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Distributed Hybrid Information and Plan Consensus for
Semi-autonomous UAV Teams

Final Report

AFOSR # FA9550-11-1-0134

Jonathan P. How
Laboratory for Information and Decision Systems

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

Abstract
The research objective of this project was to increase the capabilities of decentralized task al-
location algorithms. Progress has been made on several different fronts, including: a) chance-
constrained task allocation [1], b) task allocation with tasks defined as Markov Decision
Processes [2], c) guaranteeing network connectivity during mission execution [3], d) allowing
the use of non-submodular score functions during the decentralized allocation [4, 5], and
e) decreasing the convergence time by utilizing all of the information available in the net-
work [6–8], f) hardware results that demonstrate the difficulty of planning in communication
contested environments and the utility of the proposed approach presented in [6–8], and g)
a tutorial on the basics of decentralized task allocation for a general audience is currently
in revision for Control Systems Magazine [9]. Combining these results has significantly im-
proved the state of the art capabilities of decentralized task allocation and work continues
to refine these approaches.

1 Research Results
The following summarizes the main research results from the project:

1. The first contribution proposed new risk allocation strategies for distributed chance-
constrained planning in multi-agent multi-task stochastic missions [1, 10]. Building
on previous efforts that extended chance-constrained planning to distributed environ-
ments [10, 11], this work presented a more formal approach to risk allocation, and
proposed several risk allocation strategies for homogeneous and heterogeneous agents
that can be leveraged within the distributed chance-constrained planning framework.
In particular, the contributions of this work included: presenting a framework for ho-
mogeneous and heterogeneous risk allocation, proposing risk allocation strategies that
exploit domain knowledge of agent score distributions to improve team performance,
and providing insights and intuition as to what parameters affect these allocations and
what features affect the performance of the overall chance-constrained mission score
given the distributed approximation. Results demonstrated improved performance in
time-critical mission scenarios given allowable risk thresholds.

2. This work developed a multiagent task allocation algorithm for general stochastic tasks
based on Markov Decision Processes [2]. This provides a task allocation algorithm that
is scalable to situations involving a large number of agents and tasks, while capable of
incorporating the generality of MDP models of those tasks. The main intuition behind
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the formulation of this approach is that the value function of an MDP task evaluated
at the expected starting conditions for an agent can be used as the score function for
task allocation. Results of this work showed the feasibility of using these methods in
realistic mission scenarios including environments whose tabular representation would
have more than 10100 states.

3. Research also investigated how to construct cooperative distributed planning algo-
rithms that ensure network connectivity for a team of heterogeneous agents operating
in a dynamic communication limited environment [3, 12, 13]. By employing under-
utilized agents as communication relays, the CBBA with Relays algorithm improves
network connectivity and team range, without limiting the scope of the active agents,
thus improving mission performance. The algorithm builds upon a distributed task
allocation framework, named the Consensus-Based Bundle Algorithm (CBBA), and
leverages information available through existing consensus phases of CBBA to predict
the network topology. If constraint violations are detected, relay tasks to repair con-
nectivity are created and integrated into the algorithm in a consistent manner. A key
feature of CBBA with Relays is that the network topology is computed only at select
mission critical times, and local information already available to each agent is lever-
aged in this prediction. As a result, the algorithm is able to preserve the distributed
and polynomial-time guarantees of CBBA, making it well suited to real-time appli-
cations. Algorithm performance is validated through simulation trials and through
experimental indoor and outdoor field tests.

4. Additionally, research expanded the class of score functions that can be used with
decentralized task allocation algorithms. Traditional methods have relied on submod-
ularity, a powerful property that can be exploited for provable performance and conver-
gence guarantees in decentralized task allocation algorithms. However, some mission
scenarios cannot easily be approximated as submodular a priori. This work introduced
an algorithmic extension for distributed multi-agent multi-task assignment algorithms
that enables them to converge using non-submodular score functions [4] and is ex-
tended in a submission to IJRR [5]. These enhancements utilized non-submodular
ranking of tasks within each agent’s internal decision making, while externally enforc-
ing that shared bids appear as if they were created using submodular score functions.
Convergence and performance bounds are proved for this algorithm called Bid-Warped
CBBA (BW-CBBA). The results of this effort showed significant improvements over
the previously available approaches of hand-tuned heuristics that approximate the true
non-submodular score functions.

5. Recent work has developed the Hybrid Information and Plan Consensus Algorithm
(HIPC) [6–8]. This algorithm uses implicit coordination to plan for a subset of the
team on-board each agent, then uses plan consensus to fix conflicts in the assignment
constraints that may arise. By combining the ideas of local plan consensus and implicit
coordination the algorithm empirically reduced the convergence time and number of
messages required for distributed task allocation problems. Recent work [7] rigorously
proves convergence and provides a worst case convergence bound that is no slower
than bid warped CBBA [4], requiring 2 times the number of assigned tasks times the
network diameter (2NtD) iterations. Further work expanded this to imperfect situa-
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Figure 1: (Example 1) Cleaning a large building using robotic vacuum cleaners. The building
contains a robust communication network so centralized planning approaches are appropri-
ate.

tional awareness [8] and a real time hardware demonstration was conducted showing
the validity of this approach.

6. A submission in review for the Control Systems Magazine [9] provides an introduction
to decentralized task allocation. It specifically introduces the material in tutorial form,
with specific examples identifying the components of particular missions that force the
use of decentralized algorithms. The goal of this work is introduce our view of decen-
tralized task allocation to the broadest audience possible and to provide a vocabulary
for discussing different decentralized approaches.

The following sections provide more detail on some of the newer work that has been devel-
oped, specifically from [5, 8, 9].

2 General Planning Examples
This section will introduce some canonical examples of planning problems to give some
intuition about the main concepts that are considered in this work.

2.1 Example 1: Office cleaning

High Level Mission: clean the floors of a large office building using autonomous robotic
vacuums.
Agents: robotic vacuum cleaners and a robotic elevator that can move the vacuum cleaners
between the floors of the building. The vacuum robots will have on-board sensors with the
capabilities of mapping the floor to be cleaned, and measuring the “cleanliness” of the floor
to make sure the environment is clean before moving on.
Environment: 8 story building with full wireless network coverage. The mission environ-
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ment is also assumed to be dynamic because 1) the furniture may move around a bit on a
daily basis, 2) workers in different parts of the building may stay later on some nights forcing
a delay in entering these areas, and 3) some areas may need heavier cleaning some days.
Detailed Objectives: optimize the allocation and motion of each of the vacuum cleaners
to efficiently clean the space while both minimizing resource consumption (i.e. robot power,
elevator usage) and minimizing inconvenience to humans working in the building.
Planner considerations: The computational problem is to decide what agents clean what
rooms and when, and how the agents move while they are cleaning those rooms. The simplest
planner available in terms of real time complexity would be to construct a single static plan
that is executed every building cleaning cycle. Given that the environment is assumed to
be dynamic, this approach will not work well in practice because the environment will likely
never match the one assumed by the plan. Another off-line approach could be to construct a
policy, which provides a detailed plan for the agents to execute for every possible realizable
environment. This approach can work well if all possible environments can be modelled ef-
ficiently a priori. For most non-trivial environments, however, these off-line policies become
intractable to compute (or even store) because there are too many possible scenarios that
can be encountered. When this is the case, it is necessary to consider at least partial on-line
approaches.

When constructing on-line planning approaches, computational time becomes very im-
portant (because the time you spend computing is time not servicing the overall mission.)
One of the most common simplifying assumptions is decoupling the assignment of the agents
(what rooms do they clean and when), from the motion plans of these agents when they are
in the rooms. This is a good assumption when the relevant information about the motion
plan can be predicted without having to compute agent trajectories. In this context, if the
problem is partitioned into cleaning rooms, the only information the allocation planner would
need, is the location of the agent before and after it has cleaned the room, and how long
it will take to clean the room. As long as the optimal plan for cleaning the building w.r.t.
the detailed objective function, does not have individual agents cleaning the same room si-
multaneously, this simplification does not sacrifice performance of the overall mission. For
this environment, decoupling the agent motion inside the rooms from the room assignments
seems reasonable because the vacuums will likely enter, and exit rooms through doorways,
and have estimates about how long it will take to clean rooms.

Solving the motion planning part of this problem is not the focus of this tutorial, as such,
it is assumed that the agents have the ability to plan their trajectories through the rooms,
and accomplish the cleaning tasks for those rooms.

The process by which the allocation assignments are constructed will be the primary
focus of this paper. Given that the building wireless network provides a relatively robust
communication network, a centralized task allocator that is aware of the states and
capabilities of all agents can be run in real time. In comparison to the next example that
will be presented, there is no need to decentralize the assignment planning aspects of this
problem because the communication network is so good, and the vacuum cleaners don’t
need to change their behavior so often that a centralized planner would struggle to provide
assignments in a reasonable time.
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Figure 2: (Example 2) Surveying a large building using quadrotor helicopters without a
building communication infrastructure. This environment will likely need some form of
decentralized planning to ensure mission completion with the required ad hoc network.

2.2 Example 2: Emergency building survey

High Level Mission: search a large building in an emergency situation. This involves
mapping the current physical state of the building, and potentially identify key features
that require actions from a base station (i.e finding victims that may be trapped, structural
problems, etc.)
Agents: flying reconnaissance robots (shown as quadrotor helicopters.) The vehicles use
on-board sensors to do the required mapping as well as provide feedback for their own motion
control. The agents use radios to communicate with each other and to the base station.
Environment: it is assumed that a good floor plan of the building is unavailable or the
emergency situation has potentially caused structural damage to the building and the effec-
tive floor plan has changed. Additionally it is assumed that there is not a reliable building
wifi network or an elevator system to move ground robots around, requiring the use of fly-
ing robots and communication over an ad hoc network between the agents. An additional
complication is that radio communications between the agents may be obstructed so com-
munication may fail in certain vehicle geometries.
Detailed Objectives: search building as fast as possible while possibly ensuring important
information gets relayed to the base station quickly.
Planner considerations: Using similar logic to Example 1, it will be virtually impossible
to use an offline plan or policy approach and expect good performance. There is very little
known about the environment before the mission is being executed, so real time adjustments
based on the observed environment will be essential. There are, however, significant differ-
ences in the two examples. First, this domain is much more time sensitive, meaning planning
decisions must be made very quickly. Additionally, the communication network is much less

DISTRIBUTION A: Distribution approved for public release.



Figure 3: (Example 3) An autonomously controlled car on the left is attempting to merge
into a congested right lane with two uncontrolled vehicles. This problem does not fit into
the typical multi agent planning framework that is discussed in this tutorial.

favorable so connections to a centralized location are not even guaranteed. Therefore, the
agents will have to utilize an ad hoc network between themselves to coordinate their actions
and plan their trajectories throughout the building. Complicating the communication en-
vironment further, the ad hoc network will also be dynamic during the mission execution
as agents move around in the building. Since communications to the base are not guaran-
teed and decisions must be made on a relatively quick time scale it doesn’t make sense for
the agents to re-establish global communication before making decisions. This scenario will
likely require decentralized algorithms to sufficiently satisfy the mission objectives. There
are many different algorithmic forms that could be utilized for this planning assignment
problem, some of which will be discussed throughout this tutorial.

The majority of the paper will focus on environments that look like some combination
of the first two examples. The purpose of separate examples is to highlight the transition in
the communication and planning environment needed to motivate utilizing a decentralized
planning approach. The purpose of Example 3, as will be shown next, is to highlight that
there are some problems that are not modeled well in typical planning frameworks.

2.3 Example 3: Autonomous Lane Merging

High Level Mission: merging lanes in an autonomous vehicle.
Agents: a single autonomous vehicle.
Environment: normal highway driving. In this scenario the cars in the right lane are
considered as part of the environment because we don’t have direct control over them. There
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can only be social cues (i.e. turning on a turn signal) do indicate a desire to merge into that
lane.
Detailed Objectives: The controlled agent in the left lane wants to merge into the right
lane as quickly as possible while remaining safe. An important note here is that the cars in
the right lane have no direct incentive to let or agent merge.
Planner considerations: The key issue with this problem is that there are two autonomous
vehicles that have no explicit incentive to coordinate with the merging car. The only reason
a car in the right line would slow down is due to some social behavior. Understanding this
behavior is handled in the field of game theory and is based on making decisions based
on reciprocal behavior. The only real option for an agent attempting to use a classical
planning algorithm would be to model the other agents as part of the environment and try
to manipulate the environment, with signals or changing speeds to signal a desire to merge.
This would involve predictions of the environment dynamics and how these agents would
respond to this behavior which is just another way of looking at game theoretic decision
making. This is a severe increase in complexity that will not be addressed in this tutorial.
The take away from this example is thatthere exists problems that are not centralized, but
do not permit the use of the typical decentralized approaches that will be presented here.

3 Decentralized Task Allocation
An important contribution of this work is utilizing decentralization as a tool that can improve
mission performance. This contrasts the way it is typically viewed as simply a feature of
a particular algorithm. Just because something can be decentralized, doesn’t mean that it
should and certainly doesn’t mean that it will improve performance. In much of the literature
the reasons for decentralizing algorithms are lost and one of the primary goals of this work is
to provide intuition on when decentralization should be used, and when and what it actually
helps to decentralize [14].

To start this discussion, it is important to first recap what type of problems are solved
best in centralized environments. An ideal centralized environment requires 1) agent objec-
tive knowledge is available at a centralized location, 2) communication channels from the
centralized location to each agent, and 3) full information state knowledge at the centralized
location. Either the information environment or the communication environment can cause
performance degradation in a purely centralized task allocation algorithm. For ideal decen-
tralized behavior, two conditions must be met: 1) Agent decisions cannot conflict with other
agents, and 2) the relevant agent information state must be locally observable. All other
environments introduce a degradation from the ideal performance of these two paradigms.

After understanding what types of problems centralized and decentralized algorithms
solve well, we can start to discuss how to utilize decentralization (or equivalently central-
ization) to improve performance. Figure 4 highlights how different paradigms can achieve
different results for a fixed bandwidth. The design criteria for creating the best algorithms
for a given environment becomes, what information is communicated to whom, where is the
computation done, and what is computed. The goal is then to design algorithms that can
answer these questions during runtime for the realized mission and environment. The an-
swers to these questions have led to the ideas in the Hybrid Information and Plan Consensus
algorithm (HIPC).
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Figure 4: Comparison between three different planning approaches over a wide range of
bandwidth restrictions and problem scenarios. The blue dots show the progression of plan-
ner performance for centralized planners as bandwidth increases, the green dots show the
planner performance of implicit coordination, and the red dots show the performance that
HIPC achieves. This figure is essentially a cartoon that illustrates an environment where
utilizing hybrid approaches, can provide good solutions much faster in some communication
environments.

