The effects of aggregation and disaggregation on particle size
distributions and water clarity in the coastal ocean

Paul S. Hill
Department of Oceanography
Dalhousie University
Halifax, Nova Scotia, CANADA B3H 4J1
phone: (902) 494–2266 fax: (902) 494–3877 e-mail: paul.hill@dal.ca
Award #N00014–95–1–0420
http://www.phys.ocean.dal.ca/~phill

LONG-TERM GOAL

The long-term goal of this research is to develop tools to quantitatively predict the effect of fine
siliciclastics on water clarity in the coastal ocean. Scattering of light by suspended particles
depends on sediment concentration, composition, and size distribution. Particle size distribu-
tions in coastal waters are dynamic because high concentrations of suspended sediment in coastal
waters favor frequent encounter between particles. These encounters lead to the formation of
large macroaggregate particles, or flocs, with diameters greater than 0.5 mm. While aggregation
modifies the size distribution by building larger particles, variable and energetic turbulence in
coastal waters can modify the size distribution by disrupting aggregates. Predictive knowledge of
scattering depends on understanding of the conditions under which aggregation and turbulence-
induced disaggregation alter the size distribution and of the form of the size distribution that these
processes combine to produce.

SCIENTIFIC OBJECTIVES

This research has three primary objectives. The first is to observe spatial and temporal variability
in macroaggregate size distributions in situ in the bottom boundary layer (BBL) at the Coastal
Mixing and Optics field site. The second is to relate observed size distributions to small particle
size distributions, turbulent kinetic energy (tke), and optical properties in the BBL. The third is
to extend BBL aggregation models to conditions of unsteady flow.

APPROACH

Time-series photographs of macroaggregates have been taken with a bottom-tripod-mounted floc
camera on the continental shelf in the mid-Atlantic Bight during ONR’s Coastal Mixing and Optics
deployment. Data synthesis involves comparison of in situ macroaggregate size distributions with
small particle size distributions generated with an in-situ, laser particle sizer (LISST) deployed
on the same tripod as the camera (Agrawal, Sequoia), with turbulent kinetic energy dissipation
rate measurements made on a nearby tripod (Trowbridge, WHOI), and with optical properties
monitored on the same tripod as the camera (Dickey, UCSB).
The effects of aggregation and disaggregation on particle size distributions and water clarity in the coastal ocean

Dalhousie University, Department of Oceanography, Halifax, Nova Scotia B3H 4J1, Canada,
WORK COMPLETED

During the CMO field effort, 250 photos were collected. Methods have been refined for analyzing size distributions, archiving data, and presenting data interactively on the world wide web. In April, 1999 a manuscript describing destruction of macroaggregates during storms was submitted to a *Journal of Geophysical Research* special volume on the Coastal Mixing and Optics experiment. A manuscript providing a synthesis of ideas regarding controls on floc size in the coastal ocean was submitted to *Oceanography* in October, 1998.

RESULTS

Data on macroaggregate size distributions, waves, and currents indicate that turbulence does not strongly influence macroaggregate size when tke is low to moderate, but that macroaggregates are destroyed under energetic forcing. This result suggests that forces other than turbulence, namely those applied to macroaggregates during sinking, limit macroaggregate size when tke is low to moderate. This hypothesis explains why measured macroaggregate settling velocities across diverse environments are so uniform.

IMPACT/APPLICATION

Fine sediment suspensions can likely be treated as a two-state system. When tke is low to moderate, the majority of suspended mass is contained in macroaggregates that sink at speeds of 1 mm s$^{-1}$. When energy levels are high, macroaggregates are destroyed. Further work with Agrawal will clarify the fate of destroyed macroaggregates.

TRANSITIONS

The camera technology developed in this study has been adopted in part by Syvitski for construction of a DURIP-funded floc camera.

RELATED PROJECTS

With NSERC (Canadian) funding, the spectral response of optical backscatter to particle size distribution is being explored. Collaborator is Jon Grant (Dalhousie).

PUBLICATIONS

