Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE	30 SEP 1997
2. REPORT TYPE	
3. DATES COVERED	00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE

Ice Thickness Distribution Test

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Washington, Applied Physics Laboratory, 1013 N.E. 40th Street, Seattle, WA, 98105

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT	unclassified
b. ABSTRACT	unclassified
c. THIS PAGE	unclassified

17. LIMITATION OF ABSTRACT

Same as Report (SAR)

18. NUMBER OF PAGES

2

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18
LONG TERM GOALS

Our long term goal is to undertake an experiment that will test the theory of how sea ice thickness distribution is changed by thermodynamics and by large-scale deformation. The minimal experiment envisaged involves two sequential surveys of ice draft in some region by an upward-looking sonar carried on a submarine. The theory is tested by seeing whether the change predicted over the time interval between the two surveys matches the change observed by submarine.

OBJECTIVES

The objective of this work is to answer sampling questions about how much data is required to provide a definitive test, and how to design an experiment. How densely must a region be surveyed and how much time should elapse before the repeat survey?

APPROACH

We densely survey an area of sea ice by submarine sonar and see how the estimate of thickness distribution is affected by including all or only portions of the data. Such tests allow us to calculate error bars on surveys of a given size, and allow us to design future experiments. An experiment must produce a signal—a thickness change—large enough to be measured without question above the noise—small scale variations in ice thickness.

ACCOMPLISHMENTS

With the 1996 SCICEX data we have been investigating how the variance of an estimate drops off with increasing sample size and find that the drop-off is less rapid than the usual reciprocal of sample size. A paper on this behavior is in preparation.

While waiting for 1996 cruise data, we began working with 1993 SCICEX ice draft data, which consisted of a long u-shaped transect across the whole Arctic Ocean.
We compared these data with model output, testing how much of the variations of ice draft seen in the data showed up in the model. This work is preliminary and awaits more extensive submarine data, hopefully from the historical record from the 1970's. This work was reported at the Ice Thickness Workshop in Monterey in April 1997.

SCIENTIFIC RESULTS
We have found unexpected behavior of ice draft profile data which shows that the decrease in variance of ice draft statistics with increasing sample size is slower than for more common data sets. The properties are seen in the autocorrelation at long (spatial) lags and in the spectra at the shortest wavenumbers.

IMPACT FOR SCIENCE
If sea ice models are to assume their proper place in global climate models, they must be validated with data as we are doing here.

TRANSITIONS
None.

RELATED PROJECTS
Ice Thickness Distribution Test--Stage 2, National Science Foundation Grant OPP-9617343, D.A. Rothrock, principal investigator, G.A. Maykut and A.S. Thorndike, co-investigators.

Polar Exchange at the Sea Surface, National Aeronautics and Space Administration Grant No. NAGW-2407 D. A. Rothrock, principal investigator

PUBLICATIONS