Remote Sensing and in situ Observation of Internal Wave Generation in the Luzon Strait

Cho-Teng Liu
Institute of Oceanography, National Taiwan University, Taipei POB 23-13, Taiwan
phone: +886-2-2362-0624 fax: +886-2-2363-5165 e-mail: ctliu@ntu.edu.tw

Cesar Villanoy
Marine Science Institute, Univ. of the Philippines, Diliman, Quezon City, Philippines 1101
phone: +63 2 922 3957 fax: +63 2 9247678 email: cesarv@upmsi.ph

Laura David
Marine Science Institute, Univ. of the Philippines, Diliman, Quezon City, Philippines 1101
Phone: +63 2 922 3957x3959 Fax: +63 2 9247678 email: laurad@upmsi.ph

Ming-Kuang Hsu
Northern Taiwan Institute of Science and Technology, Taipei, Taiwan
phone: +886-2-2462-2192x6313 fax:+886-2-2463-1764 email: hsu.ming.kuang@gmail.com

Hsien-Wen Chen
Dept. of Maritime Police, Central Police Univ., Taoyuan, Taiwan
Phone:+886-3-328-2321x4684 fax:+886-3-3283277 e-mail: una146@sun4.cpu.edu.tw

Chia-Chun Kao and Dong-Jiing Doong
Coastal Ocean Monitoring Center, Tainan, Taiwan
phone:+886-6-274 3058 fax: +886-6-209-8853 e-mail: kaoshih@mail.ncku.edu.tw

Yih Yang
National Center for Ocean Research, National Taiwan University, Taipei 23-13, Taiwan
phone:+886-2-2363-6450 x302 fax:+886-949 882 436 email: yy@mail.neor.ntu.edu.tw

Award # N000140510486

LONG-TERM GOALS

Our long-term goal is to locate the source of non-linear internal waves (NLIWs) in the northern South China Sea (SCS), study their generation mechanism and establish the capability to predict its generation time and propagation path.

OBJECTIVES

In 2005, locate NLIWs with satellite image analysis and field data collection, and study their characteristics. In 2006, study the evolution of NLIWs from internal tide. In 2007, study their generation mechanism, and derive a model to predict their generation and propagation.
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 SEP 2006</td>
<td></td>
<td>00-00-2006 to 00-00-2006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Sensing and in situ Observation of Internal Wave Generation in the Luzon Strait</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Taiwan University, Institute of Oceanography, Taipei POB 23-13, Taiwan,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as Report (SAR)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
</tr>
</tbody>
</table>
APPROACH

The objective of 2006 is approached by analysis of various satellite images, by field observation, by cross analysis of satellite and field data, and by numerical simulation of NLIW generation and propagation. Members of our team share the work in collecting satellite and field data, in analyzing these data to study ocean dynamics, in collecting and analyzing the surface wave data, and in numerical simulation of the evolution internal waves.

The project tasks include:

(a) Analyze satellite images from satellite radar and optical sensors to locate the NLIWs in SCS as a function of time and location

(b) Deploy several strings of temperature loggers (T-chain) to record the propagation path and evolution of NLIW in the SCS;

(c) Jointly with ship-board sonars and moored current meters to study the generation mechanisms and timing of NLIWs in the Luzon Strait;

(d) Install wave gauges on R/V Ocean Researcher 1 to collect the surface wave data, in concurrent with the collection of T-chain, ship radar and ADCP data;

(e) develop models on the generation and propagation of NLIWs from Luzon Strait to SCS

WORK COMPLETED

Before the start of this 3-year project, NLIWs in northern South China Sea were observed intermittently. To explain the intermittency and inhomogeneous distribution of these NLIWs in satellite Synthetic Aperture Radar (SAR) images of SCS, several hypotheses were proposed on their generation sites and the generation mechanism. Locating these NLIWs and tracing their source regions were the tasks of our first year project. The goal was accomplished, with the joint efforts of oceanographers from Taiwan, US, and the Philippines.

