1. REPORT DATE
30 SEP 1999

2. REPORT TYPE

3. DATES COVERED
00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
Acquisition of Acoustic Source to Augment Navy Sonars for Mapping Sound Speed and Temperature with Tomography

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Pennsylvania State University, 501 Walker Bldg, University Park, PA, 16802

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES 2

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Acquisition of Acoustic Source to Augment Navy Sonars for Mapping Sound Speed and Temperature with Tomography

John L. Spiesberger
Pennsylvania State University
501 Walker Bldg,
University Park, PA 16802
phone: (215) 573-5388 fax: (215) 865-3663 email: johnsr@sas.upenn.edu
Award #: N00014-96-1-1074

LONG-TERM GOALS

My long-term goal is to get enough data from the ocean so that its physical and acoustically induced fluctuations can be understood from theories and models. I hope to use this information to help the Navy with its operations.

OBJECTIVES

I want to demonstrate that passive and active Navy sonars can be used to map the sound speed fields by means of acoustic tomography. The Navy puts sound into the water and has passive arrays, both towed and fixed, that could be used to measure the travel times of acoustic multipath for subsequent inversion for the sound speed field.

APPROACH

Previous research with eddy-resolving ocean models indicates that accurate tomographic maps can be made of the sound speed field with moving receivers whose locations have errors as large as a kilometer of more (Spiesberger et al., 1997). In order to collect such data from the Navy, a tape recorder will be built for a U.S. submarine. There are advantages in utilizing moving receivers because they provide a synthetic aperature which improves the spatial resolution of tomographic maps compared with those possible to obtain from the widely-spaced SOSUS stations that have been used before (Spiesberger and Metzger, 1992; Silivra et al., 1997, Fabrikant et al., 1998).

WORK COMPLETED

The Applied Research Laboratory at the U. of Texas has built the tape recorder for a submarine.

RESULTS
IMPACT/APPLICATIONS

Utilization of Navy sonars for tomographic purposes ought to yield an efficient and cost-effective way for the Navy to estimate the sound speed field at mesoscales. These maps and their errors ought to be useful for predicting acoustic sonar performance and reliability due to the oceanic scales resolved with the data.

TRANSITIONS

The possibility of transitioning this technology to the fleet has been discussed with SPAWAR and CMNOC.

RELATED PROJECTS

REFERENCES

PUBLICATIONS