. 1 for k = 2. In the case the denominator vanishes qk is chosen as jqkj = 1with arbitrary phase. The algorithm is initialized with x(0) = 1, x(1) = �1, and x(2) = 0.For the practical convergence of this method we have to include additional measures which aresummarized in the following pseudo code of our program implementing Muller's method:1. Call initialize().2. Repeat twice.(a) While iteration counter < ITERMAX and noise counter < NOISEMAX and root notfound.� Call root of parabola().� Call iteration equation(). 6



� Call compute function().� Call check x value().(b) Call root check().(c) If root good enough return.After initializing, the main part is repeated twice with di�erent starting values if the �rst result isnot good enough. The main loop stops whenever one of the following criteria is ful�lled: First wegive a maximum number of iterations considering the case of very slow convergence. Second westop when the iteration is dominated by noise. This means that we get only minor improvementsin the range of the computer accuracy during a �xed number of successive iterations. Of coursethe program stops when�����x(k+1) � x(k)x(k+1) ����� < � (9)holds (root check()), where � is some small number depending on the computer accuracy.The �rst step of the main loop is computing the roots of the parabola Eqs. (2){(7). This isfollowed by the iteration equation (8). We have observed that values qk computed according toEq. (7) may yield too large changes of x(k) which possibly leads to another root and causes slowconvergence. This can be circumvented (and is actually implemented in our program) by allowinga �xed maximum relative increase of jqkj from one iteration step to the next.Before the new function value is evaluated we estimate jP (x(k+1))j to avoid over
ow. This is doneby checking n � log10 jx(k+1)j. If an estimate indicates a value greater than the maximum possiblecomputer number we choosex(k+1) = x(k) + hkqk=2 (10)instead of Eq. (8) and repeat this until no over
ow occurs. This means we go back closer and closerto the old value x(k).In a last step the actual value jP (x(k+1))j is compared to the best value until the current iterationstep and it substitutes the latter if it is smaller.The stopping criteria �, ITERMAX, : : : were determined on an experimental basis to get aprogram which is reliably and fast. 7



2.2 Newton's methodNewton's method is well-known and works with the following simple iteration formulax(k+1) = x(k) ��x(k); where �x(k) = P (x(k))P 0(x(k)) ; (11)which is illustrated by Fig. 2.
Figure 2: Iteration step of Newton's method.It yields the root of the tangent through the point (x(k); P (x(k))) of the previous iteration stepand is initialized with the result of Muller's method. Similar to this, additional measures must beincluded to improve the performance of the program. This can be seen by the following pseudocode of our implementation:1. While iteration counter < ITERMAX.� Call fdvalue().� If jP (x(k+1))j < jP (xmin)j ! xmin = x(k+1).� If jP 0(x(k+1))j 6= 0 and jP (x(k+1))j=jP 0(x(k+1))j < j�x(k�1)j! �x(k) = P (x(k+1))=P 0(x(k+1));else �x(k) = �x(k�1). 8



� If j�x(k)j=jx(k)j < � or noise counter > NOISEMAX.� If in the case of a real valued polynomial Im(x) < � ! Im(xmin) = 0; return.� x(k+1) = x(k) +�x(k).2. If in the case of a real valued polynomial Im(x) < � ! Im(xmin) = 0.As in Muller's method we give a maximum number of iterations. The �rst step of the main loopis computing the function value and its derivative at the actual point x(k+1). This substitutes theminimum value up to the actual iteration step xmin if it yields a smaller function value. We do notpermit too large changes by using the new improvement �x(k) according to Eq. (11) only if it issmaller than the old one of the previous iteration step. Otherwise the latter one is used to avoidthat the algorithm switches to another root.The algorithm is stopped when it is dominated by noise (see Muller's method) or when~e = ������x(k)xmin ����� < �; (12)where xmin is that x(k) leading to the minimum jP (x)j up to the actual iteration step and �again depends on the computer accuracy. In the case of a real valued polynomial (i.e., all p� arereal) for every complex root also its complex conjugate is a root which can be de
ated together.Consequently we have to decide whether a root with a very small imaginary part is to be seen as areal or a complex root. We assume to have a real root if the imaginary part is less than � which wehave chosen as half of the computer accuracy. To avoid this decision which may lead to errors onecan simply multiply the real valued polynomial by the imaginary unit. In this case the programinterpretes the polynomial as a complex valued polynomial and it consequently de
ates only oneroot at each iteration step.It is interesting that the quotient ~e introduced in (12) can be used as an estimate of the relativeaccuracy of the actual root. Our program yields the corresponding maximum value of all computedroots which is discussed in the following section.9