3.1 Understanding How Information is Shared between Agents

The goal of standard multi-agent task allocation algorithms [15–17] is to coordinate a team
of cooperative agents to achieve an overall mission objective. These mission objectives can
often be broken up into tasks that require specific actions by capable agents, all while sat-
isfying constraints (i.e. fuel, power, vehicle capabilities, etc.) Centralized task allocation
algorithms are typically preferred when an application requires high levels of collaboration.
However, in contested environments where communications may be unavailable, unreliable,
have high latency, or high cost, relying on centralized solutions can be impractical. In these
communication limited environments, it is necessary to consider distributed or decentral-
ized algorithms [18]. Unfortunately, using distributed or decentralized algorithms usually
introduces additional complications, including difficulties establishing both algorithmic con-
vergence and performance. The major reason for these complications is that in decentralized
environments, agents may operate on only partial information, and thus independent agent
optimizations may not align perfectly with each other. Thus, advanced communication pro-
tocols are typically required for decentralized algorithms to optimize over desired objectives.
These communication protocols can be categorized into two main information assumptions:
global information consistency and local information consistency.

DISTRIBUTION A: Distribution approved for public release.



1. Global information consistency assumptions (GICA) require that all agents agree upon
certain relevant pieces of information during the task allocation algorithm’s execution.
This agreement forms a set of “correct” information that agents can independently
recognize as team-wide truth. Given that these global information consistency as-
sumptions require recognizing information across the entire team, reaching informa-
tion consistency happens on a global communication time scale. Algorithms that utilize
these assumptions can be found in Refs. [17, 19–37].

2. Local information consistency assumptions (LICA) do not require global consistency
of any information. Only requiring local information consistency can provide a much
shorter time-scale for utilizing new information (than global information consistency),
because agents are not required to ensure that this information has propagated to
the entire team before using it. The natural downside of this is that agents cannot
guarantee any piece of information is globally consistent and thus algorithms utilizing
these assumptions must take this into account during the planning process [38–41].

There are many factors that determine whether requiring global or allowing only local in-
formation consistency will provide the best algorithmic performance for a particular mission.
The most important decision variables will be the communication environment, the mission
complexity and the time constraints for creating assignments. A trivial environment where
global consistency assumptions would be preferable is an environment where the agents are
fully connected, with no bandwidth constraints and no mission assignments are time critical.
In this environment there would be no need to introduce the added complexity of local in-
formation consistency assumptions. Conversely, a trivial example of when local information
consistency assumptions are necessary is when the network can become temporarily discon-
nected. Network disconnections during global information consistency algorithms will break
the assumptions tied to performance and sometimes convergence. Possible repairs would
include waiting until the network reconnects (may never happen) or detecting the new net-
work, continuing on and hoping that future network dynamics wont break the resulting
allocation (which is not a guarantee). This domain is handled naturally with local consis-
tency assumptions which can ensure provably good performance in contested communication
environments.

In other domains where global consistency assumptions are reachable, local consistency
algorithms can actually drastically reduce convergence times. Figure 5 shows that the con-
vergence time of sequential auction algorithms (such as one described in [42]) will require
roughly the number of tasks times the network diameter iterations to reach convergence.
Even algorithms that globally consider bundles of tasks simultaneously (e.g. a GICA version
of CBBA [40] that rebroadcasts messages so that each agent has the entire team’s bundles
during the communication phase) can require significantly more communication iterations
than local information consistency assumption algorithms (CBBA [40]). This is because
assignment conflicts are often between agents that are near each other in the communication
network and conflicts can be managed faster using only local conflict resolution protocols.

These insights imply that some environments are well suited for algorithms that only
use only local information consistency assumptions (referred to as LICA for the rest of the
report). Therefore, this work investigates the objective function limitations that LICA algo-
rithms impose on assignment convergence and performance. In general, issues arise because
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Figure 5: Compares the number of iterations required for convergence in 500 Monte Carlo
trials of a 200 task mission with a varying number of agents.

algorithms that make decisions based only on LICA cannot trust that their information is
globally accurate. This means there is no mechanism to enforce assignments, and any local
assignment may eventually be replaced. This lack of assignment guarantee can lead to insta-
bility in the convergence process. Specifically, if the agent objective functions do not obey a
property called submodularity, algorithms that only require LICA may not converge [38–41].
Unfortunately, many objective functions of interest, including those that incorporate fuel
penalties, information gathering metrics, cooperative tasking metrics, and stochastic objec-
tives may take a non-submodular form. A solution to this is outlined in this work if functions
are nearly submodular. The approach is to modify the information shared between agents
so that it looks as if each agent was using a submodular objective function, even though
agent preferences will be determined using non-submodular objectives. This approach will
provide convergence guarantees for all objective functions, and will quantify when non-trivial
performance bounds exist.

The first algorithmic contribution of this work was the creation of BW-CBBA [4], which is
a local information consistency algorithm that converges with all forms of objective functions.
The approach taken in this algorithm is to modify the information shared between agents
so that looks as if it were created using a submodular objective function, even though agent
preferences are still determined by a non-submodular objective function. This approach will
provide convergence guarantees for all score functions, and will quantify when non-trivial
performance bounds are possible with non-submodular objective functions.
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3.2 Problem Formulation

This section presents the general problem statement and formalizes the class of problems
being solved by HIPC. Given a set of Na agents and Nt tasks, the goal of the task allocation
algorithm is to find an assignment of tasks to agents that maximizes the global reward. The
global objective function for the mission is given by a sum over local objective functions for
each agent, while each local reward is determined as a function of the tasks assigned to that
agent, and the times at which those tasks will be serviced. This task assignment problem
can be written as the following mixed-integer (possibly nonlinear) program:

max
x,τ

Na∑
i=1

Nt∑
j=1

Fij(x, τ ) xij (1)

s.t. H(x, τ ) ≤ d

x ∈ {0, 1}Na×Nt , τ ∈ {R+ ∪ ∅}Na×Nt

where x ∈ {0, 1}Na×Nt , is a set of Na × Nt binary decision variables, xij, which are used
to indicate whether or not task j is assigned to agent i; τ ∈ {R+ ∪ ∅}Na×Nt is the set of
real-positive decision variables τij indicating when agent i will service its assigned task j
(where τij = ∅ if task j is not assigned to agent i); Fij is the score function for agent i

servicing task j given the overall assignment; and H =
[
h1 . . .hNc

]T
, with d =

[
d1 . . . dNc

]T
,

define a set of Nc possibly nonlinear constraints of the form hk(x, τ ) ≤ dk that capture
transition dynamics, resource limitations, etc. This problem formulation can accommodate
most design objectives and constraints used in multi-agent decision making problems (e.g.
search and surveillance missions where Fij represents the value of acquired information and
the constraints hk capture fuel limitations and/or no-fly zones, or rescue operations where Fij

is time-critical favoring earlier τij execution times, etc). An important observation is that, in
Equation (1), the scoring and constraint functions explicitly depend on the decision variables
x and τ , which makes this general mixed-integer programming problem (NP-hard) [43].

The algorithms used in this work solve distributed greedy multi-agent multi-assignment
problems. For each agent, these problems take a similar form to Equation (1), except
individual agents independently create assignments for themselves, and then iterate with
others using a consensus algorithm to produce a final team-wide assignment. The details of
this process will be explored throughout the rest of this report.

3.3 Submodularity

The shape of the mission objective function is fundamentally related to the difficulty of
creating good task assignments. Specifically, objective functions must be submodular [44]
for LICA algorithms to converge and have non-trivial performance bounds [38–41]. For the
purposes of this paper, submodularity can be defined as follows: the marginal score function
F (S|A) for incrementing an allocation by a set S to an existing task allocation A, must
satisfy the following

F (S|A′) ≥ F (S|A) (2)

∀A′ s.t. A′ ⊂ A
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To guarantee that F is a set function in this notation, scores are defined as incremen-
tal assignment S’s marginal contribution to the task allocation environment F (S|A) =
F (S ∪ A) − F (A). A task environment A can be thought of as a globally consistent set
of allocations S, where each element s ∈ S defines an assignment of tasks to agents. Equa-
tion (2) requires that the value of a particular assignment S cannot increase because of the
presence of other assignments. Although many score functions typically used in task alloca-
tion satisfy this submodularity condition (for example, mutual information with conditional
independence assumptions [45]), many do not. As will be shown in the next section, submod-
ular score functions are essential for LICA algorithms to guarantee convergence. Previous
work identified modifications to the score functions that employ heuristics to ensure that
submodularity is satisfied [40], but these heuristics may lead to poor performance and are
not usually intuitive to design. This paper presents an online process to modify a LICA
algorithm called the consensus based bundle algorithm (CBBA) that enables the use of
non-submodular score functions while still guaranteeing convergence. The principles of the
approach are quite general and could be applied to many LICA algorithms.

4 Non-Submodular Examples
It is simple to demonstrate that a LICA algorithm may fail to converge with a non-submodular
score function, even with as few as 2 tasks and 2 agents. Consider the following algorithm:
each agent sequentially produces bids on a set of available tasks, then shares the bids that
maximize its local score with the other agents in the team. If an agent bids the highest value
for a certain task, it “wins” that task at that round and is allowed to keep it. This process
repeats until no agent has incentive to deviate from their chosen allocation. In the following
examples, the nominal score achieved for servicing a task will be defined as T . The actual
value achieved for servicing the task may be a function of other things the agent has already
committed to doing. An agent’s bid will be a pair, composed of a task ID and a task score.
The bid represents the information an agent plans to communicate with its neighbors. The
notation for an agent’s bid in Examples 1 and 2 is (task ID, task score). For the purposes
of this algorithm, a bundle is a sequential order of bids, where the later bids are dependent
on all earlier bids (in the notation, older bids are on the left).

Example 1: Baseline Submodular Score Function

This example provides a baseline algorithmic progression with a submodular score function
to illustrate how convergence is achieved. In this first example, deviation from a nominal
value T will be represented as δ, and its value will be 0 < δ < T . In Iteration 1, each agent
chooses between 4 feasible bundles. The greedy maximum bundle for each agent includes
bids on both tasks 1 and 2, but the bid value for the second task placed by both agents is δ
less than the bid for the first task. The bid values in this example could have been produced
by a submodular score function since the score has not increased because of the assignment
of the first task (in fact it has decreased). Between Iteration 1 and Iteration 2 both
agents share their bids with each other and a consistent assignment is reached in Iteration

2 that actually maximizes the global score. When this algorithm is run with submodular
score functions it will return identical allocations to a similar global information consistency
version of the algorithm where individual bids are sequentially locked in as a team.
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Example 1: Allocations with a submodular score function Bundle Creation

Agent 1 candidate bundles

1. {}
2. {(1, T )}
3. {(2, T − δ)}
4. {(1, T ), (2, T − 2δ)}

Agent 2 candidate bundles

1. {}
2. {(1, T − δ)}
3. {(2, T )}
4. {(2, T ), (1, T − 2δ)}

Algorithmic progression

Iteration 1

Agent 1: {(1, T ), (2, T − 2δ)}
Agent 2: {(2, T ), (1, T − 2δ)}

Iteration 2

Agent 1: {(1, T )}
Agent 2: {(2, T )}

Example 2: Non-submodular score function

Example 2 highlights how convergence is lost when non-submodular score functions are
introduced with the algorithm defined at the beginning of Sec. 4. In this example, δ may
take any value, 0 < δ <∞. At Iteration 1 both agents choose between 4 feasible bundles,
and they choose the bundle with the highest total score (Agent 1 chooses bundle 4 and Agent
2 chooses bundle 4). In this example, the maximum value bundle for each agent has a second
task that has increased its value because of the assignment of the first task. This explicitly
violates the submodularity condition in Equation (2).

Between Iteration 1 and Iteration 2 the agents share their bids with each other.
Agent 1 is outbid on task 1, and thus the bid on task 2 is invalidated because it depends
on task 1 being assigned. Similarly agent 2 is also outbid on task 2, and thus its bid on
task 1 is invalidated. As a result of the conflicts in Iteration 1, neither agent predicts
that it can win either task at Iteration 2. This includes the fact that neither agent can
place a single bid that would outbid their expectation of what the other agent can bid. Thus
for this iteration, neither agent places a bid. Between Iteration 2 and Iteration 3 each
agent will then share their empty bundles. This reverts back to the initial conditions of the
algorithm and Iteration 3 repeats Iteration 1 and the cycle will continue forever.

From Example 2, it becomes clear that a LICA algorithm does not work well with non-
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Example 2: Allocations with a non-submodular score function
Bundle Creation

Agent 1 candidate bundles

1. {}
2. {(1, T )}
3. {(2, T − δ)}
4. {(1, T ), (2, T + δ)}

Agent 2 candidate bundles

1. {}
2. {(1, T − δ)}
3. {(2, T )}
4. {(2, T ), (1, T + δ)}

Algorithmic progression

Iteration 1

Agent 1: {(1, T ), (2, T + δ)}
Agent 2: {(2, T ), (1, T + δ)}

Iteration 2

Agent 1: {}
Agent 2: {}

Iteration 3

Agent 1: {(1, T ), (2, T + δ)}
Agent 2: {(2, T ), (1, T + δ)}

submodular score functions. It may seem easy as a global observer to see that Agent 1
choosing bundle 2 and Agent 2 choosing bundle 3 would produce the global optimal objective.
However, this requires having the global information of every possible bundle for each agent.

A candidate LICA solution for fixing the convergence issues is to detect cycles of the
type shown in Example 2 locally and then use this knowledge to stop suggesting cycling
plans. Unfortunately, in general, there is no fast way to detect if an agent has entered into
one of these cycles, because they could, in general, include a combinatorial number of task
assignments being traded between the agents during the consensus process. Even worse is
the fact that breaking the algorithm out of one cycle does not guarantee that the agents will
not enter another cycle at a later stage in the convergence process.

In practice, many non-submodular score functions can lead to this cycling behavior, and
the following example highlights that objective functions that lead to these cycling conditions
are not exotic and in fact, occur for many desirable score functions.
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Figure 6: A potential task environment described in Example 3, where a represents an
agent, and 1 and 2 are task locations. The notation duv is the distance required to move
from location u to location v.

