Things that go boom: injuries from explosives

United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234

Report Documentation Page

1. REPORT DATE
01 JUN 2007

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Things that go boom: injuries from explosives

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Eastridge B. J. /

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 UU

18. NUMBER OF PAGES
 1

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Explosive agents are materials that undergo rapid exothermic reaction when appropriately stimulated. The degree to which this reaction occurs is dependent upon the characteristics of the explosive agent. Low order explosives react by rapid burning or conflagration. On the other hand, high order explosives produce extreme heat and energy and result in the formation of a pressure wave or “blast wave.” This supersonic, superheated wave, known as “overpressure” comprises the blast front (Fig. 1). The blast wave is reflected and sustained by fixed structures and confined environments such as rooms, vehicles, etc., and may portend the effects of blast-related injury. By the same mechanism, water, which is a relatively noncompressible medium, sustains more of the energy from the blast energy and as such blast waves in water have a greater injurious effect propagated over a greater distance. The three main factors which characterize the blast wave are peak rate of pressure rise, peak pressure, and duration of the pressure rise.

Injuries from explosive agents are characterized by mechanism of injury associated with the explosive event. Primary blast injuries are those injuries associated with the blast wave itself. It should be noted that by this definition, true blast injury is only a subset of all injuries caused by explosions. The mechanism of injury in blast is the impartation of heat and energy to the body, particularly, air filled organs, by the blast wave itself. Survival and injury from primary blast injury is contingent upon a number of factors including energy of the blast, confined versus open space and standoff distance from the explosive source. Survivable blast injuries are characterized by tympanic membrane rupture, pulmonary barotraumas, bowel contusion and perforation, and concussive brain injury. The secondary explosive injuries are fragmentation injuries from the casing of the explosive or secondary debris. Most are penetrating injuries and often are associated with multiple penetrations of the victim. Tertiary explosive injuries are those injuries caused by physical displacement of the victim, usually as a result of the attenuated energy from the blast wave. Lastly, quaternary effects are burns, inhalations and exacerbation of underlying conditions.