3 Test of the New Algorithm3.1 General ConsiderationsAfter the short description of our implementation we have to prove the e�ciency. We point outagain that we do not try to construct a new algorithm with nice theoretical properties but atool which works reliable and fast in many practical applications. Our approach to verify theperformance is oriented at the ideas of Jenkins and Traub [10]. They propose to chose a lot of testpolynomials with known roots testing programs for di�erent weaknesses. A root �nder is the betterthe smaller the di�erence between the correct roots and the determined ones. We use a normalizedversion of this criterione = max� ����x� � x�minx� ���� ; (13)where x�min is the value computed by the root �nder and x� is the corresponding exact value.This number is computed for every polynomial. Additionally we determined the necessary CPUtime on an HP Apollo workstation 9000/705. We compare the results of our program regardingto speed and accuracy with two of the best root �nder programs to our knowledge. These are theJenkins/Traub program [7] and the eigenvalue method based on EISPACK [17] in the version ofMATLAB.We do not show results of factoring actual transfer functions since we do not know the correctroots and cannot give an objective measure for the accuracy. However, we successfully computedthe roots of many FIR �lters. To give an example our program determined all roots of a degree1000 FIR low-pass �lter within 8.35s with an estimated error ~e = 1:8 � 10�16. The computed rootsin the stopband which should have magnitude one have a maximum distance from the unit circleof 1:11 � 10�16. That means they are exact within computer accuracy.3.2 Test polynomialsThe following polynomials used for the detection of di�erent properties of a root �nder were pro-posed by Jenkins and Traub [10]. We use several polynomials for each property but we leaveout polynomials with random coe�cients for the same reasons we did not examine the factoriza-tion of transfer functions. We conjecture that in this case one gets similar results to those of the10



last polynomials we present in this paper (equidistantly distributed roots on the unit circle) sincepolynomials with random coe�cients tend to have a similar root distribution [2, 18].3.2.1 Check of the Stopping CriterionThe �rst polynomialP1(x) = B(x�A)(x+A)(x� 1) (14)shows the e�ect of very large or small roots (A) and very large or small polynomial coe�cients(B), respectively on the stopping criterion. Table 1 shows the result for all three methods, whereeE , eJ , eN means the error of the eigenvalue method, the Jenkins/Traub method, and our newmethod according to Eq. (13). ~e means the corresponding estimate computed by our program andA B eE eJ eN ~e tE tJ tN1 � 10�10 1 � 10�10 0 3:009 � 10�26 0 0 0:01 0:05 0:021 � 10�10 1 � 1010 0 3:009 � 10�26 0 0 0:01 0:02 0:011 � 1010 1 � 10�10 0 1:177 � 10�5 0 3:584 � 10�17 0:02 0:02 0:011 � 1010 1 � 1010 0 �1:177 � 10�5 0 3:584 � 10�17 0:01 0:03 0:01Table 1: P1(x) = B(x�A)(x+A)(x� 1).tE , tJ , tN , are the necessary CPU times in seconds. As can be seen our program computes all rootsexactly just as the eigenvalue method but in opposite to the Jenkins/Traub method which yieldsrelatively large errors for large values of A.Furthermore we use the polynomialP2(x) = nY�=0(x� 10��) (15)with more and more zeros close to 0 for larger values n. The results for n = 5; 7 are summarizedin Table 2. Again our program yields the most accurate results but this time together with theJenkins/Traub method. The large value tN can be explained by the fact that in the case n = 7 themain loop of Muller's method has to be computed twice.From the test polynomials above it can be concluded that our method has the fewest problemsconcerning the stopping criterion. 11