Example 3: Waypoint tasks

Consider the potential task scenario illustrated in Figure 6 involving one agent (blue circle
labeled a) and two tasks (red circles labeled 1 and 2). For the purpose of this example
assume that da2 > da1 � d12, where the notation duv is the distance required to move from
location u to location v. An intuitive score function Fij(x, τ ) for this environment is defined
as follows:

Fij(x, τ ) = R− fidx⊕j (3)

where Fij(x, τ ) is the score for assigning task j to agent i given current assignment X and
arrival timings τ , R is the reward obtained for servicing a task, fi is the fuel penalty per
unit distance for agent i, and dx⊕j is the increase in distance travelled by inserting task j
into the current assignment x (which by assumption cannot already include an assignment
on task j by agent i). If the LICA algorithm introduced at the beginning of Sec. 4 were
run in this environment, it would first assign task 1 because R − fida1 > R − fida2. When
the algorithm assigns task 2 using the score function presented in Equation (3), the score
obtained is R − fid12. This results in the bid on the second task being greater than the
first task (R − fid12 > R − fida1) which is exactly the situation shown in Example 2 for
a non-submodular score function. Depending on bids made by other agents in the fleet, a
LICA algorithm may fail to converge with this simple geometry and score function.

One possible strategy to address this problem is to “submodularize” the score function
using a heuristic [46]. For example, the score function (3) can be approximated as:

F ′ij(x, τ ) = R− fidaj (4)

where the only difference is that the distance metric is defined as the distance daj measured
from the agent’s initial location to task j. This is required to ensure that the incremental
fuel penalty is never smaller than when the agent has no previous unassigned tasks. With
this score function, the first bid will again be on task 1, because R− fida1 > R− fida2, and
the second bid will be on task 2, but this time the bid will have the score R − fida2. This
objective function is now submodular because the score on task 2 does not increase as a
result of the previous assignment of task 1. However, this score function cannot capture the
fact that, since task 1 is being serviced, task 2 should seem much more favorable (as it would
have been much closer to the agent after servicing task 1). The purpose of the approach
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Figure 7: A potential task environment described in Example 4, where a represents the agent,
and 1 and 2 are task locations. The notation tuv is travel time measured from location u to
location v. The three graphs show the probability distributions of the travel times for each
of the three legs in the example (ta1,t12, and ta2.) The red dots on these distributions show
a candidate sampling locations where ta1 + t12 < ta2.

presented in this paper is to enable algorithms with only local information guarantees to
use score functions that capture these non-submodular effects without having to sacrifice
convergence guarantees. Example missions using both F and F ′ are explored numerically in
Section 6.3 and these demonstrate the potential downside of using a priori submodularized
functions.

Example 4: Stochastic Tasks

Stochastic objective functions can be used in environments where some necessary planning
parameters are not known or even knowable a priori. Examples of these uncertain parameters
include wind speed, tolerances on agent performance, duration of search tasks, or other diffi-
cult to model a priori environmental effects. When planners use stochastic score functions,
combining the score distributions of individual tasks over multiple assignments in a sequence
may not have a closed-form solution. In this case, sampling may be required to approximate
these distributions. Figure 7 illustrates an example where non-submodular effects can arise
due to this necessary sampling.

Assume that the score function has the simple form:

Fij(x, τ ) = R− τij (5)

where τij represents the time at which the task is serviced, and R is some fixed reward. This
score function then linearly decays with time. This is a submodular score function if the
traveling times obey the triangle inequality.

With appropriate distributions over the travel times it is possible to see that for a par-
ticular sample (Fig. 7) ta2 can be greater than the sum of ta1 and t12,

Prob(ta2 > ta1 + t12) > 0. (6)
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Therefore, even though the expected mission scores are submodular,

E(R− ta2) ≥ E(R− (ta1 + t12)) (7)

the sample mean for any finite set of particles of size n sampled from the distributions of
ta2, ta1, t12 may not be submodular:

Prob


n∑

m=1

(
R− t

[m]
a2

)
n

<

n∑
m=1

(
R−

(
t

[m]
a1 + t

[m]
12

))
n

 > 0. (8)

In this notation, t[m] is the mth sample from the random variable t. Therefore it is possible
for the objective function sample mean for servicing task 2 to be greater by first servicing task
1, which breaks submodularity. This illustrates another example where non-submodularity
can arise and must be accounted for to use LICA algorithms in practice.

4.1 Convergence for non-submodular score functions

The convergence failures highlighted above in Example 2 are a direct result of multiple tasks
being assigned with only local information available about the winners. It was postulated
as Lemma 4 in [40] that a trick for augmenting the score function to satisfy submodularity
would be to ensure that the bids were monotonic in subsequent iterations:

c̃ij(t) = min{cij, c̃ij(t− 1)} (9)

where cij is the initial score at iteration t and c̃ij(t) is the augmented score at iteration t.
Unfortunately, this approach tends to create a significant performance degradation in some
environments. If this approach is applied to the environment presented in Example 2, after
Iteration 2 the algorithm will not be able to bid above 0 on either task 1 or 2. This is
not a desired result; the approach provided in this paper prevents algorithmic cycling by
pre-emptively changing the bid values, rather than relying on the performance-degrading
process of identifying cycles after they happen.

4.2 Using Local Information Consistency Assumption Algorithms

The content of this section has outlined how using LICA algorithms can lead to convergence
and performance degradation when score functions are non-submodular. Despite this, as
was outlined in Sec. 2, there exist environments that require or could utilize LICA task
allocation algorithms to improve mission performance. The rest of this paper outlines al-
gorithmic extensions to an existing LICA algorithm (CBBA) that can increase the class of
score functions usable in practice. These modifications allow for the use of LICA task al-
location algorithms in many desirable mission domains where performance and convergence
guarantees were previously unavailable.

DISTRIBUTION A: Distribution approved for public release.



5 LICA Algorithms
This section focuses on a new description of the consensus based bundle algorithm [40] as well
as algorithmic modifications specifically related to handling non-submodular score functions.
The following description of CBBA is a slight modification of the one that was originally
proposed in [40], introducing some new terms which will be used for proving relevant aspects
of the new algorithm proposed in this paper.

5.1 Baseline CBBA

CBBA is a local information consistency assumption auction algorithm that provides prov-
ably good task assignments for multi-agent, multi-task allocation problems. The algorithmic
structure of CBBA is an iterative, two phase algorithm. These two phases are a bundle build-
ing phase where each vehicle greedily generates an ordered list of assignments, and a task
consensus phase where conflicting assignments are identified and resolved through local com-
munication between neighboring agents. These two phases are repeated until the algorithm
has reached convergence. To further explain the relevant details of the algorithm, some
notation will first be formalized.

1. A bid is represented as a triple: sij = 〈i, j, cij〉, where i represents the bidding agent’s
index, j represents the task’s index, and cij represents the value of assignment for this
task agent pair.

2. A bundle is an ordered data structure internal to each agent i, bi = (sij1 , . . . , sijn)
that consists of a list of bids where sijk is the kth bid added to the bundle. A bundle
is said to have length n if there are n bids in the list. When new bids are added to the
bundle, they are appended to the end, thus the order in the bundle reflects the relative
age of each bid and thus the dependency structure of the bids.

3. The bid space is an unordered set of bids, defined as A = {si1j1 , . . . , siN jN}, where N
is defined to be the current size of the bid space. This bid space contains a globally
consistent set of the current winning bids in the team.

4. A local bid space Ai is defined as a set that contains agent i’s current local under-
standing of the global bid space. In a fully connected network, Ai = A after each Task
Consensus Phase (which also would correspond to having global information consis-
tency assumptions over the task space), but in general, the geometry of agents in the
network may lead to information propagation latencies and thus non-identical local bid
spaces. A consistent global bid space will be always be a subset of the local bid spaces
A ⊆ Ai.

5. The network diameter D is defined as the number of communication hops between
the furthest agent pair in the communication network. More formally, define a number
for each agent i consisting of the minimum communication distance to every other
agent i′. The maximum value over all agents is defined as the network diameter.

CBBA begins with each agent i being provided (or somehow discovering) a set of avail-
able tasks. In general, the set of available tasks does not need to be identical for all agents.
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Algorithm 1 CBBA: Bundle Building Phase

(for agent i)

1: procedure Build Bundle(Ai)
2: for all sij′ s.t. ∃j′ where sij′ ∈ Ai do
3: Ai ← Ai \ sij′
4: end for
5: set bi ← ∅
6: while |bi| < Lt do
7: J ← {j | sij /∈ Ai}
8: for all j ∈ J do
9: cij ← Fij(bi),

10: hij ←
∏

si′j∈Ai
I(cij > ci′j)

11: end for
12: j? ← argmax

j∈J
cij · hij

13: sij? ← 〈i, j?, cij?〉
14: if cij? · hij? > 0 then
15: bi ← bi ⊕ sij?
16: Ai ← Ai ∪ sij?
17: else
18: break
19: end if
20: end while
21: return (bi,Ai)
22: end procedure

The two phase algorithm then begins in the Bundle Building.

Bundle Building Phase For each agent i the bundle building phase is run independently.

1. All current tasks that agent i has won are removed from agent i’s bundle bi and local
bid space Ai (lines 3,5 of Alg. 1). This step is required for the performance guarantees
of the algorithm1, but in most cases the agent will re-add each of the tasks it has just
dropped.

2. A local internal score function Fij(bi) is defined for each agent i and task j. It is a
function of the agent’s current bundle bi and implicitly a function of the assignment
constraints G(x, τ ) ≤ d posed in the problem formulation (Eq. 1). If a proposed
assignment will not satisfy the constraints required by Eq. 1, Fij(bi) will return a
value of −∞. For complete notation consistency with Eq. 1 in Sec. 3.2, assume that
there is a one-to-one mapping between (bi) and (x, τ ). The complexity of actually

1Agent i may want to change its bids in light of new information obtained through communication,
instead of being “stuck” with the bids made in the previous iteration.
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picking the execution times τij is not a focus of this paper, but other solutions used for
CBBA can be implemented [47]. For each task j available in the environment (line 7),
each agent i uses its local internal score function Fij(bi), to create a score cij (line 9).

3. These scores, cij, are compared with the winning bid information for the corresponding
task j located in the agent’s local bid space Ai (line 10). The largest score that would
outbid the current winner in the local bid space is chosen as agent i’s next bid (line
12). A bid sij? is created (line 13) and, as long as the value of the bid is positive
cij? · hij? > 0 (line 14), it is placed at the end of the bundle (line 15) and replaces the
current bid on task j in the local bid space Ai (line 16).

4. Steps 2 and 3 (lines 7-16) are repeated until no tasks have a larger score than the
corresponding bids already in Ai or the maximum bundle length is reached, at which
point the bundle building phase terminates. It is worth noting that in this formulation
the values cij are used to rank the tasks, and the same values are used to construct
the bids sij, which are shared with the other agents. The main result of this paper
is to separate these two values in order to enable a larger class of score functions to
converge with this type of algorithm.

Task Consensus Phase After the bundle building phase completes, each agent i synchronously
shares its current local bid space Ai with each of its adjacent neighbors. This local bid space,
in combination with time-stamp information, is then passed through a decision table (see [40],
Table 1 for details) that provides all of the conflict resolution logic to merge local bid spaces.
In general, the consensus logic prefers larger and more recent bids. If the consensus phase
has occurred more than twice the network diameter times without any bids changing, the
algorithm has converged and terminates; if not, each agent re-enters the bundle building
phase and the algorithm continues.
Score Function Fundamental to all of the convergence and performance guarantees for CBBA
is that it must use a diminishing marginal gains (DMG) satisfying score function. The re-
quirement of DMG for the CBBA score function is a special case of requiring submodularity
as it was introduced in the Section 3.3 because it was defined for a specific marginal contri-
bution to the existing bundle bi as opposed to for all sets as was defined in Eq. 2. It was
recognized in the seminal description of CBBA [40] but is updated here with the notation
of bids and bundles. DMG is defined as

Fij(bi) ≥ Fij(bi ⊕end sij′) ∀j′ 6= j (10)

where bi ⊕end sij′ refers to adding a bid sij′ on task j′ to an already existing bundle bi.
Roughly this condition means that no bids sij′ can be made on any other task j′ that would
increase cij, agent i’s score for task j. When score functions Fij(bi) are defined as the
marginal contribution of adding a bid on task j to an existing bundle bi (which is what is
done in this paper), the submodularity constraint can replace requiring DMG.

5.2 Bid Warping

The approach introduced in this work changes two fundamental aspects of placing bids.
First, the ranking of task scores is allowed to use an objective function that does not satisfy
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submodularity and the external bid values (those shared with other agents) are not identical
to the internal scores used for deciding which are the highest value tasks. To highlight the
algorithmic changes some additional notation is needed.

Bid Warping

Bid warping uses the internal score cij and the current bundle bi to construct a warped score
c̄ij.

c̄ij = min{cij, min
k∈{1,...,|bi|}

cijk} (11)

where cijk is the unwarped score of the kth element in the current bundle, and |bi| is the
length of the current bundle. The warped score can also be recursively defined as the
minimum of the unwarped score cij and the value of the most recently warped bid added to
the bundle c̄ij|bi|

c̄ij = min{cij, c̄ij|bi|}. (12)

Definition 1. Define a strict bid ordering. In this paper the tie breaker will be defined to
be the lowest agent id. Therefore for bids sij = 〈i, j, cij〉:

si1j1 � si2j2 =⇒ ci1j1 > ci2j2 (13)

∨ ci1j1 = ci2j2 & i1 < i2 (14)

∨ ci1j1 = ci2j2 & i1 = i2 &

si1j1 earlier in bundle than si2j2 (15)

These three conditions can completely define a strict ordering over bids. The first or

clause (Eq. 13) defines that if the score ci1j1 of si1j1 is larger than the score ci2j2 of si2j2
then si1j1 � si2j2. The second or clause (Eq. 14) defines that if the scores are the same
ci1j1 = ci2j2 then the bid with the lowest agent id is larger. The third or clause (Eq. 15) is
reached when the scores are the same and the agent id’s are the same. This is the case when
the two bids are in a single agent’s bundle, so it is defined that the earliest element in the
bundle is larger.

5.3 Bid Warped CBBA

This section presents the main algorithmic modifications required for CBBA to use non-
submodular score functions, the result of which is called Bid Warped CBBA (BW-CBBA).

Bid Warped CBBA: (Alg. 2: BW-CBBA) This algorithm is run independently on each agent i
and is initialized each time the team decides to replan (or construct an initial allocation).

