Increased Mortality Associated With the Early Coagulopathy of Trauma in Combat Casualties

Sarah E. Niles, MD, MPH, Daniel F. McLaughlin, MD, Jeremy G. Perkins, MD, Charles E. Wade, PhD, Yuan Zhang Li, PhD, Philip C. Spinella, MD, and John B. Holcomb, MD

Background: Recent civilian studies have documented a relationship between increased mortality and the presence of an early coagulopathy of trauma diagnosed in the emergency department (ED). We hypothesized that acute coagulopathy (international normalized ratio ≥1.5) in combat casualties was associated with increased injury severity and mortality as is seen in civilian trauma patients.

Methods: A retrospective study of combat casualties who received a blood transfusion at a single combat support hospital between September 2003 and December 2004 was performed. Coagulation status, pH, base deficit, and temperature were recorded at arrival to the ED. These were analyzed by Injury Severity Score (ISS), associated injury patterns, and mortality.

Results: A total of 3,287 patients were treated at the combat support hospital during the study period. Of these, 391 patients were transfused and primarily admitted, thus meeting the study criteria, 347 had coagulation data, and 92% had a penetrating mechanism. The prevalence of acute coagulopathy in transfused casualties measured with point-of-care devices at arrival in the ED was 38%. Mortality in those who were coagulopathic at arrival to the ED was 24% (32/133) versus 4% (8/214) in those not presenting with coagulopathy (p < 0.001). The prevalence of mortality by coagulopathy increased as ISS increased. Coagulopathy and acidosis were associated with mortality, odds ratio (OR), 5.38 [95% confidence interval (CI), 1.55–11.37] and 6.9 [95% CI, 2.1–19.5], respectively. Temperature did not affect outcomes (OR, 1.1; 95% CI, 0.4–2.6).

Conclusions: The early coagulopathy of trauma was rapidly diagnosed in the ED and present in more than one-third of combat casualties who received a transfusion, similar to the incidence found in civilian trauma patients. Coagulopathy, independent of hypothermia but strongly correlated with acidosis and ISS, was associated with mortality in combat casualties, similar to that found in civilian trauma patients. Early diagnosis and treatment of acute traumatic coagulopathy with new resuscitation paradigms may improve outcomes.

Key Words: Coagulopathy, Early coagulopathy, Combat casualties.

Increased mortality associated with the early coagulopathy of trauma in combat casualties

Authors: Niles S. E., McLaughlin D. F., Perkins J. G., Wade C. E., Li Y., Spinella P. C., Holcomb J. B.,

Performing Organization: United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234

DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

ABSTRACT

SUBJECT TERMS

SECURITY CLASSIFICATION OF:

- **a. REPORT:** unclassified
- **b. ABSTRACT:** unclassified
- **c. THIS PAGE:** unclassified

LIMITATION OF ABSTRACT:

- **UU**

NUMBER OF PAGES: 7
three times more often in combat verses civilian trauma admissions,24,25 and truncal hemorrhage from these penetrating injuries is the leading cause of potentially preventable morbidity and mortality.22,23 Although the mechanism of the early coagulopathy of trauma is currently unknown, it occurs frequently and is associated with increased mortality in civilian trauma patients.

Similar to the civilians with blunt injuries suffering hemorrhagic shock and coagulopathy, but with a uniquely different wounding mechanism, we thought that our combat-injured patient population was at significant risk for acute coagulopathy and increased mortality. Our study objectives therefore were to determine the prevalence of the early coagulopathy of trauma in transfused combat casualties and analyze its associations with injury severity, acidosis, hypothermia, and mortality.

MATERIALS AND METHODS

The data presented here were obtained under a human use protocol that received Institutional Review Board approval at Brooke Army Medical Center in San Antonio, TX. Using the Joint Theater Trauma Registry (JTTR) maintained at the U.S. Army Institute of Surgical Research at Ft. Sam Houston in San Antonio, TX, we performed a retrospective analysis of data for trauma patients admitted to one combat support hospital (CSH) in Iraq between September 2003 and December 2004. Enemy combatants and patients who received prior treatment at a medical facility and were transferred in were excluded from the study. Mortality was recorded for all in-hospital events.