n eE eJ eN ~e tE tJ tN5 6:939 � 10�16 1:735 � 10�16 1:735 � 10�16 1:307 � 10�16 0:01 0:01 0:037 1:388 � 10�15 1:735 � 10�16 1:735 � 10�16 1:576 � 10�16 0:02 0:02 0:10Table 2: P2(x) = nQ�=0(x� 10�).3.2.2 Check of ConvergenceFor the check of problems concerning the convergence we choose the polynomialP3(x) = nY�=1(x� �) (16)which has a surprisingly ill conditioned numerical behaviour (cf. Wilkinson [20]). The results aredepicted in Table 3. We make the following observations: The accuracy of all three methods iscomparable. For degrees greater than 8 our method always yields the best results. The estimate~e is close to the actual error. For larger degrees our method takes the most CPU time since themain loop in Muller's method is computed twice.3.2.3 Multiple or Clustered RootsMultiple roots or roots close to each other lead to numerically ill conditioned polynomials. Nearlyevery root �nder has di�culties to compute these with high accuracy. As Wilkinson points outin [20] the limiting accuracy of a root with multiplicity m is "1=m where " means the computeraccuracy. This means in our case (accuracy � 2:2 � 10�16) that a double root can be determinedup to an accuracy of about 10�8 as long as no special methods are used in this case (cf. Sec. 4.1).Furthermore this means without additional knowledge it cannot be decided whether two rootsdi�ering by about 10�8 are two separated roots or incorrectly determined double roots. However,as Wilkinson points out in [20] (and is con�rmed by our experience) this must not a�ect theaccuracy of well conditioned roots even for a polynomial with several multiple roots (see below).We have used the following polynomials.P4(x) = (x� 0:1)3(x� 0:5)(x� 0:6)(x� 0:7) (17)P5(x) = (x� 0:1)4(x� 0:2)3(x� 0:3)2(x� 0:4) (18)P6(x) = (x� 0:1)(x� 1:001)(x� 0:998)(x� 0:99999) (19)12



n eE eJ eN ~e tE tJ tN1 0:000 0:000 0:000 2:220 � 10�16 0:01 0:01 0:002 0:000 2:220 � 10�16 0:000 2:220 � 10�16 0:02 0:01 0:003 5:921 � 10�16 6:518 � 10�20 2:220 � 10�16 4:534 � 10�25 0:02 0:02 0:004 1:021 � 10�14 1:136 � 10�19 1:776 � 10�15 1:776 � 10�15 0:02 0:02 0:015 5:003 � 10�14 1:510 � 10�14 1:554 � 10�15 1:776 � 10�14 0:01 0:02 0:026 2:236 � 10�13 4:269 � 10�14 5:695 � 10�14 1:089 � 10�13 0:02 0:02 0:017 8:777 � 10�13 1:305 � 10�13 6:370 � 10�13 2:425 � 10�13 0:01 0:02 0:028 1:180 � 10�11 5:340 � 10�13 1:217 � 10�12 1:929 � 10�12 0:02 0:02 0:039 1:062 � 10�10 9:705 � 10�12 5:760 � 10�12 7:370 � 10�12 0:03 0:03 0:0410 4:365 � 10�11 8:977 � 10�11 1:604 � 10�11 4:312 � 10�11 0:02 0:02 0:0511 5:448 � 10�10 3:513 � 10�10 1:363 � 10�10 1:772 � 10�10 0:02 0:02 0:0712 6:751 � 10�9 8:332 � 10�10 1:976 � 10�10 2:205 � 10�9 0:02 0:02 0:0813 1:121 � 10�7 1:397 � 10�8 4:252 � 10�9 4:507 � 10�9 0:03 0:03 0:0914 4:421 � 10�8 4:147 � 10�8 1:372 � 10�8 5:249 � 10�8 0:03 0:02 0:1215 3:848 � 10�7 2:725 � 10�7 9:540 � 10�8 5:714 � 10�8 0:03 0:03 0:13Table 3: P3(x) = nQ�=1(x� �).P7(x) = (x� 0:001)(x� 0:01)(x� 0:1)(x� 0:1 + A � j)(x� 0:1�A � j)(x� 1)(x� 10) (20)The results are depicted in Table 4 and 5.Again the accuracy of all three methods is comparable where the Jenkins/Traub method has ad-vantages for P7(x). The eigenvalue method always yields the worst results. The resulting accuracylies in the expected range of the limiting accuracy.We want to remark that although Steiglitz and Dickinson conjecture the polynomial P (x) =(x100 � 1)3 \� � � should stop any root solver in its tracks." our program is able to �nd all rootsof P (x) = (x100 � 1)3(x + 0:5)(x� 0:5)(x� 2)(x � 3) with a maximum error of 4 � 10�7 (for themultiple roots). All single roots could be computed up to computer accuracy which con�rms theproposition above about the e�ect of multiple roots.13