Two papers were published as the result of 2005 field experiment in April-May: R/V Roger Revelle, R/V Fishery Researcher 1, R/V Ocean Researcher 2, R/V Ocean Researcher 3, and two fishing boats shared the tasks. Several satellite images showed the location of NLIWs in near real time mode. It helped the field work for tracing the NLIWs with sonars and CTD, and for on-site observing NLIWs. From CTD and sonar data of upper layers, Klymak et al. (2006) inferred a deep-sea NLIW of 175 m amplitude in late April. Liu et al. (2006) found a deep-sea NLIW of 140 m amplitude on May. The joint cruise was very successful in finding the NLIW regularly, in recording the passing of the world most powerful NLIWs, and in providing enough information for the planning of the second year field work.

For the second year (2006), two cruises were carried out to map the evolution of NLIWs near their source region. In mid-May, most of the ship time was wasted due to the passing of the first typhoon of 2006, Janchu (Pearl). Despite the severe loss of ship time and moorings, we managed to collect some data from moorings and towed T-chain, ship radar and ADCP. The location and time of collected data are show in Fig. 1
PERSONNEL EXCHANGES AND TRAVEL COMPLETED

Summary of personnel exchanges and travel conducted under this NICOP.

<table>
<thead>
<tr>
<th>Name</th>
<th>Home Institution</th>
<th>Scientific / Technical Purpose of visit</th>
<th>Dates</th>
</tr>
</thead>
</table>
| Cho-Teng Liu | NTU/ IO | 1. consult Dr. W. Plant on the fine scale surface signature in coherence radar images, satellite images, ship radar images and T-chain data; exchanged data that are related to this topic
2. Present one paper in IGARSS 2006 (Denver) | 2006/7/26-8/4 |
| Cho-Teng Liu | NTU/IO | Attend PORSEC 2006 (Busan, Korea) to present result of NLIW studies | 2006/11/1-4 |
| Cho-Teng Liu | NTU/IO | Attend ONR PO06 NLIWI Meeting in Kaohsiung, Taiwan | 2006/11/14-16 |
| Ming-Kuang Hsu | TSINT | Report progress through two poster presentations | |
RESULTS

1. Background on the project

Ebbesmeyer et al. (1991) hypothesized that the NLIWs in the northern South China Sea (SCS) originate from the sills between Batan Islands, just like the NLIWs of Sulu Sea originate from the sills between islands over the east side of Sulu Sea. This hypothesis has two major difficulties in explaining the NLIWs from Luzon Strait (LS) in SAR images. First, no other SAR image showed the same NLIW pattern between Hengchun Ridge and Batan Islands. Second, the general pattern of NLIW fronts NE of Dongsha Atoll (near 117E, 21N) is in the direction WNW, not northward as predicted by Ebbesmeiyer et al. (1991).

The ERS-1 SAR image (Fig. 2) of non-linear internal waves (NLIWs) of Luzon Strait in 1995/6/16 shows quite different features like other NLIWs near Taiwan (Liu et al., 1994). Existing theories and experience were insufficient to explain the location, shape and size of NLIW in that SAR image.

![Fig. 2 ERS-1 SAR image of 1995/6/16 showing NLIW in Luzon Strait, SW of Taiwan. The colored contour are depth in meters. NLIW fronts are parallel to 2000 m depth contour along the eastern slope of HengChun Ridge between Taiwan and Luzon in 19N~21.3N.](image)

In 2005 experiment, we demonstrated that Hengchun Ridge plays major role in the generation of NLIWs in SCS, and these NLIWs propagate at the speed about 2.9 m/s. The next question to be answered is the evoluion of NLIWs, i.e. the location where internal tide (linear internal wave) evolves into 1 wave front, before evolving into 2 fronts at 120E.
2. Method of observation

The field and satellite observation program was designed to locate these NLIW as often as possible. It includes moorings of thermisters and SC-ADCP. Fig. 3 shows the location of moorings that were recovered in May 2006 (red dots) and in June 2006 (blue dots).

