LONG-TERM GOALS

Our research group is collecting and analyzing various levels of high-resolution seismic data and cores, for ground-truthing seismic facies, on continental margins with a spectrum of depositional boundary conditions. The long-term goal of this work is develop stochastic models of variation of geotechnical and seismic property distribution on margins subjected to a spectrum of depositional regimes. The product of this research is are models of continental margins that show the probability of encountering a specific lateral distribution of geologic conditions as well as the probability that certain geologic/acoustic units will be lie beneath the seafloor and the various geologic units that lie at or near the seafloor. Essentially the product will be a measure of the level of 3-dimensional geologic variability that exists on continental margins subjected to various environmental conditions. This measure of variability is essentially the level of uncertainty that exists in our knowledge of geology of the continental margin environment. The importance of producing these stochastic models is that it provides a means of making predictions (with assignment of statistical risk) of the variation of geotechnical and seismic properties in areas where the only data that may exist for that margin at the time that a prediction is needed is information on physical oceanography or other gross descriptions of depositional conditions on the margin. We are also assessing assessing the quantity of data that are required to recognize the nature of the variability of the geology of the margin. We call this Minimum Data Density Analysis (MINDDA) and the product of it is essentially a measure of uncertainty that is associated with making operational decisions with a specific quantity of geologic data in the operation area.

OBJECTIVES

- In years 1 and 2 of the project I will participate in the UNITES team meetings and providing assistance to them with understanding how the geologic heterogeneity impacts the acoustic measurements made in 2001 in the East China Sea (ECS) and South China Sea (SCS).
- In years 3 and 4 of the project, the level of the interaction will increase significantly when the acousticians have analyzed their data and we can then get involved in a much more extensive analysis of the interrelationships between sub-bottom geology and acoustic propagation and loss.
- Using funds from my ASIAEX grant we will quantify the nature of horizontal and vertical seismic facies heterogeneity within a sequence stratigraphic context, and develop stochastic models of seismic facies heterogeneity produced under depositional conditions described of the ECS and then pass this information on to UNITES team members. If we get support from several programs
Our research group is collecting and analyzing various levels of high-resolution seismic data and cores, for ground-truthing seismic facies, on continental margins with a spectrum of depositional boundary conditions. The long-term goal of this work is develop stochastic models of variation of geotechnical and seismic property distribution on margins subjected to a spectrum of depositional regimes. The product of this research is are models of continental margins that show the probability of encountering a specific lateral distribution of geologic conditions as well as the probability that certain geologic/acoustic units will be lie beneath the seafloor and the various geologic units that lie at or near the seafloor. Essentially the product will be a measure of the level of 3-dimensional geologic variability that exists on continental margins subjected to various environmental conditions.
at ONR we will collect data at the SCS ASIAEX site and provide similar information to UNITES team members on this system.

- Use funds from my ASIAEX grant to determine the minimum data required (MINDDA) to predict the distribution of seismic attributes on margins with various depositional boundary conditions (ECS and SCS) by conducting sensitivity tests on survey spacing and associated changes in the distribution of mapped parameters.

APPROACH

University of North Carolina Seismic Stratigraphy Group (UNCSSG) is researching the relationships between variations in sedimentary boundary conditions and the stratigraphy produced by these conditions. Limited work has been conducted on relating distribution of near-surface seismic facies and variability in depositional environment boundary conditions. The study area on the Western Pacific Continental Margin (WPCM) is a region with high sediment supply (4 times the amount of sediment per year as the Mississippi River) and large magnitude hydrodynamic sediment transport processes (tidal currents and large waves from typhoons and storms associated with the winter monsoon), so that there may be a high degree of correspondence between the sedimentary processes active on the margin and the preserved stratigraphy. In other words it may be a situation where the sedimentary processes and recent stratigraphy may be in dynamic equilibrium. This situation may be rare today and it may be an "End-Member", but understanding this system is essential to understanding systems where the record of sedimentation is much less complete. In fact this area contrasts quite distinctively with many other continental margins (such as offshore Alabama, offshore Eel River, California, or offshore New Jersey).

Variability in the bottom and sub-bottom (0-100 meters) environment constitutes the uncertainty associated with bottom geology. Although there have been numerous studies conducted in the sub-surface on the distribution of attributes (attenuation, reflectivity, velocity, density and proxies thereof) and on exposed analogs of the sub-surface environments on land, few have quantified the nature of the vertical and lateral variability in attribute distribution. Bartek's research group at the University of North Carolina, Chapel Hill has been attempting to fill this gap by conducting investigations on the nature of the continental margin geologic architecture that evolves in response to change in sea level, variation in sediment supply and hydrodynamic regime on the margin. The initial effort has been focused upon locales that can be termed "extreme end-members". The end-members are in the northeast Gulf of Mexico (GOM) and the East China (ECS) and Yellow Seas (YS). The GOM locale is a low energy (micro-tidal and 1 large storm per 6 year interval) low sediment supply (Mobile Bay of Alabama, receives only 142.4 tons of sediment/year/square mile of drainage area and little of this reaches the shelf) system. The ECS and YS locales are high energy (meso-to macro-tidal and 20 to 25 large storms per year) and extremely high sediment supply. The Huanghe (Yellow River) and Changjiang (Yangtze River) Rivers respectively discharge 1.1 and 0.5 billion metric tons of sediment per year into the YS and ECS respectively. In terms of sediment discharge, these are two of the top 4 rivers in the world. To put things in perspective the Changjiang's sediment load is twice that of the Mississippi River which is far larger than the small rivers that discharge into the northeast GOM.