� eE eJ eN ~e tE tJ tN4 2:124 � 10�5 3:435 � 10�6 8:912 � 10�6 3:248 � 10�6 0:01 0:04 0:045 7:076 � 10�4 1:441 � 10�5 5:626 � 10�4 1:492 � 10�4 0:03 0:03 0:096 1:529 � 10�5 2:918 � 10�4 1:002 � 10�5 4:116 � 10�6 0:01 0:03 0:04Table 4: Polynomials P�(x), � = 4; 5; 6.A eE eJ eN ~e tE tJ tN0 1:627 � 10�5 4:430 � 10�8 6:978 � 10�6 2:406 � 10�6 0:01 0:03 0:041 � 10�10 1:627 � 10�5 4:384 � 10�8 6:978 � 10�6 2:406 � 10�6 0:02 0:01 0:041 � 10�9 1:364 � 10�5 4:063 � 10�8 8:620 � 10�6 1:841 � 10�6 0:02 0:02 0:041 � 10�8 1:610 � 10�5 1:013 � 10�7 4:988 � 10�6 1:145 � 10�6 0:02 0:02 0:041 � 10�7 9:612 � 10�6 9:902 � 10�7 4:863 � 10�6 3:632 � 10�6 0:02 0:04 0:031 � 10�6 2:407 � 10�5 9:989 � 10�6 2:918 � 10�6 1:289 � 10�6 0:03 0:02 0:04Table 5: Polynomial P7(x).3.2.4 Stability of De
ationStability of the de
ation process means that the roots of the de
ated polynomial are close to thoseof the original. Since we re�ne all roots using the original polynomial our method is expected toyield good results. We choose the polynomialsP8(x) = (x�A)(x� 1)(x� 1A) (21)P9(x) = M�1Y�=1�M(x� ej ��2M ) � 3MY�=M(x� 0:9 � ej ��2M ); (22)where the latter has a distribution of roots similar to the transfer function of an FIR lowpass�lter. Table 6 and 7 show the results and Fig. 3 depicts the accuracy and the CPU time for P9(x)depending on the degree n.
14



A eE eJ eN ~e tE tJ tN1 � 103 2:274 � 10�16 2:483 � 10�16 0:000 1:139 � 10�16 0:01 0:02 0:001 � 106 2:328 � 10�16 2:220 � 10�16 2:118 � 10�16 1:164 � 10�16 0:02 0:01 0:001 � 109 4:441 � 10�16 2:068 � 10�16 2:068 � 10�16 1:192 � 10�16 0:01 0:02 0:00Table 6: P8(x) = (x�A)(x� 1)(x� 1A).M eE eJ eN ~e tE tJ tN5 2:357 � 10�15 1:959 � 10�15 2:758 � 10�16 1:820 � 10�16 0:16 0:03 0:0510 3:903 � 10�15 2:227 � 10�12 3:084 � 10�16 1:825 � 10�16 0:92 0:05 0:1512 4:242 � 10�15 1:771 � 10�1 4:934 � 10�16 1:364 � 10�16 1:43 0:07 0:1915 6:690 � 10�15 1:552 � 10�1 8:723 � 10�16 9:812 � 10�17 2:63 0:11 0:2720 2:534 � 10�14 2:396 � 10�1 1:061 � 10�15 1:825 � 10�16 6:27 0:18 0:3925 1:300 � 10�13 1:613 � 10�1 4:939 � 10�15 1:875 � 10�16 12:18 0:30 0:5150 1:803 � 10�9 3:510 � 102 2:481 � 10�13 1:121 � 10�14 95:34 26:11 2:31Table 7: P9(x) = M�1Q�=1�M(x� ej ��2M ) � 3MQ�=M(x� 0:9 � ej ��2M )
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Figure 3: Results of Jenkins/Traub (+), eigenvalue (�), and our method (�) for P9(x). (a) Actualand estimated accuracy e and ~e (� � �); (b) CPU time.15