![Fig. 3 T-chain locations (color coded on the time of deployment) near the source of NLIW, Hengchun Ridge along 121E.](image)

The first typhoon of 2006, Janchu (Pearl) was formed after we deployed four moorings on May 12. Although the probability for typhoon to hit Taiwan is less than 10% in May, Janchu did make a turn and passed by our moorings towards Taiwan. This resulted the loss of two moorings. For the second cruise in June of 2006, we deployed three T-chains and lost one due to failure of deck gear of R/V OR3.

To study the evolution of NLIWs from Luzon Strait, our moorings (T-Chain and SCADCP) were placed near the source of NLIW, Hengchun Ridge (HCR). According to the analytical solution of NLIWs (Apel, 2003), non-linearity of internal waves increases as they leave the source region HCR along 121E, and NLIWs was formed gradually as the linear internal wave propagates westward from LS, and the number of NLIW fronts increases. At station OR1M (in Fig. 3), no NLIW was observed. Starting at station C (in Fig. 3), NLIWs gradually evolve. Fig. 4 summarize the waveform of NLIWs that we observed in 2005 and 2006.
At (20.4N, 120.5E), R/V OR1 observed a train of small internal waves that follow the giant NLIW. They were also found in ship radar images (Fig. 5), T-chain data (Fig. 6), and in ADCP data (Fig. 7). They trail the giant NLIWs (traveling at 2.9 m/s) with propagation speed about 1.7 m/s.

Fig. 4 The wave form of NLIWs as a function of longitude. They clearly shows the evolution process as described by Apel (2003)

At (20.4N, 120.5E), R/V OR1 observed a train of small internal waves that follow the giant NLIW. They were also found in ship radar images (Fig. 5), T-chain data (Fig. 6), and in ADCP data (Fig. 7). They trail the giant NLIWs (traveling at 2.9 m/s) with propagation speed about 1.7 m/s.

Fig. 5 Ship-radar image of small linear internal waves (LIW). A packet of waves that was observed by ship radar on R/V Ocean Researcher 1, at 20:11 UTC of 2006/5/13 (white line is to the north).
Fig. 6 T-chain data show the movement of isotherms as NLIW passing a T-chain that was towed behind R/V OR1.

Fig. 7 ADCP data show the small linear internal waves that trailed the NLIW
3. Conclusions

After confirming the existence of NLIWs in SCS, we were able to pin-point the region where linear internal wave evolves into NLLIW. Their waveforms were also mapped with moored and towed T-chains. A train of small internal waves that follow the giant NLIW were also found in T-chain data, ship radar images, and in ADCP data. They trail the giant NLIWs (traveling at 2.9 m/s) with propagation speed about 1.7 m/s.

IMPACT/APPLICATIONS

This year’s field observation further enhanced our confidence that Hengchun Ridge plays the major role of generating NLIWs in northern South China Sea, more than other possibilities, Batan Islands, the baroclinic instability of Kuroshio boundary and other sources. The generation of NLIW over Hengchun ridge may asymmetric, because no NLIW was observed east of Hengchun Ridge, neither by satellites, nor by in situ observations. With sufficient knowledge of NLIWs propagation in the deep SCS, the generation and evolution process of NLIWs near Hengchun Ridge shall be the target of next year’s field experiment for a closer look, if there are no more typhoons.

RELATED PROJECTS

Prof. Rob Pinkel and Prof. Jody Klymak an ONR Project to study the NLIW with Fast CTD and deep sonar to map the generation, evolution and propagation of NLIW in SCS.

Prof. Steve Ramp leads ONR project named WISE that studies NLIWs in the northern SCS with mooring observations,

REFERENCES

