INTERACTION AND REMOTE SENSING OF SURFACE WAVES
AND TURBULENCE

W. Kendall Melville
Scripps Institution of Oceanography
University of California, San Diego
La Jolla, CA 92039-0213
phone: (619) 534-0478, fax: (619) 534-7132, e-mail: kmelville@ucsd.edu
Award #: N00014-97-1-0065

LONG-TERM GOAL
The long-term goals of this research are to better understand the processes at the ocean surface
that directly influence active and passive remote sensing.

SCIENTIFIC OBJECTIVES
The immediate objectives of this research are:

1. To better understand the interaction between short surface waves and turbulence, especially
 those interactions that influence surface processes that are of importance for passive and
 active remote sensing; and

2. To better understand microwave scattering by combined fields of waves and turbulence.

APPROACH
We have taken a three-pronged approach to this research with a combination of laboratory
measurements of surface hydrodynamics and microwave scattering; field measurements from
SIO pier, and theoretical modeling and comparisons with measurements. In collaboration with the
PI, much of the day-to-day experimental and field work on this grant has been undertaken by Dr.
Anatol Rozenberg, with detailed theoretical and numerical work by Dr. Alexey Fedorov who
graduated during the course of this grant. All em scattering measurements have been made with a
dual-polarized Ku-band (14GHz) Doppler scatterometer. Surface hydrodynamics have been
measured with a combination of electromechanical wave gauges, a scanning laser slope gauge,
and a Digital particle Imaging Velocimetry system. With assistance from Dr. Jaehne’s group at
SIO, during the course of this year construction was begun on an imaging slope gauge.

Much of the effort in the last year has focused on the role of parasitic capillaries and surface
 turbulence in microwave scattering. Laboratory experiments have been undertaken on
microwave scattering by mechanically-generated and wind-generated decimetric waves
generating parasitic capillary waves. Laboratory measurements have also been undertaken on the
influence of mechanically-generated turbulence on surface waves and microwave scattering. A
theory of nonlinear parasitic capillary waves with wind forcing and viscous dissipation has also
been developed. Quantitative results require final numerical computation.

WORK COMPLETED
Work by a number of groups (including the SIO group) over the last five years or so has
identified the presence of “fast scatterers” giving Doppler shifts greater than those that can be
attributed to free Bragg scatterers, with evidence of varying degrees of certainty that the fast
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
30 SEP 1997

2. REPORT TYPE

3. DATES COVERED
00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE
Interaction and Remote Sensing of Surface Waves and Turbulence

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California, San Diego, Scripps Institution of Oceanography, La Jolla, CA, 92093

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 4

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Z39-18
scatterers may be due to either parasitic capillary waves generated near the crests of longer decimetric waves, or breaking waves. In either case the scatters travel at or near the phase speed of the longer waves. In 1997, we published a paper demonstrating the effects of still longer waves or “swell” on this phenomenon and the complications that the fast scatterers lead to in using the scattering data to infer the properties of the longer waves (Rozenberg, Quigley & Melville, 1996). This work was extended during this year to show that scattering by mechanically-generated parasitic-capillary waves could be unambiguously associated with scattering by harmonics of the surface waves (Rozenberg, Quigley, Ritter & Melville, 1997). Bispectral techniques have been used to clearly show that under a range of conditions the fast scattering phenomenon is associated with nonlinear surface processes (Rozenberg, Melville, Ritter, Gottschall & Smirnov, 1997).

Given the evidence above, considerable effort has been devoted in the last year to the prediction of the properties of nonlinear waves generating parasitic-capillaries. A theory that takes into account nonlinearity, viscous boundary layers and wind-forcing has been developed. The theory ultimately requires numerical computation to obtain solutions for steady gravity-capillary waves (Fedorov, 1997; Fedorov & Melville, 1997). The predictions have been tested against laboratory measurements of mechanically-generated gravity-capillary waves with very good results. The theory and measurements show that surface tension leads to local maxima in the higher harmonics, consistent with resonant generation of parasitic capillary waves (Fedorov, Melville & Rozenberg, 1997).

Laboratory measurements on the scattering by breaking waves at grazing incidence (Rozenberg, Melville & Ritter, 1996) have shown that, as well as the large backscatter from the wave during breaking, the scattering persists for times comparable to the decay scale of the turbulence generated by the breaking wave (Rapp & Melville, 1990). This suggested that rather than just being an additional dissipation mechanism surface turbulence may play a more active role. To more closely examine these phenomena, surface slope and microwave scattering measurements by surface waves propagating through mechanically-generated turbulence have been undertaken. The rather striking result is that one effect of turbulence may be to enhance the generation of parasitic-capillary waves, thereby increasing the microwave backscatter (see Figure 1). The mechanism by which the parasitic capillary waves are generated is under active investigation.

RESULTS

During this year we:

1. Provided clear experimental confirmation that parasitic capillary waves may act as fast scatterers in a variety of conditions;

2. Developed a theory of nonlinear gravity-capillary waves including predictions of the parasitic-capillary waves;

3. Confirmed the theory by comparison with laboratory measurements of parasitic-capillary waves; and

4. Demonstrated that one consequence of wave-turbulence interaction is enhancement of the parasitic-capillary waves and consequent enhancement of the microwave scattering.
IMPACT/APPLICATION
These results should lead to broader application of microwave remote sensing techniques for the remote measurement of surface wave and mixing phenomena.

TRANSITIONS
Measurements of the surface geometry and microwave scattering by nonlinear gravity-capillary waves have been made available to Dr. Jim West of Oklahoma State University for comparison with his numerical models of microwave scattering.

RELATED PROJECTS
The PI is currently funded by ONR (Physical Oceanography, N00014-97-1-0277) with an AASERT enhancement (N00014-97-1-0644) under the Shoaling Waves DRI to study wave breaking and dissipation on the continental shelf using remote and in situ techniques. The PI is also funded by NSF (PO) to undertake laboratory measurements of Langmuir circulations (LC’s) which are a form of coherent surface turbulence. There are issues of wave-turbulence interaction that are shared between the NSF/LC project and this project.

REFERENCES
Figure 1. Slope time series of steep regular 4 Hz waves (left) and HH scattered signals (right) in a glass channel, waves only (top), waves + turbulence (middle), turbulence only (bottom). Ku-band scatterometer at 12° grazing angle.