Our method always yields the most accurate results. It is better than a factor of 1000 forP9(x), n = 200 (M = 200) and furthermore much faster for increasing degree up to a factor of45 compared to the eigenvalue method. It is remarkable that the Jenkins/Traub program yieldsmuch less accurate results even for P9(x), n = 40 (M = 10) and completely useless values for largerdegrees. As we will see this is typical for the program.3.2.5 High Order, Well Conditioned PolynomialsAs a last example we consider high degree polynomials up to n = 10000 for the very well conditionedpolynomialsP10(x) = xn � 1 (23)P11(x) = xn + 1: (24)The results are summarized in Table 8 and 9 and graphically depicted in Figs. 4 and 5.n eE eJ eN ~e tE tJ tN10 8:083 � 10�16 2:428 � 10�15 2:289 � 10�16 1:579 � 10�16 0:04 0:02 0:0220 1:226 � 10�15 5:431 � 10�15 5:979 � 10�16 1:247 � 10�16 0:08 0:06 0:0450 2:109 � 10�15 6:785 � 10�12 1:144 � 10�15 2:220 � 10�16 0:34 0:11 0:1170 2:047 � 10�15 3:049 � 10�1 6:280 � 10�16 5:155 � 10�17 0:72 0:24 0:17100 2:559 � 10�15 9:769 � 10�1 1:024 � 10�15 1:868 � 10�16 1:77 0:43 0:26200 3:443 � 10�15 � 1:180 � 10�15 2:220 � 10�16 11:88 � 0:67500 3:360 � 10�15 � 8:968 � 10�16 2:069 � 10�16 315:22 � 2:591000 � � 1:024 � 10�15 2:202 � 10�16 � � 8:812000 � � 1:106 � 10�15 2:059 � 10�16 � � 30:9610000 � � 1:047 � 10�15 2:196 � 10�16 � � 944:09Table 8: P10(x) = xn � 1Again the accuracy of the Jenkins/Traub program drastically decreases for relatively small de-grees (n = 50). It cannot be used for degrees n > 60 : : :70. On the other hand our method yieldsthe best results with nearly computer accuracy up to the degree n = 10000. The eigenvalue methodis slightly worse regarding the accuracy but could be used only for degrees up to about 500. This is16



n eE eJ eN ~e tE tJ tN10 7:022 � 10�16 1:466 � 10�15 5:661 � 10�16 1:784 � 10�16 0:04 0:03 0:0220 1:422 � 10�15 7:462 � 10�15 1:159 � 10�15 1:610 � 10�16 0:05 0:05 0:0450 1:355 � 10�15 1:082 � 10�5 1:024 � 10�15 1:964 � 10�16 0:34 0:14 0:1170 1:490 � 10�15 3:569 � 10�1 6:280 � 10�16 1:110 � 10�16 0:76 0:25 0:18100 2:253 � 10�15 3:680 � 10�1 1:180 � 10�15 7:390 � 10�17 1:74 0:45 0:32200 2:811 � 10�15 � 1:180 � 10�15 2:073 � 10�16 11:77 � 0:67500 3:581 � 10�15 � 1:024 � 10�15 2:059 � 10�16 316:12 � 2:641000 � � 1:106 � 10�15 2:144 � 10�16 � � 9:042000 � � 1:043 � 10�15 1:794 � 10�16 � � 31:4810000 � � 1:024 � 10�15 2:219 � 10�16 � � 1036:80Table 9: P11(x) = xn + 1because of the necessary large memory to store the companion matrix n2 � 8Byte (double precision)which is 2 � 106Byte for n = 500 and 8 � 108Byte for n = 10000. The CPU time for our method isalways the smallest as can be seen in Figs. 4(b) and 5(b). Especially for n = 500 it is 2:59s (P10(x))and 2:64s (P11(x)) compared to 315:2s (P10(x)) and 316:1s (P11(x)). As in all examples above theestimate ~e is close to the actual accuracy of our method.
17
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Figure 4: Results of Jenkins/Traub (+), eigenvalue (�), and our method (�) for P10(x). (a) Actualand estimated accuracy e and ~e (� � �); (b) CPU time.
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Figure 5: Results of Jenkins/Traub (+), eigenvalue (�), and our method (�) for P11(x). (a) Actualand estimated accuracy e and ~e (� � �); (b) CPU time.18