The hypothesis guiding this research is that the large difference in environmental boundary conditions between the end members should produce a corresponding and predictable differences in the distribution of attributes on these margins. We will continue to identify the nature of the statistically significant trends in the lateral and vertical distribution of attributes that are associated with the
variation of environmental boundary conditions in our ECS, YS, and GOM data that is associated with our other research funding. We will be able to use these associations to develop stochastic models of the spatial variability in the distribution of attributes associated with various sets of environmental conditions. We will use output of these analyses along with ongoing analyses of ECS ASIAEX data (and hopefully SCS geologic data) to improve our understanding of the uncertainty that is associated with the bottom Geology.

Our approach to characterizing the continental margin architecture and developing the stochastic models of spatial variation in attributes involves application of sequence stratigraphic analysis of seismic data (with nested frequencies) and cores. This is followed by facies analysis of these data. The output of these analyses are subjected to Q-mode factor analysis and ANOVA to identify the statistically significant lateral distribution of attributes and to use of binomial Markov analysis to identify the non-random vertical successions in attributes within the spatial groups identified on the margin with the Q-mode factor analyses. Once these lateral and vertical attribute distributions are identified analyses are conducted to identify the minimum amount of data (MINDDA) that are required to recognize the nature of the geologic system and to successfully predict attribute distribution associated with a given system.

MINDDA involves under-sampling a data set in a mode where the interval between samples increases in an expanding geometric progression. Each under-sampled data set is then mapped and correlation between the under-sampled map and the map with the next level of sample density is measured along with variation from one map to the next in terms of shape and orientation of structures on the maps. As the density of data that is required to characterize and recognize the system is approached, the differences between the maps progressively decreases to the point that a plot of data density versus variation in correlation coefficient shows very little change and is essentially flat. The region where the curve of diminishing returns changes from large differences in correlation coefficient to small differences in correlation coefficient defines the point at which one has acquired enough data to recognize and characterize the nature of variation of bottom geology associated with a particular set of environmental conditions. We will continue this research and integrate it with the ASIAEX research and then interact with the effort by the UNITES team to identify how uncertainty in the environment propagates through the acoustic modeling and signal processing. Our role here will be to provide geological expertise as members of the UNITES team grapple with the acoustics and oceanography of the ECS ASIAEX site. UNC personnel are dealing with these issues in the end-member systems of the ECS, YS, and NE GOM. At the ASIAEX site we collected seismic reflection and chirp sonar data sets that have a sample density that is far greater than our older surveys in the area and we will therefore test the impact of the sample density upon our understanding spatial distribution of attributes in the ECS. The ASIAEX site is also located in an area that is south of the main depositional center in the ECS, so analyses of these data are expected to reveal different spatial distributions of attributes and a different density of data required to successfully predict attribute distribution associated with this set of environmental boundary conditions.

WORK COMPLETED

We just received our funding so no work has been completed on the project. We will immediately start addressing the geologic uncertainty issue following the plans discussed in the APPROACH section above and hope to meet with UNITES team members within the next 6 months.
RESULTS

Once again, we just received our funding so no work has been completed on the project. We will immediately start addressing the geologic uncertainty issue following the plans discussed in the APPROACH section above.

IMPACT/APPLICATIONS

The scientific impact of this work is that it quantifies relationships between depositional boundary conditions and near-surface seismic/geotechnical properties distribution on continental margins. This therefore leads to more reliable estimates of these properties in areas where it is either difficult to acquire such data, or it is necessary to design a survey that will quickly provide needed insight, with a given level of risk of a bad prediction. It also leads to more successful design of transmission loss surveys and acoustics experiments on the role of bottom interaction on sound propagation in continental shelf environments. This obviously has impact in areas such as oil and gas exploration and production, environmental waste containment, and of course defense related issues on continental margins.

TRANSITIONS

UNC will provide Ching-Sang Chui at the Naval Postgraduate School (NPS) and the Woods Hole Oceanographic Institution (WHOI) (Jim Lynch) personnel with information on variation in Bottom Geology so that they will have data on the scale of statistically significant heterogeneity in lateral and vertical geological attributes on margins subjected to various depositional conditions. The acousticians will provide feedback on how the geology is impacting their measurements and models of how sound propagates in shallow water environments. Feedback indicating the location of good matches and poor matches will lead the UNC group to re-examine the geologic data and results of statistical analyses. These data and analyses will be examined to determine if there is a variable that is not normally considered an important element in the geologic framework that may be causing mismatches between the geology and acoustics of the margin. The analyses and models will be revised to incorporate the variable, which was previously not included in the geologic data and stochastic model of the margin geology.

Understanding the process-response relationship between depositional conditions and seismic facies distribution leads to improved understanding the nature of the heterogeneity of the distribution acoustic properties on a continental margin. The Naval Oceanographic Office has used the results of our analyses to design and conduct more successful transmission loss surveys on the WPCM. They also take data that we provide to them and integrate it into databases that they provide to the U.S. Navy for operations.

PUBLICATIONS

We have no publications yet because we just received funding for the project.