Red blood cell transfusions were PRBC, fresh whole blood, or a combination of these. All transfusions in this study were within 24 hours after admission. A massive transfusion was defined as ≥ 10 units of a combination of PRBC or fresh whole blood in the initial 24 hours. The current study did not focus on coagulopathy reversal, so the use or effect of fresh frozen plasma, cryoprecipitate, and platelets were not analyzed. Coagulopathy was defined using the International Normalized Ratio (INR) value, which was obtained at arrival to the CSH. An INR of 1.0 is the reference for normal, and an INR ≥ 1.5 defined a clinically significant coagulopathy.25–27 Consistent activated partial thromboplastin times were not available in the chart review for this analysis. Acidosis was defined as a BD ≥ 6, whereas hypothermia was defined as a temperature $\leq 35^\circ C$. Abbreviated Injury Scores (AIS-95) were used to calculate the Injury Severity Score (ISS).

Patient demographics, transfusions, injuries, and outcomes were all obtained from the JTTR. The JTTR is a database established by the Department of Defense to capture data prospectively from multiple nonintegrated clinical and administrative systems. This database provides data abstraction of all available clinical data from the point of injury through discharge from military treatment facilities for coalition and foreign national patients and from point of injury through acute care discharge for U.S. patients.

Laboratory data were collected by two researchers (S.E.N. and D.F.M.) through individual patient chart review in the Patient Administration Systems and Biostatistics Activity (PASBA) system. PASBA is a division of the Program Analysis and Evaluation Directorate, U.S. Army Medical Command. PASBA receives all Inpatient Records from deployed medical units that do not have access to the Composite Health Care System once that unit returns from theater. PASBA reviews, performs data quality checks, codes, enters the record information into a number of databases, and then forwards them to the National Personnel Records Center.28

Analysis of coagulopathic versus noncoagulopathic and their relationship to outcomes of ISS and mortality were described by prevalence and relative risk (RR) with 95% confidence intervals (95% CIs). Odds ratios (ORs) were calculated for acidosis, hypothermia, and coagulopathy related to mortality. RR was used to determine the probability of developing coagulopathy in all exposed patients. ORs were used in variables that may be used for logistic regression. INR, BD, and ISS were compared using Spearman correlation coefficient. Data were analyzed using STATA 9.2 (StataCorp LP., College Station, TX), SAS 9.1.3 (SAS Institute, Inc., Cary, NC), and EPI INFO (Version 3.3.2; Centers for Disease Control and Prevention, Atlanta, GA).

Data are presented as median \pm interquartile ranges or means. Continuous variables were compared using a Student t test and dichotomous variables were compared with χ^2 or Fisher Exact analysis as appropriate. A p value of less than 0.05 denoted statistical significance.

RESULTS

Patient demographics are seen in Table 1. Between September 2003 and December 2004, 3,287 patients were seen at the CSH. Of these patients, 688 (21%) received a blood

<table>
<thead>
<tr>
<th>Table 1 Patient Demographics</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Demographics (n = 391)</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>Armed forces</td>
<td>224 (57)</td>
</tr>
<tr>
<td>Iraqi</td>
<td>155 (40)</td>
</tr>
<tr>
<td>Contractor</td>
<td>12 (3)</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td></td>
</tr>
<tr>
<td>18–24</td>
<td>160 (41)</td>
</tr>
<tr>
<td>25–34</td>
<td>103 (26)</td>
</tr>
<tr>
<td>≤ 35</td>
<td>65 (17)</td>
</tr>
<tr>
<td>Unknown</td>
<td>63 (16)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>366 (94)</td>
</tr>
<tr>
<td>Female</td>
<td>25 (6)</td>
</tr>
<tr>
<td>Primary mechanism of injury</td>
<td></td>
</tr>
<tr>
<td>(n = 390)</td>
<td></td>
</tr>
<tr>
<td>Gunshot wound</td>
<td>107 (27)</td>
</tr>
<tr>
<td>Explosive</td>
<td>255 (65)</td>
</tr>
<tr>
<td>Motor vehicle collision</td>
<td>18 (5)</td>
</tr>
<tr>
<td>Other</td>
<td>10 (3)</td>
</tr>
</tbody>
</table>

* Mechanism of injury unknown for one patient.
transfusion. Of patients receiving a transfusion, 171 were
seen at a Level II facility before arrival (transferred patients)
at the CSH (Level III) and 126 were designated as potential
or known Security Internees. These 297 patients were
excluded. The total study population was 391 patients.