4 Discussion4.1 Spectral FactorizationThe problem of spectral factorization is to �nd all roots of a symmetric polynomial H(x) (a poly-nomial where the existence of a root at x� implies the existence of a root at (x��)�1) with theadditional property that all roots on the unit circle have even multiplicity. In the following weassume they have multiplicity two. After �nding the roots of H(x) one is interested to form aminimum phase polynomial or in general a polynomial P (x) of degree n such thatH(x) = P (x) � xnP �((x�)�1) (25)holds.As we mentioned earlier, in general the limiting accuracy for double roots is half the computeraccuracy. However, in the special case where we know their modulus it is possible to use a simpleprocedure to compute them up to computer accuracy. This can be done by the following procedurewhere we assume that all roots on the unit circle are well separated which holds in nearly allpractical cases.In a �rst step we compute all zeros of the original polynomial H(x) and separate them into thoselying inside, outside, and on the unit circle. To separate these three regions we chose an annuluswith thickness 100 times the expected accuracy where we use the estimate ~e of our program. Ina second step we compute the roots of H 0(x). It has the same roots on the unit circle as theoriginal polynomial H(x) but with multiplicity 1. Consequently, they can be computed with higheraccuracy. For this polynomial we are only interested in the roots lying on the unit circle where wenow chose a much thinner separating annulus corresponding to the higher accuracy. If the numberof roots of H(x) on the unit circle is twice the number of those of H 0(x) these can be immediatelyused as an improved estimate.We have implemented this approach into a MATLAB �le (see Appendix) and give an exampleby using the polynomial P (x) = P9(x) with degree n = 100. We computed H(x) according to Eq.(25) and the corresponding minimum phase part according to the method above. The maximumerror of the roots of the resulting polynomial compared to the original one is 1:4 � 10�14, which ishardly worse than the achieved accuracy of the original polynomial (cf. Table 7, M = 25). The19



roots of H(x) on the unit circle could be determined only with accuracy 6 � 10�9 so that there isan improvement of a factor 5 � 105.We point out that the operation of computing the polynomial coe�cients from the roots, we callit coe�cient �nding, must be done with care. Otherwise the errors introduced by it can be muchlarger than the given accuracy. This is investigated in the following section.4.2 Coe�cient FindingAs we have seen coe�cient �nding is a necessary step when we do spectral factorization. The factthat computing the polynomial coe�cients from the roots can lead to very large errors althoughthe polynomial has the best numerical condition one can think of, seems not to be well-known.The only related reference we could �nd is [13]. We want to give an intuition of what problemsmay arise and how these can be overcome.We again consider the polynomial P10(x) with all its roots ej�2�=n, � = 1 : : :n on the unit circle.Let us assume we compute the polynomial coe�cients in a straightforward manner using the orderimplied by the roots given above. The resulting coe�cients corresponding to the terms x : : :xn�1are expected to be zero within computer accuracy. However, for n = 20; 50; 100; 200 the maximumvalues of these coe�cients are 8:7 � 10�13, 1:6 � 10�5, 8 � 107, and 5:5 � 10108. This at the �rst glancesurprising result can be explained as follows.In the process of computing the polynomial coe�cients we have intermediate polynomials withroots only on a sector of the unit circle. These are known to be ill conditioned [11]. Furthermorethey have coe�cients with a large dynamical range. This last property leads to errors in thenext step where the intermediate polynomial has to be convolved with a �rst order polynomial andnumbers of di�erent orders have to be added. The last observation shows an easy way to circumventthis problem. One merely has to sort the roots in such a way that each intermediate polynomialhas approximately equidistantly distributed roots. These lead to coe�cients with a small dynamicrange of the coe�cients.If n is a power of two this can be easily done by interpreting the indices � = 1 : : :n of the roots asbinary numbers, reverse the order of the digits and interpret this again as a decimal number. Thisprocedure is known as bit reversal or van der Corput sequence [15, 6]. In the case n is not a powerof two we simply continue the sequence 1 : : :n to the next larger power of two. Then we proceed as20



