LONG-TERM GOALS

Bottom loss at mid to high frequencies \[\text{O}(1 – 10) \text{ kHz} \] can be highly sensitive to the meter-scale layering in near surface sediments. This project seeks to improve our understanding of bottom loss, and to help fill the void in our data base of bottom loss measurements, at mid to high frequencies in littoral regions.

OBJECTIVES

Analyze and model \[\text{O}(1 – 10) \text{ kHz} \] bottom loss measurements made during the Asian Seas International Acoustics Experiment (ASIAEX) conducted in the East China Sea (May-June 2001).

APPROACH

The bottom loss measurements are interpreted as estimates of the modulus of the plane wave reflection coefficient, and data are compared to predicted values using a reflection coefficient model, based on a two-layered sediment for which the sound speed in the surficial sediment layer is allowed to vary as a linear \(k^2 \) profile, where \(k \) is acoustic wavenumber. The region below this layer is modeled as a half space with constant density and sound speed. Geoacoustic parameters for the reflection coefficient model are estimated from the data by minimizing the weighted squared error between the data and the model predictions. Variances for these parameter estimates are derived using the Bootstrap method.

WORK COMPLETED

Analysis of Results from ASIAEX East China Sea: Mid to High Frequency Bottom Loss

1. REPORT DATE
30 SEP 2003

2. REPORT TYPE

3. DATES COVERED
00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE

Analysis of Results from ASIAEX East China Sea: Mid to High Frequency Bottom Loss

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Applied Physics Laboratory, College of Ocean and Fisheries Sciences, University of Washington, Seattle, WA, 98105

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

Same as Report (SAR)

18. NUMBER OF PAGES

4

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Z39-18
RESULTS

Model curves based on the geoacoustic model (Fig. 1) agree reasonably well with the observations of bottom loss over the entire frequency range, and the parameter estimates are consistent with the range of independently measured geoacoustic variables (Miller et al. 2003). Since this mid to high frequency data set does not provide detailed information about the sediment structure for depths beyond about 3 m, the geoacoustic parameter set is more properly viewed as description of near-surface sediments.

![Figure 1. Right: Estimates of bottom loss for the East China Sea as a function of frequency (2 kHz to 20 kHz) and grazing angle. Solid curves are model based on the geoacoustic parameters shown in the left panel.](image)

For deeper sediments, results obtained at lower frequencies from same experiment (e.g., Miller et al. 2003) should be blended with the results shown in here, for a self-consistent geoacoustic model for the East China Sea, applicable over a broad frequency range.
IMPACT/APPLICATIONS

The Geophysical-Acoustic Bottom Interaction Model (GABIN) is currently being evaluated by the OMAL software review board, and the Naval Oceanographic Office. The mid-to-high frequency bottom loss data base originating from this research has been made available for exploitation by this effort, as well as by other modeling and simulation efforts involving mid frequency systems such as the AN/SQS 53 (A-D) series.

RELATED PROJECTS

This research is integrated together with several projects within the ASIAEX field program (James Miller (URI), D. J. Tang (APL-UW), Jixun Zhou (Georgia Institute of Tech), and Zhaohui Peng (Institute of Acoustics, Beijing), with focus on propagation, and surface scattering and reflection, bottom reflection, and volume scattering effects in the East China Sea.

REFERENCES

PUBLICATIONS

HONORS/AWARDS/PRIZES

Name and Institution: Peter H. Dahl, Applied Physics Laboratory, University of Washington
Award: Fellow, Acoustical Society of America