The primary mechanism of injury was penetrating, rep-
resenting 92% of all injuries, and 65% were from explosions.
About 84% of blood transfusions were PRBC alone, 15% a
combination of PRBC and whole blood, and 1% whole blood
alone. The median primary RBC transfusion number was 4
(interquartile range, 2–9). About 49% (194/391) of patients
received at least 1 unit of FFP. The incidence of massive
transfusion (≥10 units of PBRC + whole blood) was 25%.
Thirty-seven patients (9.5%) received rFVIIa. The case fatal-
ity rate in the study population was 14% (55/391).

Coagulation status at admission (INR) was available for
347 patients. The prevalence of acute traumatic coagulopathy
(INR ≥ 1.5) in transfused patients was 38% (133/347). The
case fatality rate based on coagulopathy was 24% (32/133)
versus those who presented without coagulopathy 4% (8/214).
The RR of death associated with coagulopathy was 5.38
(95% CI, 1.55–11.37; p < 0.001). Figure 1 represents the
trend of mortality associated with INR with 95% CI by univariate analysis. The probability of death began to in-
crease at an INR of 1.5 with a range of 7% to 12% at this
level. With an INR of 2.0, the probability of death rose to
10% to 17%. At an INR of 3.0, the probability of death was
between 17–35%.

The relationship between coagulopathy measured
through INR and other variables were pursued. These vari-
ables include ISS, acidosis measured by BD, and tempera-
ture. The outcome relationship in the later two variables was
mortality. The median cohort ISS was 17 (IQR, 10–26). The
prevalence of coagulopathy increases as injury severity in-
creases only in the casualties with a BD ≥ 6 (Fig. 2). Co-
agulopathy across ISS category was assessed for risk of
mortality (Fig. 3). A significant difference in mortality be-
 tween coagulopathic and noncoagulopathic patients was seen
in the highest ISS category ≥25 with a mortality of greater
than 40% in coagulopathic patients versus less than 10% in
those who were not coagulopathic.

Admission temperature (<35°C) was not associated with
mortality (OR, 1.1; 95% CI, 0.4–2.6). Acidosis measured at
admission BD was associated with mortality with an OR of
6.9 (95% CI, 2.1–19.5). BD was analyzed for its correlation
with INR. This relationship was then compared with the
relationship between INR and ISS. The correlation coeffi-
cient between INR and BD was 0.45. This relationship was
compared with the correlation between INR and ISS. These
were not as closely related at 0.12. Thus, the correlation

Fig. 1. *The trend of INR associated with mortality with 95% CI by univariate analysis.*

Fig. 2. Prevalence of coagulopathy by ISS and BD in patients requiring a blood transfusion.

Fig. 3. Coagulopathy across ISS categories increases the risk of mortality.
between BD and INR was three times the strength of the association between INR and ISS. There was not any interaction found between these three variables.

Finally, mortality was compared with number of PRBCs transfused. Patient mortality increases with the number of PRBC transfusions. Mortality doubled between 1 to 4 units and 5 to 9 units (6%-14%) and also between 5 to 9 units and ≥10 units (14%-32%). A statistically significant increase in mortality is seen when 10 or more units of PRBCs are transfused (Fig. 4).

DISCUSSION

Remarkably similar to the two civilian cohort of patients described by Brohi and MacLeod,12,13 more than one-third of combat casualties who required a blood transfusion arrived at the combat hospital coagulopathic. These patients had only received treatment equivalent to emergency medical service care during rapid helicopter transport, which typically included small amounts of isotonic crystalloid solution, analgesics, and airway support. Although the percentage of patients with coagulopathy was similar, inclusion for this study was limited to those casualties that received at least one red blood cell transfusion. Previous civilian studies were on patients who were admitted to a trauma center, with or without receiving a blood transfusion. Additionally, very different from civilian trauma, more than 90% of our patients’ injuries were from penetrating trauma and in 25% of these patients whom received a transfusion a massive transfusion was required.