described and cancel all values larger than n from the resulting sequence. As an example considerthe vector [1 : : :20] which becomes[1 17 9 5 13 3 19 11 7 15 2 18 10 6 14 4 20 12 8 16]:Using this \reindexing", the error for n = 20; 50; 100; 200 is 10�15, 4 � 10�15, 6 � 10�15, 3 � 10�14,which is a drastical improvement compared to the results above.Although this bit reversal is primarily suited for equidistantly distributed roots on the unit circleit can also be successfully used for coe�cient �nding of an FIR �lter since these often have asimilar root distribution. However, there is a generalization called Leja ordering for arbitrary rootlocations [13] which is computationally more expensive but yields slightly improved results for FIR�lters compared to the bit reversal. The corresponding MATLAB functions can be found in theAppendix.5 ConclusionThe following conclusions can be drawn from the examples given in Sec. 3: All three methods yieldcomparable results regarding speed and accuracy when working with \di�cult" low degree (n < 20)polynomials. For these the CPU time is on a low and comparable level. The accuracy of our methodis always better than that of the eigenvalue method and better than that of the Jenkins/Traubmethod in most cases. For larger degrees (n > 30 : : :40) the accuracy of the Jenkins/Traub methoddrastically decreases and it yields useless results for n > 60 : : :70. The accuracy of our methodis better than that of the eigenvalue method in every case sometimes by more than a factor of1000 (cf. P9(x)). Furthermore the CPU time of our method increases much slower than that of theeigenvalue method, e.g., it is faster than a factor of hundred for n = 500. This fact and the linearincreasing memory (depending on n) compared to a quadratical needed for the eigenvalue methodmakes it possible to �nd roots in considerable time even for high degree polynomials (� 1000s fora degree 10000 polynomial).To summarize the results, our program seems to have no drawbacks (comparable to good methodsfor low degrees) but essential advantages regarding accuracy and speed which is especially true forfor large degrees. A C version of the program can be obtained by the authors.21



Furthermore we gave a powerful approach for spectral factorization which considerably improvesthe accuracy. Finally we have considered the inverse problem to factorization, i.e., �nding thepolynomial coe�cients from the roots. We showed that large errors can result from this processand we gave a simple method to minimize them nearly up to computer accuracy.A M-File for Spectral Factorizationfunction [p_out] = factorize(p_in,string)% function [p_out] = factorize(p_in,string)%% Input: p_in, string%% Output: p_out%% Description: Program yields (spectral) factorization of the polynomial% p_in regarding to the the unit circle. For reliable% results p_in should have single roots off the unit circle% and double roots on the unit circle. If the optional input% variable string contains at least one 'a' the maximum phase% portion is determined (taking the double roots of p_in on the% unit circle once + all roots of p_in outside the unit circle).% In all other cases the function yields the minimum phase% portion.%% subroutines: ransort.m bitrev.m isodd.m rootsl.mex%%%File Name: factorize.m%Last Modification Date: %G% %U%%Current Version: %M% %I%%File Creation Date: Tue Sep 7 09:29:06 1993%Author: Markus Lang <lang@dsp.rice.edu>%%Copyright: All software, documentation, and related files in this distribution% are Copyright (c) 1993 Rice University%%Permission is granted for use and non-profit distribution providing that this%notice be clearly maintained. The right to distribute any portion for profit%or as part of any commercial product is specifically reserved for the author.%%Change History:%p_in = p_in(:)';n = length(p_in) - 1; 22



% find roots of original and differentiated polynomial[r_orig,e] = rootsl(p_in); r_orig = r_orig(:).'; error_orig = e;[r_dif, error_dif] = rootsl((n:-1:1).*p_in(n+1:-1:2)); r_dif = r_dif(:).';% find roots on, inside and outside the unit circle (original pol.)% and sort by angleind_orig_u = find(abs(1-abs(r_orig))<100*error_orig);ind_orig_i = find(abs(r_orig)<abs(1-100*error_orig));ind_orig_o = find(abs(r_orig)>abs(1+100*error_orig));r_orig_u = r_orig(ind_orig_u); [dum,ind] = sort(angle(r_orig_u));r_orig_u = r_orig_u(ind); n_orig_u = length(r_orig_u);r_orig_i = r_orig(ind_orig_i); [dum,ind] = sort(angle(r_orig_i));r_orig_i = r_orig_i(ind); n_orig_i = length(r_orig_i);r_orig_o = r_orig(ind_orig_o); [dum,ind] = sort(angle(r_orig_o));r_orig_o = r_orig_o(ind); n_orig_o = length(r_orig_o);% check multiplicity of roots on unit circleif isodd(n_orig_u);disp('There are roots on unit circle with odd multiplicity!!');returnend% check whether all roots could be sortedif n_orig_u+n_orig_i+n_orig_o ~= n;disp('Not all roots could be sorted');returnend% find roots on the unit circle (differentiated pol.) and sort by angleind_dif_u = find(abs(1-abs(r_dif))<100*error_dif);r_dif_u = r_dif(ind_dif_u); [dum,ind] = sort(angle(r_dif_u));r_dif_u = r_dif_u(ind); n_dif_u = length(r_dif_u);% check whether the numbers of roots on the unit circle of both polynomials% fit togetherif 2*n_dif_u ~= n_orig_udisp('The numbers of roots on unit circle do not fit together!!');returnend% check whether maximum or minimum phase polynomial is desiredr_out = [r_dif_u r_orig_i];if exist('string') == 1;if length(find(string=='a')) > 0;r_out = [r_dif_u r_orig_o];endend 23