1. A BW-CBBA assignment iteration is initialized with agent i’s old bundle bo
i and its

local understanding of the global bid space Ai. In order to initialize the algorithm,
the convergence counter for agent i, denoted by ki, is set to 0 (line 2 in Alg. 2); its
broadcast queue Qi, which is a list of pairs 〈s, t〉 consisting of a bid s and a time
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Algorithm 2 BW-CBBA: Bid Warped CBBA

1: procedure BW-CBBA(bo
i ,Ai)

2: ki ← 0
3: Qi ← {}
4: Zi ← zeros(Na, Nt)
5: while ki < 2 · D do
6: if |Qi| = 0 then
7: ki ← ki + 1
8: else
9: ki ← 0

10: end if
11: bi,Ai ← BW-BB(Ai)
12: Ai, Qi,Zi ← BW-TC(bo

i ,bi,Ai, Qi,Zi)
13: bo

i ← bi

14: end while
15: return (Ai)
16: end procedure

stamp t, is set to empty (line 3); and its local time stamp matrix Zi(i
′, j), which

records the time stamp of the most recent information about a bid made on task j by
agent i′, is initialized to all zeros (line 4).

2. While this algorithm has not converged (defined as when the size of the broadcast
queue |Qi| = 0 for 2D iterations at line 5) , the algorithm iterates between running a
bundle building phase (BW-BB at line 11) and a task consensus phase (BW-TC at line
12).

Bid Warped Bundle Building (Alg. 3: BW-BB) Again, for each agent i, the bundle building
phase is run independently.

1. All current tasks in agent i’s bundle bi and tasks won by agent i in its local bid space
Ai (lines 3,5 in Alg. 3) are removed.

2. Define a set of available tasks J to be those that are not already in agent i’s local bid
space Ai (line 7).

3. For each task j ∈ J , each agent i uses its local internal score function cij ← Fij(bi),
which is a function of its current bundle, to create a score cij (line 9). Again, Fij(bi) is
implicitly a function of the assignment constraints G(x, τ ) ≤ d posed in the problem
formulation (Eq. 1) and if a proposed assignment will not satisfy the constraints
required by Eq. 1, Fij(bi) will return a value of −∞. The only other requirement on
the score function Fij in this formulation is that, for each agent i, the returned scores
must be repeatable. In this context, being repeatable means that conditional on an
identical bundle and set of constraints, the function returns an identical score.

4. The score values cij are then warped using Eq. (12) (line 10).
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Algorithm 3 BW-BB: Bid Warped Bundle Building

1: procedure BW-BB(Ai)
2: for all s̄ij′ s.t. ∃j′ where s̄ij′ ∈ Ai do
3: Ai ← Ai \ s̄ij′
4: end for
5: bi ← ∅
6: while |bi| < Lt do
7: J ← {j | s̄ij /∈ Ai}
8: for all j ∈ J do
9: cij ← Fij(bi)

10: c̄ij ← min{cij, c̄ij|bi|} (Eq. 12)

11: hij ←
∏

s̄i′j∈Ai
I(c̄ij > c̄i′j)

12: end for
13: j? ← argmax

j∈J
(cij · hij)

14: s̄ij? ← 〈i, j?, c̄ij?〉
15: if c̄ij? · hij? > 0 then
16: bi ← bi ⊕ s̄ij?
17: Ai ← Ai ∪ s̄ij?
18: else
19: break
20: end if
21: end while
22: return (bi,Ai)
23: end procedure

5. Each of the warped bid values c̄ij is compared with the winning bid values for the
corresponding task j located in the local bid space Ai to create an indicator function
defining if agent i can outbid the current winner of task j with its warped bid (line
11). The task j? with the largest original score cij, whose warped bid c̄ij would outbid
the current winner in the local bid space is chosen as agent i’s next bid (line 13). A
warped bid s̄ij? is created (line 14) and as long as the value of the warped bid is positive
c̄ij? · hij? > 0 (line 15), it is placed at the end of the bundle (line 16), and also replaces
the current bid on task j in the local bid space Ai (line 17).

6. If no bids are able to be outbid in Ai or the maximum bundle length Li is reached,
the bundle building phase terminates; if not, Steps 2-5 are repeated. The key insight
in this algorithm is that the value cij is used to rank the bids but the warped bid s̄ij
is what is actually shared with the other agents and is what is used to determine if a
bid is able to overbid what is already in the bid space Ai.

Bid Warped Task Consensus (Alg 4: BW-TC) The purpose of this function is to allow agents to
exchange task assignment information with neighboring agents. The code in this algorithm
is run independently for each agent, but neighboring agents synchronize their Broadcast

(line 3) and ReceiveMessages (line 4) steps.
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Algorithm 4 BW-TC: Bid Warped Task Consensus

1: procedure BW-TC(bo
i ,bi,Ai, Qi,Zi)

2: Qi,Zi ← BW-TC-UQBC (Qi,Zi,b
o
i ,bi)

3: Broadcast(Qi)
4: Mi ←ReceiveMessages()
5: Ai, Qi,Zi ←BW-TC-PRM(Mi,Ai, Qi,Zi)
6: return (Ai, Qi,Zi)
7: end procedure

Algorithm 5 BW-TC-UQBC: Bid Warped Task Consensus Update Queue with Bundle
Changes

1: procedure BW-TC-UQBC(Qi,Zi,b
o
i ,bi)

2: for all {s̄oij | s̄oij ∈ bo
i , s̄

o
ij /∈ bi} do

3: Qi ← Qi ∪ 〈Dropbid(s̄oij), tnow〉
4: Zi(i, j)← tnow
5: end for
6: for all {s̄ij | s̄ij ∈ bi, s̄ij /∈ bo

i} do
7: Qi ← Qi ∪ 〈s̄ij, tnow + δ〉
8: Zi(i, j)← tnow + δ
9: end for

10: return (Qi,Zi)
11: end procedure

1. This algorithm first updates the broadcast queue Qi, and the time stamp information
for agent i Zi(i, j) through the BW-TC-UQBC function (line 2) by accounting for the
changes between agent i’s old bundle bo

i and its new bundle bi. The details of this
procedure are defined as Alg. 5.

2. The newly updated queue Qi is then broadcast to agent i’s network neighbors (line
3) using function Broadcast(Qi). Grouping sets of messages together (as opposed to
sending information out incrementally) is necessary because message groupings define
a consistent information state from the sending agent (i.e. some bids only make sense
with the existence of earlier dropbids, etc.).

3. The information received by each agent i, via the broadcasts from its neighbors is
collected asMi (line 4) using the functionMi ←RecieveMessages(). It is worth note
that the message set received by each agent may be different if the network is not
strongly connected.

4. The function BW-TC-PRM (line 5) is then called with the purpose of updating local
information (Ai, Qi,Zi) in response to the received messages Mi. The details of this
procedure are presented as Alg. 6.

Bid Warped Task Consensus Update Queue with Bundle Changes (Alg 5: BW-TC-UQBC) The
purpose of this function is to update the broadcast queue Qi and local time stamp matrix
Zi with the local changes made to agent i’s bundle bi in the bundle building phase (Alg. 3).
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1. This algorithm first searches over all bids s̄oij that were in the old bundle bo
i but not in

the new bundle bi (line 2). A dropbid is then created for all of these bids (Dropbid(s̄oij))
and added to the broadcast queue Qi (line 3). Dropbid is defined as a bid that signifies
the removal of a previously placed bid. The function Dropbid(s) returns a dropbid
corresponding to bid s. Correspondingly, the time stamp element for this task is also
updated in Zi (line 4).

2. Similarly, the algorithm then searches over all new bids s̄ij that are in the new bundle
bi but not in the old bundle bo

i (line 6). Each of these new bids s̄ij (with a time stamp)
are added to the broadcast queue Qi (line 7) and the local time stamp matrix Zi (line
8) with the current time tnow plus a small extra value called δ. Its important that the
time stamps introduced here are larger by this small margin δ to ensure that other
agents can infer that these new bids are later than potentially created dropped bids
from earlier in the function at line 3.

Bid Warped Task Consensus Process Received Messages (Alg. 6: BW-TC-PRM) The purpose of
this algorithm is to update the local planning knowledge of agent i in response to messages
receivedMi. The local knowledge updated includes agent i’s local bid spaceAi, its broadcast
queue Qi , and its local time stamp matrix Zi.

1. This function first searches through each message 〈s̄imjm , tm〉 in Mi to find those that
are dropbids (lines 2-3). If the dropbid is new Zi(im, jm) < tm (line 4) , update the
time stamp matrix (line 5), add the dropbid to the rebroadcast queue Qi (line 6), and
if there is a bid s̄imjm in agent i’s local bid space Ai (line 7) created by agent im on
task jm then remove it from the bid space Ai (line 8).

2. This function then iterates through each message 〈s̄imjm , tm〉 inMi that is not a dropbid
(lines 13, 14). Again, if it is a new bid (line 15), update the time stamp matrix for agent
im and task jm. If there is not a bid in agent i’s local bid space Ai on task jm, then
add the bid message to the bid space (line 18) and add the bid and its corresponding
time stamp to the broadcast queue Qi (line 19). Otherwise there is a bid on task jm
in the local bid space, so assign the bid in the local bid space to the name s̄′i′jm (line
21). If the bid message s̄imjm is greater than the bid that is currently in the bid space
s̄′i′jm (line 22), then remove the old bid from the bid space (line 23), add the new bid
message to the bid space (line 24), and add the new bid message to the broadcast queue
(line 25). If the bid message does not outbid the local bid, then add the local bid to
the broadcast queue with its corresponding time stamp that is stored as Zi(i

′, jm) (line
27).

5.4 Comparison to Previous Work

The task consensus phase presented here is differs from the one that was presented in [40].
The previously published consensus phase requires a rebroadcast of every task at every
iteration. Therefore, as long as messages can be assumed to be delivered completely (and
the network can be assumed to remain connected) the approach presented in this paper will
use less messaging overall. However, this approach is less robust to dropped messages or
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Algorithm 6 BW-TC-PRM: Bid Warped Task Consensus Process Received Messages

1: procedure BW-TC-PRM(Mi,Ai,Zi,Qi)
2: for all 〈s̄imjm , tm〉 ∈ Mi do
3: if s̄imjm is a Dropbid then
4: if Zi(im, jm) < tm then
5: Zi(im, jm)← tm
6: Qi ← Qi ∪ 〈s̄imjm , tm〉
7: if s̄imjm ∈ Ai then
8: Ai ← Ai \ s̄imjm

9: end if
10: end if
11: end if
12: end for
13: for all 〈s̄imjm , tm〉 ∈ Mi do
14: if s̄imjm is not a Dropbid then
15: if Zi(im, jm) < tm then
16: Zi(im, jm)← tm
17: if ∀i′, s̄′i′jm /∈ Ai then
18: Ai ← Ai ∪ s̄imjm

19: Qi ← Qi ∪ 〈s̄imjm , tm〉
20: else
21: s̄′i′jm ← 〈i

′, jm, c̄
′〉 ∈ Ai

22: if s̄imjm > s̄′i′jm then
23: Ai ← Ai \ s̄′i′jm
24: Ai ← Ai ∪ s̄imjm

25: Qi ← Qi ∪ 〈s̄imjm , tm〉
26: else
27: Qi ← Qi ∪ 〈s̄′i′jm ,Zi(i

′, jm)〉
28: end if
29: end if
30: end if
31: end if
32: end for
33: return (Ai, Qi,Zi)
34: end procedure
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networks that change topology on the time scale of the plan convergence time. In these
domains some information may never reach parts of the network. If the messaging channels
are not reliable and messages are not guaranteed to arrive, then the approach presented
in [40] should be used. The following performance and convergence guarantees assume the
consensus protocol defined in this paper, but the same results with different notation and
approach could be obtained by using an alternative consensus protocol like the one defined
in Table 1 of [40].

6 Convergence and Performance Characteristics of BW-

CBBA
This section proves the two main theoretical results of the paper: 1) BW-CBBA converges
to a team-wide consistent solution in at most 2NtD iterations and 2) BW-CBBA achieves
non-trivial performance bounds for some classes of objective functions. The only objective
function assumption needed for convergence of BW-CBBA is that given identical initial con-
ditions (local bid spaceAi and bundle bi), the subsequent bid values produced are repeatable.
Again, this condition allows for score functions that are stochastic, but evaluating relevant
metrics that decide bid ordering over the stochastic distributions must be repeatable.

The proofs presented in this section do not follow the styles presented in [40] for 2 main
reasons: 1) BW-CBBA does not return the same solution as a centralized sequential greedy
solver in all cases (as the CBBA proof had assumed), and 2) using a proof by construction
approach for the convergence analysis provides insight into the algorithmic progression and
is better suited as an analytical tool when evaluating potential future modifications to BW-
CBBA. A last note about this section is that the performance proof returns the same bound
as presented in [40] when the internal score function F is submodular and monotonic.

6.1 Convergence Guarantee

Lemma 1. The values of the warped bids s̄ij (line 14 of Alg. 3) added to bundles bi have a
monotonically decreasing ordering:

s̄ijk � s̄ijk+1
∀k ∈ {1, . . . , |bi| − 1}

where s̄ijk is the kth bid added to agent i’s bundle.

Proof. According to the definition of the bid warping (Eq. 12), the warped bid values are
defined as

c̄ijk+1
= min{cijk+1

, c̄ijk}

forcing c̄ijk ≥ c̄ijk+1
. Two conditions can then arise:

1. c̄ijk > c̄ijk+1
and therefore s̄ijk � s̄ijk+1

from Eq. 13 of definition 1.

2. c̄ijk = c̄ijk+1
but since (k < k+1), s̄ijk is located earlier in the bundle than s̄ijk+1

. From
Eq. 15 of Def. 1, s̄ijk � s̄ijk+1

.
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In order to reduce the notation clutter, all subsequent over bars will be removed, but all
bids discussed in this convergence guarantee section will be considered to be warped bids.

Definition 2. Define an overbid s′i′j′, to be a bid that agent i receives via communication
from other agents that changes its local bid space Ai (Alg. 6). An overbid can also be a
dropbid which was previously defined as a bid message specifying the removal of a previous
bid. Dropbids are defined to have the same relative size of the bid they correspond to dropping
(via Alg. 6, line 8) where the size of the bid is defined in Def. 1.

Definition 3. Define σiσjσ(S ′) to be the largest bid in a set of overbids S ′ that is received by
agent i.