Similar to Brohi’s initial work, ISS was directly associated with an increase in the prevalence of coagulopathy.13 In this analysis, a greater incidence of coagulopathy was seen in comparison with Brohi (25% vs. 38%).13 This difference is likely caused by the different inclusion criteria for the two studies. However, in our study, for a given ISS, mortality rates were lower, likely related to the preponderance of penetrating injuries. Whether this is an affect of the younger cohort of fit patients seen in the military population or an effect of interventions such as early rFVIIa, or increased plasma:red blood cell ratio remains to be clarified.25,29,30 The overall risk of death associated with coagulopathy was five times that of not being coagulopathic (Fig. 3). This risk is similar to that seen in patients with an overall injury severity more than 25, or the most severe group in our cohort. Coagulopathic patients with an ISS of 1 to 14 have a mortality similar to that of the noncoagulopathic patients with an ISS ≥ 25. This leads us to assume that coagulopathy and acidosis are more related to the physiologic status, rather than the amount of tissue injury. Whether the excess risk of death associated with coagulopathy is only present in those with high injury severity is difficult to determine from our current data. Although the risk seems to be present across all injury groups, the number of deaths at the lower ISS range is too few for noncoagulopathic patients, making this association inadequately powered in this study. Future studies to determine whether early coagulopathy may predict outcomes in patients with less severe injuries needs to be examined.

Our data in combat casualties is consistent with civilian data correlating high injury severity, shock, and increased mortality with the early coagulopathy of trauma.12,13,20 Whether the coagulopathy is secondary to hemorrhage resulting in loss of coagulation factors, tissue hypoperfusion, or extensive tissue injury resulting in the release of tissue factors causing the coagulopathy cannot be determined from this study.

There are several limitations in this study. Most studies describing coagulopathy have used prothrombin time or partial prothrombin time. INR is more readily used in our CSH; thus test variation may account for some difference in rates of coagulopathy compared with prior studies. Based on study design, a direct cause and effect relationship cannot be established between coagulopathy and mortality. In our full cohort, one-third of deaths did not have initial ED laboratory information. Further, in our group of patients who required a massive transfusion, 10% were missing initial ED laboratory data. With more than 50% of our missing data being in patients with the highest risk factors for poor outcomes, the data presented may be an underrepresentation of the true burden of acute coagulopathy. Second, mortality in this study was recorded only during the time the patients were at the CSH. Many coalition combat casualties are transported after initial stabilization and within 24 to 72 hours after arrival to the CSH. Iraqi patients’ typically stay in the intensive care unit for 3 to 5 days before transfer to a local hospital. Final long-term outcomes are not available for these patients. As the overall mortality could only increase, mortality may be underestimated in this study. Balancing this limitation is that most (>80%) of combat mortality occurs during the first 24 hours. Future studies using long-term outcomes would be beneficial to further define the impact of the early coagulopathy of trauma in combat casualties. This information may provide insight into what interventions may be most beneficial to both treat and prevent the early coagulopathy of trauma, potentially improving outcomes.

CONCLUSIONS

The overall prevalence of the early coagulopathy of trauma in transfused combat casualties is 38%. Coagulopathy was correlated with BD and both have a similar risk to mortality. As demonstrated with prior civilian studies, the early coagulopathy of trauma increases in prevalence as
shock or injury severity increases and is predictive of mortal-
tality. An acute coagulopathy (INR ≥ 1.5) in combat casu-
alties is one of the easily measurable point-of-care laboratory
values associated with a significant risk factor for mortality.
Awareness of this diagnosis is of critical importance. Early
and aggressive management of this devastating physiologic
state may improve survival in trauma patients with severe
injuries.13 Further studies to determine the mechanism of
this unique coagulopathy, as well as more effective resuscita-
tion strategies with new blood products, amounts, and ratios, are
needed to optimize management of severely injured military
and civilian casualties.