% compute output polynomial[dum,ind] = sort(angle(r_out)); r_out = r_out(ind);p_out = poly(r_out(ransort(length(r_out))));function odd = isodd(x)% function odd = isodd(x)%% function yields a matrix odd which is 1 for every odd% value of abs(x) and 0 else.%% ml, 20.8.1992%% Copyright Lehrstuhl fuer Nachrichtentechnik Erlangen, FRG% e-mail: int@nt.e-technik.uni-erlangen.de[m,n] = size(x);odd = zeros(m,n);ind = find((x-1)/2==fix((x-1)/2));odd(ind) = 1 + odd(ind);B M-File for Bit Reversalfunction [ind] = ransort(n)% function [ind] = ransort(n)%% function computes an index vector ind of length n which contains% all integers 1:n but in a quasi random order.%% m-file bitrev must be available% author: m. lang 17.12.91% This is very advantageous for example for the function poly:% compute z = roots([1 zeros(1:m) 1]); p = poly(z).% There is a large error in p, which stems from the second operation% poly. If the roots z are sorted with increasing angle in zs, then% ph = poly(zs(ransort(n))) yields much less error than p.%% ransort uses bitreversal which is known as van der corput sequence% in the theory of uniform distributed sequences.m = ceil(log2(n)); 24



ind = 1:2^m;ind = bitrev(ind);ind = ind(find(ind<=n));function re = bitrev(rfeld)%% BITREV Y = BITREV(X) returns the vector X in bitreversed order%%% Author : Raimund Meyer 15.12.87% Revised: Rai 26.08.88% Copyright (C) 1987-1991 Lehrstuhl fuer Nachrichtentechnik,% University of Erlangen, FRGdim = length(rfeld);dim1 = dim - 1;j = 1;for i = 1:dim1if i < jxt = rfeld(j);rfeld(j) = rfeld(i);rfeld(i) = xt;elseendk = dim/2;while k < jj = j - k;k = k/2;endj = j + k;endre = rfeld;C M-File for Leja Orderingfunction [x_out] = leja(x_in)% function [x_out] = leja(x_in)%% Input: x_in%% Output: x_out%% Program orders the values x_in (supposed to be the roots of a% polynomial) in such a way that computing the polynomial coefficients25



% by using the m-file poly yields most accurate results.% Try, e.g.,% z=exp(j*(1:100)*2*pi/100);% and compute% p1 = poly(z);% p2 = poly(leja(z));% which both should lead to the polynomial x^100-1. You will be% surprised!%% ref.: Nachtigal, Reichel, Trefethen. "A Hybrid GMRES Algorithm for% Nonsymmetric Linear Systems. SIAM J. Matr. Anal. and Appl., 13,% 796-825, July 1992.%File Name: leja.m%Last Modification Date: %G% %U%%Current Version: %M% %I%%File Creation Date: Mon Nov 8 09:53:56 1993%Author: Markus Lang <lang@dsp.rice.edu>%%Copyright: All software, documentation, and related files in this distribution% are Copyright (c) 1993 Rice University%%Permission is granted for use and non-profit distribution providing that this%notice be clearly maintained. The right to distribute any portion for profit%or as part of any commercial product is specifically reserved for the author.%%Change History:%x = x_in(:).'; n = length(x);a = x(ones(1,n+1),:);a(1,:) = abs(a(1,:));[dum1,ind] = max(a(1,1:n));dum2 = a(:,1); a(:,1) = a(:,ind); a(:,ind) = dum2;x_out(1) = a(n,ind);a(2,2:n) = abs(a(2,2:n)-x_out(1));for l=2:n-1[dum1,ind] = max(prod(a(1:l,l:n))); ind = ind+l-1;if l~=inddum2 = a(:,l); a(:,l) = a(:,ind); a(:,ind) = dum2;endx_out(l) = a(n,l);a(l+1,(l+1):n) = abs(a(l+1,(l+1):n)-x_out(l));endx_out = a(n+1,:); 26
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