σiσjσ(S ′) = max
s′
i′j′∈S

′
s′i′j′

Theorem 1. After an agent i receives a set of overbids S ′, all bids larger than the largest
overbid σiσjσ(S ′) will remain unchanged, i.e. all bids sij ∈ bi s.t.

sij � σiσjσ(S ′) (16)

will remain in agent i’s bundle bi at the next bundle building iteration.

Proof. The form of this proof will be to first show that bids smaller than σiσjσ(S ′) cannot
affect the assignment of larger bids, and thus show that bids larger than σiσjσ(S ′) will not be
dropped. First assume that ∃s	ij	 ∈ bi s.t. s	ij	 ≺ σiσjσ(S ′) and ∃sij ∈ bi s.t. sij � σiσjσ(S ′)
then

sij � σiσjσ(S ′) � s	ij	 .

From bundle monotonicity (Lemma 1) the assignment of sij can not depend on the assign-
ment of s	ij	 (because sij is larger and thus earlier in the bundle, preventing the value of sij
depending on the assignment of s	ij	) and thus without loss of generality, sij will not depend
on any bids in its own bundle bi smaller than σiσjσ(S ′).

Thus, all that must be shown is that all bids sij � σiσjσ(S ′) will not be affected by
any of the bids in S ′. The bundle construction procedure uses an indicator function hij ←∏
si′j∈Ai

I(cij > ci′j) (Alg. 3, line 11). The elements of the indicator function can only be

different on tasks j′ for which s′i′j′ ∈ S ′. Therefore, during bundle building, the selection
of the next best bid s?i?j? (Alg. 3, line 14) will return identical results for all bids s?ij? �
σiσjσ(S ′).

A note about Thm. 1 is that it depends on bid warping to ensure Lemma 1. If bundles are
not monotonic then ∃i, sij ∈ bi, s

	
ij	 ∈ bi s.t. sij � s	ij	 where the assignment of sij depends

on the previous assignment of s	ij	 (i.e. the value of the bid on task j increases because of

the assignment of task j	). This is exactly the condition that can lead to algorithmic cycling
and is what bid warping prevents.
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Theorem 2. The largest new2 bid s?ij? (Alg. 3, line 14) that can be added to agent i’s bundle
bi after receiving a set of overbid messages S ′ will be smaller than the largest element of S ′,
i.e.

σiσjσ(S ′) � s?ij? . (17)

Proof. From Thm. 1, all bids sij in agent i’s bundle bi, s.t. sij � σiσjσ(S ′) will be preserved.
For this proof, construct a new bundle b+

i starting with all old elements soij ∈ bi s.t. soij �
σiσjσ(S ′). The strategy for the rest of this proof will be to show that the next bid s?ij? added
to b+

i is smaller than σiσjσ(S ′). Lemma 1 then guarantees that all other new bids added
during the rest of the bundle building operation be smaller than s?ij? and thus less than
σiσjσ(S ′).

Define s	ij	 to be the largest bid in the old bundle bi that is less than σiσjσ(S ′). If no bids

in bi are smaller than σiσjσ(S ′), treat s	i	j	 as an empty bid of score 0 (all bids with positive
score are bigger than it). The rest of this proof will formalize how each overbid s′i′j′ ∈ S ′ can

affect the next largest bid in b+
i .

The only way that the next largest bid s?ij? can increase its value compared to its counter-
part in the old bundle s	ij	 (i.e. s?ij? � s	ij	) due to receiving an overbid s′i′j′ is if an element
from the indicator hij (Alg. 3 line 11) changes from a 0 to a 1. This can only occur if s′i′j′ is
specifically a dropbid, and thus removes a bid on task j′ in agent i’s local bid space Ai (Alg.
6, line 8). This is because only a dropbid can decrease the winning scores in Ai. All other
overbids will only increase the winning score in the local bid space. If Alg. 3 line 11 had
previously been returning 0 (before the dropbid arrived), it means that the previous winning
value on task j′ (before the dropbid) c′i′j′ > Fij′(b

+
i ) (otherwise hij′ would have returned a

1). Therefore, either s	ij	 � s′i′j′ and the next-best bid will remain unchanged (s?ij? = s	ij	)

and thus σiσjσ(S ′) � s	ij	 = s?ij? , or s′i′j′ � s	ij	 and the next largest bid will become

c?ij? = max(Fij′(b
+
i ), c	ij	)

and therefore from Def. 1, σiσjσ � s′i′j′ � s?ij?
The result shows that no individual overbid s′i′j′ can lead to the agent i increasing its next

largest bid s?ij? to be larger than σiσjσ(S ′). Since s?ij? is simply the largest possible next best
bid, any collection of overbids S ′ will not allow s?ij? to be larger than σiσjσ(S ′) either.

Theorem 3. Every agent of the team using BW-CBBA agrees on a globally consistent
bidspace A in at most 2NtD algorithmic iterations.

Proof. The form of this proof will be to use a virtual agent that can observe the algorithmic
progression (without affecting the agents). This observer is able to construct a globally
consistent bid space A by listening to the communication between the agents. The existence
of A can be used to guarantee algorithmic convergence. It will be shown that once a bid is
placed in A, it will never be dropped by the agent that placed the bid or outbid by another
agent. Therefore, when all bids made by agents in the team are located in A, the algorithm
has converged. The proof will use induction to build up the global bid space A.

2“New” here refers to a bid that was not included in the bundle of the previous bundle building iteration
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Initialize A = {}. The base case of the induction proof requires that the first bid added
to the global bid space (|A| = 1) will never be dropped by the bidding agent and will
never be outbid by any other agent. This is shown by first considering that for each full
plan constructed by BW-CBBA, the algorithm starts with a bundle building phase (Alg. 2)
where each agent i is initialized with a possibly inconsistent local bid space Ai. If this is
the first plan for a new mission, Ai will be empty, but if this plan is a mid-mission replan,
Ai will be the last known estimate of the team assignment (which may be outdated). As
defined in Alg. 3, each agent i removes its own bids from its own local bid space Ai (lines
2-4) and clears its own bundle bi = {} (line 5). After the first iteration of bundle building
completes (Alg 2, line 11) for all agents i, there are two outcomes relevant to algorithmic
convergence:

1. There exists a bid s′i′j′ in the local bid space Ai of some agent i that is larger than
all other bids in the network (including all bids in the actual bundle bi′ of agent
i′.) More precisely, ∃i, s′i′j′ ∈ Ai s.t. ∀i, ∀sij ∈ bi, s

′
i′j′ � sij. This arises when one

agent is assuming the existence of a large old bid that is no longer valid. When bid
information is propagated in the algorithm’s consensus phase, agent i will receive a
dropbid removing the assignment of s′i′j′ (constructed via Alg. 5 by agent i′ ) in no
more than D algorithmic iterations.

2. After the large outdated bids are removed from bid spaces, there will exist an actual
bid s′i′j′ in the bundle bi′ of some agent i′ s.t. ∀i,∀sij ∈ bi, s.t. sij 6= s′i′j′ , s

′
i′j′ � sij.

From Thm. 2, no other agents will be able to generate a larger bid s?i?j? � s′i′j′ in the
future because s′i′j′ is the largest bid in the fleet and thus is the largest bid that can
be an element of an overbid set S ′. From Thm. 1, s′i′j′ will remain in the bundle of
agent i′ forever because, since no other agent can outbid s′i′j′ , it will never receive an
overbid larger than s′i′j′ . After D consensus phases all agents will receive s′i′j′ and thus
overall, in at most 2D algorithmic iterations, s′i′j′ can be added to A and |A| = 1.

At the end of this base case assume that all outdated bids from a previous planning iteration
are removed from the entire fleet, which would have taken at most D iterations to remove.

Therefore it must be shown that if we assume a global bid space A of size |A| = n and
that all bids currently in A will never be dropped or outbid, then in at most 2D algorithmic
iterations there either exists another bid to add to A or the algorithm has converged. More
formally, either ∀i @sij ∈ bi s.t. sij /∈ A (the algorithm has converged) or ∃s′i′j′ ∈ bi′ , s

′
i′j′ /∈ A

s.t. ∀i,∀sij ∈ bi, sij /∈ A, s′i′j′ 6= sij, s
′
i′j′ � sij.

In this step three scenarios can arise:

1. There are no bids in the network that are not already inA or more formally, ∀i @sij ∈ bi

s.t. sij /∈ A. In this case the algorithm has converged.

2. A bid sij has been created and has been inserted into the global bid space A, but
agent i′ has yet to receive a message containing sij and thus has a bid on task j in
its bundle bi′ that is smaller than sij. More formally, the scenario arises if ∃sij ∈ A
s.t. ∃s′i′j ∈ bi′ s.t. i 6= i′. By the inductive assumption, sij will never be outbid.
Therefore, in at most D− 1 iterations, i′ will receive a message about sij and drop its
bid s′i′j. When s′i′j is dropped, agent i′ may be forced to drop other tasks as well that
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were dependent on the assignment of s′i′j. Define the largest bid of these additional

dropped bids as s	i′j	 . If the dropbid s	i′j	 is larger than all other bids not yet in A (if

∀i,∀sij ∈ bi, sij /∈ A, s	i′j	 6= sij, s
	
i′j	 � sij), then the algorithm requires an additional

D iterations to allow for this dropbid to propagate to all agents. This is required
because s	i′j	 will be in the overbid set S ′ that is being communicated to all agents,

and according to Thm. 2 bids can be added up to the size of s	i′j	 . Thus a new largest

bid will be possible until all agents have received dropbid message of s	i′j	 . This results
in 2D− 1 algorithmic iterations and a transition into the criteria for scenario 3 below.

3. There exists a bid s′i′j′ in some agent i′’s bundle bi′ that is larger than all other bids
sij in every other agent’s bid spaces that is not currently located in A (∃s′i′j′ ∈ bi′ s.t.
s′i′j′ /∈ A and ∀i, ∀sij ∈ Ai,∀sij 6= s′i′j′ , sij /∈ A, s′i′j′ � sij). Since no tasks in A can be
outbid (inductive assumption) and no agents are currently outbid on tasks in A (which
is handled by scenario 2 above), when the largest bid in the team not yet in A (s′i′j′) is
shared, no other agents will be able to outbid it (due to Thm. 1). Additionally, since i′

will never receive an outbid message greater than s′i′j′ (because no other agents can bid
higher (Thm. 2), s′i′j′ will stay in the bundle of agent i forever (Thm. 1). Therefore,
A ← A∪ s′i′j′ =⇒ |A| = n+ 1 in 1 iteration.

Therefore, incrementing A can be achieved in at most 2D algorithmic iterations. This then
proves that a globally consistent bid space can be constructed during algorithmic execution
in at most 2NtD algorithmic iterations (2D − 1 iterations from scenario 2, and 1 iteration
from scenario 3 fro each task). This also means that every individual agent will agree on the
full bid space in at most 2NtD, and thus BW-CBBA has converged.

6.2 Performance Guarantee

This section will define when non-trivial performance guarantees for BW-CBBA are available,
and how close to optimal these guarantees are. The form of the following performance
analysis is inspired by Theorem 11 in [48]. This section will use set function notation when
referring to objective functions. Therefore the notation F (A) will specify the score function
F evaluated on the bid space A. Further, define the notation ABW

F to be the bid space
returned using objective function F with BW-CBBA. Similarly, define A?

F to be the optimal
bid space with respect to objective function F . Additionally define Ak to be a bid space
constructed from the largest k warped bids of ABW

F where sikjk is defined to be the kth
element added to ABW

F (which was constructed by agent ik on task jk) using the global bid
space construction procedure from Thm. 3.

The form for the following proof will be to compare the optimal allocation A?
F evaluated

on the desired non-submodular objective function F (A?
F ), to the optimal allocation A?

Fk
over

a sequential set of modified objective functions Fk. Before describing the main result, a few
definitions and a lemma will be needed.

Definition 4. Define the sequence of score functions Fk over a subset Jk of the full task set
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J where Jk ← J \
⋃k

l=1 jk as

F0(A) = F (A)

Fk(A) = Fk−1(A ∪ sikjk)− Fk−1(sikjk), ∀k ∈ [|J |]

where [|J |] is defined as {1, . . . , |J |}. This can be equivalently defined using partial bid spaces
and the original objective function F as

Fk(A) = F (A ∪Ak)− F (Ak), ∀k ∈ [|J |]

Both forms of Fk will be used for proving convergence guarantees.

Definition 5. Define a submodular lower bound function H to the desired mission objective
function F as

H(∅) = F (∅)
H(A ∪ s)−H(A) = min

A′⊆A
(F (A′ ∪ s)− F (A′)) ∀s,A.

Definition 6. Define a parameter ε that defines a measure on the non-submodularity of the
mission objective function F as

1 + ε = max
s,A

F (A ∪ s)− F (A)

H(A ∪ s)−H(A)

Given that ratios are used in the definition of ε, it is important that F is monotonic.
Other alternative measures of non-submodularity are available and would be needed for non-
monotonic functions. If the desired mission objective function F is actually submodular then
ε = 0 and F = H.

Combining Def. 6 and Def. 5 provides a submodular upper and lower bound on F for
all bid spaces A as

(1 + ε)H(A) ≥ F (A) ≥ H(A), ∀A. (18)

Definition 7. Define the minimum possible bid cmin
k on task jk as

cmin
k = min

A
F (A ∪ sk)− F (A),

where for monotonic functions cmin
k > 0.

Lemma 2. The scores c̄ikjk of warped bids s̄ikjk will be greater than or equal to the bid’s
incremental value evaluated on objective function H as defined in Def. 5,

c̄ikjk ≥ H(Ak−1 ∪ sikjk)−H(Ak−1).