REFERENCES

1. Gentilello LM, Jurkovich GJ, Stark MS, Hassantash SA, O'Keefe
GE. Is hypothermia in the victim of major trauma protective or
2. Martin RS, Kilgo PD, Miller PR, Hoj JH, Meredith JW, Chang MC,
Injury-associated hypothermia: an analysis of the 2004 National
Trauma Data Bank. Shock. 2005;24:114–118.
of temperature and pH on the activity of factor VIIa: implications
for the efficacy of high-dose factor VIIa in hypothermic and acidic
4. Moore EE, Thomas G. Orr memorial lecture. Staged laparotomy
5. Cosgriff N, Moore EE, Saaunia A, Kenny-Moynihan M, Burch JM,
Galloway B. Predicting life-threatening coagulopathy in the
massively transfused patient: hypothermia and acidosis revisited.
6. Tieu BH, Holcomb JH, Schreiber MA. Coagulopathy: its
frozen plasma transfusion strategies during major trauma resuscita-
resuscitation causes more cases of abdominal compartment
9. Cotton BA, Guy JS, Morris JA Jr, Abumrad NN. The cellular,
metabolic, and systemic consequences of aggressive fluid
resuscitation strategies. Shock. 2006;26:115–121.
Minimizing dilutional coagulopathy in exsanguinating hemorrhage: a
11. Rhee P, Kostova E, Alam HB. Searching for the optimal
resuscitation method: recommendations for the initial fluid
12. MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M. Early
J Trauma. 2003;54:1127–1130.
14. MacLeod JBA, Lynn M, McKenney MG, et al. Predictors of
18. Hess JR, Holcomb JB, Hoyt DB. Damage control resuscitation: the
need for specific blood products to treat the coagulopathy of trauma.
resuscitation: directly addressing the early coagulopathy of trauma.
Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion
modulated through the protein C pathway? Ann Surg. 2007;245:
812–818.
pathway in the early complement activation following major trauma.
causes of death from operation Iraqi freedom and operation enduring
transfusion rates in the care of acute trauma. Transfusion. 2004;
44:809–813.
25. Perkins JG, Schreiber MA, Wade CE, Holcomb JB. Early versus late
recombinant factor VIIa in combat trauma patients requiring massive
27. British Committee for Standards in Haematology, Blood Transfusion
Task Force. Guidelines for the use of fresh-frozen plasma,
cryoprecipitate and cryosupernatant. Br J Haematol. 2004;126:
11–28.
28. DD 2870—Authorization for disclosure of medical or dental
information, Dec. 2003 Deployed Medical Record Request
Instructions.
products transfused affects mortality in patients receiving massive
transfusions at a combat support hospital. J Trauma. 2007;63:
805–813.
is associated with decreased mortality in combat related casualties
should be given earlier to patients requiring massive transfusion.

DISCUSSION

Dr. Anna M. Ledgerwood (Detroit, Michigan): Thank
you, Dr. Fabian, Dr. Britt, members and guests. The authors
report that a third of their patients who arrived at the combat
center required a blood transfusion to maintain coagulopathy.

My first question to the authors is what new information is
being reported in this study? McColl et al. from the Ryder
Trauma Center in Miami reported similar findings four years
ago with a 35 percent increase in mortality with an elevated
PT and a 326 percent increase in mortality in patients with an
abnormal PTT.

Dr. Niles, you report essentially the same findings using
INR instead of PT and PTT. Burleigh et al. from the Royal
London Hospital also reported four years ago that 24 percent
of over 1,000 patients admitted by helicopter had a coagu-
lopathy as measured by PT, APTT and TT.
And, furthermore, this increase in coagulopathy was associated with an increased ISS and increased mortality.

They postulated that tissue trauma results in the release of mediators that are responsible for the development of coagulopathy. Have you measured any mediators?

Have you tried to determine what causes this increase in coagulopathy since we’ve known this occurs for at least four years?

Were you able to evaluate prehospital times or time from injury to arrival at your ED or when your blood samples were drawn? And was there a difference?

What type of volume and what type and what volume of fluids were given prior to arrival? In particular, were colloid solutions used since we know that the use of colloids can alter coagulation protein content as well as activity?

Was there a difference in the volume of fluids used prior to arrival? Why did the 32 of 133 patients with coagulopathy on arrival die? How long after arrival did they die? And did they bleed to death?

Your manuscript implies that correction of coagulopathy with early administration of FFP and activated factor VII may improve survival. I’m not convinced.

I have never known these substances to plug a hole in the aorta, the iliac vein, or other causes of what I refer to as “audible bleeding.” It appears to me that coagulopathy on admission is simply a reflection of the physiologic aspects of injury.

I would plead with our military colleagues to find out what causes this and also would caution against the need to correct what I refer to as an abnormal laboratory value unless you’re doing it in a randomized prospective manner.

Dr. Philip S. Barie (New York, New York): A small point perhaps but one worth mentioning, the international normalized ratio or INR was used in a couple of your data slides to index your results.

And the point that I rise to make is that the international normalized ratio is a correction factor used by hematology laboratories to adjust for different prothrombin time assays and it does not have any inherent biological relevance.

The international normalized ratio, furthermore, is a valid indicator only in patients who are on warfarin on a stable dose.

So I would strongly encourage you to rework your data to index it to prothrombin time which would be the correct and interpretable form. And I look forward to your comments.

Dr. Jeffry L. Kashuk (Denver, Colorado): I would like to compliment the military on their series. And it’s very important for us in the civilian population to learn from these experiences.

But we need ask presented from your data is in excess of I think 60 to 70 percent blast injuries compared to conventional trauma in your series.

In our experiences in Israel we reported that there was significant differences between blast injury and the conventional trauma. The blast injury, ISS, and multi-dimensional injury was not predictor of those particular injuries.

Secondly, I would surmise that in the blast injury with associated soft tissue injury, thoracic injuries, etc, the potential for coagulation disorders are much greater than the conventional injuries that we’re used to treating.

So my question to you is, did you separate out your blast injuries from your conventional injuries in terms of identifying the coagulation disorders that you describe?

Dr. Michell Cohen (San Francisco, California): We in San Francisco are interested in the cause of early coagulopathy and actually working with Mr. Brohi who published that paper in the Journal of Trauma in 2003.

We found because of our very early transport times that it seems that our patients are making thrombin, which is the commonly thought to be cause of acidosis and hypothermic coagulopathy, but they’re still coagulopathic.

As we have discussed, we think it’s due to protein C. So I’m wondering what your transport times are and your time to measurement of coagulopathy.

And I’m wondering if you have looked at the patients who received a small amount of blood or no transfusions? What happened to that large group of patients because I think there can be some clue as to the cause of coagulopathy, acidosis-induced versus non-acidosis-induced in that patient population?

Dr. Richard J. Mullins (Portland, Oregon): Are some of the patients arriving in CSH in Baghdad considered moribund and unsalvageable? Are some judged to be so severely injured that no effort is made to really treat them other than to provide comfort? If there are patients considered moribund, are they included in these analyses that identify early coagulopathy is associated with death?

Dr. Sarah E. Niles (Silver Springs, Maryland): Dr. Ledgerwood and other commenters, thank you for all of your questions.

As for what new information and why we looked into this study was really based on the fact that we agree there are similar situations. Hemorrhagic shock is happening in civilian patients as well as in ours.

However, they had a very different mechanism of injury and very different injury pattern and we wanted to see whether the recommendations built on our damage control resuscitation were based on the same, were finding the same outcomes with the different injury types.

As for other questions about the time to injury that was asked by yourself as well as several other people, the time to injury were at some times recorded. They were not analyzed in this study and could be looked at further to see the different transportation times.

In terms of fluid resuscitation prior to patients arriving, we did not have that information for this set of patients.

The military uses a very strict regiment for the amount of prehospital fluid resuscitation that they do receive but we didn’t have that measurement for this data right now.
Hemorrhagic shock has been looked at as to why they died and whether or not they died from bleeding.

Hemorrhagic shock has been documented to definitely be a major cause of death in combat casualties and believe that many of our patients in the study definitely did die from hemorrhage from their wounds.

In terms of PTT, why PT was used versus INR, more, I do know that INR is based on the PT. In our patient population we measure INR more frequently which was also represented here by Dr. Moore’s paper that was presented at the AAST as well as by Dr. Schreiber as a used indicator. And because it was more used we decided to evaluate that laboratory data point for our patients.

In terms of Dr. Kashuk’s question on whether or not we separated out blast versus conventional injuries, we did not look at them separately, although 92 percent of our injuries were from explosions, not from the other ones and that would be probably what drives the majority of our data, being the vast majority of the injury pattern seen.

And Dr. Cohen asked about whether or not we looked at the patients that were not transfused versus those that were. The inclusion criteria for the study was just based on having a blood transfusion.

We felt that these patients were at a very high risk of hemorrhagic shock and wanted to look closely at their outcomes. The other patients are there and continued analysis would be a great study to go ahead and look at that.

In terms of the physiologic basis of why these patients and what is happening with their coagulopathy in terms of long term outcome, it’s a retrospective study design and unfortunately a good prospective study design from the very beginning watching what happens and going ahead into the future and measuring the different mediators involved would be necessary to determine a cause and effect relationship.