Proof. Two cases are possible, either
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1. sikjk does not change its value when warped and thus its warped value is the incremental
score w.r.t. objective function F

c̄ikjk = F (Ak−1 ∪ sikjk)− F (Ak−1)

Def. 5

≥ H(Ak−1 ∪ sikjk)−H(Ak−1)

2. The value c̄ikjk of the warped bid s̄ikjk has decreased due to bid warping. This requires
that at least one bid constructed by agent ik is already in Ak−1. These bids already in
Ak−1 will be called A	 where A	 ⊆ Ak−1. Define bid s̄ikjk	 ∈ A

	 to be the winning
bid at iteration k	. The values of the unwarped bids located in A	 were defined as

cikjk	 = F (Ak	−1 ∪ sikjk	 )− F (Ak	−1) (19)

At iteration k	 the bid on task jk	 by agent ik was the winning bid, therefore at that
time it was greater than agent ik’s bid on task jk,

cikjk	 ≥ F (Ak	−1 ∪ sikjk)− F (Ak	−1),∀k	 (20)

From the definition of bid warping in Eq. 11 and the assumption of this proof clause
that the value of s̄ikjk has decreased due to bid warping, the warped bid on task jk is
defined in terms of a minimum over all of the bids located in agent ik’s current bundle
(which has the same elements as A	)

c̄ikjk = min
sikjk	

∈A	
cikjk	 (21)

and therefore from the definition of H (Def. 5), a minimum over a larger set will always
be smaller and thus

c̄ikjk ≥ H(Ak−1 ∪ sikjk)−H(Ak−1) (22)

Theorem 4. If there exists an H as defined in Def. 5 and ε as defined in Def. 6 and the
mission objective function F is monotonic, then a provable performance bound between the
BW-CBBA allocation ABW

F and the optimal allocation A?
F exists as

F (A?
F ) ≤ (2 + ε)F

(
ABW

F

)
. (23)

Proof. In order to simplify the notation of the following proof, a few notational substitutions
will be made:

1. s?k ← s
Fk−1

i?kjk
where s

Fk−1

i?kjk
is the bid made on task jk in the optimal assignment using

objective function Fk−1,

2. sk ← sikjk to represent the kth bid from the BW-CBBA bid space ABW
F ,
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3. A?
	 ← A?

Fk−1
\ s?k to represent the optimal bid space w.r.t. Fk−1 without the bid s?k

that was made on task jk.

Begin the proof by noting that the value of the optimal bid space constructed w.r.t.
objective function Fk will always be greater or equal to the evaluation of any other bid space
on this objective function Fk, so that

Fk

(
A?

Fk

)
≥ Fk

(
A?
	
)
. (24)

Then using the definition of Fk from Def 4, the right hand side can be expanded as

Fk(A?
	) = Fk−1

(
A?
	 ∪ sk

)
− Fk−1 (sk) ,

which can then be expanded as 3 terms

Fk(A?
	) =Fk−1

(
A?

Fk−1

)
− (25a)(

Fk−1

(
A?

Fk−1

)
− Fk−1

(
A?
	
))
− (25b)(

Fk−1 (sk)−
(
Fk−1

(
A?
	 ∪ sk

)
− Fk−1

(
A?
	
)))

. (25c)

The three terms correspond to: the value of the optimal allocation over Fk−1 (Eq. 25a), the
incremental value for the bid on task jk in the optimal allocation using objective function
Fk−1 (Eq. 25b) and the change in the value of the bid made in the bid warped allocation sk
due to the addition of the optimal bid space w.r.t Fk−1 without the optimal bid on task jk
(which was previously defined as A?

	) (Eq. 25c).
The next step is to further rewrite the term defined as Eq. 25b. First observe that s̄ikjk

was the kth element added to the global bid space during BW-CBBA, so conditional on an
already locked-in bundle of Ak−1,

c̄i?kjk ≤ c̄ikjk ≤ ck (26)

where c̄i?kjk is the warped value that agent i? (the optimal winner in allocation A?
Fk−1

) could
have bid given a bid space of Ak−1, c̄ikjk is the actual warped value bid in BW-CBBA and
ck is the un-warped value of that bid. The relation c̄i?kjk ≤ c̄ikjk holds because if it did not,
bid s̄i?kjk would have been chosen instead as the kth element in the bid warped allocation.
Additionally, c̄ikjk ≤ ck because bid warping can only decrease the value of a bid. From
Lemma 2,

c̄i?kjk ≥ H(Ak−1 ∪ si?kjk)−H(Ak−1), (27)

the potential warped candidate bid s̄i?kjk created by agent i?k will be greater than its incre-
mental contribution defined over H. Since H is submodular, adding the rest of the optimal
assignments from A?

Fk−1
to the evaluation of the incremental value of si?kjk can only decrease

its value.

c̄i?kjk ≥ H(Ak−1 ∪ A?
Fk−1

)−H(Ak−1 ∪ A?
Fk−1
\ si?kjk) (28)
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Incorporating this with the definitions of H (Def 5) and ε (Def 6) from Eq. 18 and the
equivalence of the two forms of Fk from Def. 4 implies that,

(1 + ε)c̄i?kjk ≥
(
Fk−1

(
A?

Fk−1

)
− Fk−1

(
A?
	
))
. (29)

Finally, combining Eq. 29 with Eq. 26 provides a bound on the term defined as Eq. 25b.

(1 + ε)ck ≥
(
Fk−1

(
A?

Fk−1

)
− Fk−1

(
A?
	
))

(30)

The next objective is to bound the term defined as Eq. 25c. From the definition provided
as Def. 7, Eq. 25c can be upper bounded as ck−cmin

k . If this result and Eq. 30 are substituted
into Eqs. 25b and 25c and sequentially iterated for all k using the relation in Eq. 24, an
optimal performance bound can be achieved as,

F (A?
F ) ≤

|J |∑
k=1

(
(2 + ε) ck − cmin

k

)
. (31)

If functions are only known to be at least monotonic (cmin
k = 0,∀k) this can be simplified to

the desired result,

F (A?
F ) ≤ (2 + ε)F

(
ABW

F

)
. (32)

6.3 Algorithmic Comparison Results

This section provides performance and convergence comparisons between several global in-
formation consistency assumption (GICA) algorithms and local information consistency as-
sumption (LICA) algorithms . The results will show that LICA algorithms can significantly
reduce algorithmic convergence time over competing GICA algorithms. Additionally the
bid warping approach described [4] can significantly improve the performance of LICA algo-
rithms. In fact, in almost all of the domains tested, BW-CBBA actually returns the same
allocation as GICA algorithms.

6.3.1 Non-submodular fuel penalty: 2 agent case

The first example considers a simple mission where two agents achieve reward by visiting
a set of locations in the environment. The score function associated with this mission is
defined as:

J =
Na∑
i=1

(
Nt∑
j=1

Rxij

)
− fidi(bi) (33)

where a reward of R is obtained for each task visited, and cost is defined as the fuel cost
fi multiplied by the distance travelled di(bi) by agent i for its assigned group of tasks bi.
Figure 8 visually compares the planned paths for a 2 agent, 30 task mission, using the original
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Figure 8: Comparison of planner performance for a 2 agent, 30 task mission. Fig (a) shows
the planned paths using the original CBBA algorithm with a submodular heuristic score
function. Fig (b) shows the planned paths for the same scenario using BW-CBBA as pro-
posed in [4].

baseline CBBA algorithm with a submodular approximate score function (a) and BW-CBBA
augmented to utilize the true non-submodular score function (b). The numerical values used
for this experiment were a reward R = 100 and a fuel penalty fi = 10. As was introduced
in [4], one heuristic approach to ensure submodularity within the original CBBA framework
involves approximating the cost in Equation (33) by a distance measure based only on the
initial agent position and the task locations. This heuristic score function cannot explicitly
capture how task desirability can increase due to the assignment of other tasks. This results
in the algorithm’s selection criteria being driven by the tasks proximity to the agent’s initial
position instead of where it will fit into the agent’s current path (Figure 8(a)). Conversely,
figure 8(b) demonstrates how BW-CBBA uses the non-submodular objective function to
create intuitively much better assignments by capturing the inherent non-submodularity in
the desired objective function.

6.3.2 Non-submodular fuel penalty: Monte Carlo results

This experiment provides Monte Carlo results comparing the performance in various mis-
sion scenarios for 5 different algorithms. These displayed scenarios were designed to show
two things: (1) even in environments where reaching global consistency is possible, GICA
algorithms can require many iterations to reach a convergent solution and (2) by utilizing
BW-CBBA the score performance gap of using a LICA algorithm is negligible in practice.
The environment for these Monte Carlo tests placing tasks and agents at random locations
in a 2 dimensional rectangle of dimensions roughly 34 by 12. (These seemingly random num-
bers correspond to the shape of our research flight volume). The mission predictions were
run in continuous time where the speed of the agents was fixed at a maximum of .6, the time
agents were required to pause to “complete” the tasks was set to 1 time unit, and all tasks
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expired after 100 time units. The objective function for the environment was identical to
Equation (33) with a reward R = 100 and a fuel penalty fi = 10. The agents have identical
fuel penalties and speeds but this is not required by any algorithms used in this experiment.
The agents objective functions however, are heterogeneous, because they depend on both the
agents’ starting locations and the full bundles assigned to each agent. Every data point in
Figure 9 is an average number over 500 Monte Carlo trials. The computational environment
for these experiments were conducted with agents operating independently on separate com-
puters communicating over a virtual communication network that was defined as a minimum
spanning over the agents’ randomized starting positions. This provides a level of realism the
tested performance of the algorithms because the only information shared between the agents
were the actual task bids shared during communication, and true iteration synchronization
was required between the distributed agents. The five planners used in these tests are

1. Sequential auction. This is a GICA algorithm (as defined in [42]) which essentially
involves the team incrementally building up a global bid space 1 task at a time.This
requires the every member of the team communicating with all other agents for every
single task assignment.

2. Implicit Coordination. The implicit coordination implementation in these experiments
utilize a poor information environment because each agent independently optimizes its
own objective function ignoring the contributions of other agents. The result gives the
team-wide performance when no cooperation is used. [19, 21, 49]

3. BW-CBBA (as defined in [4]) is the LICA contribution of this work.

4. CBBA Unwarped refers to the baseline solution described in [40] which uses an a priori
approximate submodular function.

5. BW-CBBA with GICA, a variant of BW-CBBA implemented for these experiments,
that ensures that every agent’s local bid space is equivalent to the global bid space
before every bundle building phase. This algorithm is essentially a bundle version of a
sequential auction and thus approximates the fastest expected convergence time of a
GICA auction algorithm.

Planners not run in this test include those that predict assignments for teammates and
incorporate this information into their prospective assignments. These algorithms require
sharing a different domain of information (including information about other agents actual
objective functions) and is not considered in this particular work. Traditionally these ap-
proaches would be considered GICA algorithms because they require information about the
entire fleet to guarantee convergence [19, 21, 49], but recent work that will be described
later in this report looked at LICA algorithms that use information about other agents score
functions [8].

The experiments shown in figures 9 (a) and (b) are a 2 agent Monte Carlo run with 500
trials averaged for each data point. Figure (a) shows that BW-CBBA performs identically
to both of the GICA algorithms. The implicit coordination technique performs reasonable
well, because since the tasks expired at 200 seconds was not possible for both agents to
service all of the tasks and thus there was relatively little overlap in desired assignments
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(a) 2 Agent Example (Score) (b) 2 Agent Example (Iterations)

(c) 200 Task Example (Score) (d) 200 Task Example (Iterations)

Figure 9: (a) 2 Agent Monte Carlo run with 500 trials showing score as a function of the
number of tasks. (b) 2 Agent Monte Carlo run with 500 trials showing number of iterations
to convergence as a function of the number of tasks. (c) 200 task Monte Carlo run with 500
trials showing score as a function of the number of agents. (d) 200 task Monte Carlo run
with 500 trials showing the number of iterations to convergence as a function of the number
of agents
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between the agents in this no coordination planner. Unwarped CBBA actually performs
quite poorly, especially for high numbers of tasks because its objective function cannot
capture the super-modular coupling between servicing tasks that are near each other. Figure
9 (b) highlights the convergence times for each of these algorithms. The first remarkable
thing about this figure is the large number of iterations required for convergence using the
sequential auction algorithm. Even though there are only 2 agents and thus the network
diameter is 1, it takes a full iteration for the assignment of every single task. BW-CBBA
and BW-CBBA GICA use significantly fewer iterations for all sized task environments and
actually require the same number of iterations to reach convergence. This is because the 2
agent network is fully connected providing the agents using BW-CBBA to have consistent
local bid spaces after every iteration, and thus the algorithmic execution of BW-CBBA
and BW-CBBA GICA is identical. These approaches take less than 1 more iteration on
average than the unwarped CBBA. The extra convergence time is due to a slightly more
complicated optimization between the two agents which is taking into account the true
coupled objective function. Since there is no explicit coordination with implicit coordination
it always “converges” in 1 iteration. The take away from figures (a) and (b) is that even with
2 agents, BW-CBBA outperforms the unwarped CBBA significantly in score performance
for a small penalty in an increased number of iterations it takes to converge. Additionally,
its performance is identical to the tested GICA planners.

The experiments shown in Figures 9 (c) and (d) are Monte Carlo runs with 200 task
environment and 500 trials averaged to create each data point. Figure (c) shows identical
performance between BW-CBBA and the GICA algorithms. Additionally, it shows a sig-
nificant performance gap between unwarped CBBA and the implicit coordination approach
especially for smaller team sizes. When the team size reaches 8 agents and above, BW-CBBA
and the GICA algorithms are able to service all of the tasks efficiently under the 100 sec-
ond task deadlines (the only improvement comes from agents potentially starting nearer to
desired tasks). The original unwarped CBBA even with 20 agents still has a mission perfor-
mance gap because the objective function is unable to capture the inherent coupling of travel
distance in the objective functions. Theoretically, this performance gap may exist until each
agent is only servicing a single task, and unwarped CBBA and BW-CBBA will return the
same allocation. The performance of implicit coordination actually degrades after 12 agents
because the costs of overlapping assignments start outweighing the benefits of having more
agents to service difficult to reach tasks. Figure 9 (d) highlights the number of iterations each
planner requires to reach convergence. Again the sequential auction GICA algorithm takes
significantly more iterations to converge than any of the other planners. In fact, for the most
difficult assignment problems of 20 agents and 200 tasks, this algorithm was requiring nearly
2000 iterations on average! This is due to the fact that 200 tasks are assigned incrementally
across an average network diameter of 10. BW-CBBA GICA performs significantly better
than the sequential auction because the coupling in the problem allows agents to agree on
many task assignment winners at the same time. Assigning multiple tasks simultaneously
allows this auction to reduce the convergence time by more than an order of magnitude.
BW-CBBA a LOCA algorithm further reduces the number of iterations to convergence be-
low BW-CBBA GICA, in fact for the largest problem sizes shown BW-CBBA converges 50
iterations sooner. Intuitively this is because agents will rarely have allocation conflicts with
teammates that are highly separated across the communication network, therefore, conflict
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Figure 10: Monte Carlo results for a 6 agent, 60 task, time-critical mission, with uncertain
travel times and task durations. Results show risk-optimized robust mission scores for the
different planning approaches.

resolution is more efficiently conducted using local communication. CBBA unwarped con-
verges marginally faster than even BW-CBBA but again this is at the expense of significant
degradation in score performance. The take away from figures 9 is that BW-CBBA signifi-
cantly improves the performance of traditional LICA algorithms (unwarped CBBA), while
converging in significantly fewer iterations than GICA algorithms. There is a hidden com-
putation cost not shown in figures 9 that involves the on-board agent computation of the
desired assignments. For some domains this extra computation may be quite relevant to the
convergence times of the algorithms and is worth investigation, but this paper is focused
on understanding the information assumptions and communication costs. Despite this, for
the tests shown in figure 9, this agent computation times were negligible compared to the
required infrastructure to synchronize communication between the decentralized agents.

6.3.3 Stochastic objective functions

The third scenario considered is meant to broaden the applicability of bid warping to a less
straightforward introduction of non-submodularity. In this environment, agents must now
service tasks with uncertainty in the planning parameters and task rewards that are hetero-
geneously time-critical. In particular, the agents have uncertain velocities and service times
for tasks, although a probability distribution of the possible values are known a priori (log-
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normal). In this stochastic setting, submodularity can be broken both because of sampling
affects (as introduced in Example 4), and because of the stochastic metrics implicitly couple
the effects of parameter uncertainty, and therefore couple task scores. This leads to depen-
dencies between tasks which can cause non-submodularity in the score function. This type of
coupling and non-submodularity is typically non-trivial, and designing a submodular score
function to fix it is difficult. This example demonstrates that BW-CBBA can be successfully
used for distributed stochastic planning. The algorithm uses a “repeatable stochastic score
function” which reuses samples associated with planning parameters, making the problem
look like a higher dimensional deterministic problem to the planner. It is worth noting that
non-submodularity in stochastic settings is usually an issue even when the mean score func-
tion is submodular, however, for consistency, this example uses the non-submodular form
for the mean score function Equation (33) (with non-submodularity caused by fuel penal-
ties). Figure 10 presents Monte Carlo results for a 6 agent, 60 task, time-critical mission,
with uncertain travel times and task durations. The plot shows the risk-optimized mission
scores for a centralized robust sequential greedy planner, the distributed robust BW-CBBA
approach [1], and a baseline deterministic CBBA. Once again the new stochastic CBBA
approach achieves similar performance to the centralized planner and clearly outperforms
the baseline unwarped CBBA approach.

6.4 Analysis of Algorithmic Performance

This section provides further insight into the interpretation of the performance bounds of
BW-CBBA. Performance guarantees are provided in Thm. 4 when the score functions can be
approximated with a submodular function H and distance parameter ε. The follow section
discusses what kind of performance can be expected when the conditions required for Thm.
4 are not met.

An optimal upper bound for the score function defined as Eq. 33 in the results section
using the can be defined as

Nt∑
j=1

max

(
max

i
(Rij − fidij) ,max

i,j′
(Rij − fidj′j) , 0

)
, (34)

where dij is the distance from agent i to task j. This bound essentially finds the maximum
possible reward achievable on each task, without the constraint of connected agent trajecto-
ries by agents. This upperbound will almost always be loose but nevertheless will give some
insight into the performance of the algorithms in Sec 6.3.2.

1. Approximately Submodular With these objective functions there will be very little
difference between F and H and therefore there will be relatively consistent bounds
with respect to optimal. Bid warping will have little effect on the final solution. The
only purpose it will serve is to slightly augment the scores when needed to guarantee
convergence. An example of this type of score function is in Eq. 33 when fi is small.
In this case the true objective function is very nearly modular and the final solution
will be very near optimal.

2. Non-submodular with good local optima This is the category that the simulations
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Figure 11: Comparison of mission score in 500 Monte-Carlo trials of a 200 task mission with
a varying number of agents.

in Sec. 6.3 demonstrate. The objective function used is not close to submodular
because the fuel penalty can span a wide range of values from near zero (when an
existing trajectory passes through a previously unassigned task) to multiple times the
value of the task (for tasks far away from the iterative assignment’s current trajectory).
This means that it will be quite difficult to construct a good a priori submodular
approximation. The results presented in Figs. 9 were specifically designed to highlight
how BW-CBBA could perform well in substantially non-submodular environments, and
as a result there does not exist a non-trivial ε and H for the objective function defined
as Eq. 33. Figure 11 presents a slight modification to the problem statement presented
in Sec 6.3.2. In order to create a reasonable optimal upper bound, the problem was
simplified by removing the task time out constraints. As can be seen from the optimal
upper bound in Fig. 11, all of the GICA approaches and BW-CBBA perform well (as
the black line is only an upper bound on optimal). BW-CBBA has good performance
in environments where any centralized greedy algorithms can produce good solutions.
These environments occur when greedy allocations do not catastrophically degrade
the team-wide performance. This occurs in domains like those presented in Sec. 6.3.2
where tasks are placed randomly in a 2-dimensional grid and therefore it would be
difficult to be in a situation where the agent geometry prevents servicing large portions
of the environment. It would take a very specific malicious environment for a greedy
allocation to perform poorly.

3. Non-submodular with poor local optima If there are tasks that can be greedily
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chosen by agents that prevent those agents from servicing other requirements, then
BW-CBBA can perform arbitrarily poorly. In these domains there can be sufficient
objective function coupling such that no sequential greedy algorithm could return a
good solution, regardless of the information assumptions. An example of this type of
environment is when no agents are close enough to any task to create an initial positive
score. Therefore, starting with an empty bid space, the marginal score for adding any
task will be negative and the final allocation will be empty. An optimal allocation in
this scenario could foreseeably take a negative incremental score on some initial tasks
in order to achieve a larger positive reward for other important tasks. Physically, this
could be realized if all of the agents start in one corner of the environment and all of
the tasks are on the other side of the space. This is a problem with sequential task
assignment, not just BW-CBBA, and is in general a very difficult problem to solve, even
with centralized methods. Indeed, all sequential assignment algorithms will be a poor
choice for these environments, and more advanced approaches that evaluate bundles
of assignments simultaneously will be needed. In general, these problems are very
computationally hard (specifically NP-Hard), but in special cases, other approximate
solvers may be able to explore these complex spaces efficiently.

7 Hybrid Information and Plan Consensus (HIPC)
The first incremental step at solving the problem mentioned so far was just bootstrapping
a plan consensus algorithm with an initial implicit coordination allocation. The first shot
at this was called CBBA with bootstrapping. The main structure of this algorithm was
to create an implicitly coordinated allocation using what ever information was available
amongst the agents. If this was computed after global situational awareness consensus, the
algorithm would converge immediately. If there were conflicts in the assignment, or high
value tasks had gone unassigned, a plan consensus algorithm (CBBA) [40] was run using the
implicit coordination solution as the initial bundle on board each agent.

The strength of this approach was that if there existed highly coupled behavoirs what were
obvious to the agents even with partial information, the initial implicit coordination planner
would find them, and this assignment would end up sticking. However, all it could take is 1
small piece of missing information to cause a cascading failure in the initial assignment, and
the algorithm would completely revert to a plan consensus algorithm (CBBA). This did not
achieve the goal of creating a planner that can really utilize this partial information agents
have about each other to produce highly coupled plans.

The intuitive solution to bootstrapping’s failures is to run both implicit coordination
and plan consensus at every iteration of the planner. This is in fact the premise behind
HIPC. The resulting algorithm is no longer as simple as appending together two different
algorithms and running them in series. By combining both approaches at every iteration of
the algorithm, the predictive power of implicit coordination is achieved, as well as introducing
the conflict resolution power of plan consensus, at the cost of having each piece violate the
others assumptions..

Recall that one of the properties of plan consensus algorithms that they trivially trusted
the past bids of all other agents. They could be sure that high value tasks wouldn’t go
unassigned because these algorithms communicate which tasks are assigned by definition.

DISTRIBUTION A: Distribution approved for public release.



This is no longer the case in general because if an agents situational awareness is poor enough
in a combined approach, they could be overestimating another agent’s performance on a task
and therefore it could potentially go unassigned all together. HIPC resolves this by creating
a new algorithmic behavior of understanding when an agent is likely overestimating the
performance of a teammate. In this case, agents learn to stop trusting that their neighbors
will want to service a task and instead bid on it themselves.

The other useful feature of this new hybrid approach is that it also fixes a previous failure
mode of pure implicit coordination approaches. This failure mode arose when agents would
underestimate the performance of their teammates. This would lead to final allocations that
would have conflicting assignments. Since plan consensus explicitly resolves conflicting as-
signments, this failure mode can be easily resolved by normal plan consensus mechanisms.
The result is that in the creation of this hybrid algorithm, the performance loss from the
lack of cooperation prediction of plan consensus algorithms is mitigated using implicit coor-
dination, while the performance loss associated with over and underestimating performance
with implicit coordination can be mitigated with plan consensus.

Theoretically this formulation is appealing but in practice some properties of hybrid
algorithms are even nicer than they may appear. From the structure of this construction,
asymmetry in information and communication is handled naturally. The assumptions from
construction is that all extra information is useful, and thus asymmetries due to increasing
the information of particular agents only increases the power of the allocation algorithm.
Additionally, in environments where communication and information disperse over physical
distances, its common for nearby agents to know the most about each other while little is
known about teammates far away. In practice, distance is often a penalty in reward functions
so nearby agents tend to be the ones that collaborate most often. Since cooperation is
between nearby agents, and information consensus is strongest amongst nearby agents, the
predictive power is actually stronger among the pairings that actually need it. For example,
in a very large team, an agent may only have information about 1 percent of the vehicles
in a fleet, which happen to be the ones in its line of sight. However, that agent is likely to
only to need intense cooperation with other vehicles in his vicinity, so this 1 percent is all
the information he actually needs to form highly coupled plans. Conversely, pure implicit
coordination approaches that only has 1 percent of the global information state onboard
each agent would likely perform poorly.

The rest of this document will discuss the details of algorithms that accomplish this
hybrid planning. The above sections have hopefully motivated the theoretical need for
these algorithms, and why they are not trivial extensions of an already existing expansive
literature.

7.1 HIPC Notation

The Hybrid Information and Plan Consensus (HIPC) algorithm is a distributed algorithm
that provides task assignments for multi-agent, multi-task allocation problems. The algo-
rithmic structure of HIPC is an iterative, 2 phase algorithm. These two phases are: a local
bid space creation phase where each agent generates a personal allocation of tasks (possibly
using situational awareness of other agents in the team), and a task consensus phase where
conflicting assignments are identified and resolved through local communication between
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adjacent agents. These two phases are repeated until the algorithm converges. To further
explain the relevant details of the algorithm, some notation will be formalized.

Bid A bid is represented as a triple: sij = 〈i, j, c〉, where i is the bidding agent’s index, j is
the bid’s task id, and c represents the bid score.

Bundle A bundle is an ordered data structure internal to each agent i, bi = {sij1 , . . . , sijn}
that consists of all n of its current bids. When new bids are made, they are appended
to the end of the bundle, thus the order in the bundle reflects the relative age of each
bid and thus the dependency structure of the bids, where later bids scored depend on
the assignment of all earlier bids in the bundle.

Bid Space The bid space is an unordered set of bids, defined as

A = {si1j1 , . . . , siN jN},

where N is the index of the last element in the bid space. This set contains a globally
consistent set of the current winning bids in the fleet.

Local Bid Space A local bid space Ai is defined as a set that contains agent i’s current
local understanding of the global bid space. In a fully connected network, Ai = A after
each communication phase, but in general, the geometry of agents in the network may
lead to information propagation latencies and thus non-identical local bid spaces.

Network Diameter The network diameter, D, is defined as the communication distance
between the furthest agents in the communication network. More formally, define
the communication distance between any pair of agents i and i′ to be Di→i′ . Define
D = maxi,i′ Di→i′ to be the maximum communication distance over all agent pairs i
and i′.

Neighborhood The neighborhood, Ni, of an agent i is defined as the set of agents that
agent i has situational awareness over. Similarly an agent i’s exact neighborhood N̄i

is the set of agents that agent i has perfect situational awareness over. By definition,
an agent’s perfect neighborhood always includes itself (i ∈ N̄i) and an agent’s perfect
neighborhood is always a subset of its full neighborhood (N̄i ⊆ Ni). If an agent
i′ ∈ Ni, then agent i expects that it can predict the objective values for agent i′. This
does not mean that their task allocations will be trivially identical even when perfect
information is known because neither their neighborhoods (Ni 6= Ni′) nor their local
bid spaces (Ai 6= Ai′) will be identical in general.

7.2 HIPC Algorithmic Description

The high level HIPC algorithmic description is given in Algorithm 7.

1. HIPC is a procedure run on-board each agent independently. HIPC is initialized with
an initial bid space A0

i , an available task set J , and a set of agents Ni that each agent
i has situational awareness over (Line 1). Note that Ni will contain a set of agents N̄i

that agent i knowingly has perfect situational awareness over.
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Algorithm 7 HIPC for each agent i

1: procedure HIPC(A0
i ,J ,Ni)

2: set Ai = A0
i , A′i = A0

i

3: iterationNumber = 1
4: while convergenceCounter < 2D do
5: (Ai,Ni) = CreateHIPCAssignment(A′i,Ni)
6: A′i = Consensus Phase(A′i,Ai)
7: if A′i = Ai then
8: convergenceCounter = convergenceCounter + 1
9: else

10: convergenceCounter = 0
11: end if
12: iterationNumber = iterationNumber + 1
13: end while
14: end procedure

2. Before each bid space construction operation, each agent checks for convergence. If Ai

hasn’t changed for two times the network diameter (2D) number of iterations, then
the algorithm has converged (Line 4).

3. The algorithm calls the CreateHIPCAssignment subroutine. The objective of this
function is to take in the current local bid space A′i and the neighborhood set Ni and
compute an updated local bid space Ai and potentially an updated neighborhood set
Ni (Line 5). The neighborhood set would only be updated if agent i decided that
planning for some agent i′ was hindering algorithmic performance and it dropped i′

from Ni. The exact details of this subroutine are outlined in Alg. 8.

4. The next algorithmic step involves running the consensus phase where each agent i,
shares its personal bundle bi with its network neighbors (Line 6). This consensus phase
can be implemented identically to the one proposed in [40]. (If the network is static,
other consensus protocols exist where each agent only needs to share the changes to
bi reducing overall communication. If the communication network is non-static during
plan construction, the full bi will need to be shared to retain the worst convergence
bounds.)

5. The algorithmic convergence condition is checked (Line 7), if it is true then the
convergenceCounter is incremented by one (Line 8), if not convergenceCounter is
reset to zero (Line 10).

6. Lastly the iteration counter is incremented (Line 12) and the algorithm returns to Line
4.

7.2.1 Creating the HIPC Assignment

The following section describes Alg. 8 which dictates how the local bid space A and the
neighborhood Ni are incrementally updated inside the HIPC algorithm.
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Algorithm 8 Creating the HIPC Assignment i

1: procedure CreateHIPCAssignment(A′i,Ni)
2: N̂i ← ∅
3: while N̂i 6= Ni do
4: N̂i ← Ni

5: Âi ← A′i
6: for all si′j ∈ Âi s.t. i′ ∈ N̄i do

7: Âi ← Âi /∈ si′j
8: end for
9: Âi ← TAA(Âi,Ni)

10: N̂i = CheckSAConsistency(Âi,A′i,Ni)
11: end while
12: Return (Âi, N̂i)
13: end procedure

1. The procedure takes in the output from consensus at the previous iteration A′i and the
current neighborhood set Ni (Line 1).

2. The first time the algorithm reaches N̂i 6= Ni, (Line 3), the while loop will trivially
return true (|Ni| ≥ 1.) Each subsequent time through (Line 3) checks if the neighbor-
hood set has changed, when it hasn’t, the procedure returns.

3. Drop all tasks from the local bid space Âi that belong to agents in known perfect
situational awareness set N̄i (Lines 6-8).

4. Use the TAA to compute an updated local bid space, Âi. New bids are computed
locally for every agent in the neighborhood set Ni.(Line 9) The default behavior inside
of the TAA function is that agents cannot remove any bids that they have already
committed to, they can only bid on unassigned tasks, or outbid a current winner of a
task. Note that all bids made by agents in N̄i are removed before entering TAA, so
the bundles for these agents are built up from scratch.

5. Update neighborhood set N̂i from the output of CheckSAConsistency (Line 10).

6. Return new local bid space Âi and new neighborhood set N̂i (Line 12).

7.2.2 Checking Situational Awareness Consistency

The following section describes Alg. 9 which describes how agents i′ are removed from agent
i’s neighborhood Ni.

1. The procedure takes in the new predicted bid space Ai the output from consensus at
the previous iteration A′i and the current neighborhood set Ni (Line 1).

2. Iterate over all agents that i has imperfect SA over (Line 2).

3. Find the max bid predicted for agent i′ that is in the new bid space Ai but not in the
old one A′i (Line 3)
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Algorithm 9 Checking SA consistency with assignments i

1: procedure CheckSAconsistency(Ai,A′i,Ni)
2: for all i′ ∈ Ni \ N̄i do
3: s̄i′j = max(si′j) s.t. si′j ∈ Ai , si′j /∈ A′i
4: γ ← 〈·, s̄i′j〉
5: if γ ∈ Γi′ then
6: if z +Di→i′ +Di′→i < iterationNumber then
7: Ni ← Ni \ i′
8: continue
9: end if

10: else
11: Γi′ = Γi′ ∪ 〈iterationNumber, s̄i′j〉
12: end if
13: end for
14: Return (Ni)
15: end procedure

4. Check if this bid is in agent i’s previous overbid list for agent i′, defined as Γi′ (Line 5).
Γi′ consists of pairs 〈zs̄i′j , s̄i′j〉 where zs̄i′j is the iteration number where s̄i′j was added
to Γi′ .

5. Check if the pair 〈zs̄i′j , s̄i′j〉 has been in the previous overbid list for longer than a
communication loop to the agent being planned for (Di→i′ +Di′→i)(Line 6), and if the
predicted bid has been in local bid space too long remove i′ from Ni (Line 7) and
continue checking other agents (Line 8).

6. If overbid is new, construct a pair of iterationNumber and bid s̄i′j and add to Γi′ (Line
11).

7. Return updated neighborhood Ni (Line 14).

7.2.3 Task Assignment Algorithm (TAA)

This implementation of HIPC can utilize any centralized task allocation algorithms with a
few required features (Line 9 from Alg. 8).

• Bids on separate tasks must follow a bundle structure. Specifically, this means that
bids are created in an ordered way, where the value of each bid is based on acyclic
dependencies. In CBBA, bundles are constructed as ordered lists, where bids at later
places in the list are dependent on the assignment of every previous task in the list.
This can be implemented with a generalized score function by value of the most recent
bid must be the incremental value of adding it to the overall collection of personal
tasks.

• The value of tasks shared with other agents is monotonically decreasing with respect
to their dependency structure. (i.e. if a bid s1 is dependent on a bid s2, then c1 ≤ c2.
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This can also accommodate arbitrary score functions by using a process called Bid
Warping described in [4].

• Agents cannot remove any bids that they have already committed too inside of the
TAA, they can only bid on unassigned tasks, or outbid a current winner of a task.

The implementation of HIPC in this work uses a centralized implementation of CBBA [40],
but this is not required and may not be desired for some objective functions.

7.3 Convergence and Performance Insights

The key ideas of the proofs will be provided below with their main result. The full conver-
gence result is only a slight modification of the result published in [7].

Theorem 5. HIPC converges in at most 2Nt(Na + 1)D iterations, where Nt is the number
of available tasks, and Na is the number of agents in the team.

Proof. Roughly, each agent can only mis-predict the next task to be locked in, (see [7] for
a precise definition of this) for 2D iterations. This mis-prediction can cycle through every
agent for a maximum of 2NaD number of iterations. At this point, the next task to be locked
in will be bid on by its winning agent and this will take 2D iterations to propagate for a
total of 2(Na + 1)D iterations to lock in each task. However, every agent now has reduced
the cardinality of their neighborhood set N by 1. The full allocation will then be realized in
at most 2Nt(Na + 1)D iterations.

This bound will not be tight unless Nt = 1 and would require an incredibly malicious
set of circumstances to realize because every single prediction that each agent makes will
need to give the worst possible answer (in a convergence sense). If the SA is really this bad,
each neighborhood will end up containing only the agents’ self and all subsequent replanning
iterations will be purely plan consensus. Additionally if Nt � Na (which is normally true)
the convergence bound becomes ≈ 2NtD, the perfect SA worst case bound.

Theorem 6. HIPC with imperfect situational awareness will converge to the same solution
as a centralized TAA

Proof. This result follows closely with the convergence proof. The winning bids that a
centralized TAA algorithm would return are sequentially locked in (again see [7] for a precise
definition of this) in order of largest score using exactly the same logic as the convergence
proof.

7.4 HIPC Experimental Results

To validate the claimed results, two Monte Carlo experiments were run to demonstrate
expected performance. The environments were created in a room resembling the physical
flight volume at the Aerospace Controls Lab as can be seen in Fig. 12. In the each of the
Monte Carlo experiments run forth is work, both agents and tasks were randomly placed in
the room according to a uniform distribution over the open space.

The first Monte Carlo experiment was run where situational awareness was perfectly
known for a subset of the fleet. The scenario run in Fig. 13 was with 5 agents and a varying
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Figure 12: Figure shows an example of what the planning environment and solution would
look like for a random example with 10 agents and 100 tasks. The small colored circles in
the figure represent the agents initial locations, the x’s are the task locations and the colored
line segments represent the winning agent’s estimated trajectory to service its winning bids.

number of tasks for 100 Monte Carlo iterations where the number of iterations are averaged
over all of the runs. The parameter “HIPC size” refers to the number of other agents that
each agent has perfect situational awareness over (i.e. HIPC size: (|N̄i| − 1),∀i). In this
figure a dramatic reduction of convergence iterations can be seen as the HIPC size increases.
The blue line in this figure, corresponding to HIPC size: 0 is the result that pure plan
consensus would give (exactly the CBBA solution [40]). The magenta line in the figure,
corresponding to HIPC size: 4 would be the global implicit coordination solution. All the
space between these two lines consist of hybrid solutions. In the experiment the HIPC size
was kept consistent for all agents, but recall this does not need to be true in practice. The
HIPC size can even be asymmetric between agents planning for each other.

The second Monte Carlo experiment highlights the main contribution of hybrid approach.
The results of this experiment are shown in Figure 14. This experiment was run on 7 agents
with 45 tasks for 300 Monte Carlo iterations where the number of iterations is averaged over
all runs. Again in this graph HIPC size refers to the number of other agents each agent
is planning for (|N̄i| − 1) except in this example situational awareness is imperfect. The
x-axis in this figure is called “Starting Location Error”. The way that this environment was
constructed is at each true location for a given task, a box was centered at this true task
location. The imperfect locations were constructed by sampling a 2 dimensional uniform
distribution where the edge lengths of the sample regions were “Starting Location Error”
times the maximum dimensions of the arena. If multiple agents i were predicting the same
agent i′, each agent i had a unique sample for the expected location of agent i′. As expected,
when the information is more consistent, planning for more agents reduces the number of
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Figure 13: Figure shows the reduction in convergence iterations introduced by when perfect
situational awareness is provided to HIPC. This example is a 5 agent scenario run on a varying
number of tasks. HIPC size refers to the number of other agents each agent knowingly has
perfect SA over (corresponding to (|N̄i| − 1).

convergence iterations dramatically.
An interesting case to consider is when the HIPC size 1− 6 lines cross above the (HIPC

size: 0) line. The crossing point for each respective line corresponds to when the error
in information is bad enough such that not considering any extra information would have
led to faster convergence. This increase in average convergence time is a result of cases
where the incorrect SA is leading to bad predictions and the agents needed to learn to stop
planning for those agents. This learning takes more time than the savings due to predictive
capability of other parts of the network. In general, missions may have a combination of
perfect and imperfect situational awareness and the algorithm would handle this naturally.
The convergence speed would be between the extreme cases. Also worth noting here is that
for identical problem statements, all “HIPC sizes” and “Starting Location Errors” returned
the same allocation with the only difference being the time to convergence. The fact that
the solutions converged to the same score was part of the design of the algorithm and
is a positive feature of this approach. Worth note is that for both experiments a global
consistency assumption planner [36, 37] could be used, and the number of iterations for
these planners would be the number of tasks assigned. This would lead to slower algorithmic
convergence in each of the two experiments considered in this section
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Figure 14: Figure shows the how the convergence rate of HIPC decays when situational
awareness is degraded. The example used in this figure was 7 agents competing over 45
tasks. The starting location error refers to a percentage of the entire arena over which the
initial location of agents in Ni can be wrong. HIPC size refers to the number of other agents,
each agent has partial situational awareness over (corresponding to |Ni| − 1).

7.5 Real Time Hardware Demonstrations

A video of a real time HIPC hardware demonstration (Figure 15) was produced as part of the
presentation at the International Symposium on Distributed Autonomous Robotic Systems
in South Korea this November. This real time experiment included 6 decentralized hardware
agents with changing network connections moving about an arena servicing tasks that were
arriving randomly. The right side of Figure 15 shows a visualizer of the planner state at a
snapshot in time. The 2 subfigures in the left side of Figure 15 are 2 angles of live video of
the demonstration that include fleet wide planner state projected down on to the ground in
real time. In this screen shot, the network happens to be strongly connected (this was not
true for the entire demonstration) with connections shown in purple. When an agent pair
has an orange line connecting them this symbolizes that they have some noisy measurements
of their partner’s position and therefor they can attempt to utilize the prediction capabilities
in HIPC. The dark colored X’s in the video show tasks that agents plan on servicing, and
the lightly colored X’s correspond to tasks that have already been serviced. The dotted lines
that are the same color as the X’s represent the agent’s predicted path while servicing the
tasks.

This experiment was done in a lab setting with the network connectivity being simulated.
We have been recently working on upgrading this scenario to use actual communication
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Figure 15: Figure shows a screen shot of a video of the real time hardware demonstration of
HIPC presented at DARS

hardware in the loop. This work is not yet complete but the hardware platform is finalized.
To do all of the onboard computations we are using Raspberry Pi B+’s (this hardware as
shown in Fig. 16.)

These computers are used to do all of the computation for planning as well as handling
all of the message passing. The physical communication is done using Digimesh Xbees shown
attached to the Raspberry Pi’s in Fig. 17. The power settings on these Xbee’s are turned
down all the way in order to simulate actual communication limitations. With these settings
we are able to construct non-trivial networks indoors on physical hardware, that actually
simulate the desired communication contested environments. Fig. 18, shows an example of
this real communication environment. This shows 11 mobile agents spread throughout the
6th and 7th floors of our building. Directed lines connect nodes in the figure if there is at
least a 70% chance of messages being delivered, where the red part of the line indicates the
receiver of the directional link. As can be seen in the figure, the communication network
is heterogeneous, disconnected, and non-symmetric. Environments like these will be used
to demonstrate the downside of using GICA algorithms, and how LICA algorithms can
significantly improve planning performance.
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Figure 16: Raspberry Pi hardware

Figure 17: Raspberry Pi hardware with case and DigiMesh Xbee

Figure 18: Team of 11 Raspberry Pi powered agents with Digimesh Xbee communication
hardware.
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Figure 19: Raspberry Pi network in real time using DigiMesh Xbees – an example of the
real communication environment using the Raspberry Pi’s and DigiMesh Xbees. Shown are
11 mobile agents spread throughout the 6th and 7th floors of our building. Directed lines
connect agents if there is at least a 70% chance of messages being delivered, where the red
part of the line indicates the receiver of the directional link.
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connectivity during mission execution, d) allowing the use of non-submodular score functions during the
decentralized allocation, and e) decreasing the convergence time by utilizing all of the information
available in the network, f) hardware results that demonstrate the difficulty of planning in communication
contested environments and the utility of using Local information consistency algorithms (LICA), and g) a
tutorial on the basics of decentralized task allocation for a general audience is currently in revision for
Control Systems Magazine. 

Our work developed the Hybrid Information and Plan Consensus Algorithm (HIPC), which uses implicit
coordination to plan for a subset of the team on-board each agent, then uses plan consensus to fix conflicts
in the assignment constraints that may arise. By combining the ideas of local plan consensus and implicit
coordination the algorithm empirically reduced the convergence time and number of messages required for
distributed task allocation problems. Recent work rigorously proves convergence and provides a worst
case convergence bound that is no slower than bid warped Consensus-Based Bundle Algorithm (CBBA),
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requiring 2 times the number of assigned tasks times the network diameter (2 N_t D) iterations. Further
work expanded this to imperfect situational awareness and a real time hardware demonstration was
conducted showing the validity of this approach. Altogether, these results have significantly improved the
state of the art capabilities of decentralized task allocation and work continues to refine these approaches.
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